JP2004109624A - Low-refractive index thin film, manufacturing method therefor, and anti-reflection film - Google Patents

Low-refractive index thin film, manufacturing method therefor, and anti-reflection film Download PDF

Info

Publication number
JP2004109624A
JP2004109624A JP2002273356A JP2002273356A JP2004109624A JP 2004109624 A JP2004109624 A JP 2004109624A JP 2002273356 A JP2002273356 A JP 2002273356A JP 2002273356 A JP2002273356 A JP 2002273356A JP 2004109624 A JP2004109624 A JP 2004109624A
Authority
JP
Japan
Prior art keywords
thin film
refractive index
low
index thin
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002273356A
Other languages
Japanese (ja)
Other versions
JP4248834B2 (en
Inventor
Tokiaki Shiratori
白鳥 世明
Shiro Fujita
藤田 志朗
Junji Suzuki
鈴木 淳史
Masufumi Hayashi
林 益史
Kazuo Taima
泰磨 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujimori Kogyo Co Ltd
Keio University
Original Assignee
Fujimori Kogyo Co Ltd
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimori Kogyo Co Ltd, Keio University filed Critical Fujimori Kogyo Co Ltd
Priority to JP2002273356A priority Critical patent/JP4248834B2/en
Publication of JP2004109624A publication Critical patent/JP2004109624A/en
Application granted granted Critical
Publication of JP4248834B2 publication Critical patent/JP4248834B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-refractive index thin film capable of structurally changing a refractive index without changing materials and a manufacturing method therefor and to provide an anti-reflection film provided with the low-refractive index thin film. <P>SOLUTION: A laminated film having charged layers having positive electric charge and charged layers having negative electric charge, alternately laminated is subjected to acid treatment or alkali treatment to form gaps in the laminated film, thus the low-refractive index thin film is obtained. A high-refractive index thin film is formed on a base material, and the low-refractive index thin film is formed on the high-refractive index thin film to obtain the anti-reflection film. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、低屈折率薄膜およびその製造方法、ならびに反射防止膜に関する。
【0002】
【従来の技術】
近年、ワープロ、コンピュータ、テレビ等の各種ディスプレイや各種光学レンズ、光学物品、自動車、電車等の窓ガラスの表面における光の反射防止をするために、これらの物品の表面に反射防止膜を設けることが行われている。
例えば、特許文献1には、基材上に、ゾル−ゲル法により形成された高屈折率層と交互吸着法により形成された低屈折率層とを交互に積層してなる多層ヘテロ構造膜が記載されている。
【0003】
【特許文献1】特開2001−350015号公報
【0004】
【発明が解決しようとする課題】
反射防止膜の反射防止性能は、これを構成する層の屈折率を変化させることによって向上させることができるが、一般に、層の屈折率は材料によってほぼ決まってしまうため、材料を変えなくても屈折率を変化させることができる方法が求められていた。
特に、多層ヘテロ構造膜からなる反射防止膜にあっては、隣接する層の屈折率差を構造的に変化させることができれば、材料の屈折率の許容範囲が広くなり、光学設計の自由度が拡大されるので好ましい。
【0005】
本発明は前記事情に鑑みてなされたもので、材料を変えなくても構造的に屈折率を変化させることができる低屈折率薄膜およびその製造方法、ならびに該低屈折率薄膜を備えた反射防止膜を提供することを目的とする。
【0006】
【課題を解決するための手段】
前記課題を解決すべく、本発明者等が鋭意研究を重ねた結果、正の電荷を有する帯電層と、負の電荷を有する帯電層とを交互に積層して形成した低屈折率薄膜に酸処理またはアルカリ処理することにより、該低屈折率薄膜に空隙を形成できること、および該空隙は低屈折率薄膜の屈折率を構造的に低減させることができることを見出して、本発明を完成させるに至った。
すなわち、本発明の低屈折率薄膜の製造方法は、正の電荷を有する帯電層と、負の電荷を有する帯電層とが交互に積層された積層膜を、酸処理またはアルカリ処理して、前記積層膜に空隙を形成して低屈折率薄膜を得ることを特徴とする。
【0007】
前記積層膜は交互吸着法により形成することが好ましい。
前記正の電荷を有する帯電層を構成する電解質または前記負の電荷を有する帯電層を構成する電解質の少なくとも一方として弱電解質を用いることが好ましい。
本発明の低屈折率薄膜の製造方法によれば、低屈折率薄膜の屈折率を1.45以下とすることができる。
前記空隙の、平面形状における直径は200nm未満、深さは200nm未満とすることが好ましい。
本発明はまた、本発明の低屈折率薄膜の製造方法により得られた低屈折率薄膜を提供する。
【0008】
本発明の低屈折率薄膜は、正の電荷を有する帯電層と、負の電荷を有する帯電層とが交互に積層された積層膜に、平面形状における直径が200nm未満で、深さが200nm未満の空隙が複数形成されていることを特徴とする。
前記正の電荷を有する帯電層を構成する電解質または前記負の電荷を有する帯電層を構成する電解質の少なくとも一方が弱電解質であることが好ましい。
本発明によれば、屈折率が1.45以下である低屈折率薄膜が得られる。
【0009】
本発明の反射防止膜は、本発明の低屈折率薄膜を備えてなることを特徴とする。
本発明の反射防止膜は、低屈折率薄膜が、該低屈折率薄膜よりも屈折が高い層上に積層されていることが好ましい。
【0010】
【発明の実施の形態】
以下、本発明を詳しく説明する。
本発明における正の電荷を有する帯電層は、溶液中で正に帯電し得る電解質または荷電微粒子を含み、膜形成能を有する材料を用いて形成することができる。正の電荷を有する帯電層の材料としては、溶液中で電離して正に帯電し得る正の高分子化合物を用いることができる。例えば、4級アンモニウム基、アミノ基など、溶液中で正の荷電を帯びることができる官能基を有する高分子化合物であって、水溶性または水分散性を有するもの、または水と有機溶媒との混合溶媒に対して可溶性または分散性を有するものを用いることができ、有機高分子化合物が好ましく用いられる。正の電解質高分子の具体例としては、ポリピロール、ポリアニリン、ポリパラフェニレン(+)、ポリパラフェニレンビニレン、ポリエチルイミン、ポリエチレンイミン(PEI)、ポリアリルアミン塩酸塩(PAH:poly−allylaminehydrochloride)、ポリジアリルジメチルアンモニウムクロリド(PDDA)、ポリビニルピリジン(PVP)、ポリリジンなどを挙げることができる。
【0011】
本発明における負の電荷を有する帯電層は、溶液中で負に帯電し得る電解質または荷電微粒子を含み、膜形成能を有する材料を用いて形成することができる。負の電荷を有する帯電層の材料としては、溶液中で電離して負に帯電し得る負の高分子化合物を用いることができる。例えば、スルホン酸、硫酸、カルボン酸など、溶液中で負の荷電を帯びることができる官能基を有する高分子化合物であって、水溶性または水分散性を有するもの、または水と有機溶媒との混合溶媒に対して可溶性または分散性を有するものを用いることができ、有機高分子化合物が好ましく用いられる。負の電解質高分子の具体例としては、ポリスチレンスルホン酸(PSS)、ポリビニル硫酸(PVS)、デキストラン硫酸、コンドロイチン硫酸、ポリアクリル酸(PAA)、ポリメタクリル酸(PMA)、ポリマレイン酸、ポリフマル酸ポリパラフェニレン(−)、ポリチオフェン−3−アセティックアシド、ポリアミック酸などを挙げることができる。
【0012】
または、本発明における正の電荷を有する帯電層および負の電荷を有する帯電層の材料として、導電性高分子、ポリ(アニリン−N−プロパンスルホン酸)(PAN)などの機能性高分子イオン、種々のデオキシリボ核酸(DNA)やリボ核酸(RNA)、ペクチンなどの荷電を有する多糖類など、荷電を有する生体高分子を用いることもできる。
また、水溶性の材料以外にも、例えばフェライト微粒子など、水不溶性の荷電微粒子を用いることもできる。
さらに、高分子材料以外にも、例えばルテニウム錯体モノマー(Ru(bpy)3(PF6)2)2+を正の帯電膜の材料として用い、前記PAAを負の帯電膜の材料として用いるのも好ましい。
【0013】
本発明に係る低屈折率薄膜を製造するには、まず、正の電荷を有する帯電層と、負の電荷を有する帯電層とが交互に積層された積層膜を形成する。かかる積層膜を形成する方法は、特に交互吸着法が好適であるが、交互吸着法以外にも、例えばゾル−ゲル法、スピンコート法、ラングミュア−ブロジェット(Langmuir−Blodgett)法等の方法により形成することが可能である。
交互吸着法は、基材を、正の帯電層の材料を含む溶液および負の帯電層の材料を含む溶液に交互に浸漬させることによって、基材上に積層膜を形成する方法であり、周知の具体的手法を適宜用いることができる。基材表面が負に帯電している場合は、該基材上にまず正の帯電層を形成し、基材表面が正に帯電している場合は、該基材上にまず負の帯電層を形成する。最上層を、正の帯電層と負の帯電層のどちらにするかは任意である。
積層膜を構成する正の帯電層と負の帯電層の層数および膜厚は光学設計に必要とされる厚みに応じて設定される。
また、本発明において、正の帯電層を構成する電解質または負の帯電層を構成する電解質の少なくとも一方として、弱電解質を用いると、後述するように積層膜に空隙を形成し易いので好ましい。
【0014】
交互吸着法による場合、正の帯電層の材料を含む溶液のpH、および負の帯電層の材料を含む溶液のpHを最適値に制御することが好ましい。ここでの正の帯電層の材料を含む溶液のpHの最適値および負の帯電層の材料を含む溶液のpHの最適値は、該溶液に含まれている、帯電層を構成する材料が完全に解離しない値となるように設定される。
【0015】
次に、形成した積層膜に対して酸処理またはアルカリ処理を行って、該積層膜に空隙を形成する。 具体的には、積層膜をアルカリ性溶液または酸性溶液に浸漬させて該処理を行うことができる。
積層膜を構成している正の帯電層のpHよりも高いpHを有するアルカリ性溶液を用いて処理を行うと、正の帯電層に空隙を形成することができ、負の帯電層のpHよりも低いpHを有する酸性溶液を用いて処理を行うと、負の帯電層に空隙を形成することができる。酸処理とアルカリ処理の両方を任意の順序で行えば、積層膜を構成している正の帯電層と負の帯電層の両方に空隙を形成することができる。
ここで、積層膜を構成している正の帯電層のpHおよび負の帯電層のpHとは、該積層膜を交互吸着法で形成した場合は、該交互吸着法に用いた正の帯電層の材料を含む溶液のpH、および負の帯電層の材料を含む溶液のpHであり、積層膜を交互吸着法以外の方法で形成した場合は、正の帯電層に使用する材料の等電位点より高いpH、負の帯電層に使用する材料の等電位点より低いpHである。
【0016】
このような酸処理またはアルカリ処理によって形成される空隙は、空気が侵入可能な空洞構造を有していればよく、多孔質状、または繊維の束が集まった状態の繊維質構造であってもよい。
空隙は、低屈折率薄膜の表面を平面視したときの該空隙の直径が200nm未満で、深さが200nm未満であることが好ましく、この範囲の大きさの空隙が形成されるように酸処理またはアルカリ処理の処理条件を調整することが好ましい。
空隙の直径が200nm未満であれば、光散乱を効果的に抑えることができる。光散乱が大きくなるほど透過率が低下してしまう。
また、薄膜自身の強度を確保するうえで、空隙の深さを200nm未満とすることが好ましい。
【0017】
本発明においては、正の帯電層と負の帯電層とが交互に積層された積層膜は、正に帯電した電解質または荷電微粒子と、負に帯電した電解質または荷電微粒子とが電気的な力で結合しているので、酸処理またはアルカリ処理を行うことにより、積層膜中の電解質または荷電微粒子が容易に解離して移動し、空隙が形成される。
そして、積層膜に、このような空隙を形成して積層膜の構造を変化させることにより、低屈折率薄膜全体の屈折率(バルクの屈折率)を、空隙を形成する前の積層膜の屈折率よりも低くすることができる。すなわち、積層膜中にこのような空隙を形成すると、積層膜中に微細な空気層が多数混在した状態となり、通常、空気の屈折率は積層膜を構成している材料の屈折率よりも低いので、空隙を含む積層膜全体の屈折率(低屈折率薄膜のバルクの屈折率)は、空気層が混在したことにより低減される。これにより、例えば、低屈折率薄膜の屈折率を1.45以下、好ましくは1.4以下、より好ましくは1.3以下に低減させることが可能である。反射防止効果を得ようとする中心波長において良好な反射防止効果が得られるように、反射防止膜を構成する各層の屈折率を適宜設定するのが好ましい。
また、正の帯電層と負の帯電層とが交互に積層されてなる低屈折率薄膜は、各層が電気的な力によって結合しているので、層間の接着力が強く、粘着テープなどを用いても容易に剥離されない。
【0018】
本発明においては、正の帯電層を構成する電解質および負の帯電層を構成する電解質は強電解質でも弱電解質でもよいが、弱電解質の方が空隙が形成されやすい。この理由は定かではないが、弱電解質は電離が容易なので深部まで電離されやすいためと推定される。したがって、正の帯電層を構成する電解質および負の帯電層を構成する電解質の少なくとも一方として弱電解質を用いることが好ましい。正に帯電する弱電解質の例としては、ポリアニリン等が挙げられ、負に帯電する弱電解質の例としては、ポリアクリル酸等が挙げられる。
【0019】
本発明の反射防止膜は、本発明の低屈折率薄膜、すなわち前記空隙が形成された積層膜を備えてなることを特徴とする。
本発明の低屈折率薄膜は、CRT、液晶、プラズマディスプレイやレンズなどの表面に直接設ける場合は、単独で反射防止膜を形成することもできるが、前記低屈折率薄膜が、該低屈折率薄膜よりも屈折率が高い層上に積層されている構成としてもよい。
【0020】
本発明の反射防止膜における低屈折率薄膜や高屈折率薄膜の各層の膜厚はnd=λ/4(nは中心波長の屈折率、dは膜厚、λは中心波長)に近くなるように設計されることが好ましい。このように設計されることによって、各層の表面で反射される反射光と各層の内部端面で反射される反射光とが打ち消し合い、反射防止効果が効率よく発現される。
そして、該低屈折率薄膜よりも屈折率が高い層は、基材であってもよいし、基材上に高屈折率薄膜を形成し、その上に本発明にかかる低屈折率薄膜を形成してもよい。また、低屈折率薄膜上に、防汚層や帯電防止層、ハードコート層などを任意に形成してもよい。
基材は、可視光帯域において透明なものであればよく、反射防止が要求される対象によって、ヘイズやレタデーション値などを考慮の上、適宜選定され、例えばガラス、PC(ポリカーボネイト)フィルムやPET(ポリエチレンテレフタレート)フィルム等が好ましく用いられる。形状は任意であり、現存のディスプレイなどの表面へ直接コーティングも本発明方法であれば、可能となる。
【0021】
高屈折率薄膜は、その上に形成される低屈折率薄膜のバルクの屈折率よりも、屈折率が高ければよく、その材料や製法は特に限定されない。例えば、高屈折率薄膜としてITO(Indium Tin Oxide)薄膜やTiO2(酸化チタン)薄膜など無機材料からなる薄膜を用いることができる。または、有機バインダー中にTiO2を分散させた分散体を用いて高屈折率薄膜を形成することもできる。製法としては、例えばコーティング法やスパッタ法を適用することができる。
基材の厚さおよび高屈折率薄膜の厚さは、特に限定されないが、上述したように高屈折率薄膜の厚さは、低屈折率薄膜の厚さと同様、使用波長帯域で良好な反射防止効果が得られるように適宜設定されることが好ましい。
【0022】
防汚層の材料としては、シリコーンや光触媒等を用いることができる。製法は特に限定されないが、例えばウエットコート法や真空蒸着法を用いることができる。反射防止膜の最上層として防汚層を形成することにより、汚れがつきにくくなり、防汚性を向上させることができる。これにより、例えば指紋等の汚れが付着し難くなる。防汚層の膜厚は反射防止膜の光学的特性に影響を与えない範囲で設定される。例えば50nm以下が好ましく、10nm以下がより好ましい。
また、ハードコート層や帯電防止層などは最上層でなくても機能を付与することが出来る。
【0023】
一般的に、高屈折率薄膜上に低屈折率薄膜を積層した構成の反射防止膜において、高屈折率薄膜の屈折率と低屈折率薄膜の屈折率との差が大きいほど該反射防止膜の反射率は小さくなる。したがって、本発明によれば、低屈折率薄膜に微細な空隙が形成されており、空隙が形成されたことによって低屈折率薄膜の屈折率が低減されているので、これにより反射防止膜の性能が向上する。それと併せて、低屈折薄膜の屈折率が下がることにより、高屈折率薄膜の材料の選択肢が広範なものとなる。
【0024】
また、従来の低屈折率層として用いられる材料はSiO(n=1.45)やMgF(n=1.38)、フッ素樹脂(n=1.24〜1.45)などがあるが、材料により屈折率は決まってしまい、反射防止膜を形成する光学設計が限定される。
さらにフッ素樹脂は非常に高価であるため、それを用いた反射防止膜は非常に高価となってしまう。
従来は、限定された低屈折率材料で、要求を満たす反射防止性能を有する反射防止膜を、低屈折率層単層では実現することができず、多層構成による反射防止膜で実現していた。
これに対して、本発明の低屈折率薄膜を用いれば、単層でも十分な反射防止性能が実現可能である。
本発明の低屈折率薄膜は任意に屈折率を変えることが可能であり、光学設計の自由度が増し、より高度な反射防止膜の形成が可能となる。
本発明の低屈折率薄膜は、シリカなどの従来の低屈折率材料より屈折率を低くすることができるために、単独でガラスやフィルム基材などにコーティングしても反射防止性能を出すことができる。また、多層構成にするなどして、さらに高性能な反射防止性能を出すことも可能である。
【0025】
【実施例】
以下、具体的な実施例を示して本発明の効果を明らかにする。
(実施例1)
正の電解質高分子としてポリアリルアミン塩酸塩(PAH、分子量=55000)を用意し、負の電解質高分子としてポリアクリル酸(PAA、分子量=90000)を用意した。いずれも10−2mol/リットルの濃度の水溶液を作製してそれぞれ反応槽に収容した。
これとは別に、リンス浴に利用する純水として、比抵抗が18MΩ・cm以上の超純水を用意した。
厚さ100μmのポリエチレンテレフタレート(PET)基材(帝人・デュポン社製、商品名:メリネックス)上に、高屈折率材料として、酸化チタン(シーアイ化成社製、商品名:チタニアA−11)を用いて、nd=λ/4(nは中心波長の屈折率、dは膜厚、λは中心波長)となるように、λ=550nm、d=75nmとして、高屈折率層を作製した。高屈折率薄膜の屈折率は約1.8である。そして、形成した高屈折率薄膜の表面を水酸化カリウム水溶液処理により親水処理した。
次いで、高屈折率薄膜が形成された基材を、まずPAH溶液(pH=7.5)中に15分間浸漬させてPAHからなる膜を成膜した後、それをPAA溶液(pH=3.5)中に15分間浸漬させてPAAからなる膜を成膜した。このようにしてPAHからなる膜とPAAからなる膜を交互に成膜して、合計で8層からなる厚さ約90nmの積層膜を形成した。
続いて、積層膜が形成された基材を、pH約2.5に調整した塩酸中に2分間浸漬した後、比抵抗が18MΩ・cm以上の超純水で洗浄することによって、積層膜に微細な空隙を形成して低屈折率薄膜とした。これにより基材上に高屈折率薄膜および低屈折率薄膜が順に積層された構成の反射防止膜を得た。
【0026】
図1は得られた反射防止膜の断面図である。図中符号1は基材、2は高屈折率薄膜、3は低屈折率薄膜、4は空隙をそれぞれ示す。
この図に示されるように、低屈折率薄膜には微細な空隙が多数形成されており、該空隙の、平面形状における直径は200nm未満であった。また低屈折率薄膜を貫通している空隙は、空隙の深さは低屈折率薄膜の厚さ、すなわち110nm未満であった。先に積層した厚み90nmより大きくなっているのは、塩酸中に浸積することにより、膜が空気を含み膨らんだことを意味している。すなわち、第三成分を混合させて蒸発させることによって空隙を作成する方法と異なり、高分子を酸・アルカリに浸漬させることで、膜の構造を変化させ、空隙を作製することになる。このことは第三成分を取り除くと言う方法と異なり、第三成分が残るということがないために、新規で汚染のない多孔質体を作成する方法である。
【0027】
得られた反射防止膜の反射防止効果を次のようにして評価した。すなわち、反射防止膜の基材の裏面に対して、スチールウールなどを用いて表面を荒らした後、黒インキを塗布して、この裏面における光の反射を無くした状態で、反射防止膜の最高反射率と最低反射率を測定した。測定は、日本分光株式会社製 紫外可視分光器 V−570を用いて、入射光の波長を350nm〜800nmの範囲で2nm単位で変化させつつ、入射角5°で正反射率を測定し、得られた測定チャートより最高反射率と最低反射率を読み取った。また反射防止膜を構成している低屈折率薄膜の部分の屈折率を上記測定方法によって得られた反射率波形から、既知の光干渉法により屈折率を算出した。
得られた測定チャートを図2に実線で示す。この結果、該波長範囲における最高反射率は2.2%であり、最低反射率は0.41%であった。低屈折率薄膜部分の屈折率は1.18であり、反射防止膜の視感度平均反射率(Y値)は0.51であった。
ここで視感度平均反射率(Y値)とは、人間の目の感度を各波長におけるパラメータとして、XYZ表色系(CIE1931 表色系)による色刺激値のY値であり、この値が高いほどまぶしく感じ、低いほど目に見える反射率が低いと言うことになる。具体的には、上記分光光度計(上記紫外可視分光器 V−570)付属のデータ処理ツール(カラー測定ソフト)にて、C光源に対する三刺激値の一つであるYを計算し、これをもって視感度平均反射率(Y値)とした。
【0028】
(比較例1)
実施例1において、積層膜を形成した後に塩酸に浸漬しない他は同様にして反射防止膜を形成した。
得られた反射防止膜の反射防止効果を実施例1と同様にして評価した。得られた測定チャートを図2に実線で示す。その結果、最高反射率は4.67%であり、最低反射率は0.3%であった。低屈折率薄膜部分の屈折率は1.483であり、反射防止膜の視感度平均反射率(Y値)は0.72であった。
【0029】
実施例1と比較例1の評価結果より、積層膜に塩酸処理を行った実施例1の方が、低屈折率薄膜部分の屈折率が低く、Y値も低くなった。また、図2の測定データより、中心波長から低波長側および高波長側で反射率が低くなっている。このことから、可視光領域全体で反射率を下げる効果もあることが分かった。以上の結果より、反射防止膜として性能が高いことが認められた。
【0030】
【発明の効果】
以上説明したように本発明によれば、正の電荷を有する帯電層と、負の電荷を有する帯電層とが交互に積層された積層膜からなる薄膜の屈折率を、構造的に低減させることができる。これにより反射防止膜の反射防止性能を向上させることができる。
【図面の簡単な説明】
【図1】本発明に係る反射防止膜の例を示す図である。
【図2】実施例および比較例に係る反射率の測定チャートである。
【符号の説明】
1…基材、2…高屈折率薄膜、3…低屈折率薄膜、4…空隙。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a low refractive index thin film, a method for producing the same, and an antireflection film.
[0002]
[Prior art]
In recent years, in order to prevent light from being reflected on the surface of window glasses such as various displays such as word processors, computers, and televisions, various optical lenses, optical articles, automobiles, and trains, an antireflection film is provided on the surface of these articles. Has been done.
For example, Patent Document 1 discloses a multilayer heterostructure film in which a high refractive index layer formed by a sol-gel method and a low refractive index layer formed by an alternate adsorption method are alternately laminated on a substrate. Has been described.
[0003]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2001-350015
[Problems to be solved by the invention]
The antireflection performance of an antireflection film can be improved by changing the refractive index of a layer constituting the antireflection film. However, in general, the refractive index of a layer is almost determined by a material. There has been a need for a method that can change the refractive index.
In particular, in the case of an antireflection film composed of a multilayer heterostructure film, if the refractive index difference between adjacent layers can be structurally changed, the allowable range of the refractive index of the material is widened, and the degree of freedom in optical design is increased. It is preferable because it is enlarged.
[0005]
The present invention has been made in view of the above circumstances, and a low-refractive-index thin film capable of structurally changing a refractive index without changing a material, a method of manufacturing the same, and an anti-reflection method including the low-refractive-index thin film It is intended to provide a membrane.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present inventors have conducted intensive studies and found that a low-refractive-index thin film formed by alternately laminating a positively charged layer and a negatively charged layer was formed. Through the treatment or alkali treatment, it has been found that voids can be formed in the low-refractive-index thin film, and that the voids can structurally reduce the refractive index of the low-refractive-index thin film, and have completed the present invention. Was.
That is, the method for producing a low-refractive-index thin film of the present invention is a method in which a charged layer having a positive charge and a charged layer having a negative charge are alternately stacked, and the stacked film is subjected to an acid treatment or an alkali treatment. A void is formed in the laminated film to obtain a low refractive index thin film.
[0007]
The laminated film is preferably formed by an alternate adsorption method.
It is preferable to use a weak electrolyte as at least one of the electrolyte constituting the positively charged layer and the electrolyte constituting the negatively charged layer.
According to the method for manufacturing a low refractive index thin film of the present invention, the refractive index of the low refractive index thin film can be set to 1.45 or less.
It is preferable that the diameter of the void in a planar shape is less than 200 nm and the depth is less than 200 nm.
The present invention also provides a low refractive index thin film obtained by the method for producing a low refractive index thin film of the present invention.
[0008]
The low-refractive-index thin film of the present invention has a planar film with a diameter of less than 200 nm and a depth of less than 200 nm in a stacked film in which a positively charged layer and a negatively charged layer are alternately stacked. Are formed in plurality.
It is preferable that at least one of the electrolyte constituting the positively charged layer and the electrolyte constituting the negatively charged layer is a weak electrolyte.
According to the present invention, a low refractive index thin film having a refractive index of 1.45 or less can be obtained.
[0009]
The antireflection film of the present invention is characterized by comprising the low refractive index thin film of the present invention.
In the antireflection film of the present invention, it is preferable that the low refractive index thin film is laminated on a layer having a higher refractive index than the low refractive index thin film.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The charged layer having a positive charge in the present invention can be formed using a material capable of forming a film, including an electrolyte or charged fine particles that can be positively charged in a solution. As a material of the charged layer having a positive charge, a positive polymer compound that can be positively charged by ionization in a solution can be used. For example, a high molecular compound having a functional group capable of taking a positive charge in a solution, such as a quaternary ammonium group or an amino group, having water solubility or water dispersibility, or a mixture of water and an organic solvent. Those having solubility or dispersibility in a mixed solvent can be used, and an organic polymer compound is preferably used. Specific examples of the positive electrolyte polymer include polypyrrole, polyaniline, polyparaphenylene (+), polyparaphenylenevinylene, polyethylimine, polyethyleneimine (PEI), polyallylamine hydrochloride (PAH), and poly (allylaminehydrochloride). Examples include diallyldimethylammonium chloride (PDDA), polyvinylpyridine (PVP), and polylysine.
[0011]
The charged layer having a negative charge in the present invention can be formed using a material having an ability to form a film containing an electrolyte or charged fine particles that can be negatively charged in a solution. As a material of the charged layer having a negative charge, a negative polymer compound that can be negatively charged by ionization in a solution can be used. For example, sulfonic acid, sulfuric acid, carboxylic acid, and the like, a high molecular compound having a functional group capable of taking a negative charge in a solution and having water solubility or water dispersibility, or a mixture of water and an organic solvent. Those having solubility or dispersibility in a mixed solvent can be used, and an organic polymer compound is preferably used. Specific examples of the negative electrolyte polymer include polystyrenesulfonic acid (PSS), polyvinyl sulfate (PVS), dextran sulfate, chondroitin sulfate, polyacrylic acid (PAA), polymethacrylic acid (PMA), polymaleic acid, and polyfumaric acid. Examples thereof include paraphenylene (-), polythiophene-3-acetic acid, and polyamic acid.
[0012]
Alternatively, as a material of the positively charged layer and the negatively charged layer in the present invention, conductive polymer, functional polymer ions such as poly (aniline-N-propanesulfonic acid) (PAN), Charged biopolymers such as various deoxyribonucleic acids (DNA), ribonucleic acids (RNA), and charged polysaccharides such as pectin can also be used.
Further, besides the water-soluble material, water-insoluble charged fine particles such as ferrite fine particles can also be used.
Further, it is also preferable to use, for example, a ruthenium complex monomer (Ru (bpy) 3 (PF6) 2) 2+ as a material for the positive charging film and the PAA as a material for the negative charging film, in addition to the polymer material.
[0013]
In order to manufacture the low refractive index thin film according to the present invention, first, a laminated film in which charged layers having positive charges and charged layers having negative charges are alternately laminated is formed. As a method for forming such a laminated film, an alternate adsorption method is particularly preferable. In addition to the alternate adsorption method, for example, a sol-gel method, a spin coating method, a Langmuir-Blodgett method, or the like is used. It is possible to form.
The alternate adsorption method is a method of forming a laminated film on a substrate by alternately immersing the substrate in a solution containing the material of the positively charged layer and a solution containing the material of the negatively charged layer. Can be used as appropriate. If the substrate surface is negatively charged, first form a positively charged layer on the substrate, and if the substrate surface is positively charged, first form a negatively charged layer on the substrate. To form It is optional whether the uppermost layer is a positive charging layer or a negative charging layer.
The number and thickness of the positively charged layer and the negatively charged layer constituting the laminated film are set according to the thickness required for optical design.
In the present invention, it is preferable to use a weak electrolyte as at least one of the electrolyte constituting the positively charged layer and the electrolyte constituting the negatively charged layer, since voids are easily formed in the laminated film as described later.
[0014]
In the case of the alternate adsorption method, it is preferable to control the pH of the solution containing the material of the positively charged layer and the pH of the solution containing the material of the negatively charged layer to optimal values. Here, the optimum value of the pH of the solution containing the material of the positively charged layer and the optimum value of the pH of the solution containing the material of the negatively charged layer are as follows. Is set to a value that does not dissociate.
[0015]
Next, an acid treatment or an alkali treatment is performed on the formed laminated film to form voids in the laminated film. Specifically, the treatment can be performed by immersing the laminated film in an alkaline solution or an acidic solution.
When the treatment is performed using an alkaline solution having a pH higher than the pH of the positively charged layer constituting the laminated film, voids can be formed in the positively charged layer and the pH can be higher than the pH of the negatively charged layer. When the treatment is performed using an acidic solution having a low pH, voids can be formed in the negatively charged layer. By performing both the acid treatment and the alkali treatment in an arbitrary order, voids can be formed in both the positively charged layer and the negatively charged layer constituting the laminated film.
Here, the pH of the positively charged layer and the pH of the negatively charged layer constituting the laminated film refer to the positively charged layer used in the alternating adsorption method when the laminated film is formed by the alternate adsorption method. PH of the solution containing the material of the negatively charged layer and the pH of the solution containing the material of the negatively charged layer. When the laminated film is formed by a method other than the alternate adsorption method, the equipotential point of the material used for the positively charged layer is Higher pH, lower than the isoelectric point of the material used for the negatively charged layer.
[0016]
The void formed by such an acid treatment or an alkali treatment may have a hollow structure through which air can enter, and may have a porous structure or a fibrous structure in which fiber bundles are gathered. Good.
The voids preferably have a diameter of less than 200 nm and a depth of less than 200 nm when the surface of the low-refractive-index thin film is viewed in a plan view, and are subjected to an acid treatment so that voids having a size in this range are formed. Alternatively, it is preferable to adjust the treatment conditions of the alkali treatment.
If the diameter of the void is less than 200 nm, light scattering can be effectively suppressed. The transmittance decreases as the light scattering increases.
In order to secure the strength of the thin film itself, it is preferable that the depth of the gap is less than 200 nm.
[0017]
In the present invention, the laminated film in which the positively charged layer and the negatively charged layer are alternately laminated, the positively charged electrolyte or charged fine particles, and the negatively charged electrolyte or charged fine particles are formed by an electric force. Since the bonding is performed, by performing the acid treatment or the alkali treatment, the electrolyte or the charged fine particles in the stacked film are easily dissociated and moved to form voids.
By forming such voids in the laminated film and changing the structure of the laminated film, the refractive index (bulk refractive index) of the entire low-refractive-index thin film is reduced by the refractive index of the laminated film before the void is formed. Rate can be lower. That is, when such voids are formed in the laminated film, a large number of fine air layers are mixed in the laminated film, and the refractive index of air is usually lower than the refractive index of the material constituting the laminated film. Therefore, the refractive index of the entire laminated film including the voids (the bulk refractive index of the low-refractive-index thin film) is reduced by the presence of the air layer. Thereby, for example, the refractive index of the low refractive index thin film can be reduced to 1.45 or less, preferably 1.4 or less, and more preferably 1.3 or less. It is preferable to appropriately set the refractive index of each layer constituting the antireflection film so that a good antireflection effect can be obtained at the center wavelength where the antireflection effect is to be obtained.
In addition, the low-refractive-index thin film in which the positively charged layer and the negatively charged layer are alternately laminated has a strong adhesive force between the layers because each layer is bonded by an electric force. It is not easily peeled off.
[0018]
In the present invention, the electrolyte constituting the positively charged layer and the electrolyte constituting the negatively charged layer may be a strong electrolyte or a weak electrolyte, but voids are more likely to be formed in the weak electrolyte. The reason for this is not clear, but it is presumed that the weak electrolyte is easily ionized and thus easily ionized to a deep part. Therefore, it is preferable to use a weak electrolyte as at least one of the electrolyte constituting the positively charged layer and the electrolyte constituting the negatively charged layer. Examples of the positively charged weak electrolyte include polyaniline and the like, and examples of the negatively charged weak electrolyte include polyacrylic acid and the like.
[0019]
The anti-reflection film of the present invention is characterized by comprising the low-refractive-index thin film of the present invention, that is, the laminated film having the voids formed therein.
When the low refractive index thin film of the present invention is directly provided on the surface of a CRT, a liquid crystal, a plasma display, a lens, or the like, an antireflection film can be formed alone. It may be configured to be stacked on a layer having a higher refractive index than a thin film.
[0020]
The thickness of each layer of the low-refractive-index thin film and the high-refractive-index thin film in the antireflection film of the present invention is set to be close to nd = λ / 4 (n is a refractive index of a central wavelength, d is a film thickness, and λ is a central wavelength). Preferably, it is designed to With such a design, the reflected light reflected on the surface of each layer and the reflected light reflected on the inner end face of each layer cancel each other, and the antireflection effect is efficiently exhibited.
The layer having a higher refractive index than the low-refractive-index thin film may be a base material, or a high-refractive-index thin film is formed on a base material, and a low-refractive-index thin film according to the present invention is formed thereon. May be. Further, an antifouling layer, an antistatic layer, a hard coat layer and the like may be optionally formed on the low refractive index thin film.
The substrate may be any material that is transparent in the visible light band, and is appropriately selected in consideration of haze, retardation value, and the like depending on the object for which antireflection is required. For example, glass, PC (polycarbonate) film, PET ( A polyethylene terephthalate) film or the like is preferably used. The shape is arbitrary, and direct coating on the surface of an existing display or the like is possible by the method of the present invention.
[0021]
The high refractive index thin film only needs to have a higher refractive index than the bulk refractive index of the low refractive index thin film formed thereon, and its material and manufacturing method are not particularly limited. For example, a thin film made of an inorganic material such as an ITO (Indium Tin Oxide) thin film or a TiO2 (titanium oxide) thin film can be used as the high refractive index thin film. Alternatively, a high-refractive-index thin film can be formed using a dispersion in which TiO2 is dispersed in an organic binder. As a manufacturing method, for example, a coating method or a sputtering method can be applied.
The thickness of the base material and the thickness of the high-refractive-index thin film are not particularly limited, but as described above, the thickness of the high-refractive-index thin film is, like the thickness of the low-refractive-index thin film, excellent in antireflection in the wavelength band used. It is preferable to set appropriately so as to obtain the effect.
[0022]
As a material of the antifouling layer, silicone, a photocatalyst, or the like can be used. Although the production method is not particularly limited, for example, a wet coat method or a vacuum deposition method can be used. By forming an antifouling layer as the uppermost layer of the antireflection film, dirt is less likely to be attached, and antifouling properties can be improved. This makes it difficult for dirt such as fingerprints to adhere. The thickness of the antifouling layer is set within a range that does not affect the optical characteristics of the antireflection film. For example, the thickness is preferably 50 nm or less, and more preferably 10 nm or less.
Further, a hard coat layer, an antistatic layer and the like can provide functions even if they are not the uppermost layer.
[0023]
In general, in an antireflection film having a configuration in which a low-refractive-index thin film is laminated on a high-refractive-index thin film, the larger the difference between the refractive index of the high-refractive-index thin film and the refractive index of the low-refractive-index thin film is, the more the antireflection film becomes. The reflectivity decreases. Therefore, according to the present invention, fine voids are formed in the low refractive index thin film, and the refractive index of the low refractive index thin film is reduced by the formation of the voids. Is improved. At the same time, as the refractive index of the low-refractive-index thin film decreases, the choice of materials for the high-refractive-index thin film becomes wider.
[0024]
Materials used as the conventional low refractive index layer include SiO 2 (n = 1.45), MgF 2 (n = 1.38), and fluororesin (n = 1.24 to 1.45). The refractive index is determined by the material, and the optical design for forming the antireflection film is limited.
Further, since fluororesin is very expensive, an antireflection film using it is very expensive.
Conventionally, an anti-reflection film having an anti-reflection performance that satisfies requirements with a limited low-refractive-index material cannot be realized with a single low-refractive-index layer, but is realized with an anti-reflection film having a multilayer structure. .
On the other hand, if the low refractive index thin film of the present invention is used, sufficient antireflection performance can be realized even with a single layer.
The refractive index of the low refractive index thin film of the present invention can be arbitrarily changed, the degree of freedom in optical design is increased, and a more sophisticated antireflection film can be formed.
The low-refractive-index thin film of the present invention has a lower refractive index than conventional low-refractive-index materials such as silica. it can. It is also possible to obtain a higher performance antireflection performance by using a multilayer structure or the like.
[0025]
【Example】
Hereinafter, the effects of the present invention will be clarified by showing specific examples.
(Example 1)
Polyallylamine hydrochloride (PAH, molecular weight = 55000) was prepared as a positive electrolyte polymer, and polyacrylic acid (PAA, molecular weight = 90000) was prepared as a negative electrolyte polymer. In each case, an aqueous solution having a concentration of 10 −2 mol / liter was prepared and stored in a reaction tank.
Separately, ultrapure water having a specific resistance of 18 MΩ · cm or more was prepared as pure water to be used for the rinsing bath.
Using a 100 μm thick polyethylene terephthalate (PET) substrate (manufactured by Teijin DuPont, trade name: Melinex), titanium oxide (trade name: Titania A-11) as a high refractive index material is used. Then, a high refractive index layer was prepared by setting λ = 550 nm and d = 75 nm so that nd = λ / 4 (n is the refractive index at the center wavelength, d is the film thickness, λ is the center wavelength). The refractive index of the high refractive index thin film is about 1.8. Then, the surface of the formed high refractive index thin film was subjected to a hydrophilic treatment by a potassium hydroxide aqueous solution treatment.
Next, the substrate on which the high-refractive-index thin film is formed is first immersed in a PAH solution (pH = 7.5) for 15 minutes to form a PAH film, which is then PAA solution (pH = 3. 5) The film was immersed in the film for 15 minutes to form a film made of PAA. In this way, a film made of PAH and a film made of PAA were alternately formed to form a laminated film having a total of eight layers and a thickness of about 90 nm.
Subsequently, the substrate on which the laminated film is formed is immersed in hydrochloric acid adjusted to a pH of about 2.5 for 2 minutes, and then washed with ultrapure water having a specific resistance of 18 MΩ · cm or more. Fine voids were formed to obtain a low refractive index thin film. Thus, an antireflection film having a configuration in which a high-refractive-index thin film and a low-refractive-index thin film were sequentially laminated on a substrate was obtained.
[0026]
FIG. 1 is a cross-sectional view of the obtained antireflection film. In the figure, reference numeral 1 denotes a substrate, 2 denotes a high refractive index thin film, 3 denotes a low refractive index thin film, and 4 denotes a void.
As shown in this figure, a large number of fine voids were formed in the low refractive index thin film, and the diameter of the voids in a planar shape was less than 200 nm. Further, the voids penetrating the low-refractive-index thin film had a depth of less than the thickness of the low-refractive-index thin film, that is, less than 110 nm. The thickness greater than 90 nm, which was previously laminated, means that the film swelled with air by being immersed in hydrochloric acid. That is, unlike the method of creating voids by mixing and evaporating the third component, the polymer is immersed in an acid or alkali to change the structure of the film and create voids. Unlike the method of removing the third component, this is a method of producing a new and contamination-free porous body since the third component does not remain.
[0027]
The antireflection effect of the obtained antireflection film was evaluated as follows. In other words, the surface of the base of the anti-reflection film is roughened using steel wool or the like, and then black ink is applied. The reflectance and minimum reflectance were measured. The measurement was performed using an ultraviolet-visible spectrometer V-570 manufactured by JASCO Corporation while measuring the regular reflectance at an incident angle of 5 ° while changing the wavelength of the incident light in the range of 350 nm to 800 nm in units of 2 nm. The highest reflectance and the lowest reflectance were read from the measurement chart obtained. The refractive index of the portion of the low-refractive-index thin film constituting the antireflection film was calculated from the reflectance waveform obtained by the above-described measuring method by a known optical interference method.
The obtained measurement chart is shown by a solid line in FIG. As a result, the highest reflectance in the wavelength range was 2.2%, and the lowest reflectance was 0.41%. The refractive index of the low refractive index thin film portion was 1.18, and the luminous average reflectance (Y value) of the antireflection film was 0.51.
Here, the luminosity average reflectance (Y value) is a Y value of a color stimulus value by the XYZ color system (CIE1931 color system) using the sensitivity of the human eye as a parameter at each wavelength, and this value is high. The lower the brightness, the lower the visible reflectance. Specifically, a data processing tool (color measurement software) attached to the spectrophotometer (the UV-visible spectrometer V-570) is used to calculate Y, which is one of the tristimulus values for the C light source, and The luminosity average reflectance (Y value) was used.
[0028]
(Comparative Example 1)
An antireflection film was formed in the same manner as in Example 1, except that the laminated film was not immersed in hydrochloric acid after formation.
The antireflection effect of the obtained antireflection film was evaluated in the same manner as in Example 1. The obtained measurement chart is shown by a solid line in FIG. As a result, the highest reflectance was 4.67% and the lowest reflectance was 0.3%. The refractive index of the low refractive index thin film portion was 1.483, and the luminosity average reflectance (Y value) of the antireflection film was 0.72.
[0029]
From the evaluation results of Example 1 and Comparative Example 1, the refractive index of the low-refractive-index thin film portion was lower and the Y value was lower in Example 1 in which the hydrochloric acid treatment was performed on the laminated film. Further, from the measurement data of FIG. 2, the reflectance is low on the low wavelength side and the high wavelength side from the center wavelength. From this, it was found that there was also an effect of lowering the reflectance in the entire visible light region. From the above results, it was confirmed that the performance was high as the antireflection film.
[0030]
【The invention's effect】
As described above, according to the present invention, it is possible to structurally reduce the refractive index of a thin film composed of a stacked film in which a charged layer having a positive charge and a charged layer having a negative charge are alternately stacked. Can be. Thereby, the antireflection performance of the antireflection film can be improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of an antireflection film according to the present invention.
FIG. 2 is a measurement chart of reflectance according to an example and a comparative example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Base material, 2 ... High refractive index thin film, 3 ... Low refractive index thin film, 4 ... Void.

Claims (11)

正の電荷を有する帯電層と、負の電荷を有する帯電層とが交互に積層された積層膜を、酸処理またはアルカリ処理して、前記積層膜に空隙を形成して低屈折率薄膜を得ることを特徴とする低屈折率薄膜の製造方法。A charged layer having a positive charge and a charged layer having a negative charge are alternately laminated, and the laminated film is subjected to an acid treatment or an alkali treatment to form a void in the laminated film to obtain a low refractive index thin film. A method for producing a low refractive index thin film, comprising: 前記積層膜を交互吸着法により形成することを特徴とする請求項1記載の低屈折率薄膜の製造方法。2. The method according to claim 1, wherein the laminated film is formed by an alternate adsorption method. 前記正の電荷を有する帯電層を構成する電解質または前記負の電荷を有する帯電層を構成する電解質の少なくとも一方として弱電解質を用いることを特徴とする請求項1または2のいずれかに記載の低屈折率薄膜の製造方法。The low-electrode according to claim 1, wherein a weak electrolyte is used as at least one of an electrolyte constituting the positively charged layer and an electrolyte constituting the negatively charged layer. 4. A method for producing a refractive index thin film. 前記低屈折率薄膜の屈折率を1.45以下とすることを特徴とする請求項1〜3のいずれかに記載の低屈折率薄膜の製造方法。4. The method for producing a low-refractive-index thin film according to claim 1, wherein the low-refractive-index thin film has a refractive index of 1.45 or less. 前記空隙の、平面形状における直径を200nm未満とし、深さを200nm未満とすることを特徴とする請求項1〜4のいずれかに記載の低屈折率薄膜の製造方法。The method for producing a low-refractive-index thin film according to any one of claims 1 to 4, wherein a diameter of the void in a planar shape is less than 200 nm and a depth is less than 200 nm. 請求項1〜5のいずれかに記載の製造方法により得られた低屈折率薄膜。A low refractive index thin film obtained by the method according to claim 1. 正の電荷を有する帯電層と、負の電荷を有する帯電層とが交互に積層された積層膜に、平面形状における直径が200nm未満で、深さが200nm未満の空隙が複数形成されていることを特徴とする低屈折率薄膜。A plurality of voids having a diameter of less than 200 nm and a depth of less than 200 nm in a planar shape are formed in a stacked film in which charged layers having positive charges and charged layers having negative charges are alternately stacked. A low refractive index thin film characterized by the following. 前記正の電荷を有する帯電層を構成する電解質または前記負の電荷を有する帯電層を構成する電解質の少なくとも一方が弱電解質であることを特徴とする請求項7記載の低屈折率薄膜。The low-refractive-index thin film according to claim 7, wherein at least one of the electrolyte constituting the positively charged layer and the electrolyte constituting the negatively charged layer is a weak electrolyte. 前記低屈折率薄膜の屈折率が1.45以下であることを特徴とする請求項7または8のいずれかに記載の低屈折率薄膜。9. The low refractive index thin film according to claim 7, wherein the low refractive index thin film has a refractive index of 1.45 or less. 請求項6〜9のいずれかに記載の低屈折率薄膜を備えてなることを特徴とする反射防止膜。An antireflection film comprising the low-refractive-index thin film according to claim 6. 前記低屈折率薄膜が、該低屈折率薄膜よりも屈折が高い層上に積層されていることを特徴とする請求項10記載の反射防止膜。The anti-reflection film according to claim 10, wherein the low-refractive-index thin film is laminated on a layer having a higher refractive index than the low-refractive-index thin film.
JP2002273356A 2002-09-19 2002-09-19 Method for producing low refractive index thin film and method for producing antireflection film Expired - Fee Related JP4248834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002273356A JP4248834B2 (en) 2002-09-19 2002-09-19 Method for producing low refractive index thin film and method for producing antireflection film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002273356A JP4248834B2 (en) 2002-09-19 2002-09-19 Method for producing low refractive index thin film and method for producing antireflection film

Publications (2)

Publication Number Publication Date
JP2004109624A true JP2004109624A (en) 2004-04-08
JP4248834B2 JP4248834B2 (en) 2009-04-02

Family

ID=32270133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002273356A Expired - Fee Related JP4248834B2 (en) 2002-09-19 2002-09-19 Method for producing low refractive index thin film and method for producing antireflection film

Country Status (1)

Country Link
JP (1) JP4248834B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272588A (en) * 2005-03-28 2006-10-12 Toray Ind Inc Reflection preventing film and image display
JP2007086774A (en) * 2005-08-26 2007-04-05 Hitachi Chem Co Ltd Sheet-like optical member and manufacturing method thereof
US9188708B2 (en) 2008-10-17 2015-11-17 Hitachi Chemical Company, Ltd. Film having low refractive index film and method for producing the same, anti-reflection film and method for producing the same, coating liquid set for low refractive index film, substrate having microparticle-laminated thin film and method for producing the same, and optical member
JP2022132616A (en) * 2019-11-14 2022-09-08 日亜化学工業株式会社 Thin film forming material, optical thin film, and optical member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272588A (en) * 2005-03-28 2006-10-12 Toray Ind Inc Reflection preventing film and image display
JP2007086774A (en) * 2005-08-26 2007-04-05 Hitachi Chem Co Ltd Sheet-like optical member and manufacturing method thereof
US9188708B2 (en) 2008-10-17 2015-11-17 Hitachi Chemical Company, Ltd. Film having low refractive index film and method for producing the same, anti-reflection film and method for producing the same, coating liquid set for low refractive index film, substrate having microparticle-laminated thin film and method for producing the same, and optical member
JP2022132616A (en) * 2019-11-14 2022-09-08 日亜化学工業株式会社 Thin film forming material, optical thin film, and optical member
JP7410431B2 (en) 2019-11-14 2024-01-10 日亜化学工業株式会社 Thin film forming materials, optical thin films, and optical members

Also Published As

Publication number Publication date
JP4248834B2 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
TWI476254B (en) Low refractive index film and fabricating method thereof, anti-reflection film and fabricating method thereof, coating liquid film set, substrate with particle laminated film and fabricating method thereof, and optical part
JP4792732B2 (en) Antireflection film, optical component using antireflection film, and image display device using antireflection film
JP5011653B2 (en) Low refractive index thin film and manufacturing method thereof
US20020160166A1 (en) Antireflection film and method for manufacturing the same
KR101510974B1 (en) Transparent conductive film and touch panel
JP2006208726A (en) Optical functional sheet
CN104290407A (en) Double-sided transparent conductive film and touch panel
EP3084483A1 (en) Articles comprising self-assembled layers comprising nanoparticles with a phosphorous surface treatment
JP2012501008A (en) Electrochromic devices
JP2007078711A (en) Antireflection film
JP4747653B2 (en) Low refractive index thin film and manufacturing method thereof
JP2007038447A (en) Reflection preventing laminate, optical member, and liquid crystal display element
JP6307830B2 (en) Low refractive index film and manufacturing method thereof, antireflection film and manufacturing method thereof, and coating liquid set for low refractive index film
JP5286632B2 (en) Porous membrane and method for producing the same
JP2006301126A (en) Low refractive index film
WO2007095172A2 (en) Light-absorbing structure and methods of making
US20110123708A1 (en) Manufacturing method for a laminated body
JP5226040B2 (en) Method for producing optical functional film
JP4248834B2 (en) Method for producing low refractive index thin film and method for producing antireflection film
JP2009175671A (en) Antireflection film for microstructure and method for manufacturing the film
TWI509484B (en) Touch-sensitive panel device and electrode structure therein
JP5082201B2 (en) Low refractive index thin film and manufacturing method thereof
JP4606758B2 (en) Optical functional film
JP4242664B2 (en) Antireflection film
JPH10311903A (en) Reflection preventive material and optical member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4248834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150123

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees