JP2004109788A - Method of generating false sem image data and method of examining defect of photomask - Google Patents

Method of generating false sem image data and method of examining defect of photomask Download PDF

Info

Publication number
JP2004109788A
JP2004109788A JP2002274990A JP2002274990A JP2004109788A JP 2004109788 A JP2004109788 A JP 2004109788A JP 2002274990 A JP2002274990 A JP 2002274990A JP 2002274990 A JP2002274990 A JP 2002274990A JP 2004109788 A JP2004109788 A JP 2004109788A
Authority
JP
Japan
Prior art keywords
image data
sem image
pixel
luminance
pixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002274990A
Other languages
Japanese (ja)
Other versions
JP4515020B2 (en
Inventor
Hideaki Kobayashi
小林  秀章
Tsukasa Kawashima
河島 司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2002274990A priority Critical patent/JP4515020B2/en
Publication of JP2004109788A publication Critical patent/JP2004109788A/en
Application granted granted Critical
Publication of JP4515020B2 publication Critical patent/JP4515020B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of examining defects of a photomask, which has less restrictions and uses SEM image data superior in defect extraction precision and to provide a method of generating false SEM image data for use in the same. <P>SOLUTION: With respect to individual pixels of original image data based on a designed shape of a product, a ratio Ra of the number of pixels of a prescribed pattern part to the total number of pixels of a prescribed neighboring area including a pixel being an object and pixels around the pixel is obtained. The obtained ratio Ra is converted to a corresponding luminance value by a prescribed density display function F(Ra) having a ratio Ra preliminarily obtained correspondingly to the density display state of an SEM image, as a parameter. Image data is newly generated where the luminance value obtained by conversion is assigned to each corresponding pixel of original image data as its luminance value, and this image data is taken as false SEM image data. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、製品のSEM画像データに類似した擬似SEM画像データの生成方法と、擬似SEM画像を用いたフォトマスクの欠陥検査方法に関する。
【0002】
【従来の技術】
近年、電子機器の高機能化と軽薄短小の傾向から、ASICに代表される種々のLSlには、ますます高集積化、高機能化が求められるようになってきた。
即ち、できるだけチップサイズを小さくして、高機能を実現することがASIC等のLSIには求められている。
上記ASIC等のLSIは、機能、論理設計、回路設計、レイアウト設計等を経て、フォトマスクパタン作製用の図形データ(パタンデータとも言う)を作製し、これを用いてフォトマスクを作製した後、フォトマスクのパタンをウエハ上に縮小投影露光等により転写して、半導体素子作製のプロセスを行うという数々の工程を経て作製されるものである。
フォトマスクは、一般には、上記図形データ(パタンデータ)を用い、電子ビーム露光装置あるいはエキシマ波長等のフォト露光装置を用いて、フォトマスク用基板(フォトマスクブランクスとも言う)の遮光膜上に配設された感光性レジストに露光描画を行い、現像、エッチング工程等を経て、作製される。
即ち、ガラス基板の一面に遮光性の金属薄膜を設けたフォトマスク用基板の金属薄膜上に塗布、乾燥された感光性のレジスト上に、露光装置により電離放射線を所定の領域のみに照射して潜像を形成し、感光性のレジストを現像して、電離放射線の照射領域に対応した、所望の形状のレジストパターン得た後、更に、レジストパターンを耐エッチングレジストとして、金属薄膜をレジストパターン形状に加工して、所望の金属薄膜パターンを有するフォトマスクを得る。
尚、フォトマスクのパタンをウエハ上に縮小投影露光して、その絵柄を転写する場合は、フォトマスクをレチクルマスクとも言う。
【0003】
このように、フォトマスクのパタンをウエハ上に縮小投影露光等により転写して、ウエハ上に回路パタンが形成されるが、LSlのますますの高集積化に伴い、最近では、露光形状のサイズ(ウエハ上の露光サイズ)が更に微細化し、露光光の波長に近づく、あるいは光の波長よりも小さくなってきたため、SEM画像データ(電子線顕微鏡の画像データ)を用いた欠陥検査も行われるようになってきた。
SEM画像データを用いたフォトマスクの欠陥検査は、通常は、SEM画像データ同志を比較して行なっていた。
フォトマスク上で同じパターンが繰り返す場合は、別の位置の同じパターン同志のSEM像データを比較することにより、欠陥を抽出していた。
または、あらかじめ用意しておいた同一の画像データであることが期待される良品のSEM画像データと対象となる画像データとを比較し、欠陥を抽出していた。
しかし、フォトマスク上で同じパターンが繰り返すことが条件になったり、良品のSEM画像を用意しておく等の制約は実務上では、大きな問題であり、また、設計情報との比較でないため、欠陥抽出の精度が低いという問題もあった。
【0004】
また、特開平5−258703号公報では、X線マスクや同等のものをSEM画像とデータとを比較する電子ビーム検査方法とそのシステムが示されているが、ここには、SEM画像とデータとの比較を、精度的良好に実施できる擬似SEM画像の生成方法は開示されていない。
【0005】
【特許文献1】
特開平5−258703号公報(第6頁の[0022]欄〜第15頁[0112]欄、図1)
【0006】
【発明が解決しようとする課題】上記のように、フォトマスクのパタンの微細化、高密度化が更に進み、SEM画像データを用いた欠陥検査方法が行われるようになってきたが、SEM画像データ同志を比較して行なう、従来のSEM画像データを用いたフォトマスクの欠陥検査方法においては、制約があり、欠陥抽出の精度の面でも問題があり、この対応が求められていた。
本発明は、これらに対応するもので、制約が少なく、欠陥抽出の精度の面で優れたSEM画像データを用いたフォトマスクの欠陥検査方法を提供しようとするもので、具体的には、検査対象のSEM画像データと製品の設計形状に基づき生成した擬似SEM画像データとを比較して欠陥を抽出するフォトマスク検査方法を提供しようとするものである。
同時に、このようなフォトマスク検査方法に用いられる擬似SEM画像データの生成方法を提供しようとするものである。
【0007】
【課題を解決するための手段】
本発明の擬似SEM画像データの生成方法は、製品のSEM画像に類似した擬似SEM画像の生成方法であって、製品の設計形状に基づいた原画像データの各画素に対し、それぞれ、対象とする画素とその画素の周辺の画素を含む所定の近傍領域の全画素数に対する所定絵柄部の画素数の割合Raを求め、求められたRaを、予め、SEM像の明暗表示状態に対応して求めておいた、前記割合Raをパラメータとする所定の輝度表示関数F(Ra)により、対応する輝度値に変換し、変換によって得られた輝度値を、それぞれ、前記原画像データの対応する各画素に、その輝度値として割り振った、画像データを新たに作成し、擬似SEM画像データとすることを特徴とするものである。
そして、上記において、製品がフォトマスクで、所定絵柄部が金属絵柄部であり、予め、SEM像の明暗表示状態に対応して求めておいた、ハイライト位置に対応する製品の設計形状を表す画像データの画素の、近傍領域の全画素数に対する所定絵柄部の画素数の割合をR1とし、且つ、SEM像のガラス部中側の輝度、ハイライト部の輝度、金属部中側の輝度を、それぞれ、T1、T2、T3とした場合、所定の輝度表示関数F(Ra)は、Raが0〜0. 5の範囲で輝度T1、R1で輝度T2、1. 0で輝度T3とし、Raが0. 5〜R1間は、Ra=0. 5、F(Ra)=T1の点とRa=R1、F(Ra)=T2の点を結ぶ直線で表され、RaがR1〜1. 0間は、Ra=R1、F(Ra)=T2の点とRa=1. 0、F(Ra)=T3の点を結ぶ直線で表されるものであることを特徴とするものである。
そしてまた、上記において、対象とする画素とその画素の周辺の画素を含む所定の近傍領域を、対象とする画素を中心とし一定の半径内に含まれる画素領域とするものであることを特徴とするものである。
尚、ここで言うSEM像のガラス部中側の輝度、金属部中側の輝度とは、いずれも、SEM像のガラス部と金属部との境界部の輝度特性に影響されない輝度で、言い換えると、それぞれ、フォトマスクの十分大きなガラス部の中央、あるいは十分大きな金属部の中央の輝度に相当する。
【0008】
あるいは、本発明の擬似SEM画像データの生成方法は、製品のSEM画像に類似した擬似SEM画像の生成方法であって、製品の設計形状に基づいた原画像データの各画素に対し、それぞれ、対象とする画素とその画素の周辺の画素を含む所定の近傍領域の全画素について輝度値を平均して得られた輝度値Rb求め、求められた輝度値Rbを、予め、SEM像の明暗表示状態に対応して求めておいた、前記輝度値Rbをパラメータとする所定の輝度表示関数G(Rb)により、対応する輝度値に変換し、変換によって得られた輝度値を、それぞれ、前記原画像データの対応する各画素に、その輝度値として割り振った、画像データを新たに作成し、擬似SEM画像データとすることを特徴とするものである。 そして、上記において、製品がフォトマスクで、所定絵柄部が金属絵柄部であり、予め、SEM像の明暗表示状態に対応して求めておいた、ハイライト位置に対応するおよび金属絵柄部位置に対応する、製品の設計形状に基づく原画像データの画素の輝度値Rbを、それぞれR11、R21とし、且つ、SEM像のガラス部中側の輝度、ハイライト部の輝度、金属部中側の輝度を、それぞれ、T11、T21、T31とした場合、所定の輝度表示関数G(Rb)は、Rbが0〜0. 5×R21の範囲で輝度T1、R11で輝度T21、R21で輝度T31とし、Rbが0. 5×R21〜R11間は、Rb=0. 5×R21、G(Rb)=T11の点とRb=R11、G(Rb)=T21の点を結ぶ直線で表され、RbがR11〜R21間は、Rb=R11、G(Rb)=T21の点とRb=R21、G(Rb)=T31の点を結ぶ直線で表されるものであることを特徴とするものである。
ここで言う金属絵柄部位置に対応する、製品の設計形状に基づく原画像データの画素の輝度値R11は、SEM像のガラス部と金属部との境界部の輝度特性に影響されない輝度で、言い換えると、フォトマスクの十分大きな金属部の中央の輝度に相当する。
そしてまた、上記において、対象とする画素とその画素の周辺の画素を含む所定の近傍領域を、対象とする画素を中心とし一定の半径内に含まれる画素領域とするものであることを特徴とするものである。
【0009】
本発明のフォトマスクの欠陥検査方法は、製品のSEM画像データより欠陥を抽出するフォトマスクの欠陥検査方法であって、製品のSEM画像データと、該SEM画像データに対応する上記本発明の擬似SEM画像データの生成方法により作製された擬似SEM画像データとを比較することにより、欠陥部を抽出することを特徴とするものである。
【0010】
【作用】
本発明の擬似SEM画像データの生成方法は、このような構成にすることにより、設計形状の製品のSEM画像データに近い擬似SEM画像データの生成を可能にしている。
具体的には、製品の設計形状に基づいた原画像データの各画素に対し、それぞれ、対象とする画素とその画素の周辺の画素を含む所定の近傍領域の全画素数に対する所定絵柄部の画素数の割合Raを求め、求められたRaを、予め、SEM像の明暗表示状態に対応して求めておいた、前記割合Raをパラメータとする所定の輝度表示関数F(Ra)により、対応する輝度値に変換し、変換によって得られた輝度値を、それぞれ、前記原画像データの対応する各画素に、その輝度値として割り振った、画像データを新たに作成し、擬似SEM画像データとすることにより、あるいは、製品の設計形状に基づいた原画像データの各画素に対し、それぞれ、対象とする画素とその画素に隣接する周辺の画素を含む所定の近傍領域の全画素について輝度値を平均して得られた輝度値Rb求め、求められた輝度値Rbを、予め、SEM像の明暗表示状態に対応して求めておいた、前記輝度値Rbをパラメータとする所定の輝度表示関数G(Rb)により、対応する輝度値に変換し、変換によって得られた輝度値を、それぞれ、前記原画像データの対応する各画素に、その輝度値として割り振った、画像データを新たに作成し、擬似SEM画像データとすることにより、これを達成している。
対象とする画素とその画素の周辺の画素を含む所定の近傍領域としては、対象とする画素を中心とし一定の半径内に含まれる画素領域とするものが挙げられる。
【0011】
本発明のフォトマスクの欠陥検査方法は、このような構成にすることにより、制約が少なく、欠陥抽出の精度の面で優れたSEM画像データを用いたフォトマスクの欠陥検査方法の提供を可能としている。
詳しくは、検査対象の製品のSEM画像データと、製品の設計形状に基づく原画像データを元に生成した擬似SEM画像データとを比較できるようにしており、つまり、検査対象を設計情報と直接比較できるようにして、より欠陥抽出の精度を上げることを可能としている。
尚、設計データ(設計パターンデータ)が、多角形、矩形、台形のような図形コード表現で表されている場合、全体または一部をラスター形式に変換することにより、原画像データが得られる。
【0012】
【発明の実施の形態】
本発明の実施の形態例を、図に基づいて説明する。
図1は本発明の擬似SEM画像データの生成方法の実施の形態例の処理フロー図で、図2(a)は設計データのモニター表示状態を示した図で、図2(b)は製品のSEM画像のモニター表示状態を示した図で、図2(c)は図2(b)のA1−A2位置において境界部の画素をA1側からA2側に向かい順にみた場合の、各位置とその位置の画素の輝度値の関係を示した図で、図3は関数F(Ra)を示した図で、図4は関数G(Rb)を示した図で、図5は本発明のフォトマスクの欠陥検査方法の実施の形態の1例の処理フロー図である。
尚、図1中、S11〜S24、S171〜S191、及び、図5中、S41〜S49は処理ステップである。
図2、図3中、110は設計データのモニター表示状態、111は絵柄部、112は非絵柄部、120は製品のSEM画像のモニター表示状態、121は絵柄部(金属層部とも言う)、122は非絵柄部(ガラス部とも言う)、125はハイライト部、T1、T2、T3、T11、T21、T31は輝度値である。
【0013】
はじめに、本発明の擬似SEM画像データの生成方法の実施の形態の第1の例を説明する。
本例は、フォトマスク製品のSEM画像データに類似した擬似SEM画像データの生成方法で、簡単には、フォトマスク製品の設計形状に基づく原画像データの各画素において、それぞれ、対象とする画素とその画素の周辺の画素を含む所定の近傍領域の全画素数に対する所定絵柄部の画素数の割合Raを求め、求められた割合Raを、予め、SEM像の明暗表示状態に対応して求めておいた、前記割合Raをパラメータとする所定の輝度表示関数F(Ra)により、対応する輝度値に変換し、変換によって得られた輝度値を、それぞれ、前記原画像の対応する各画素に、その輝度値として割り振った、画像データを新たに作成し、擬似SEM画像データとするものである。
先ず、輝度表示関数F(Ra)の設定方法について簡単に説明しておく。
フォトマスクの設計データのモニター表示状態110は、図2(a)のように、絵柄部111と非絵柄部112とがその境界をハッキリ表示されるが、フォトマスク製品の対応するSEM画像の表示は、図2(b)のように、絵柄部121と非絵柄部122との境界部に沿い、ハイライト部125が発生することが知られている。
図2(b)に示すSEM画像においては、そのA1−A2位置において、絵柄部と非絵柄部との境界部の画素をA1側からA2側に向かい順にみた場合、各位置とその位置の画素の輝度値の関係は、図2(c)のようになる。
このため、フォトマスク製品のSEM画像データとの比較に用いる擬似SEM像データの作製は、図2(c)に示す特性を考慮して行なう必要がある。
本例の場合は、各画素がこのような特性を満足できるように、対象とする画素とその画素の周辺の画素を含む所定の近傍領域の全画素数に対する所定絵柄部の画素数の割合Raをパラメータとした、図3に示す関数F(Ra)を用いて、図2(c)に示す特性に対応するものである。
これにより、作製する擬似SEM画像データの画像の絵柄部と非絵柄部との境界部における輝度変化を、製品のSEM像に近い状態にできる。
【0014】
以下、図1に基づいてその処理フローを簡単に説明する。
設計データ(S11)をモニターに表示する。(S12)
モニター表示する際に、設計データは画素分割されるが、ここでのモニターは予め決められた所定の画素単位で表示するもので、全画素数はNで、1番目〜N番目まであり、i番目の画素をPiとする。
予め、近傍領域の範囲を決めておき(S13)、先ず、i=1とし(S14)、画素Piについて、その近傍領域内の全画素を抽出し(S16)、全画素数に対する所定絵柄部の画素数の割合Raを算出する。(S17)
対象とする画素とその画素の周辺の画素を含む所定の近傍領域としては、対象とする画素を中心とし一定の半径内に含まれる画素領域とするものが挙げられるが、これに限定はされない。
他には、例えば、対象とする画素を中心とし(2n+1)画素×(2n+1)画素(nは整数)の範囲を近傍領域として挙げられる。
次いで、図3に示す関数F(Ra)を用いて、算出されたRaから、画素Piの輝度値を求める。(S18〜S19)
関数F(Ra)を用いた変換により、算出されたRaに対応する輝度値を求める。
そして、求められた画素Piの輝度値をメモリに保存する。(S20)
次いで、2番目以降の各画素についても、順次、S15〜S20の処理を行ない、各画素毎に、モニター表示の輝度を求め、求められた輝度値を画素に対応つけてメモリーに保存する。(S21〜S22〜S15〜S20)
全画素について行った後に、必要に応じて、メモリに蓄積されている、各画素に対応する得られた輝度値を用いて、全画素のモニター表示を行なう。(S23)
尚、上記処理は、どの段階においても、全く画像を表示することなく、データ処理を行なうことが可能であるが、各段階で画面に表示したり、紙にプリントアウトしたりすることは有効である。
【0015】
次いで、本発明の擬似SEM画像データの生成方法の実施の形態の第2の例を説明する。
第2の例も、フォトマスク製品のSEM画像データに類似した擬似SEM画像データの生成方法で、簡単には、製品の設計形状に基づく原画像データの各画素において、それぞれ、対象とする画素とその画素の周辺の画素を含む所定の近傍領域の全画素について輝度値を平均して得られた輝度値Rb求め、求められた輝度値Rbを、予め、SEM像の明暗表示状態に対応して求めておいた、前記輝度値Rbをパラメータとする所定の輝度表示関数G(Rb)により、対応する輝度値に変換し、変換によって得られた輝度値を、それぞれ、前記原画像の対応する各画素に、その輝度値として割り振った、画像データを新たに作成し、擬似SEM画像データとするものである。
輝度表示関数G(Rb)の設定方法も、第1の例と同様、図2(c)に示す特性を考慮して行なったものであるが、第1の例とは異なり、表示したモニターの各画素に対応した輝度値を用い、着目する画素については、その近傍領域の全画素についての輝度値を平均化して得た値を、新たに、表示用の輝度値とするものである。
【0016】
処理フローは、第1の例のフローにおいて、その処理ステップS17〜S20に代え、処理ステップS171〜S191〜S20を行なうものである。
対象画素Pi(S15)について、近傍領域の画素が決定された(S16)後、近傍領域の全画素についての輝度値を平均化し、平均の輝度Rbを算出する。(S171)
次いで、図4に示す関数G(Rb)を用いて、算出されたRbから、画素Piの輝度値を求める。(S181〜S191)
関数F(Rb)を用いた変換により、算出されたRbに対応する輝度値を求める。
そして、求められた画素Piの輝度値をメモリに保存する。(S20)
そして、第1の例と同様、全画素について行った後に、必要に応じて、メモリに蓄積されている、各画素に対応する得られた輝度値を用いて、全画素のモニター表示を行なう。(S23)
尚、本例においても、各処理は、どの段階においても、全く画像を表示することなく、データ処理を行なうことが可能であるが、各段階で画面に表示したり、紙にプリントアウトしたりすることは有効である。
【0017】
次に、本発明のフォトマスクの欠陥検査方法の実施の形態の1例を説明する
本例は、フォトマスク製品のSEM画像と、第1の例あるいは第2の例の擬似SEM画像生成方法により作製された擬似SEM画像とを比較することにより、欠陥部を抽出するフォトマスクの欠陥検査方法である。
以下、図5に基づいて、本例を説明する。
先ず、製品のSEM画像とこれに対応する擬似SEM画像データの画像を、それぞれ、同じモニターあるいは、同じ性能のモニターに表示する。
この段階で、各画素に対応する輝度値が所定のメモリ部に保存されている。
次いで、i=1とし、製品のSEM画像のi番目の画素の輝度値T1i、擬似画像の対応する画素の輝度値T2iを抽出し、輝度値T1i、輝度値T2iとを比較し(S42、S43、S44)、i番目の製品画素の良否を判定する。(S45)
そして、判定結果をメモリに保存する。(S46)
次いで、2番目以降の製品のSEM画像の各画素についても、順次、S42〜S46の処理を行ない、各画素毎に、画素の良否を判定し、その結果を画素に対応つけてメモリーに保存する。(S42、S43、S44〜S46)
製品のSEM画像の全画素について行った後に、メモリに蓄積されている、各画素に対応する判定結果を用いて、不良画素の連続性、密集性を考慮し、欠陥部を抽出する。(S49)
画素の良否の判定は、例えば、輝度値T1i、輝度値T2iとの差が所定値Ka以下か否か、あるいは、T1i/T2iが所定値kb以上であるか否かで行なう。
【0018】
【発明の効果】
本発明は、上記のように、設計形状の製品のSEM画像に近いSEM画像を生成できる、擬似SEM画像データの生成方法の提供を可能とし、同時に、制約が少なく、欠陥抽出の精度の面で優れたSEM画像データを用いたフォトマスクの欠陥検査方法の提供を可能としている。
【図面の簡単な説明】
【図1】本発明の擬似SEM画像データの生成方法の実施の形態例の処理フロー図である。
【図2】図2(a)は設計データのモニター表示状態を示した図で、図2(b)は製品のSEM画像のモニター表示状態を示した図で、図2(c)は図2(b)のA1−A2位置において境界部の画素をA1側からA2側に向かい順にみた場合の、各位置とその位置の画素の輝度値の関係を示した図である。
【図3】関数F(Ra)を示した図である。
【図4】関数G(Rb)を示した図である。
【図5】本発明のフォトマスクの欠陥検査方法の実施の形態の1例の処理フロー図である。
【符号の説明】
110      設計データのモニター表示状態
111      絵柄部
112      非絵柄部
120      製品のSEM画像のモニター表示状態
121      絵柄部(金属層部とも言う)
122      非絵柄部(ガラス部とも言う)
125      ハイライト部
T1、T2、T3 輝度値
T11、T21、T31 輝度値
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of generating pseudo SEM image data similar to SEM image data of a product, and a method of inspecting a photomask for defects using the pseudo SEM image.
[0002]
[Prior art]
2. Description of the Related Art In recent years, various LS1s represented by ASICs have been increasingly required to have higher integration and higher functionality due to the trend toward higher functionality and lighter and smaller electronic devices.
That is, it is required for an LSI such as an ASIC to realize a high function by reducing the chip size as much as possible.
An LSI such as the ASIC described above creates graphic data (also referred to as pattern data) for producing a photomask pattern through functions, logic design, circuit design, layout design, and the like. It is manufactured through a number of steps of transferring a pattern of a photomask onto a wafer by reduction projection exposure or the like and performing a semiconductor element manufacturing process.
In general, a photomask is disposed on a light-shielding film of a photomask substrate (also referred to as a photomask blank) using an electron beam exposure apparatus or a photo exposure apparatus such as an excimer wavelength using the above-described graphic data (pattern data). Exposure and drawing are performed on the provided photosensitive resist, and development and etching processes are performed.
That is, by applying an ionizing radiation to only a predetermined area by an exposure apparatus, on a photosensitive resist that has been coated and dried on a metal thin film of a photomask substrate provided with a light-shielding metal thin film on one surface of a glass substrate. After forming a latent image and developing the photosensitive resist to obtain a resist pattern of a desired shape corresponding to the irradiation area of ionizing radiation, the resist pattern is further used as an etching resistant resist, and the metal thin film is formed into a resist pattern. To obtain a photomask having a desired metal thin film pattern.
In the case where the pattern of the photomask is reduced and projected on the wafer and the pattern is transferred, the photomask is also called a reticle mask.
[0003]
As described above, the pattern of the photomask is transferred onto the wafer by reduction projection exposure or the like, and a circuit pattern is formed on the wafer. However, with the increasingly higher integration of LSl, the size of the exposure shape has recently been increased. Since the (exposure size on the wafer) has become finer and closer to or smaller than the wavelength of the exposure light, defect inspection using SEM image data (image data of an electron beam microscope) may be performed. It has become.
Defect inspection of a photomask using SEM image data is usually performed by comparing SEM image data.
When the same pattern is repeated on the photomask, defects are extracted by comparing SEM image data of the same pattern at different positions.
Alternatively, a defect is extracted by comparing SEM image data of a good product expected to be the same image data prepared in advance with target image data.
However, restrictions such as the condition that the same pattern is repeated on the photomask and preparation of a good SEM image are serious problems in practice, and are not compared with the design information. There was also a problem that the accuracy of extraction was low.
[0004]
Japanese Patent Application Laid-Open No. 5-258703 discloses an electron beam inspection method and system for comparing an X-ray mask or equivalent with an SEM image and data. No method of generating a pseudo-SEM image that can perform the comparison with good accuracy is disclosed.
[0005]
[Patent Document 1]
JP-A-5-258703 (column [0022] on page 6, column [0112] on page 15, FIG. 1)
[0006]
As described above, finer patterns and higher densities of photomasks have been further advanced, and defect inspection methods using SEM image data have been performed. A conventional method for inspecting a defect of a photomask using SEM image data, which compares data with each other, has limitations, and there is also a problem in terms of the accuracy of defect extraction.
The present invention is intended to provide a method for inspecting a defect of a photomask using SEM image data which corresponds to these, has few restrictions, and is excellent in accuracy of defect extraction. An object of the present invention is to provide a photomask inspection method for extracting a defect by comparing SEM image data of a target with pseudo SEM image data generated based on a design shape of a product.
At the same time, an object is to provide a method for generating pseudo SEM image data used in such a photomask inspection method.
[0007]
[Means for Solving the Problems]
The method of generating pseudo SEM image data of the present invention is a method of generating a pseudo SEM image similar to a SEM image of a product, and targets each pixel of the original image data based on the design shape of the product. The ratio Ra of the number of pixels of the predetermined picture portion to the total number of pixels in the predetermined neighborhood including the pixel and the pixels around the pixel is obtained, and the obtained Ra is obtained in advance corresponding to the light and dark display state of the SEM image. Is converted into a corresponding luminance value by a predetermined luminance display function F (Ra) using the ratio Ra as a parameter, and the luminance values obtained by the conversion are respectively converted into corresponding pixels of the original image data. Further, image data allocated as the luminance value is newly created and used as pseudo SEM image data.
In the above description, the product is a photomask, the predetermined pattern portion is a metal pattern portion, and represents the design shape of the product corresponding to the highlight position, which has been obtained in advance in accordance with the bright and dark display state of the SEM image. The ratio of the number of pixels of the predetermined picture portion to the total number of pixels in the vicinity area of the pixels of the image data is R1, and the brightness of the middle portion of the glass portion, the brightness of the highlight portion, and the brightness of the middle portion of the metal portion of the SEM image are , T1, T2, and T3, respectively, the predetermined luminance display function F (Ra) is such that Ra is 0 to 0. 5 in the range of brightness T1, R1 in the range of brightness T2, 1.. 0 and the luminance T3. Ra = 0.5 between 5 and R1. 5, represented by a straight line connecting the point of F (Ra) = T1 and the point of Ra = R1, F (Ra) = T2, and Ra is represented by R1-1. 0, Ra = R1, F (Ra) = T2 and Ra = 1. 0, F (Ra) = T3, represented by a straight line connecting the points.
Further, in the above, a predetermined neighboring area including the target pixel and pixels around the target pixel is a pixel area included within a certain radius around the target pixel. Is what you do.
Note that the luminance of the middle of the glass part and the luminance of the metal part of the SEM image referred to here are luminances that are not affected by the luminance characteristics of the boundary part between the glass part and the metal part of the SEM image, in other words. , Respectively, corresponds to the luminance at the center of a sufficiently large glass part of the photomask or at the center of a sufficiently large metal part.
[0008]
Alternatively, the method of generating pseudo SEM image data of the present invention is a method of generating a pseudo SEM image similar to an SEM image of a product, wherein each pixel of the original image data based on the design shape of the product is subjected to a target object. The luminance value Rb obtained by averaging the luminance values of all the pixels in a predetermined neighboring area including the pixel to be determined and the pixels around the pixel is obtained, and the obtained luminance value Rb is determined in advance in the light / dark display state of the SEM image. Is converted into a corresponding luminance value by a predetermined luminance display function G (Rb) using the luminance value Rb as a parameter, and the luminance values obtained by the conversion are respectively assigned to the original image. It is characterized in that image data newly allocated to each pixel corresponding to the data as its luminance value is newly created and used as pseudo SEM image data. In the above, the product is a photomask, the predetermined pattern portion is a metal pattern portion, and the position corresponding to the highlight position and the position of the metal pattern portion, which have been determined in advance corresponding to the light and dark display state of the SEM image, are determined. The corresponding luminance values Rb of the pixels of the original image data based on the design shape of the product are R11 and R21, respectively, and the luminance in the middle of the glass part, the luminance of the highlight part, and the luminance of the metal part in the SEM image. Are defined as T11, T21, and T31, respectively, the predetermined luminance display function G (Rb) is such that Rb is 0 to 0. In a range of 5 × R21, the luminance T1 is R1 and the luminance T21 is R21. Rb = 0.5 between 5 × R21 to R11. It is represented by a straight line connecting the point of 5 × R21, G (Rb) = T11 and the point of Rb = R11, G (Rb) = T21, and Rb = R11, G (Rb) = T21 when Rb is between R11 and R21. And a point connecting Rb = R21 and G (Rb) = T31.
The luminance value R11 of the pixel of the original image data based on the design shape of the product corresponding to the position of the metal picture portion here is a luminance which is not affected by the luminance characteristics of the boundary portion between the glass portion and the metal portion of the SEM image. Corresponds to the luminance at the center of a sufficiently large metal portion of the photomask.
Further, in the above, a predetermined neighboring area including the target pixel and pixels around the target pixel is a pixel area included within a certain radius around the target pixel. Is what you do.
[0009]
The photomask defect inspection method of the present invention is a photomask defect inspection method for extracting a defect from SEM image data of a product, and includes a SEM image data of a product and a pseudo-mask of the present invention corresponding to the SEM image data. The method is characterized in that a defective portion is extracted by comparing with pseudo SEM image data created by a method of generating SEM image data.
[0010]
[Action]
The pseudo-SEM image data generation method of the present invention, with such a configuration, enables generation of pseudo-SEM image data close to SEM image data of a product having a designed shape.
Specifically, for each pixel of the original image data based on the design shape of the product, the pixel of the predetermined pattern portion with respect to the total number of pixels of the predetermined neighborhood including the target pixel and the pixels around the pixel A ratio Ra of the number is obtained, and the obtained Ra is determined by a predetermined luminance display function F (Ra) having the ratio Ra as a parameter, which is obtained in advance corresponding to the light and dark display state of the SEM image. The image data is converted into a luminance value, and the luminance value obtained by the conversion is assigned to each corresponding pixel of the original image data as the luminance value, and image data is newly created to be pseudo SEM image data. Or, for each pixel of the original image data based on the design shape of the product, all the pixels in the predetermined neighboring area including the target pixel and the neighboring pixels adjacent to the pixel are brightened. A luminance value Rb is obtained by averaging the values, and the obtained luminance value Rb is obtained in advance corresponding to the light and dark display state of the SEM image. A predetermined luminance display using the luminance value Rb as a parameter A function G (Rb) is used to convert to a corresponding brightness value, and the brightness value obtained by the conversion is assigned to each corresponding pixel of the original image data as the brightness value, thereby newly creating image data. This is achieved by using pseudo SEM image data.
The predetermined neighboring area including the target pixel and pixels around the target pixel includes a pixel area included within a certain radius around the target pixel.
[0011]
By adopting such a configuration, the defect inspection method for a photomask of the present invention can provide a defect inspection method for a photomask using SEM image data which has few restrictions and is excellent in the accuracy of defect extraction. I have.
Specifically, the SEM image data of the product to be inspected can be compared with the pseudo SEM image data generated based on the original image data based on the design shape of the product, that is, the inspection object is directly compared with the design information. By doing so, it is possible to further improve the accuracy of defect extraction.
When the design data (design pattern data) is represented by a figure code expression such as a polygon, rectangle, or trapezoid, original image data can be obtained by converting the whole or a part of the design data into a raster format.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a processing flowchart of an embodiment of a method for generating pseudo SEM image data according to the present invention. FIG. 2A is a diagram showing a monitor display state of design data, and FIG. FIG. 2C is a diagram showing a monitor display state of the SEM image. FIG. 2C shows each position and its position when the pixel at the boundary is viewed from the A1 side to the A2 side at the A1-A2 position in FIG. FIG. 3 is a diagram showing a function F (Ra), FIG. 4 is a diagram showing a function G (Rb), and FIG. 5 is a photomask of the present invention. FIG. 6 is a processing flowchart of an example of an embodiment of the defect inspection method of FIG.
Note that S11 to S24 and S171 to S191 in FIG. 1 and S41 to S49 in FIG. 5 are processing steps.
2 and 3, reference numeral 110 denotes a monitor display state of design data, 111 denotes a picture part, 112 denotes a non-picture part, 120 denotes a monitor display state of a SEM image of a product, 121 denotes a picture part (also referred to as a metal layer part), 122 is a non-picture part (also called a glass part), 125 is a highlight part, and T1, T2, T3, T11, T21 and T31 are luminance values.
[0013]
First, a first example of an embodiment of a method for generating pseudo SEM image data according to the present invention will be described.
This example is a method of generating pseudo SEM image data similar to the SEM image data of a photomask product. In brief, each pixel of the original image data based on the design shape of the photomask product has a target pixel and a target pixel. The ratio Ra of the number of pixels of the predetermined pattern portion to the total number of pixels in the predetermined vicinity area including the pixels around the pixel is obtained, and the obtained ratio Ra is obtained in advance corresponding to the light and dark display state of the SEM image. The luminance value is converted into a corresponding luminance value by a predetermined luminance display function F (Ra) using the ratio Ra as a parameter, and the luminance values obtained by the conversion are respectively assigned to the corresponding pixels of the original image. Image data newly assigned as the luminance value is newly created and used as pseudo SEM image data.
First, a method of setting the luminance display function F (Ra) will be briefly described.
In the monitor display state 110 of the photomask design data, as shown in FIG. 2A, the boundary between the picture part 111 and the non-picture part 112 is clearly displayed, but the corresponding SEM image of the photomask product is displayed. It is known that, as shown in FIG. 2B, a highlight portion 125 is generated along the boundary between the picture portion 121 and the non-picture portion 122.
In the SEM image shown in FIG. 2B, when the pixels at the boundary between the picture portion and the non-picture portion are viewed in order from the A1 side to the A2 side at the A1-A2 position, each position and the pixel at that position are considered. Is as shown in FIG. 2C.
For this reason, it is necessary to consider the characteristics shown in FIG. 2C when producing pseudo SEM image data used for comparison with SEM image data of a photomask product.
In the case of this example, the ratio Ra of the number of pixels in the predetermined picture portion to the total number of pixels in the predetermined neighborhood including the target pixel and the pixels surrounding the target pixel is set so that each pixel can satisfy such characteristics. Using the function F (Ra) shown in FIG. 3 with the parameter as a parameter, this corresponds to the characteristic shown in FIG.
As a result, the brightness change at the boundary between the picture portion and the non-picture portion of the image of the pseudo SEM image data to be produced can be made close to the SEM image of the product.
[0014]
Hereinafter, the processing flow will be briefly described with reference to FIG.
The design data (S11) is displayed on a monitor. (S12)
At the time of monitor display, the design data is divided into pixels. The monitor here is displayed in a predetermined pixel unit. The total number of pixels is N, and there are first to Nth pixels. The Pith pixel is assumed to be Pi.
The range of the neighborhood area is determined in advance (S13), first, i = 1 (S14), and all the pixels in the neighborhood area are extracted for the pixel Pi (S16). The ratio Ra of the number of pixels is calculated. (S17)
The predetermined neighboring region including the target pixel and pixels around the target pixel includes, but is not limited to, a pixel region included within a certain radius around the target pixel.
Alternatively, for example, a range of (2n + 1) pixels × (2n + 1) pixels (n is an integer) around the target pixel can be cited as the neighboring area.
Next, the luminance value of the pixel Pi is obtained from the calculated Ra using the function F (Ra) shown in FIG. (S18-S19)
By a conversion using the function F (Ra), a luminance value corresponding to the calculated Ra is obtained.
Then, the obtained luminance value of the pixel Pi is stored in the memory. (S20)
Next, the processes of S15 to S20 are sequentially performed on the second and subsequent pixels, and the brightness of the monitor display is obtained for each pixel, and the obtained brightness value is stored in the memory in association with the pixel. (S21-S22-S15-S20)
After performing for all pixels, monitor display of all pixels is performed using the obtained luminance value corresponding to each pixel stored in the memory as necessary. (S23)
In the above processing, data processing can be performed at any stage without displaying an image at all, but it is effective to display on a screen or print out on paper at each stage. is there.
[0015]
Next, a second example of the embodiment of the method for generating pseudo SEM image data of the present invention will be described.
The second example is also a method of generating pseudo SEM image data similar to the SEM image data of a photomask product. In brief, each pixel of the original image data based on the design shape of the product has a target pixel and a target pixel. A luminance value Rb obtained by averaging the luminance values of all the pixels in a predetermined neighboring area including the pixel around the pixel is obtained, and the obtained luminance value Rb is previously determined in accordance with the bright and dark display state of the SEM image. The obtained luminance value Rb is converted into a corresponding luminance value by a predetermined luminance display function G (Rb) using the luminance value Rb as a parameter, and the luminance values obtained by the conversion are respectively converted into the corresponding luminance values of the original image. Image data newly allocated to the pixel as its luminance value is newly created and used as pseudo SEM image data.
The method of setting the luminance display function G (Rb) is also performed in consideration of the characteristics shown in FIG. 2C as in the first example. However, unlike the first example, the display monitor G (Rb) is different from the first example. The luminance value corresponding to each pixel is used, and for the pixel of interest, a value obtained by averaging the luminance values of all the pixels in the vicinity area is newly set as the luminance value for display.
[0016]
The processing flow is such that in the flow of the first example, processing steps S171 to S191 to S20 are performed instead of the processing steps S17 to S20.
After the pixels in the neighboring area are determined for the target pixel Pi (S15) (S16), the luminance values of all the pixels in the neighboring area are averaged, and the average luminance Rb is calculated. (S171)
Next, using the function G (Rb) shown in FIG. 4, the luminance value of the pixel Pi is obtained from the calculated Rb. (S181 to S191)
By a conversion using the function F (Rb), a luminance value corresponding to the calculated Rb is obtained.
Then, the obtained luminance value of the pixel Pi is stored in the memory. (S20)
Then, as in the first example, after performing for all the pixels, monitor display of all the pixels is performed using the obtained luminance value corresponding to each pixel stored in the memory as necessary. (S23)
In this example, in each process, data processing can be performed at any stage without displaying an image at all. However, each process can be displayed on a screen or printed out on paper. It is effective to do.
[0017]
Next, an example of an embodiment of a photomask defect inspection method according to the present invention will be described. This example uses an SEM image of a photomask product and a pseudo SEM image generation method according to the first or second example. This is a photomask defect inspection method for extracting a defective portion by comparing the produced pseudo SEM image.
Hereinafter, this example will be described with reference to FIG.
First, the SEM image of the product and the corresponding image of the pseudo SEM image data are displayed on the same monitor or a monitor of the same performance, respectively.
At this stage, the luminance value corresponding to each pixel is stored in a predetermined memory unit.
Next, i = 1, the luminance value T1i of the i-th pixel of the SEM image of the product and the luminance value T2i of the corresponding pixel of the pseudo image are extracted, and the luminance values T1i and T2i are compared (S42, S43). , S44), the quality of the i-th product pixel is determined. (S45)
Then, the determination result is stored in the memory. (S46)
Next, the processing of S42 to S46 is sequentially performed on each pixel of the SEM images of the second and subsequent products, and the quality of each pixel is determined for each pixel, and the result is stored in a memory in association with the pixel. . (S42, S43, S44-S46)
After performing the process for all the pixels of the SEM image of the product, the defective portion is extracted in consideration of the continuity and the density of the defective pixels by using the determination result corresponding to each pixel stored in the memory. (S49)
Whether the pixel is good or bad is determined, for example, based on whether the difference between the luminance value T1i and the luminance value T2i is equal to or less than a predetermined value Ka, or whether T1i / T2i is equal to or more than a predetermined value kb.
[0018]
【The invention's effect】
As described above, the present invention makes it possible to provide a method for generating pseudo SEM image data that can generate an SEM image close to the SEM image of a product having a designed shape, and at the same time, has less restrictions and is more accurate in terms of defect extraction. It is possible to provide a photomask defect inspection method using excellent SEM image data.
[Brief description of the drawings]
FIG. 1 is a process flowchart of an embodiment of a method for generating pseudo SEM image data according to the present invention.
2A is a view showing a monitor display state of design data, FIG. 2B is a view showing a monitor display state of an SEM image of a product, and FIG. 2C is a view showing FIG. FIG. 6B is a diagram illustrating a relationship between each position and the luminance value of the pixel at the position when the pixels at the boundary at the A1-A2 position in FIG.
FIG. 3 is a diagram showing a function F (Ra).
FIG. 4 is a diagram showing a function G (Rb).
FIG. 5 is a processing flowchart of an example of an embodiment of a photomask defect inspection method according to the present invention.
[Explanation of symbols]
110 Monitor display state of design data 111 Picture part 112 Non-pattern part 120 Monitor display state of SEM image of product 121 Picture part (also called metal layer part)
122 Non-picture part (also called glass part)
125 Highlight parts T1, T2, T3 Luminance values T11, T21, T31 Luminance values

Claims (7)

製品のSEM画像に類似した擬似SEM画像の生成方法であって、製品の設計形状に基づいた原画像データの各画素に対し、それぞれ、対象とする画素とその画素の周辺の画素を含む所定の近傍領域の全画素数に対する所定絵柄部の画素数の割合Raを求め、求められたRaを、予め、SEM像の明暗表示状態に対応して求めておいた、前記割合Raをパラメータとする所定の輝度表示関数F(Ra)により、対応する輝度値に変換し、変換によって得られた輝度値を、それぞれ、前記原画像データの対応する各画素に、その輝度値として割り振った、画像データを新たに作成し、擬似SEM画像データとすることを特徴とする擬似SEM画像データの生成方法。A method for generating a pseudo SEM image similar to a SEM image of a product, wherein each pixel of the original image data based on the design shape of the product includes a predetermined pixel including a target pixel and pixels around the pixel. A ratio Ra of the number of pixels of the predetermined pattern portion to the total number of pixels in the vicinity area is determined, and the determined Ra is determined in advance corresponding to the light and dark display state of the SEM image. Is converted into a corresponding luminance value by the luminance display function F (Ra), and the luminance data obtained by the conversion is assigned to each corresponding pixel of the original image data as the luminance value. A method for generating pseudo SEM image data, which is newly created and used as pseudo SEM image data. 請求項1において、製品がフォトマスクで、所定絵柄部が金属絵柄部であり、予め、SEM像の明暗表示状態に対応して求めておいた、ハイライト位置に対応する製品の設計形状を表す画像データの画素の、近傍領域の全画素数に対する所定絵柄部の画素数の割合をR1とし、且つ、SEM像のガラス部中側の輝度、ハイライト部の輝度、金属部中側の輝度を、それぞれ、T1、T2、T3とした場合、所定の輝度表示関数F(Ra)は、Raが0〜0. 5の範囲で輝度T1、R1で輝度T2、1. 0で輝度T3とし、Raが0. 5〜R1間は、Ra=0. 5、F(Ra)=T1の点とRa=R1、F(Ra)=T2の点を結ぶ直線で表され、RaがR1〜1. 0間は、Ra=R1、F(Ra)=T2の点とRa=1. 0、F(Ra)=T3の点を結ぶ直線で表されるものであることを特徴とする擬似SEM画像データの生成方法。2. The product according to claim 1, wherein the product is a photomask, the predetermined picture portion is a metal picture portion, and the design shape of the product corresponding to the highlight position, which has been obtained in advance corresponding to the light and dark display state of the SEM image. The ratio of the number of pixels of the predetermined picture portion to the total number of pixels in the vicinity area of the pixels of the image data is R1, and the brightness of the middle of the glass portion, the brightness of the highlight portion, and the brightness of the middle of the metal portion of the SEM image are , T1, T2, and T3, respectively, the predetermined luminance display function F (Ra) is such that Ra is 0 to 0. In the range of # 5, the brightness T1, R1 and the brightness T2, 1.. The brightness T3 is set at 0, and Ra is set to 0. Ra = 0.5 between R5 and R1. 5, represented by a straight line connecting a point of F (Ra) = T1 and a point of Ra = R1, F (Ra) = T2, where Ra is R1 to 1. Between 0, Ra = R1, F (Ra) = T2 and Ra = 1. A method for generating pseudo SEM image data, characterized by being represented by a straight line connecting points of 0, F (Ra) = T3. 請求項1ないし2において、対象とする画素とその画素の周辺の画素を含む所定の近傍領域を、対象とする画素を中心とし一定の半径内に含まれる画素領域とするものであることを特徴とする擬似SEM画像データの生成方法。3. A method according to claim 1, wherein a predetermined neighboring area including the target pixel and pixels around the target pixel is a pixel area included within a certain radius around the target pixel. A method for generating pseudo SEM image data. 製品のSEM画像に類似した擬似SEM画像の生成方法であって、製品の設計形状に基づいた原画像データの各画素に対し、それぞれ、対象とする画素とその画素の周辺の画素を含む所定の近傍領域の全画素について輝度値を平均して得られた輝度値Rb求め、求められた輝度値Rbを、予め、SEM像の明暗表示状態に対応して求めておいた、前記輝度値Rbをパラメータとする所定の輝度表示関数G(Rb)により、対応する輝度値に変換し、変換によって得られた輝度値を、それぞれ、前記原画像データの対応する各画素に、その輝度値として割り振った、画像データを新たに作成し、擬似SEM画像データとすることを特徴とする擬似SEM画像データの生成方法。A method for generating a pseudo SEM image similar to a SEM image of a product, wherein each pixel of the original image data based on the design shape of the product includes a predetermined pixel including a target pixel and pixels around the pixel. The brightness value Rb obtained by averaging the brightness values of all the pixels in the vicinity area is obtained, and the obtained brightness value Rb is obtained in advance in accordance with the light and dark display state of the SEM image. According to a predetermined luminance display function G (Rb) as a parameter, the luminance value is converted into a corresponding luminance value, and the luminance value obtained by the conversion is assigned to each corresponding pixel of the original image data as the luminance value. , A method of generating pseudo SEM image data, wherein image data is newly created and used as pseudo SEM image data. 請求項4において、製品がフォトマスクで、所定絵柄部が金属絵柄部であり、予め、SEM像の明暗表示状態に対応して求めておいた、ハイライト位置に対応するおよび金属絵柄部位置に対応する、製品の設計形状に基づく原画像データの画素の輝度値Rbを、それぞれR11、R21とし、且つ、SEM像のガラス部中側の輝度、ハイライト部の輝度、金属部中側の輝度を、それぞれ、T11、T21、T31とした場合、所定の輝度表示関数G(Rb)は、Rbが0〜0. 5×R21の範囲で輝度T1、R11で輝度T21、R21で輝度T31とし、Rbが0. 5×R21〜R11間は、Rb=0. 5×R21、G(Rb)=T11の点とRb=R11、G(Rb)=T21の点を結ぶ直線で表され、RbがR11〜R21間は、Rb=R11、G(Rb)=T21の点とRb=R21、G(Rb)=T31の点を結ぶ直線で表されるものであることを特徴とする擬似SEM画像データの生成方法。5. The product according to claim 4, wherein the product is a photomask, the predetermined pattern portion is a metal pattern portion, and the position corresponding to the highlight position and the position of the metal pattern portion, which have been determined in advance corresponding to the light and dark display state of the SEM image. The corresponding luminance values Rb of the pixels of the original image data based on the design shape of the product are R11 and R21, respectively, and the luminance in the middle of the glass part, the luminance of the highlight part, and the luminance of the metal part in the SEM image. Are defined as T11, T21, and T31, respectively, the predetermined luminance display function G (Rb) is such that Rb is 0 to 0. In a range of 5 × R21, luminance T1, luminance R21 is represented by luminance T21, and luminance R21 is represented by luminance T31. Rb = 0.5 between 5 × R21 to R11. It is represented by a straight line connecting the point of 5 × R21, G (Rb) = T11 and the point of Rb = R11, G (Rb) = T21, and Rb = R11, G (Rb) = T21 when Rb is between R11 and R21. A pseudo SEM image data generation method characterized by being represented by a straight line connecting a point of Rb = R21 and a point of G (Rb) = T31. 請求項4ないし5において、対象とする画素とその画素の周辺の画素を含む所定の近傍領域を、対象とする画素を中心とし一定の半径内に含まれる画素領域とするものであることを特徴とする擬似SEM画像データの生成方法。6. A method according to claim 4, wherein the predetermined neighboring area including the target pixel and pixels surrounding the target pixel is a pixel area included within a certain radius around the target pixel. A method for generating pseudo SEM image data. 製品のSEM画像より欠陥を抽出するフォトマスクの欠陥検査方法であって、製品のSEM画像データと、該SEM画像データに対応する請求項1ないし6に記載の方法により作製された擬似SEM画像データとを比較することにより、欠陥部を抽出することを特徴とするフォトマスクの欠陥検査方法。7. A defect inspection method for a photomask for extracting defects from an SEM image of a product, wherein the SEM image data of the product and pseudo SEM image data produced by the method according to claim 1 corresponding to the SEM image data. A defect inspection method for a photomask, wherein a defective portion is extracted by comparing
JP2002274990A 2002-09-20 2002-09-20 Pseudo-SEM image data generation method and photomask defect inspection method Expired - Fee Related JP4515020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002274990A JP4515020B2 (en) 2002-09-20 2002-09-20 Pseudo-SEM image data generation method and photomask defect inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002274990A JP4515020B2 (en) 2002-09-20 2002-09-20 Pseudo-SEM image data generation method and photomask defect inspection method

Publications (2)

Publication Number Publication Date
JP2004109788A true JP2004109788A (en) 2004-04-08
JP4515020B2 JP4515020B2 (en) 2010-07-28

Family

ID=32271317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002274990A Expired - Fee Related JP4515020B2 (en) 2002-09-20 2002-09-20 Pseudo-SEM image data generation method and photomask defect inspection method

Country Status (1)

Country Link
JP (1) JP4515020B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304959A (en) * 2006-05-12 2007-11-22 Dainippon Printing Co Ltd Method for generating pseudo sem image data
KR100782498B1 (en) 2006-11-24 2007-12-05 삼성전자주식회사 Mask pattern matching method and mask pattern matching apparatus using the same
WO2010098004A1 (en) * 2009-02-25 2010-09-02 株式会社日立ハイテクノロジーズ Defect observation method and defect observation device
WO2013179956A1 (en) * 2012-05-28 2013-12-05 株式会社日立ハイテクノロジーズ Pattern inspection device and pattern inspection method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05258703A (en) * 1991-05-30 1993-10-08 Nippon K L Ee Kk Electron beam inspection method and system thereof
JPH05281154A (en) * 1992-03-31 1993-10-29 Toshiba Corp Inspection apparatus for defect of pattern
JP2000058608A (en) * 1998-06-13 2000-02-25 Samsung Electronics Co Ltd Method and device for inspecting defective contact of semiconductor device
JP2001273487A (en) * 2000-02-24 2001-10-05 Internatl Business Mach Corp <Ibm> Method and device for measuring complete two- dimensional submicron form
JP2001338304A (en) * 1999-08-26 2001-12-07 Nano Geometry Kenkyusho:Kk Device and method for pattern inspection, and recording medium
JP2002008972A (en) * 2000-06-26 2002-01-11 Nec Corp Equipment and method for electron beam exposure
JP2002071331A (en) * 2000-08-25 2002-03-08 Seiko Instruments Inc Method and apparatus for inspecting mask defect for electron beam exposure
JP2002118158A (en) * 1996-03-05 2002-04-19 Hitachi Ltd Method and apparatus for inspecting circuit pattern
JP3890015B2 (en) * 2000-06-27 2007-03-07 株式会社東芝 Inspection apparatus using charged particle beam and device manufacturing method using the inspection apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05258703A (en) * 1991-05-30 1993-10-08 Nippon K L Ee Kk Electron beam inspection method and system thereof
JPH05281154A (en) * 1992-03-31 1993-10-29 Toshiba Corp Inspection apparatus for defect of pattern
JP2002118158A (en) * 1996-03-05 2002-04-19 Hitachi Ltd Method and apparatus for inspecting circuit pattern
JP2000058608A (en) * 1998-06-13 2000-02-25 Samsung Electronics Co Ltd Method and device for inspecting defective contact of semiconductor device
JP2001338304A (en) * 1999-08-26 2001-12-07 Nano Geometry Kenkyusho:Kk Device and method for pattern inspection, and recording medium
JP2001273487A (en) * 2000-02-24 2001-10-05 Internatl Business Mach Corp <Ibm> Method and device for measuring complete two- dimensional submicron form
JP2002008972A (en) * 2000-06-26 2002-01-11 Nec Corp Equipment and method for electron beam exposure
JP3890015B2 (en) * 2000-06-27 2007-03-07 株式会社東芝 Inspection apparatus using charged particle beam and device manufacturing method using the inspection apparatus
JP2002071331A (en) * 2000-08-25 2002-03-08 Seiko Instruments Inc Method and apparatus for inspecting mask defect for electron beam exposure

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304959A (en) * 2006-05-12 2007-11-22 Dainippon Printing Co Ltd Method for generating pseudo sem image data
KR100782498B1 (en) 2006-11-24 2007-12-05 삼성전자주식회사 Mask pattern matching method and mask pattern matching apparatus using the same
WO2010098004A1 (en) * 2009-02-25 2010-09-02 株式会社日立ハイテクノロジーズ Defect observation method and defect observation device
JP2010197221A (en) * 2009-02-25 2010-09-09 Hitachi High-Technologies Corp Method and device for observing defect
US8634634B2 (en) 2009-02-25 2014-01-21 Hitachi High-Technologies Corporation Defect observation method and defect observation apparatus
WO2013179956A1 (en) * 2012-05-28 2013-12-05 株式会社日立ハイテクノロジーズ Pattern inspection device and pattern inspection method
JP2013246062A (en) * 2012-05-28 2013-12-09 Hitachi High-Technologies Corp Pattern inspection device and pattern inspection method
TWI493280B (en) * 2012-05-28 2015-07-21 Hitachi High Tech Corp Pattern inspection device and pattern inspection method
US9188554B2 (en) 2012-05-28 2015-11-17 Hitachi High-Technologies Corporation Pattern inspection device and pattern inspection method
KR101623134B1 (en) * 2012-05-28 2016-05-20 가부시키가이샤 히다치 하이테크놀로지즈 Pattern inspection device and pattern inspection method

Also Published As

Publication number Publication date
JP4515020B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
JP4751866B2 (en) Method for decomposing a target pattern into a plurality of patterns, a computer-readable storage medium storing the computer program, a device manufacturing method, and a method for generating a mask
US6968532B2 (en) Multiple exposure technique to pattern tight contact geometries
US9798244B2 (en) Methods, apparatus, and systems for minimizing defectivity in top-coat-free lithography and improving reticle CD uniformity
JP4294359B2 (en) Gray tone mask defect correction method
US20110033656A1 (en) Pattern forming method, electronic device manufacturing method and electronic device
US6682858B2 (en) Method of forming small contact holes using alternative phase shift masks and negative photoresist
JP4515020B2 (en) Pseudo-SEM image data generation method and photomask defect inspection method
US20070092844A1 (en) Method to form photo patterns
US20040202943A1 (en) Set of at least two masks for the projection of structure patterns and method for producing the masks
JP2007304959A (en) Method for generating pseudo sem image data
JP2008261922A (en) Method for creating pattern data of photomask for multiple exposure technique
US6560767B2 (en) Process for making photomask pattern data and photomask
JP4631573B2 (en) Manufacturing method of density distribution mask
JP4909729B2 (en) Inspection data creation method and inspection method
JPH11133585A (en) Mask for exposure and its production
US7892703B2 (en) CPL mask and a method and program product for generating the same
JPH06224099A (en) Manufacture of semiconductor device
JP2000082650A (en) Projection exposure method
JPH1130849A (en) Production of photomask
CN1328760C (en) Method for distinguishing imperfect graphic spacing to improve microimage process
JP2005114843A (en) Method for manufacturing semiconductor device
JP2004205833A (en) Photomask and method of forming pattern
JP2004118375A (en) Method for calculating feature value in sem image
CN117806116A (en) Photomask and photomask detection method
US7001695B2 (en) Multiple alternating phase shift technology for amplifying resolution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100512

R150 Certificate of patent or registration of utility model

Ref document number: 4515020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees