JP2004111951A - Laminated ceramic capacitor and method of manufacturing the same - Google Patents

Laminated ceramic capacitor and method of manufacturing the same Download PDF

Info

Publication number
JP2004111951A
JP2004111951A JP2003303871A JP2003303871A JP2004111951A JP 2004111951 A JP2004111951 A JP 2004111951A JP 2003303871 A JP2003303871 A JP 2003303871A JP 2003303871 A JP2003303871 A JP 2003303871A JP 2004111951 A JP2004111951 A JP 2004111951A
Authority
JP
Japan
Prior art keywords
ceramic capacitor
dielectric layer
multilayer ceramic
mol
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003303871A
Other languages
Japanese (ja)
Inventor
Kazuki Hirata
平田 和希
Kenji Oka
岡 謙次
Atsuo Nagai
長井 淳夫
Kazuhiro Komatsu
小松 和博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003303871A priority Critical patent/JP2004111951A/en
Publication of JP2004111951A publication Critical patent/JP2004111951A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated ceramic capacitor with a small size and a large capacitance. <P>SOLUTION: The capacitor comprises a laminated body in which dielectric layers and internal electrodes are alternately stacked, and an external electrode 12 which is provided on the outer periphery of the laminated body. A dielectric layer 10 is composed of particles of a core shell structure in which a shell 101 is composed of accessary components on a surface of a core 100 made of barium titanate. As the dielectric layer 10 decreases in thickness, a relative dielectric constant increases. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は積層セラミックコンデンサ及びその製造方法に関するものである。 The present invention relates to a multilayer ceramic capacitor and a method for manufacturing the same.

 容量の温度変化率の小さい積層セラミックコンデンサの誘電体層は、主成分であるチタン酸バリウムを中心とするコア部と、副成分がコア部表面に拡散したシェル部からなるコアシェル構造の粒子で形成することが知られている。 The dielectric layer of a multilayer ceramic capacitor with a small rate of temperature change of the capacitance is formed of particles with a core-shell structure consisting of a core part centered on barium titanate, which is the main component, and a shell part, in which subcomponents diffuse to the surface of the core part. It is known to

 また、積層セラミックコンデンサにおいては、小型大容量化が求められている。 積 層 In addition, multilayer ceramic capacitors are required to have a small size and a large capacity.

 なお、この出願の発明に関する先行技術文献情報としては、例えば、特許文献1が知られている。
特開平10−308321号公報
As prior art document information related to the invention of this application, for example, Patent Document 1 is known.
JP-A-10-308321

 上記方法によると、Mgが結晶粒表面に拡散する深さを制御することにより、高い比誘電率と良好な静電容量の温度変化率を得ることができる。 According to the above method, a high relative dielectric constant and a good rate of temperature change of capacitance can be obtained by controlling the depth at which Mg diffuses into the crystal grain surface.

 しかしながら、従来のコアシェル構造の粒子からなる誘電体層において、構成する粒子の粒径がほぼ均一であり、その粒子に存在するシェル部の厚みが均一であるため、温度変化率は小さいが比誘電率が小さくなるという問題があった。 However, in the conventional dielectric layer composed of particles having a core-shell structure, the particle diameter of the constituent particles is almost uniform, and the thickness of the shell portion existing in the particles is uniform, so that the temperature change rate is small but the relative dielectric constant is small. There was a problem that the rate became small.

 また近年小型かつ大容量の積層セラミックコンデンサを得るためには、誘電体層を薄層化し、積層数を増加させる方法があるが、小型化が困難であった。 In recent years, in order to obtain a small and large-capacity multilayer ceramic capacitor, there is a method of increasing the number of stacked layers by making the dielectric layer thinner, but it has been difficult to reduce the size.

 そこで本発明は、小型で大容量の積層セラミックコンデンサを提供することを目的とするものである。 Therefore, an object of the present invention is to provide a multilayer ceramic capacitor having a small size and a large capacity.

 この目的を達成するために、本発明は、以下の構成を有するものである。 達成 In order to achieve this object, the present invention has the following configuration.

 本発明の請求項1に記載の発明は、チタン酸バリウムを中心としたコア部とその表面部分にシェル部を有するコアシェル構造の粒子が構成しており、特に、粒子表面部分に存在するシェル部の厚みはその粒子の粒径に応じて異なり、小型で大容量の積層セラミックコンデンサを得ることができる。 The invention according to claim 1 of the present invention comprises particles having a core-shell structure having a core portion centered on barium titanate and a shell portion on the surface thereof, and in particular, a shell portion present on the particle surface portion. The thickness varies depending on the particle size of the particles, and a small-sized and large-capacity multilayer ceramic capacitor can be obtained.

 本発明の請求項2に記載の発明は、特に、誘電体層を構成する粒子の表面に存在するシェル部の厚みが、その粒径が大きいものほど薄くなり、小型で高容量の積層セラミックコンデンサを得ることができる。 The invention according to claim 2 of the present invention is particularly directed to a multilayer ceramic capacitor having a small size and a high capacity, in which the shell portion present on the surface of the particles constituting the dielectric layer has a smaller thickness as the particle size is larger. Can be obtained.

 本発明の請求項3に記載の発明は、特に、シェル部の非形成の粒子が存在しており、小型で大容量の積層セラミックコンデンサを得ることができる。 According to the third aspect of the present invention, in particular, particles having no shell portion are present, so that a multilayer ceramic capacitor having a small size and a large capacity can be obtained.

 本発明の請求項4に記載の発明は、特に、コア部のみの粒子が存在しており、小型で大容量の積層セラミックコンデンサを得ることができる。 According to the invention described in claim 4 of the present invention, in particular, a particle having only a core portion is present, and a small-sized and large-capacity multilayer ceramic capacitor can be obtained.

 本発明の請求項5に記載の発明は、特に、誘電体層を形成する副成分として、Mg化合物あるいはMg化合物と希土類化合物を含み、これらの合計量は、チタン酸バリウムに対して合計1.6モル%以上3.0モル%以下で、前記Mg化合物の含有量は、3.0モル%以下(ただし0モル%を除く)、前記希土類化合物の含有量は3.0モル%未満とするものであり、小型で大容量の積層セラミックコンデンサを得ることができる。 The invention according to claim 5 of the present invention particularly includes a Mg compound or a Mg compound and a rare earth compound as subcomponents forming a dielectric layer, and the total amount of these is 1. 6 mol% or more and 3.0 mol% or less, the content of the Mg compound is 3.0 mol% or less (excluding 0 mol%), and the content of the rare earth compound is less than 3.0 mol%. Therefore, a small-sized and large-capacity multilayer ceramic capacitor can be obtained.

 本発明の請求項6に記載の発明は、特に、希土類化合物は、Dy,Ho,Er,Ybの各化合物から選ばれる一種類以上であり、小型で大容量の積層セラミックコンデンサを得ることができる。 In the invention according to claim 6 of the present invention, in particular, the rare earth compound is at least one selected from the compounds of Dy, Ho, Er, and Yb, and a small-sized and large-capacity multilayer ceramic capacitor can be obtained. .

 本発明の請求項7に記載の発明は、均一な粒径を有するチタン酸バリウム、Mg化合物、希土類化合物の各粉体を混合し、800℃〜1100℃で熱処理する第1の工程と、前記混合物を前記第1の工程における混合時の粉体の比表面積より大きな比表面積を有するように粉砕する第2の工程と、この粉砕粉を用いてセラミックシートを作製し、内部電極と交互に積層して積層体を得る第3の工程と、前記積層体を焼成し、外部電極を形成する第4の工程とを有するものであり、小型で大容量の積層セラミックコンデンサを得ることができる。 The invention according to claim 7 of the present invention provides a first step of mixing powders of barium titanate having a uniform particle size, a Mg compound, and a rare earth compound, and performing a heat treatment at 800 ° C to 1100 ° C; A second step of pulverizing the mixture so as to have a specific surface area larger than the specific surface area of the powder at the time of the mixing in the first step, and preparing a ceramic sheet using the pulverized powder, and alternately laminating with the internal electrodes And a fourth step of firing the laminate to form an external electrode, whereby a small-sized, large-capacity multilayer ceramic capacitor can be obtained.

 本発明によると、容量の温度変化率が小さく、小型で大容量の積層セラミックコンデンサを提供することができる。 According to the present invention, it is possible to provide a small-sized and large-capacity multilayer ceramic capacitor having a small rate of temperature change of capacitance.

 (実施の形態1)
 以下、実施の形態1により、本発明の特に請求項1〜4、7について説明する。
(Embodiment 1)
Hereinafter, a first embodiment of the present invention will be described.

 図1は、本実施の形態における誘電体層の一部拡大断面図であり、100はチタン酸バリウムからなるコア部、101はコア部100の表面を被覆するシェル部、102はコア部100のみ、あるいは、コア部100とシェル部101からなる粒子である。図2は一般的な積層セラミックコンデンサの一部切欠斜視図であり、10は誘電体層、11は内部電極、12は外部電極である。 FIG. 1 is a partially enlarged cross-sectional view of a dielectric layer according to the present embodiment, where 100 is a core portion made of barium titanate, 101 is a shell portion covering the surface of the core portion 100, and 102 is only the core portion 100 Alternatively, the particles are composed of a core part 100 and a shell part 101. FIG. 2 is a partially cutaway perspective view of a general multilayer ceramic capacitor, in which 10 is a dielectric layer, 11 is an internal electrode, and 12 is an external electrode.

 まず、誘電体層10の出発原料として平均粒径0.5μm以下のBaTiO3100mol%に対し、副成分としてMgOを1.0mol%、Dy23を0.3mol%、Ho23を0.3mol%、SiO2を0.6mol%、Mn34を0.05mol%となるようにそれぞれ秤量する。 First, with respect to the average particle diameter 0.5μm or less of BaTiO 3 100 mol% as starting material for the dielectric layer 10, 1.0 mol% of MgO as an auxiliary component, 0.3 mol% of Dy 2 O 3, the Ho 2 O 3 Weigh 0.3 mol%, SiO 2 0.6 mol%, and Mn 3 O 4 0.05 mol%, respectively.

 次に、ジルコニアボールを備えたボールミルに純水とともに入れ、湿式混合する。その後、脱水し、120℃で乾燥した。 Next, put it together with pure water into a ball mill equipped with zirconia balls and wet mix. Then, it dehydrated and dried at 120 degreeC.

 次いで、この乾燥粉末を高純度のアルミナルツボに入れ、空気中800℃〜1100℃で2時間仮焼する。 Next, the dried powder is put into a high-purity alumina crucible and calcined in air at 800 ° C. to 1100 ° C. for 2 hours.

 仮焼後は、巨視的にみると軽く固まった状態であるが、X線回折により分析すると、チタン酸バリウム同士、または上述したような添加物とチタン酸バリウムが反応し、若干固溶した状態になっていると考えられる。 After calcination, macroscopically, it is in a lightly solidified state, but when analyzed by X-ray diffraction, barium titanate reacts with each other or with the above-described additive and barium titanate to form a slightly solid solution. It is considered to be.

 その後、仮焼粉を粒径3mmのジルコニアボールを備えたボールミルに純水とともに入れ、湿式粉砕を行った。その後、脱水し、120℃で乾燥した。 (5) Thereafter, the calcined powder was put together with pure water into a ball mill equipped with zirconia balls having a particle diameter of 3 mm, and wet milled. Then, it dehydrated and dried at 120 degreeC.

 粉砕は、仮焼により接着した粒子を、最大粒径が0.6μm以下、平均粒径が0.5μm以下となるようにする。またこの大きさとすることにより、チタン酸バリウム以外の成分が反応しやすくなり、焼結性が向上すると共に、所望の誘電体層10を効果的に得ることができる。 In the pulverization, the particles bonded by calcination are adjusted so that the maximum particle size is 0.6 μm or less and the average particle size is 0.5 μm or less. With this size, components other than barium titanate are likely to react, improving sinterability and effectively obtaining a desired dielectric layer 10.

 次に、この粉砕粉とエタノールなどのアルコールを混合して、粉砕粉粒子の表面がアルコールで被覆されるようにする。 Next, the ground powder is mixed with an alcohol such as ethanol so that the surface of the ground powder particles is coated with the alcohol.

 次いで、n−酢酸ブチルからなる溶剤成分、ベンジルブチルフタレートからなる可塑剤成分を混合し、その後ポリビニルブチラール樹脂からなる有機バインダ成分を混合し、スラリーを調整した。 Next, a slurry was prepared by mixing a solvent component composed of n-butyl acetate and a plasticizer component composed of benzyl butyl phthalate, and then an organic binder component composed of polyvinyl butyral resin.

 このようにまずアルコールで粉砕粉粒子の表面を被覆してからバインダ、溶剤、可塑剤と混合することにより、粉砕粉粒子が凝集するのを抑制できる。 凝集 As described above, the surface of the pulverized powder particles is first coated with alcohol, and then mixed with a binder, a solvent, and a plasticizer, whereby aggregation of the pulverized powder particles can be suppressed.

 しかしながらアルコールの添加量が多すぎると所望のセラミックシートを得ることができない。従って、アルコールの添加量は粉砕粉粒子が凝集しないようにその表面を被覆できる量で、バインダ、溶剤、可塑剤の合計量よりも少なくする。 However, if the amount of alcohol added is too large, a desired ceramic sheet cannot be obtained. Therefore, the amount of the alcohol added is such that the surface of the ground powder particles can be coated so as not to agglomerate, and is smaller than the total amount of the binder, the solvent and the plasticizer.

 その後、スラリーをドクターブレード法により、誘電体層10となるセラミックグリーンシートに成形する。 Thereafter, the slurry is formed into a ceramic green sheet to be the dielectric layer 10 by a doctor blade method.

 次に、このセラミックグリーンシート上に平均粒径約0.4μmのNi粉末からなる内部電極ペーストを用い、所望のパターンとなるようにスクリーン印刷を行う。 Next, screen printing is performed on this ceramic green sheet using an internal electrode paste made of Ni powder having an average particle size of about 0.4 μm so as to form a desired pattern.

 次いで、内部電極パターン形成済みのセラミックグリーンシートを内部電極パターンがセラミックグリーンシートを介して対向するように三枚重ね合わせ、加熱、加圧して一体化した後、横2.4mm、縦1.3mmの大きさに切断して、未焼結積層体を準備する。 Next, three ceramic green sheets on which the internal electrode patterns have been formed are overlapped with each other so that the internal electrode patterns face each other with the ceramic green sheets interposed therebetween, and heated and pressed to be integrated, and then 2.4 mm wide and 1.3 mm long. To obtain a green laminate.

 そして、未焼結積層体をジルコニア粉末を敷いたジルコニア質サヤに入れ、350℃まで窒素中で加熱し、有機バインダを燃焼させ、その後N2+H2中で1250℃で2時間焼成して焼結体を得た。 The unsintered laminate is placed in a zirconia sheath covered with zirconia powder, heated to 350 ° C. in nitrogen to burn the organic binder, and then fired at 1250 ° C. for 2 hours in N 2 + H 2 for firing. I got a body.

 この時、焼成温度が、1300℃以上になると、本発明の特徴であるコアシェル構造を有する大小の粒子からなる誘電体層10を作製することができなくなり、誘電体層10の容量変化率が大きくなる。 At this time, if the firing temperature is 1300 ° C. or higher, the dielectric layer 10 composed of large and small particles having a core-shell structure, which is a feature of the present invention, cannot be manufactured, and the capacitance change rate of the dielectric layer 10 is large. Become.

 また、焼成温度が1200℃以下の時、積層セラミックコンデンサの絶縁抵抗が低下する。 (4) When the firing temperature is 1200 ° C. or lower, the insulation resistance of the multilayer ceramic capacitor decreases.

 従って焼成温度は1200〜1300℃とすることが望ましい。 Therefore, it is desirable that the firing temperature be 1200 to 1300 ° C.

 次に、得られた焼結体の内部電極11の露出した端面に外部電極12として、900℃、窒素雰囲気焼成用銅ペーストを塗布し、メッシュ型の連続ベルト炉によって焼付け、図2に示すような積層セラミックコンデンサを得る。 Next, a copper paste for baking in a nitrogen atmosphere at 900 ° C. was applied as an external electrode 12 to the exposed end face of the internal electrode 11 of the obtained sintered body, and baked in a continuous belt furnace of a mesh type, as shown in FIG. A simple multilayer ceramic capacitor is obtained.

 なお、各積層セラミックコンデンサの内部電極11の厚みは約1.5μm以下である。 The thickness of the internal electrode 11 of each multilayer ceramic capacitor is about 1.5 μm or less.

 この積層セラミックコンデンサの誘電体層10は、図1に示すように、粒子102のコア部100がチタン酸バリウムで、シェル部101が上記副成分(Mg,Dy,Hoなど)で構成されたコアシェル構造を有するものである。 As shown in FIG. 1, the dielectric layer 10 of the multilayer ceramic capacitor has a core shell 100 of particles 102 made of barium titanate and a shell 101 made of the above-mentioned subcomponents (Mg, Dy, Ho, etc.). It has a structure.

 また、コア部100の表面はすべてシェル部101で被覆されているわけではなく、コア部100が露出している粒子102も存在する。 Also, the entire surface of the core portion 100 is not always covered with the shell portion 101, and there are also particles 102 from which the core portion 100 is exposed.

 さらに、誘電体層10中には、コア部100のみからなる粒子も存在する。 {Circle around (4)} In the dielectric layer 10, there are also particles composed only of the core portion 100.

 さらにまた、誘電体層10を構成する粒子102は、粒径が不均一で、高誘電率を有するチタン酸バリウムで構成されるコア部100の粒径が大きいものほどシェル部101の厚みが薄いものである。 Furthermore, the particles 102 constituting the dielectric layer 10 have a non-uniform particle diameter, and the shell part 101 has a smaller thickness as the core part 100 composed of barium titanate having a high dielectric constant has a larger particle diameter. Things.

 この誘電体層を構成する粒子のばらつきは、用いるチタン酸バリウムの粒子のばらつき、または粉砕工程により変化する。粒径の均一なチタン酸バリウムを用い、粉砕後の粒径も均一な場合、各粒子におけるシェル相の厚みはほぼ均一となり所望の誘電体粒子を得ることができない。粉砕が弱すぎて粒径のばらつきを抑えた場合、凝集粉が残り所望とするシートを得ることが困難となる。そこで、用いたチタン酸バリウムの平均径、さらに粉砕後の平均径と最大粒径を制御する必要がある。 ば ら つ き The variation in the particles constituting the dielectric layer changes due to the variation in the barium titanate particles used or the pulverization process. When barium titanate having a uniform particle size is used and the particle size after pulverization is also uniform, the thickness of the shell phase in each particle becomes substantially uniform, and desired dielectric particles cannot be obtained. If the pulverization is too weak to suppress the variation of the particle size, it is difficult to obtain a desired sheet because the coagulated powder remains. Therefore, it is necessary to control the average diameter of the used barium titanate, and further, the average diameter and the maximum particle diameter after pulverization.

 なお、本実施の形態における粒径の測定方法について説明する。 Note that the method for measuring the particle size in the present embodiment will be described.

 各試料を走査型電子顕微鏡を用いた観察し、その観察面にランダムに10本の直線を引いて、各直線の長さとそこに含まれる粒子数を測定し、一直線における平均粒径を計算し、続いて10本の直線における平均値を計算し、これを平均粒径とする。 Each sample was observed using a scanning electron microscope, 10 straight lines were randomly drawn on the observation surface, the length of each straight line and the number of particles contained therein were measured, and the average particle size in a straight line was calculated. Then, the average value of ten straight lines is calculated, and this is defined as the average particle size.

 次に、得られた積層セラミックコンデンサの静電容量および誘電損失は、試料を150℃の温度で1時間熱処理を行い常温に48時間放置した後、20℃の恒温槽中で周波数1kHz、入力信号レベル1.0Vrmsにて測定し、静電容量から比誘電率を算出した。静電容量の温度に対する変化率は、−25℃から昇温させながら85℃まで静電容量を測定し、(数1)を用いて算出した。 Next, the capacitance and dielectric loss of the obtained multilayer ceramic capacitor were measured by subjecting the sample to a heat treatment at a temperature of 150 ° C. for 1 hour, leaving it at room temperature for 48 hours, and then inputting a signal at a frequency of 1 kHz in a 20 ° C. thermostat. The measurement was performed at a level of 1.0 Vrms, and the relative permittivity was calculated from the capacitance. The rate of change of the capacitance with respect to the temperature was calculated using (Equation 1) by measuring the capacitance from −25 ° C. to 85 ° C. while increasing the temperature.

Figure 2004111951
Figure 2004111951

 比較例として、均一な粒径を有する誘電体材料を用いて作製したものを示す。 As a comparative example, one manufactured using a dielectric material having a uniform particle size is shown.

 これらの試験結果を(表1)に示す。 The test results are shown in (Table 1).

Figure 2004111951
Figure 2004111951

 (表1)から明らかなように、本実施例1においては比較例と比べて比誘電率が高く85℃での静電容量変化率が小さいことが明らかとなった。 (Table 1) As is clear from Table 1, the relative dielectric constant is higher in Example 1 and the capacitance change rate at 85 ° C. is lower than in Comparative Example.

 なお、今回の結果は誘電体層10の厚みを2.0μmで行った結果であるが、厚みを変化しても比誘電率に関してはほとんど変化しないことを確認している。 In addition, although the result of this time is a result of performing the thickness of the dielectric layer 10 at 2.0 μm, it has been confirmed that the relative dielectric constant hardly changes even if the thickness is changed.

 また、粉砕粉の最大粒径が0.6μm以下、平均粒径が0.5μm以下となる範囲で粒径を異ならせるようにすることにより、副成分拡散後の粒子の状態は、粒径の小さな(比表面積の大きい)チタン酸バリウム表面には、多くの副成分が拡散してシェル部101の厚みは厚くなり、温度特性に優れた粒子となる。一方、高い誘電率を示す粒径の大きな(比表面積の小さい)チタン酸バリウム表面へは、副成分の拡散が減りシェル部101の厚みは薄くなり、比誘電率の優れた粒子となる。したがって、誘電体層10において温度特性に優れた粒子と、比誘電率に優れた粒子が融合することにより、高い比誘電率を示し、かつ静電容量の温度変化率が小さい誘電体層10を得ることができるのである。 Further, by varying the particle size in a range where the maximum particle size of the pulverized powder is 0.6 μm or less and the average particle size is 0.5 μm or less, the state of the particles after the sub-component diffusion becomes Many subcomponents diffuse on the surface of the small (large specific surface area) barium titanate, and the thickness of the shell portion 101 is increased, resulting in particles having excellent temperature characteristics. On the other hand, on the surface of barium titanate having a large particle diameter (having a small specific surface area) exhibiting a high dielectric constant, diffusion of subcomponents is reduced and the thickness of the shell portion 101 is reduced, resulting in particles having an excellent relative dielectric constant. Therefore, the particles having excellent temperature characteristics and the particles having excellent relative dielectric constant in the dielectric layer 10 are fused to form the dielectric layer 10 having a high relative dielectric constant and a small rate of change in capacitance with temperature. You can get it.

 (実施の形態2)
 以下、本発明の特に請求項5、6に記載の発明について説明する。
(Embodiment 2)
Hereinafter, the present invention, particularly, the inventions described in claims 5 and 6 will be described.

 本実施の形態においては、誘電体層10の出発原料として、平均粒径0.5μm以下のBaTiO3100mol%に対して、SiO2が0.6mol%、Mn34が0.05mol%となるようにするとともに、MgOとDy23とHo23の添加量を変え、実施の形態1と同様に積層セラミックコンデンサを作製し、特性を測定する。その結果を(表2)に示す。 In the present embodiment, the starting materials of the dielectric layer 10 are 0.6 mol% of SiO 2 and 0.05 mol% of Mn 3 O 4 with respect to 100 mol% of BaTiO 3 having an average particle size of 0.5 μm or less. In addition, the amounts of MgO, Dy 2 O 3, and Ho 2 O 3 were changed, and a multilayer ceramic capacitor was manufactured in the same manner as in Embodiment 1, and the characteristics were measured. The results are shown in (Table 2).

Figure 2004111951
Figure 2004111951

 (表2)よりMgOとDy23とHo23の添加量が多いほうが比誘電率が小さくなる。特に試料1〜3、5に関しては比誘電率が高いが静電容量の温度変化率が大きいことがわかる。これはシェル相を構成するMgOとDy23とHo23の添加量が少なすぎる場合、誘電体層の粒子がコアシェル構造を形成することができないためである。一方、試料16に関してはMgOとDy23とHo23の添加量が多いため、シェル相が十分厚く形成され、高誘電率化が実現できなかった。 As shown in Table 2, the larger the added amount of MgO, Dy 2 O 3 and Ho 2 O 3 , the smaller the relative dielectric constant. In particular, it can be seen that samples 1 to 3 and 5 have a high relative dielectric constant but a large temperature change rate of capacitance. This is because if the added amount of MgO, Dy 2 O 3 and Ho 2 O 3 constituting the shell phase is too small, the particles of the dielectric layer cannot form the core-shell structure. On the other hand, in Sample 16, since the added amounts of MgO, Dy 2 O 3, and Ho 2 O 3 were large, the shell phase was formed sufficiently thick, and a high dielectric constant could not be realized.

 つまり、誘電体層10を構成する粒子のコア部であるチタン酸バリウム100mol%に対して、MgOとDy23とHo23の合計添加量が合計1.6モル%以上3.0モル%以下、好ましくは合計1.6モル%以上2.5モル%以下(但し、0mol%を除く)で、シェル部の厚みを薄くすることができるとともに、シェル部がコア部の表面の一部にしか存在しない粒子が多く存在することになるのである。また、MgOとDy23とHo23の合計添加量をこの様にすることにより、誘電体層10の焼結温度を下げることができる。誘電体層10の焼結温度が1300℃を超えると、大きい粒子と小さい粒子とが反応して、小さな粒子がなくなり、図1に示すように、粒径が不均一な粒子からなる誘電体層10を得ることができなくなる。 That is, the total added amount of MgO, Dy 2 O 3 and Ho 2 O 3 is at least 1.6 mol% to 3.0 mol% with respect to 100 mol% of barium titanate which is the core of the particles constituting the dielectric layer 10. The shell portion can be reduced in thickness by not more than 1.6 mol% and preferably not more than 1.6 mol% and not more than 2.5 mol% (excluding 0 mol%). There will be many particles that exist only in the part. Further, the sintering temperature of the dielectric layer 10 can be lowered by setting the total amount of addition of MgO, Dy 2 O 3 and Ho 2 O 3 as described above. When the sintering temperature of the dielectric layer 10 exceeds 1300 ° C., the large particles and the small particles react with each other and the small particles disappear, and as shown in FIG. 10 can no longer be obtained.

 なお、上記各実施の形態においては、希土類化合物としてDy23とHo23を用いたが、これ以外の希土類化合物を用いても構わない。特に、Dy,Ho,Er,Ybの各化合物を少なくとも一つ用いることが好ましい。なぜならば、これらの元素は、希土類元素の中でもイオン半径の小さな原子であり、焼成工程において、誘電体層10を構成する粒子102のシェル層作製を促進し、他の希土類化合物を用いた場合よりも温度特性が良好になりやすい。 In each of the above embodiments, Dy 2 O 3 and Ho 2 O 3 are used as rare earth compounds, but other rare earth compounds may be used. In particular, it is preferable to use at least one compound of each of Dy, Ho, Er, and Yb. This is because these elements are atoms having a small ionic radius among the rare earth elements, and promote the formation of a shell layer of the particles 102 constituting the dielectric layer 10 in the firing step, and are more effective than when other rare earth compounds are used. Also, the temperature characteristics tend to be good.

 また、粉砕後の仮焼粉は比表面積が大きいほど誘電体層10の比誘電率を向上させることができる。 {Circle around (4)} As the specific surface area of the calcined powder after pulverization increases, the relative dielectric constant of the dielectric layer 10 can be improved.

 本発明にかかる積層セラミックコンデンサ及びその製造方法は、静電容量の温度変化が小さく、小型で大容量の特性が必要な積層セラミックコンデンサ及びその製造方法等にも適用できる。 The multilayer ceramic capacitor and the method of manufacturing the same according to the present invention can also be applied to a multilayer ceramic capacitor that requires small capacitance and large-capacity characteristics and a method of manufacturing the same.

本発明の実施の形態1、2における誘電体層の一部拡大断面図Partially enlarged sectional view of a dielectric layer according to the first and second embodiments of the present invention. 本発明の実施の形態1、2における積層セラミックコンデンサの一部切欠断面斜視図Partially cutaway sectional perspective view of multilayer ceramic capacitor according to Embodiments 1 and 2 of the present invention.

符号の説明Explanation of reference numerals

 10 誘電体層
 11 内部電極
 12 外部電極
 100 コア部
 101 シェル部
 102 粒子
DESCRIPTION OF SYMBOLS 10 Dielectric layer 11 Internal electrode 12 External electrode 100 Core part 101 Shell part 102 Particle

Claims (7)

誘電体層と内部電極層とを交互に積層した積層体と、前記積層体の外周面に設けた外部電極とを備え、前記誘電体層は、チタン酸バリウムを中心としたコア部とその表面部分にシェル部を有するコアシェル構造の粒子から構成されており、粒子表面部分に存在するシェル部の厚みはその粒子の粒径に応じて異なることを特徴とする積層セラミックコンデンサ。 A laminate in which dielectric layers and internal electrode layers are alternately laminated, and an external electrode provided on an outer peripheral surface of the laminate, wherein the dielectric layer has a core portion centered on barium titanate and a surface thereof. A multilayer ceramic capacitor comprising a core-shell structure particle having a shell portion at a portion thereof, wherein the thickness of the shell portion present on the particle surface portion varies depending on the particle size of the particle. 誘電体層を構成する粒子の表面に存在するシェル部の厚みは、その粒径が大きいものほど薄いことを特徴とする請求項1記載の積層セラミックコンデンサ。 2. The multilayer ceramic capacitor according to claim 1, wherein the shell portion present on the surface of the particles constituting the dielectric layer has a smaller thickness as the particle size increases. 誘電体層を構成する粒子には、シェル部の一部が非形成の粒子が存在することを特徴とする請求項1記載の積層セラミックコンデンサ。 2. The multilayer ceramic capacitor according to claim 1, wherein the particles constituting the dielectric layer include particles in which a part of the shell portion is not formed. 誘電体層を構成する粒子には、コア部のみの粒子が存在することを特徴とする請求項1記載の積層セラミックコンデンサ。 2. The multilayer ceramic capacitor according to claim 1, wherein the particles constituting the dielectric layer include particles only in the core portion. 誘電体層を形成する副成分として、Mg化合物あるいはMg化合物と希土類化合物を含み、これらの合計量は、チタン酸バリウムに対して合計1.6モル%以上3.0モル%以下で、前記Mg化合物の含有量は、3.0モル%以下(ただし0モル%を除く)、前記希土類化合物の含有量は3.0モル%未満である請求項1に記載の積層セラミックコンデンサ。 As a sub-component for forming the dielectric layer, a Mg compound or a Mg compound and a rare earth compound are contained, and the total amount thereof is 1.6 mol% or more and 3.0 mol% or less based on barium titanate. The multilayer ceramic capacitor according to claim 1, wherein the content of the compound is 3.0 mol% or less (excluding 0 mol%), and the content of the rare earth compound is less than 3.0 mol%. 希土類化合物は、Dy,Ho,Er,Ybの各化合物から選ばれる一種類以上である請求項5に記載の積層セラミックコンデンサ。 The multilayer ceramic capacitor according to claim 5, wherein the rare earth compound is at least one selected from Dy, Ho, Er, and Yb compounds. 均一な粒径を有するチタン酸バリウム、Mg化合物、希土類化合物の各粉体を混合し、800℃〜1100℃で熱処理する第1の工程と、前記混合物を前記第1の工程における混合時の粉体の比表面積より大きな比表面積を有するように粉砕する第2の工程と、この粉砕粉を用いてセラミックシートを作製し、内部電極と交互に積層して積層体を得る第3の工程と、前記積層体を焼成し、外部電極を形成する第4の工程とを有する積層セラミックコンデンサの製造方法。 A first step of mixing powders of barium titanate, a Mg compound, and a rare earth compound having a uniform particle size, and heat-treating the mixture at 800 ° C. to 1100 ° C .; and powder obtained by mixing the mixture in the first step. A second step of pulverizing to have a specific surface area larger than the specific surface area of the body, and a third step of producing a ceramic sheet using the pulverized powder and alternately laminating with the internal electrode to obtain a laminate, And b. Firing the laminate to form external electrodes.
JP2003303871A 2002-08-29 2003-08-28 Laminated ceramic capacitor and method of manufacturing the same Pending JP2004111951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003303871A JP2004111951A (en) 2002-08-29 2003-08-28 Laminated ceramic capacitor and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002250905 2002-08-29
JP2003303871A JP2004111951A (en) 2002-08-29 2003-08-28 Laminated ceramic capacitor and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2004111951A true JP2004111951A (en) 2004-04-08

Family

ID=32301287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003303871A Pending JP2004111951A (en) 2002-08-29 2003-08-28 Laminated ceramic capacitor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2004111951A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7297403B2 (en) 2004-10-12 2007-11-20 Tdk Corporation Dielectric ceramic composition and electronic device
US7498082B2 (en) 2005-11-09 2009-03-03 Tdk Corporation Dielectric ceramic composition having specific dispersion of diffusion depth, electronic device, and multilayer ceramic capacitor
KR101226157B1 (en) 2010-03-11 2013-01-24 가부시키가이샤 무라타 세이사쿠쇼 Dielectric ceramic and laminated ceramic capacitor
KR101615071B1 (en) * 2015-09-08 2016-04-25 한국세라믹기술원 Barium titanate nano particles and manufacturing method thereof
KR20210065529A (en) * 2019-11-27 2021-06-04 삼성전기주식회사 Manufacturing method of core-shell particle and multi-layer ceramic electronic parts including core-shell particle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7297403B2 (en) 2004-10-12 2007-11-20 Tdk Corporation Dielectric ceramic composition and electronic device
US7498082B2 (en) 2005-11-09 2009-03-03 Tdk Corporation Dielectric ceramic composition having specific dispersion of diffusion depth, electronic device, and multilayer ceramic capacitor
KR101226157B1 (en) 2010-03-11 2013-01-24 가부시키가이샤 무라타 세이사쿠쇼 Dielectric ceramic and laminated ceramic capacitor
KR101615071B1 (en) * 2015-09-08 2016-04-25 한국세라믹기술원 Barium titanate nano particles and manufacturing method thereof
KR20210065529A (en) * 2019-11-27 2021-06-04 삼성전기주식회사 Manufacturing method of core-shell particle and multi-layer ceramic electronic parts including core-shell particle
KR102319602B1 (en) 2019-11-27 2021-11-02 삼성전기주식회사 Manufacturing method of core-shell particle and multi-layer ceramic electronic parts including core-shell particle

Similar Documents

Publication Publication Date Title
JP4428187B2 (en) Dielectric ceramic composition and electronic component
JP2007258661A (en) Laminated ceramic capacitor and its manufacturing method
JP2004214539A (en) Dielectric ceramic and laminated ceramic capacitor
JPWO2013022064A1 (en) Dielectric ceramic, multilayer ceramic electronic component, multilayer ceramic capacitor, and multilayer ceramic capacitor manufacturing method
JP5233763B2 (en) Barium titanate-based dielectric raw material powder, method for producing the same, method for producing ceramic green sheet, and method for producing multilayer ceramic capacitor
JP2008078516A (en) Laminated ceramic capacitor, and its manufacturing method
JP5229685B2 (en) Dielectric ceramic and multilayer ceramic capacitor
JP4622518B2 (en) Manufacturing method of multilayer ceramic capacitor
KR101021361B1 (en) Dielectric ceramic composition and method of production thereof
JP2004111951A (en) Laminated ceramic capacitor and method of manufacturing the same
JPH11255560A (en) Production of composition containing batio3 as main component and production of laminated ceramic capacitor
JP2006045046A (en) Dielectric ceramic composition and multilayer ceramic part
JP2006173352A (en) Ceramic electronic component and its manufacturing method
JP5151039B2 (en) Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor
JP4627876B2 (en) Dielectric porcelain and multilayer electronic components
JP5159682B2 (en) Multilayer ceramic capacitor
JP3019854B1 (en) Dielectric ceramic composition, multilayer ceramic capacitor using the same, and method of manufacturing the same
JP2004203669A (en) Dielectric porcelain composition, electronic components, and manufacturing processes thereof
KR100951317B1 (en) Manufacturing method of dielectric material and Multi Layered ceramic condenser comprising dielectric material manufactured thereby
JP2004247719A (en) Layered ceramic capacitor
JPH11260660A (en) Manufacture of dielectric ceramic composite and manufacture of multilayer ceramic capacitor
JP2006111468A (en) Method for production of dielectric ceramic composition, electronic component, and laminated ceramic capacitor
JP5000088B2 (en) Method for manufacturing dielectric ceramic composition and method for manufacturing ceramic capacitor
JP5354834B2 (en) Dielectric porcelain composition, porcelain capacitor and method for producing the same
JP2870511B2 (en) Dielectric ceramic composition, multilayer ceramic capacitor using the same, and method of manufacturing the same