JP2004109147A - Pretreatment agent, pretreatment method, measurement method by pretreated sample, measuring kit, and determination method of sample - Google Patents

Pretreatment agent, pretreatment method, measurement method by pretreated sample, measuring kit, and determination method of sample Download PDF

Info

Publication number
JP2004109147A
JP2004109147A JP2004005345A JP2004005345A JP2004109147A JP 2004109147 A JP2004109147 A JP 2004109147A JP 2004005345 A JP2004005345 A JP 2004005345A JP 2004005345 A JP2004005345 A JP 2004005345A JP 2004109147 A JP2004109147 A JP 2004109147A
Authority
JP
Japan
Prior art keywords
sample
glucan
reaction
limulus
pretreatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004005345A
Other languages
Japanese (ja)
Other versions
JP3614849B2 (en
Inventor
Shigenori Tanaka
田中 重則
Hiroshi Tamura
田村 弘志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikagaku Corp
Original Assignee
Seikagaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikagaku Corp filed Critical Seikagaku Corp
Priority to JP2004005345A priority Critical patent/JP3614849B2/en
Publication of JP2004109147A publication Critical patent/JP2004109147A/en
Application granted granted Critical
Publication of JP3614849B2 publication Critical patent/JP3614849B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rapid measurement method having a high detection rate for β-glucan in a blood-derived sample. <P>SOLUTION: (1) This pretreatment agent contains an alkali metal hydroxide as a main constituent. (2) This pretreatment method is characterized by mixing the pretreatment agent described in (1) with a sample and heating them. (3) This measurement method is used for measuring (1-3)-β-D-glucan in the sample by using a limulus reaction and for detecting variation of a substrate by pretreating the sample by the method (2), and by mixing and reacting the pretreated sample with a limulus reagent. (4) This measuring kit comprises (A) the pretreatment agent and (B) the limulus reagent. (5) This determination method of the sample is used for quantitatively measuring the (1-3)-β-D-glucan by the measurement method to determine that the sample is affected by an infectious disease when the substance exceeds a certain amount. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、リムルス反応に対する反応妨害因子を含む試料の前処理剤、その前処理方法、前処理された試料による測定法、その測定法に使用される測定用キット、および試料の判定方法に関し、特に、カブトガニ・アメボサイト・ライセートを用いたリムルス反応による測定において、その反応を妨害する因子を含む生体由来試料、特に血液由来試料中の(1→3)−β−D−グルカン測定法に関するものであり、殊に真菌感染症患者の血液由来試料中の(1→3)−β−D−グルカンを高い精度で測定して真菌感染症を診断するために有効な上記血液由来試料の処理および前記測定法に関するものである。 The present invention relates to a pretreatment agent for a sample containing a reaction interfering factor with respect to a Limulus reaction, a pretreatment method thereof, a measurement method using a pretreated sample, a measurement kit used for the measurement method, and a method for determining a sample. In particular, the present invention relates to a method for measuring (1 → 3) -β-D-glucan in a biological sample, particularly a blood sample, containing a factor that interferes with the Limulus reaction using horseshoe crab amebosite lysate. The treatment of the blood-derived sample, which is particularly effective for diagnosing a fungal infection by measuring (1 → 3) -β-D-glucan in a blood-derived sample of a patient with a fungal infection with high accuracy, and It concerns the measurement method.

 従来から、生化学反応を利用した生体試料中の目的物質の測定が、臨床診断と関わりながら広く行われている。例えば、典型的な生化学的診断として、リムルス反応を利用した真菌あるいはグラム陰性菌の検出が挙げられる。リムルス反応は、リムルス試薬を用いる生化学反応である。 Conventionally, the measurement of a target substance in a biological sample using a biochemical reaction has been widely performed in connection with clinical diagnosis. For example, a typical biochemical diagnosis includes detection of fungi or gram-negative bacteria using a Limulus reaction. The Limulus reaction is a biochemical reaction using a Limulus reagent.

 リムルス試薬に含まれるカブトガニ・アメボサイト・ライセート(以下、単に「ライセート」ということもある)には、エンドトキシンと反応して活性化されるカスケードタイプの凝固系(C因子系)と(1→3)−β−D−グルカン(以下「β−グルカン」ということもある)と反応して活性化されるカスケードタイプの凝固系(G因子系)とが共存しており(図1)、前者の系のみを利用してエンドトキシンを特異的に測定する方法、後者の系のみを利用してβ−グルカンを特異的に測定する方法がそれぞれ知られている(非特許文献1)。また、真菌感染症の患者は血液中のβ−グルカンが増加し、グラム陰性菌感染症の患者は血液中のエンドトキシンが増加する。血液中のβ−グルカンまたはエンドトキシンを測定することによってそれぞれ真菌感染症またはグラム陰性菌感染症を診断できることも知られている。 Horseshoe crab amebosite lysate (hereinafter sometimes simply referred to as “lysate”) contained in the Limulus reagent includes a cascade-type coagulation system (factor C system) that is activated by reacting with endotoxin and (1 → 3) Cascade-type coagulation system (Factor G system) which is activated by reacting with -β-D-glucan (hereinafter sometimes also referred to as “β-glucan”) (FIG. 1); A method of specifically measuring endotoxin using only the latter system and a method of specifically measuring β-glucan using only the latter system are known (Non-Patent Document 1). In addition, patients with fungal infections have increased β-glucan in the blood, and patients with gram-negative infections have increased endotoxin in the blood. It is also known that a fungal infection or a gram-negative bacterial infection can be diagnosed by measuring β-glucan or endotoxin in the blood, respectively.

 このようなG因子系を利用するβ−グルカンおよびC因子系を利用するエンドトキシンの測定法は、検出感度が非常に高いため生体試料中の上記各物質の微量検出に適しており、特に深在性真菌感染症およびグラム陰性菌感染症の診断への有効性が検討確認され、臨床検査に使用され始めている。ところで、生体試料、特に血液中のβ−グルカンおよびエンドトキシンをそれぞれライセートのG因子系およびC因子系によるカスケード反応を利用して測定する場合には、該反応がライセート中のセリンプロテアーゼの反応を利用するため、その中に含まれる種々の反応妨害因子(例えば、トロンビンやXa因子はライセート中の凝固酵素と類似の作用を示すため、偽陽性因子となり、α2−プラスミンインヒビター、α1−アンチトリプシンおよびアンチトロンビンIIIは反応を強力に阻害し、偽陰性因子となる)を失活あるいは除去するための前処理が必要である。この目的のために従来は、血液試料に特定の処理を施して多血小板血漿(PRP)を調製し、さらに過塩素酸を加えて37℃で加温処理した後に、変性析出物を遠心分離して除去し、その上澄液を採取し、アルカリで中和して被検液とする方法が採用されていた(非特許文献1)が、変性析出物の分離操作が煩雑で全操作工程も多く、操作中に反応系に影響を与える物質による汚染の危険性があるなどの問題があった。 Such a method for measuring β-glucan using a factor G system and endotoxin using a factor C system is very suitable for detection of trace amounts of the above substances in a biological sample due to extremely high detection sensitivity. Its effectiveness in the diagnosis of sexually transmitted fungal infections and gram-negative bacterial infections has been studied and confirmed, and it has begun to be used in clinical tests. By the way, when β-glucan and endotoxin in a biological sample, particularly blood, are measured using a cascade reaction of a lysate by a factor G system and a factor C system, the reaction utilizes the reaction of a serine protease in the lysate. to, various reaction interfering factors contained therein (e.g., thrombin or factor Xa to show the effect similar to clotting enzyme in the lysate, and false positives factor, alpha 2 - plasmin inhibitor, alpha 1 - antitrypsin In addition, antithrombin III strongly inhibits the reaction and becomes a false negative factor), and requires a pretreatment to inactivate or remove the antithrombin III. Conventionally, for this purpose, a blood sample is conventionally subjected to a specific treatment to prepare platelet-rich plasma (PRP), which is further heated at 37 ° C. by adding perchloric acid, and then the denatured precipitate is centrifuged. And then removing the supernatant, collecting the supernatant, neutralizing it with an alkali to obtain a test solution (Non-Patent Document 1), but the separation operation of the denatured precipitate is complicated, and all the operation steps are required. In many cases, there are problems such as a risk of contamination by substances that affect the reaction system during the operation.

 ところで、エンドトキシンやβ−グルカンを測定するための上記のような前処理法は、すべて試験管中で前処理を行い、しかも、このように前処理された試料の一部を他の試験管に取り出してリムルス反応を行うことにより実施されていた。さらに、測定を合成基質法で行う際には、リムルス反応後、基質が開裂して生成したp−ニトロアニリンをジアゾ化反応によって赤色色素に変換して吸光度を測定するというエンドポイント法が一般的に使用されていた。エンドポイント法は、通常、操作が煩雑で測定時間も長い方法であり、多数の検体を短時間で一度に処理できる方法が望まれている。試験管の代わりにマイクロプレートを使用すれば、多数の検体を同時に扱うことができるが、エンドポイント法では連続的な自動測定は困難である。 By the way, all of the pretreatment methods described above for measuring endotoxin and β-glucan perform pretreatment in a test tube, and furthermore, a part of the sample thus pretreated is transferred to another test tube. It was performed by taking out and performing a Limulus reaction. Further, when the measurement is performed by the synthetic substrate method, an end-point method of converting the p-nitroaniline generated by cleavage of the substrate to a red dye by a diazotization reaction and measuring the absorbance after the Limulus reaction is generally used. Was used to. The end point method is a method that is usually complicated and requires a long measurement time, and a method that can process a large number of samples in a short time at a time is desired. If a microplate is used instead of a test tube, a large number of samples can be handled at the same time, but continuous automatic measurement is difficult with the endpoint method.

 そこで、このようなマイクロプレートを使用でき、かつ基質の変化を直接自動測定できるカイネティック法(特許文献1)による測定が望まれているが、マイクロプレートの反応液量は少なく、反応液の濁り等の影響により精度よく測定できないという問題があった。 Therefore, measurement by a kinetic method (Patent Document 1) in which such a microplate can be used and a change in the substrate can be directly measured automatically is desired, but the reaction volume of the microplate is small, and the reaction solution is turbid. There is a problem that the measurement cannot be performed with high accuracy due to the influence of the above.

Obayashi T.et al.,Clin.Chim.Acta,(1985),149,55−65Obayashi @ T. et @ al. , Clin. Chim. Acta, (1985), 149, 55-65. 特開平3−220456号公報JP-A-3-220456

 本発明は、上記の従来の前処理法の問題点を解決しようとするもので、リムルス反応に対する反応妨害因子、例えば、リムルス反応におけるG因子系に対する反応妨害因子を含む血液由来試料中の該妨害因子を簡単な処理で除去又は変性し、変性析出物の分離操作を必要としない方法で、かつリムルス反応による測定時に濁りが生じない方法を採用することによって血液由来試料中のβ−グルカンを極めて高い検出率で、迅速に効率よく測定できる前処理剤、前処理方法、測定方法、測定用キット、及び試料の判定方法を提供するものである。 The present invention is intended to solve the above-mentioned problems of the conventional pretreatment method, and includes a reaction interfering factor for a Limulus reaction, such as a blood interfering sample containing a reaction interfering factor for a G factor system in a Limulus reaction. The β-glucan in the blood-derived sample can be extremely reduced by removing or denaturing the factor by a simple treatment, employing a method that does not require the separation operation of the denatured precipitate, and adopting a method that does not cause turbidity during the measurement by the Limulus reaction. An object of the present invention is to provide a pretreatment agent, a pretreatment method, a measurement method, a measurement kit, and a method for determining a sample that can be measured quickly and efficiently at a high detection rate.

 本発明は、以下の手段からなり、これらにより上記課題を解決することができる。
 1)リムルス反応を利用して試料中の(1→3)−β−D−グルカンを測定する際に、リムルス反応に対する反応妨害因子を含む試料をリムルス反応に先立って処理するために使用する前処理剤であって、アルカリ金属水酸化物を主成分とすることを特徴とする前処理剤。
 2)複数の溶液として保存され、使用時に該溶液が混合されることを特徴とする上記1)記載の前処理剤。
 3)リムルス反応に対する反応妨害因子を含む試料中に含まれる(1→3)−β−D−グルカンを、該反応を利用して検出する際に、リムルス反応に先立って試料を処理するための前処理方法において、上記1)または2)に記載された前処理剤と試料を混合し、加温することを特徴とする前処理方法。
 4)試料が血液由来の試料である上記3)記載の前処理方法。
 5)リムルス反応を利用して試料中の(1→3)−β−D−グルカンを測定する方法であって、試料を上記3)または4)に記載の方法で前処理し、処理後の試料をリムルス試薬と混合して反応させ、基質の変化を検出することを特徴とする測定法。
 6)少なくとも下記の構成試薬からなることを特徴とする(1→3)−β−D−グルカンを測定するための測定用キット。
(A)上記1)記載の前処理剤。
(B)カブトガニ・アメボサイト・ライセートを原料として得られたリムルス試薬。
 7)(B)のリムルス試薬が、(1→3)−β−D−グルカンに特異的に反応するリムルス試薬である上記6)記載の測定用キット。
 8)構成試薬として、さらに下記(C)を含むことを特徴とする上記6)記載の測定用キット。
(C)(1→3)−β−D−グルカンの一定量を含む標準試薬。
 9)生体由来の試料中の(1→3)−β−D−グルカンを請求項5の測定法で定量し、該物質の測定値が一定量を超えたときに感染症に罹患した生体に由来する試料であると判定することを特徴とする試料の判定方法。
 以下本発明を具体的に説明する。
Means for Solving the Problems The present invention comprises the following means, which can solve the above-mentioned problems.
1) Before using a sample containing a reaction interfering factor to the Limulus reaction prior to the Limulus reaction when measuring (1 → 3) -β-D-glucan in the sample using the Limulus reaction What is claimed is: 1. A pre-treatment agent comprising an alkali metal hydroxide as a main component.
2) The pretreatment agent according to the above 1), wherein the pretreatment agent is stored as a plurality of solutions, and the solutions are mixed at the time of use.
3) When detecting (1 → 3) -β-D-glucan contained in a sample containing a reaction interfering factor to the Limulus reaction by using the reaction, the sample is treated prior to the Limulus reaction. In the pretreatment method, the pretreatment agent described in 1) or 2) above is mixed with a sample and heated.
4) The pretreatment method according to 3) above, wherein the sample is a blood-derived sample.
5) A method for measuring (1 → 3) -β-D-glucan in a sample using the Limulus reaction, wherein the sample is pretreated by the method described in 3) or 4) above, and A measurement method comprising mixing a sample with a Limulus reagent and reacting to detect a change in a substrate.
6) A measurement kit for measuring (1 → 3) -β-D-glucan, which comprises at least the following constituent reagents.
(A) The pretreatment agent according to 1) above.
(B) Limulus reagent obtained from horseshoe crab amebosite lysate as a raw material.
7) The measurement kit according to 6) above, wherein the Limulus reagent of (B) is a Limulus reagent that specifically reacts with (1 → 3) -β-D-glucan.
8) The kit for measurement according to 6) above, further comprising (C) below as a constituent reagent.
(C) A standard reagent containing a fixed amount of (1 → 3) -β-D-glucan.
9) (1 → 3) -β-D-glucan in a sample derived from a living body is quantified by the measuring method according to claim 5, and when the measured value of the substance exceeds a certain amount, the living body suffering from infectious disease is determined. A method for determining a sample, comprising determining that the sample is derived from the sample.
Hereinafter, the present invention will be described specifically.

 本発明は、種々の生化学反応が適用される血液等の生体試料の前処理を効果的に行うことができる前処理剤を提供でき、特に、G因子系反応妨害因子を含む血漿、血清等の生体由来試料中のβ−グルカンを測定する際に、該試料をアルカリ金属水酸化物を主成分とする前処理剤で処理するという簡便な手段を採用することによって上記反応妨害因子の反応系への影響を完全に除去するとともに、処理後の被検液の濁度の上昇を抑制することができた。また、処理後に変性析出物を分離除去する必要がないので全操作行程を短縮することができた。さらに、本発明の測定法は、生体試料由来中のβ−グルカンをマイクロプレート中でカイネティック法により自動測定することができるので、簡易、迅速かつ高精度で再現性の高い結果が得られる。本発明の測定法を臨床検査に応用することによって、通常の検査法では診断がきわめて困難な深在性真菌感染症の診断を迅速かつ正確に行うことができる。 The present invention can provide a pretreatment agent that can effectively perform a pretreatment of a biological sample such as blood to which various biochemical reactions are applied, and particularly, a plasma, serum, or the like containing a factor G-based reaction interfering factor. When measuring β-glucan in a sample derived from a living body, the reaction system of the reaction interfering factor can be measured by adopting a simple means of treating the sample with a pretreatment agent containing an alkali metal hydroxide as a main component. In addition to completely removing the influence on the test solution, the increase in turbidity of the test liquid after the treatment was able to be suppressed. In addition, since there is no need to separate and remove the modified precipitate after the treatment, the entire operation step can be shortened. Further, the measurement method of the present invention can automatically measure β-glucan in a biological sample in a microplate by a kinetic method, so that simple, quick, highly accurate and highly reproducible results can be obtained. By applying the measurement method of the present invention to a clinical test, it is possible to quickly and accurately diagnose a deep fungal infection, which is extremely difficult to diagnose with a normal test method.

 本発明の前処理剤において対象とする「リムルス反応に対する反応妨害因子を含む試料」とは、リムルス反応により測定される目的物質を含む可能性のある試料であって、反応妨害因子の一種以上をリムルス反応に影響を及ぼす程度に含むものである。該試料は典型的には、生体由来試料であり、特に血液由来試料である。血液由来試料としては、典型的にはヒトを含む哺乳動物から採取された血液を公知の方法で処理して得られた血漿又は血清そのもの、あるいはプロテアーゼ類、プロテアーゼインヒビター類、血液由来の蛋白製剤等を含む血漿又は血清等である。ここで、「反応妨害因子」とはリムルス反応とは無関係に反応する因子(偽陽性因子)又はいずれかの段階における反応に阻害的に作用する因子(偽陰性因子)で、典型的には血液中に含まれる前記因子等である。 The term "sample containing a reaction interfering factor with respect to the Limulus reaction" as a target in the pretreatment agent of the present invention refers to a sample that may contain the target substance measured by the Limulus reaction. It is included to the extent that it affects the Limulus reaction. The sample is typically a biological sample, especially a blood sample. The blood-derived sample is typically plasma or serum itself obtained by treating blood collected from mammals including humans by a known method, or proteases, protease inhibitors, blood-derived protein preparations, and the like. Or plasma or serum containing As used herein, the term “response interfering factor” refers to a factor that reacts independently of the Limulus reaction (false positive factor) or a factor that inhibits the reaction at any stage (false negative factor). And the factors contained therein.

 血液から血漿を調製するためには通常、血液にヘパリン等の血液凝固阻止剤を添加し、遠心分離して血球を沈澱させればよい。その際、遠心分離を低回転数(例えば、150×g程度)で行うと、血小板を多く含んだ多血小板血漿(PRP)が得られ、高回転数(例えば、1000×g程度)で行うと、貧血小板血漿(PPP)が得られる。本発明で測定対象とする血液由来試料が血漿である場合、PRP又はPPPのいずれであってもよい。 血漿 In order to prepare plasma from blood, it is usually sufficient to add a blood coagulation inhibitor such as heparin to blood and centrifuge to precipitate blood cells. At that time, if the centrifugation is performed at a low rotation speed (for example, about 150 × g), platelet-rich plasma (PRP) containing a large amount of platelets is obtained, and when the centrifugation is performed at a high rotation speed (for example, about 1000 × g). Platelet poor plasma (PPP) is obtained. When the blood-derived sample to be measured in the present invention is plasma, it may be either PRP or PPP.

 また血清は、血液から血球といくつかの血液凝固因子を取り除いたものであり、通常採取した血液を容器中に放置し、生成した血餅を分離除去することによって調製される。上記血液由来試料等を、本発明の前処理剤で処理することによって反応妨害因子によるリムルス反応への影響が除去される。 血清 Serum is obtained by removing blood cells and some blood coagulation factors from blood, and is usually prepared by leaving collected blood in a container and separating and removing the formed clot. By treating the blood-derived sample or the like with the pretreatment agent of the present invention, the influence of the reaction interfering factor on the Limulus reaction is removed.

 本発明において「リムルス反応」とは、カブトガニのアメボサイト(血球細胞)を低張液等で抽出したライセート(カブトガニ・アメボサイト・ライセート)のG因子系成分(少なくともG因子と凝固酵素前駆体を含む成分)とβ−グルカンとの反応を包含する意味で使用する。「リムルス試薬」および「カブトガニ・アメボサイト・ライセートを原料として得られたリムルス試薬」は、いずれも上記リムルス反応によってβ−グルカンを測定するための試薬を意味し、リムルス・ポリフェムス、タキプレウス・トリデンタツス、タキプレウス・ギガス、カルシノスコルピウス・ロツンディカウダ等のカブトガニの血リンパ液から、公知の方法(例えば、J. Biochem.,80,1011−1021(1976)参照)で調製した通常のカブトガニ・アメボサイト・ライセートを含有し、必要に応じて後述のペプチド合成基質を添加した試薬である。「β−グルカンに特異的に反応するリムルス試薬」とは、上記ライセートのC因子を特異的に阻害または吸着、除去すること(例えば、WO91/19981、WO92/16651)、またはG因子系成分を分画、再構成すること(Obayashi T.et al.,Clin.Chim.Acta,149,55−65(1985))により調製される。従って、β−グルカン用リムルス試薬は、エンドトキシンでは活性化されずβ−グルカンによって特異的に反応系が活性化されるように調製したものである。 In the present invention, the term "limulus reaction" refers to a G-factor-based component (a component containing at least factor G and a coagulase precursor) of a lysate (limulus amoebocyte lysate) obtained by extracting horseshoe crab amebosite (blood cell) with a hypotonic solution or the like. ) And β-glucan. "Limulus reagent" and "Limulus reagent obtained from horseshoe crab amebosite lysate" mean both reagents for measuring β-glucan by the Limulus reaction, and include Limulus polyphemus, Taxipulus tridentatus, and Taxipulus. Contains normal horseshoe crab amebosite lysate prepared from a horseshoe crab hemolymph such as Gigas and Carcinoscorpius rotundicauda by a known method (see, for example, J. @Biochem., 80, 1011-1021 (1976)). This is a reagent to which a peptide synthesis substrate described below is added as necessary. The term "Limulus reagent specifically reacting with β-glucan" refers to specifically inhibiting, adsorbing and removing factor C of the lysate (for example, WO91 / 19981, WO92 / 16651), or It is prepared by fractionation and reconstitution (Obayashi T. et al., Clin. Chim. Acta, 149, 55-65 (1985)). Therefore, the Limulus reagent for β-glucan was prepared so that the reaction system was specifically activated by β-glucan without being activated by endotoxin.

 本発明において利用し得るリムルス試薬は前記のような機能を有するものであればよく、製法、組成等には限定されない。該リムルス反応においては、β−グルカンを測定しようとする場合の反応妨害因子としては、G因子系反応に影響を及ぼす因子が挙げられる。ここで、「反応妨害因子」は、β−グルカンによって開始される、図1に示したライセートのG因子系の段階的酵素反応(カスケード反応)のいずれかの段階においてβ−グルカンとは無関係に反応する前記偽陽性因子又は偽陰性因子である。 リ ム The Limulus reagent that can be used in the present invention may be any one having the above functions, and is not limited to a production method, a composition, or the like. In the Limulus reaction, as a reaction interfering factor when β-glucan is to be measured, a factor affecting a factor G-based reaction can be mentioned. Here, the “reaction interfering factor” is independent of β-glucan at any stage of the stepwise enzyme reaction (cascade reaction) of the lysate factor G system shown in FIG. 1 which is initiated by β-glucan. The false positive factor or false negative factor that reacts.

 以下、本発明の前処理剤について具体的に述べる。
 本発明は、アルカリ金属水酸化物を主成分とするβ−グルカン測定用前処理剤(β−グルカン測定用前処理剤B)を提供する。
 このアルカリ金属水酸化物は、カリウム、リチウム、ナトリウム等のアルカリ金属の水酸化物であり、具体的には水酸化カリウム(KOH)、水酸化リチウム(LiOH)、水酸化ナトリウム(NaOH)等である。該前処理剤としては通常単独又は複数のアルカリ金属水酸化物を含む水溶液が使用される。最も好ましいのはKOH及びNaOHである。
Hereinafter, the pretreatment agent of the present invention will be specifically described.
The present invention provides a pretreatment agent for measuring β-glucan containing alkali metal hydroxide as a main component (pretreatment agent B for measuring β-glucan).
The alkali metal hydroxide is a hydroxide of an alkali metal such as potassium, lithium, and sodium, and specifically includes potassium hydroxide (KOH), lithium hydroxide (LiOH), and sodium hydroxide (NaOH). is there. As the pretreatment agent, an aqueous solution containing one or more alkali metal hydroxides is usually used. Most preferred are KOH and NaOH.

 前処理剤中のアルカリ金属水酸化物の濃度は、通常、被検液中の該アルカリ金属水酸化物濃度が0.04〜0.4モル/lとなるように調整することが好ましい。
 この前処理剤には必要に応じて他の添加物が添加されていてもよい。このような添加物としては、例えば、β−グルカンが血液成分に吸着されてG因子系カスケード反応を抑制するのを防いだり、反応系を安定化したり、再現性を高める作用を有する物質が挙げられる。例えば、アルカリ金属ハロゲン化物等が好適に例示される。
 本発明の前処理剤は複数の溶液として保存し、使用時に該溶液を混合してもよい。アルカリ金属水酸化物とアルカリ土類金属ハロゲン化物および/または非イオン性界面活性剤とは混合して長時間保存すると、沈殿を生じる等の不都合があるので、別々に保存し、前処理直前または前処理時に混合することが好ましい。特に、KOHとCaCl2及びTriton X−100とは別々に保存することが好ましい。
Usually, it is preferable to adjust the concentration of the alkali metal hydroxide in the pretreatment agent so that the concentration of the alkali metal hydroxide in the test solution is 0.04 to 0.4 mol / l.
Other additives may be added to this pretreatment agent as needed. Examples of such additives include substances having an action of preventing β-glucan from being adsorbed to blood components to suppress the factor G cascade reaction, stabilizing the reaction system, and improving reproducibility. Can be For example, an alkali metal halide is preferably exemplified.
The pretreatment agent of the present invention may be stored as a plurality of solutions, and the solutions may be mixed at the time of use. If the alkali metal hydroxide and the alkaline earth metal halide and / or the nonionic surfactant are mixed and stored for a long time, there is an inconvenience such as precipitation. It is preferable to mix during pretreatment. In particular, it is preferable that KOH and CaCl 2 and Triton X-100 be stored separately.

 上記前処理剤を用いた試料の処理は、基本的には試料に添加混合し、加温することにより行うことができる。そして、所望により攪拌、あるいは振動等を与えながら加温することもできる。この際の処理温度は、試料の種類により適宜、選定され、通常、25〜70℃、特に37〜56℃の範囲が好ましく、処理時間は5〜40分、特に5〜20分の範囲が好ましい。 試 料 The treatment of a sample using the above pretreatment agent can be basically performed by adding and mixing the sample and heating. Then, if desired, the mixture can be heated while being subjected to stirring or vibration. The processing temperature at this time is appropriately selected depending on the type of the sample, and is usually preferably in the range of 25 to 70 ° C., particularly preferably 37 to 56 ° C., and the processing time is preferably in the range of 5 to 40 minutes, particularly 5 to 20 minutes. .

 リムルス反応を利用して試料中のβ−グルカンを測定する方法は、本発明の前処理剤で処理された試料をカブトガニ・アメボサイト・ライセートから得られたリムルス試薬と混合して反応させ、基質の変化を検出することにより行うことができる。
 前処理された試料は、遠心分離や中和処理をすることなく、直接リムルス反応に付することができる。リムルス反応を利用する測定法は、リムルス試薬を前処理した試料に加え、混合液を約37℃、pH7〜9で適当な時間反応させ、基質の変化を基質に応じた反応測定手段によって測定し、予め標準試薬を用いて作成した検量線からβ−グルカンの試料中の含有量を算出することによって行われる。
A method for measuring β-glucan in a sample using the Limulus reaction is to mix a sample treated with the pretreatment agent of the present invention with a Limulus reagent obtained from a horseshoe crab, amebosite lysate, and to react with the mixture. This can be done by detecting a change.
The pretreated sample can be directly subjected to the Limulus reaction without centrifugation or neutralization. In the measurement method using the Limulus reaction, a Limulus reagent is added to a pretreated sample, the mixture is reacted at about 37 ° C. and pH 7 to 9 for an appropriate time, and the change in the substrate is measured by a reaction measuring means corresponding to the substrate. This is performed by calculating the content of β-glucan in a sample from a calibration curve prepared using a standard reagent in advance.

 また、本発明のβ−グルカン測定用前処理剤Bで処理した試料を、少なくともβ−グルカンと反応するG因子系成分を含有したリムルス試薬と混合、反応させることが必要であり、該リムルス試薬としてβ−グルカンのみと特異的に反応するものを選択することが極めて好ましい。このようなリムルス試薬としては、G因子系成分を含有し、C因子系成分は、除去もしくは阻害されたものが挙げられる。 In addition, it is necessary to mix and react the sample treated with the pretreatment agent B for β-glucan measurement of the present invention with a Limulus reagent containing at least a factor G-based component that reacts with β-glucan. It is very preferable to select a substance that specifically reacts with only β-glucan. Examples of such a Limulus reagent include those containing a factor G component and a factor C component removed or inhibited.

 従って、β−グルカンを測定する際の反応混合液は、G因子系の至適pH付近に調整されることが好ましく、通常pH7〜9になるように従来公知の緩衝液により所望に調整される。なお、本発明の前処理で失活した偽陽性因子、偽陰性因子は、後述の実施例等から活性が再生することはないことが判明している。また、逆に、該前処理剤で処理された比較的高濃度の塩基性物質を含む被検液とリムルス試薬との混合において、該前処理剤が該G因子系中の各成分の反応性に悪影響を与えることがないのも該緩衝作用によるものであると考えられる。 Therefore, the reaction mixture for measuring β-glucan is preferably adjusted to the vicinity of the optimal pH of the factor G system, and usually adjusted to a pH of 7 to 9 by a conventionally known buffer as desired. . The false positive factors and false negative factors inactivated by the pretreatment according to the present invention have been found to have no activity regenerated from the examples described later. Conversely, when mixing the test solution containing a relatively high concentration of a basic substance treated with the pretreatment agent with the Limulus reagent, the pretreatment agent reacts with each of the components in the factor G system. It is considered that the buffering action does not adversely affect the water content.

 該反応混合液において、上記被検液のβ−グルカンを測定するには、前述したように図1のライセートのG因子系カスケード反応によって活性化されて生成するクロッティングエンザイムの、基質に対するアミダーゼ活性又はプロテアーゼ活性を公知の方法で測定すればよい。ここで、基質とは、合成のものでも天然のものでも任意であり、クロッティングエンザイムによって加水分解されて容易に検出可能な生成物に導かれ、反応混合液に酵素反応に基づく変化を生じさせる基質であり、この変化を定性または定量的に測定できればかまわない。 In the reaction mixture, the β-glucan in the test solution was measured by the amidase activity on the substrate of the clotting enzyme generated by the activation of the lysate of FIG. 1 by the factor G cascade reaction as described above. Alternatively, the protease activity may be measured by a known method. Here, the substrate may be any of synthetic and natural ones, and is hydrolyzed by the clotting enzyme to lead to an easily detectable product, which causes a change based on an enzymatic reaction in the reaction mixture. It is only required that the substance be a substrate and that this change can be measured qualitatively or quantitatively.

 例えば、β−グルカン測定用のライセートと、ペプチド合成基質を含む反応系を被検液と接触させて反応を行うことによってアミダーゼ活性を測定することができる。このようなペプチド合成基質としては、上記クロッティングエンザイムの基質となり得るペプチド(例えば、メトキシカルボニル−D−ヘキサヒドロチロシル−Gly−Arg;N末端が保護されたLeu−Gly−Arg、Ile−Glu−Ala−Arg等の配列からなるペプチド)のC末端のアルギニンのカルボキシル基に発色性残基(例えば、p−ニトロアニリン、p−(N,N−ジエチルアミノ)アニリン、p−(N−エチル−N−β−ヒドロキシエチル)アニリン等)、発蛍光性残基(例えば、7−アミノメチルクマリン等)、発光性残基あるいはアンモニアなどがアミド結合により置換したペプチド合成基質が例示される。すなわち、アミダーゼ活性の測定はクロッティングエンザイムがこれらの合成基質に作用して生成する反応生成物(p−ニトロアニリン、アンモニア等)を測定することによって行うことができる。具体的には、上記前処理を施した被検液と、ライセートのG因子系成分を含む反応系に上記ペプチド合成基質を共存させて反応(カスケード反応および必要に応じて生成物の他色素等への変換反応)させ、反応によって生成する色素、発蛍光物質、発光物質またはアンモニアを、それぞれ分光光度計(特公昭63−26871、特公平3−66319等)、蛍光光度計、化学発光測定装置、アンモニア検出用電極(特開昭62−148860)等によって測定するという方法を例示することができる。 For example, an amidase activity can be measured by bringing a reaction system containing a lysate for β-glucan measurement and a peptide synthesis substrate into contact with a test solution to carry out a reaction. As such a peptide synthesis substrate, a peptide that can be a substrate of the above-mentioned clotting enzyme (for example, methoxycarbonyl-D-hexahydrotyrosyl-Gly-Arg; Leu-Gly-Arg, Ile-Glu having an N-terminal protected). -A chromogenic residue (for example, p-nitroaniline, p- (N, N-diethylamino) aniline, p- (N-ethyl-) at the carboxyl group of arginine at the C-terminus of a peptide having a sequence such as -Ala-Arg or the like. N- [beta] -hydroxyethyl) aniline, etc.), a fluorescent residue (e.g., 7-aminomethylcoumarin, etc.), a luminescent residue, or a peptide synthesis substrate in which ammonia or the like is substituted by an amide bond. That is, the amidase activity can be measured by measuring the reaction products (p-nitroaniline, ammonia, etc.) generated by the action of the clotting enzyme on these synthetic substrates. Specifically, a reaction (a cascade reaction and, if necessary, other dyes of the product, etc.) is carried out in the presence of the peptide synthesis substrate in a reaction system containing the pretreated test liquid and a factor G-based component of the lysate. And a dye, a fluorescent substance, a luminescent substance, or ammonia generated by the reaction, respectively, into a spectrophotometer (JP-B-63-26871, JP-B-3-66319, etc.), a fluorometer, a chemiluminescence measuring device. And an ammonia detection electrode (Japanese Patent Application Laid-Open No. 62-148860).

 特に、本発明の前処理剤は、マイクロプレート中で該前処理剤で前処理を行い、引き続いてリムルス反応を行う測定に有効に使用される。特にカイネティック法における2波長同時測光による測定に好適に使用できるので、迅速、的確な所望物質の測定が可能である。 Particularly, the pretreatment agent of the present invention is effectively used for measurement in which pretreatment is performed with the pretreatment agent in a microplate, and then a Limulus reaction is performed. In particular, since it can be suitably used for measurement by simultaneous two-wavelength photometry in the kinetic method, quick and accurate measurement of a desired substance is possible.

 一方、クロッティングエンザイムのプロテアーゼ活性の測定には、例えば、凝固酵素の天然基質であるコアギュローゲンを含有するβ−グルカン測定用のリムルス試薬に、カスケード反応で生成した凝固酵素が作用して生成するコアギュリンゲル形成反応を、例えば適当な機器(例えば、濁度測定装置、粘度測定装置等)で測定するか、または肉眼で判定するエンドトキシンの測定に採用されている方法(特公平4−14310等)を利用することができる。上記反応に使用されるリムルス試薬としては、ライセートのC因子を特異的に阻害または吸着、除去した試薬(β−グルカン用)が好適に使用される。これらのリムルス試薬には通常コアギュローゲンが含まれているが、もちろん別途添加してもよい。 On the other hand, in the measurement of the protease activity of the clotting enzyme, for example, a clotting enzyme generated by a cascade reaction acts on a limulus reagent for measuring β-glucan containing a coagulogen which is a natural substrate of the clotting enzyme. The coagulin gel formation reaction is measured by, for example, a suitable instrument (for example, a turbidity measuring device, a viscosity measuring device, or the like) or a method adopted for the measurement of endotoxin which is visually determined (Japanese Patent Publication No. 4-14310). Etc.) can be used. As the Limulus reagent used in the above reaction, a reagent (for β-glucan) specifically inhibiting or adsorbing and removing factor C of the lysate is preferably used. These Limulus reagents usually contain coagulogen, but may of course be added separately.

 本発明によるβ−グルカンの測定法は、真菌感染症、特に診断が極めて困難な深在性真菌感染症の早期診断に有用である。真菌感染症の診断を行うためには、真菌感染症が疑われる患者から採取した血液由来試料を本発明の前処理剤で処理した後、β−グルカンを測定し、血液中のβ−グルカンが一定量(正常値)を超えたときに患者が真菌感染症に罹患していると判断することができる。 The method for measuring β-glucan according to the present invention is useful for early diagnosis of fungal infections, particularly deep fungal infections, which are extremely difficult to diagnose. In order to diagnose a fungal infection, after treating a blood-derived sample collected from a patient suspected of having a fungal infection with the pretreatment agent of the present invention, β-glucan is measured, and β-glucan in the blood is determined. When the amount exceeds a certain amount (normal value), it can be determined that the patient has a fungal infection.

 本発明においては、本発明の前処理剤と、β−グルカン測定用リムルス試薬とを組み合わせることにより、所望の測定用キットを構成することができる。 In the present invention, a desired measurement kit can be constituted by combining the pretreatment agent of the present invention with a Limulus reagent for β-glucan measurement.

 本発明のキットは、必要により他の任意の構成試薬を付加することができる。そのような試薬としては、β−グルカンの一定量を含有する標準試薬、ブランクテスト用蒸留水、反応試薬溶解・反応用緩衝液等を挙げることができる。該緩衝液としては、グッド緩衝液(例えば、HEPES(N−2−ヒドロキシエチルピペラジン−N′−2−エタンスルホン酸)緩衝液等)、トリス−塩酸緩衝液等が例示できる。 キ ッ ト The kit of the present invention can optionally add other optional constituent reagents. Examples of such a reagent include a standard reagent containing a certain amount of β-glucan, distilled water for blank test, and a buffer for dissolving and reacting the reaction reagent. Examples of the buffer include Good buffer (for example, HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) buffer) and Tris-HCl buffer.

 以下に実施例を挙げ、本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 実施例1−1:PRPへのβ−グルカン添加回収試験(前処理剤のKOH濃度)
 血液1ml当たりヘパリンを5ユニット添加して採血した健常人の血液2mlを、150×g、10分間遠心分離して、多血小板血漿(PRP)を得た。
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
Example 1-1: Recovery test of β-glucan addition to PRP (KOH concentration of pretreatment agent)
2 ml of blood of a healthy person collected by adding 5 units of heparin per 1 ml of blood was centrifuged at 150 × g for 10 minutes to obtain platelet-rich plasma (PRP).

 このPRP試料190μlにブクリョウ菌(Poria cocos)由来のβ−グルカン調製品(パキマン;斉藤ら、Agric.Biol.Chem.,32,1261−1269(1968)の方法に従って調製)の0.01M水酸化ナトリウム(NaOH)水溶液(1.0ng/ml)を10μl加え、よく混合した後、その5μlをβ−グルカン・フリーのマイクロプレート(トキシペットプレート96F、生化学工業(株)販売、商品名)にとり、0〜1.0モル/lの範囲内で選択された水酸化カリウム(KOH)水溶液〔前処理剤〕20μlを加え(被検液中のKOH濃度は0〜0.8モル/lとなる)、37℃で10分間加温保持し、これを被検液とした。 To 190 μl of this PRP sample, 0.01M hydroxylation of a β-glucan preparation (pakiman; prepared according to the method of Saito et al., Agric. Biol. Chem., 32, 1261-1269 (1968)) derived from Bacillus bacterium (Poria @ cocos). Add 10 μl of an aqueous sodium (NaOH) solution (1.0 ng / ml), mix well, and transfer 5 μl to a β-glucan-free microplate (Toxipet plate 96F, trade name, manufactured by Seikagaku Corporation). , 20 μl of an aqueous potassium hydroxide (KOH) solution [pretreatment agent] selected within the range of 0 to 1.0 mol / l (KOH concentration in the test solution becomes 0 to 0.8 mol / l) ) And kept at 37 ° C. for 10 minutes to obtain a test solution.

 被検液に存在するβ−グルカンの量は、以下の方法で定量した。Obayashi,T.et al.(Clin.Chim.Acta,149,55−65(1985))の方法にしたがってカブトガニ・アメボサイト・ライセートから調製したG因子系成分と発色合成基質(Boc−Leu−Gly−Arg−pNA(p−ニトロアニリド))とを含むβ−グルカン測定用発色合成基質法試薬凍結乾燥品(以下「Gテスト」という)を使用し、被検液25μlに0.2モル/lトリス−塩酸緩衝液(pH8.0)で溶解したGテスト液50μlと蒸留水50μlを加え、37℃で30分間加温して反応させ、次いで0.04%(重量/容量)の亜硝酸ナトリウム(1モル/l塩酸溶液)50μl、0.3%(重量/容量)スルファミン酸アンモニウム50μlならびに0.07%(重量/容量)N−1−ナフチルエチレンジアミン二塩酸塩(14%(重量/容量)N−メチル−2−ピロリドン溶液)50μlを順次加えてジアゾカップリングし、マイクロプレートリーダーにより630nmを対照波長として545nmで吸光度を測定(545−630nm)することによって定量した。 量 The amount of β-glucan present in the test solution was determined by the following method. Obayashi, T .; et @ al. (Clin. Chim. Acta, 149, 55-65 (1985)). Factor G-based components prepared from horseshoe crab amebosite lysate and a chromogenic synthetic substrate (Boc-Leu-Gly-Arg-pNA (p-nitro). Anilide)) and a freeze-dried product of a color-developing synthetic substrate method reagent for β-glucan measurement (hereinafter referred to as “G test”) containing 0.2 mol / l Tris-HCl buffer (pH 8.0) in 25 μl of the test solution. 50 μl of the G test solution dissolved in 0) and 50 μl of distilled water are added, and the mixture is heated at 37 ° C. for 30 minutes to react, and then 0.04% (weight / volume) sodium nitrite (1 mol / l hydrochloric acid solution) 50 μl, 50 μl of 0.3% (weight / volume) ammonium sulfamate and 0.07% (weight / volume) N-1-naphthylethylenediamine dihydrochloride (1 % (Weight / volume) N- methyl-2-pyrrolidone solution) were successively diazo coupling by adding 50 [mu] l, it was quantified by measuring the absorbance at 545nm and 630nm as a reference wavelength in a microplate reader (545-630Nm).

 表1に前処理剤溶液のKOH濃度を種々変化させて被検液中のKOH濃度を種々調整した場合のβ−グルカン添加回収率を、同一条件で前処理されたβ−グルカン無添加のPRPについての測定結果(吸光度)とともに示す。 Table 1 shows the recovery of β-glucan addition and recovery when the KOH concentration in the test solution was variously adjusted by variously changing the KOH concentration of the pretreatment agent solution, and the β-glucan-free PRP pretreated under the same conditions. The results are shown together with the measurement results (absorbance).

Figure 2004109147
Figure 2004109147

 なお、表1中、KOH濃度(モル/l)はPRPを処理するときの被検液における濃度を示し、β−グルカン無添加被検液の吸光度は、β−グルカン無添加前処理PRPについての545−630nm測定の吸光度を示す。β−グルカン添加回収率は、β−グルカンを添加した被検液(β−グルカン添加前処理PRP)の回収率を、対照の測定値を100%とした場合の百分率として示す。該対照は、PRPの代わりに注射用生理食塩水を用い、前処理剤の代わりに注射用蒸留水を使用し、β−グルカンを添加したものと無添加について測定した値を基準とする。 In Table 1, the KOH concentration (mol / l) indicates the concentration in the test solution when PRP was treated, and the absorbance of the test solution without β-glucan was the same as that of the pretreated PRP without β-glucan. The absorbance measured at 545-630 nm is shown. The recovery rate of β-glucan addition is shown as a percentage of the recovery rate of the test liquid (β-glucan addition pre-treated PRP) to which β-glucan was added, assuming that the measured value of the control was 100%. The control uses physiological saline for injection in place of PRP, uses distilled water for injection in place of the pretreatment agent, and uses the values measured with and without β-glucan as a reference.

 表1によれば、注射用蒸留水のみによる処理では、β−グルカンは全く検出されず、被検液のKOHの濃度を増やして行くと回収率が著しく増加することが判る。また、KOHの濃度が0.6モル/lを超えるか、0.03モル/lより低濃度ではβ−グルカンの回収率が低下するが、0.04〜0.4モル/l程度の濃度となるように使用すれば、G因子系反応の偽陽性因子ならびに阻害因子(偽陰性因子)の影響を無くすことができ、PRP中のβ−グルカンの真の値を正確かつ高い信頼度を以て再現性よく検出することが可能であることが明らかである。 に よ According to Table 1, β-glucan was not detected at all in the treatment with distilled water for injection alone, and it was found that the recovery rate was significantly increased as the concentration of KOH in the test solution was increased. When the concentration of KOH exceeds 0.6 mol / l or lower than 0.03 mol / l, the recovery of β-glucan decreases, but the concentration of about 0.04-0.4 mol / l. Can eliminate the effects of false positive factors and inhibitors (false negative factors) of factor G-based reactions, and reproduce the true value of β-glucan in PRP accurately and with high reliability It is clear that it is possible to detect sexually well.

 すなわち、β−グルカン無添加前処理PRPの吸光度が、β−グルカン無添加の対照のそれと同値であるような場合、PRP中のG因子系反応偽陽性因子が完全に変性されたことを示し、また、β−グルカンを添加して測定した実施例(β−グルカン添加前処理PRP)におけるβ−グルカンの回収率が100%である場合にPRP中のG因子系反応阻害因子(偽陰性因子)が完全に変性されていることを意味する。従って、これらの反応妨害因子を同時に変性失活させることができる条件、つまり、β−グルカン無添加前処理PRPの測定値が対照とほぼ同値で、かつβ−グルカン添加前処理PRPのβ−グルカン添加回収率がほぼ100%となる条件が理想的である。 That is, when the absorbance of the pretreated PRP without β-glucan was the same as that of the control without β-glucan, it indicates that the factor G reaction false positive factor in PRP was completely denatured, In addition, when the recovery rate of β-glucan in the example (β-glucan pre-treated PRP) measured by adding β-glucan is 100%, a factor G-based reaction inhibitory factor (false negative factor) in PRP Is completely denatured. Therefore, the conditions under which these reaction interfering factors can be simultaneously denatured and inactivated, that is, the measured values of the pre-treated PRP without β-glucan are almost the same as those of the control, and the β-glucan of the pre-treated PRP without β-glucan added The conditions under which the addition recovery rate is almost 100% are ideal.

 表1の結果から被検液のKOH濃度が0.04〜0.4モル/lであるときが上記の理想的条件を満足する条件であることが示された。
 実施例1−2:PRPへのβ−グルカン添加回収試験(前処理剤のNaOH濃度)
 実施例1−1と同様の手段により調製したPRP試料190μlに実施例1−1と同じβ−グルカン調製品(パキマン)の0.01MNaOH水溶液(1.0ng/ml)を10μl加え(被検液中のNaOH濃度は、0〜0.8モル/lとなる)、よく混合した後、その5μlをトキシペットプレート96Fにとり、0〜0.8モル/lの範囲内で選択されたNaOH水溶液〔前処理剤〕20μlを加え、37℃で10分間保持加温し、これを被検液とした。
From the results in Table 1, it was shown that when the KOH concentration of the test solution was 0.04 to 0.4 mol / l, the above conditions were satisfied.
Example 1-2: Recovery test of β-glucan addition to PRP (NaOH concentration of pretreatment agent)
10 μl of a 0.01 M NaOH aqueous solution (1.0 ng / ml) of the same β-glucan preparation (Pakiman) as in Example 1-1 was added to 190 μl of a PRP sample prepared by the same method as in Example 1-1 (test solution). The NaOH concentration in the solution is 0 to 0.8 mol / l). After mixing well, 5 μl of the mixture is placed on a toxicpet plate 96F, and an aqueous NaOH solution selected within the range of 0 to 0.8 mol / l [ Pretreatment agent] was added, and the mixture was heated at 37 ° C. for 10 minutes and used as a test solution.

 被検液に存在するβ−グルカンの量は、Gテストを使用し、実施例1−1と同様にして測定した。表2にNaOH濃度を種々変化させた場合のβ−グルカン添加回収率を、同一条件で前処理されたβ−グルカン無添加のPRPについての測定結果(吸光度)とともに示す。 量 The amount of β-glucan present in the test solution was measured in the same manner as in Example 1-1 using the G test. Table 2 shows the recovery rate of β-glucan addition when the NaOH concentration was variously changed, together with the measurement result (absorbance) of β-glucan-free PRP pretreated under the same conditions.

Figure 2004109147
Figure 2004109147

 なお、表2中、NaOH濃度(モル/l)はPRPを処理するときの被検液における濃度を示し、β−グルカン無添加被検液の吸光度は、β−グルカン無添加前処理PRPについての545−630nm測定の吸光度を示し、β−グルカン添加回収率は、β−グルカンを添加した被検液(β−グルカン添加前処理PRP)の回収率を、対照の測定値を100%とした場合の百分率として示す。該対照は、PRPの代わりに注射用生理食塩水を用い、前処理剤の代わりに注射用蒸留水を使用し、β−グルカンを添加したものと無添加について測定した値を基準とする。 In Table 2, the NaOH concentration (mol / l) indicates the concentration in the test solution when PRP was treated, and the absorbance of the test solution without β-glucan was the same as that of the pre-treated PRP without β-glucan. The absorbance measured at 545-630 nm is shown, and the recovery rate of β-glucan added is the recovery rate of the test liquid to which β-glucan was added (PRP treated with β-glucan added), and the measured value of the control was 100%. As a percentage. The control uses physiological saline for injection in place of PRP, uses distilled water for injection in place of the pretreatment agent, and uses the values measured with and without β-glucan as a reference.

 表2によれば、注射用蒸留水のみによる処理では、β−グルカンは全く検出されず、被検液中のNaOHの濃度を増やして行くと回収率が著しく増加することが判る。表2の結果から、実施例1−1のKOH水溶液を前処理剤として使用した場合と同様に、被検液中のNaOH濃度が0.04〜0.4モル/lとなるようなNaOH水溶液を前処理剤として使用したときに、PRP中の偽陽性因子及び偽陰性因子の影響を除去できることが判った。
 実施例1−3:血清へのβ−グルカン添加回収試験(処理時間)
 抗凝固剤を入れないで採血した健常人の血液3mlを4℃に1時間静置した後、1,000×g、10分間遠心分離して血清を得た。
 この血清試料190μlに10pgの実施例1−1と同じβ−グルカン調製品(パキマン)を含有する水溶液10μlを添加した後、その5μlをトキシペットプレート96Fにとり、0.1モル/lのKOH水溶液〔前処理剤〕20μlを加え、37℃において所定の時間加温保持し、これを被検液とした。
According to Table 2, it was found that β-glucan was not detected at all in the treatment with only distilled water for injection, and the recovery rate was significantly increased as the concentration of NaOH in the test solution was increased. From the results in Table 2, as in the case where the KOH aqueous solution of Example 1-1 was used as the pretreatment agent, the NaOH aqueous solution such that the NaOH concentration in the test solution was 0.04 to 0.4 mol / l. It was found that when was used as a pretreatment agent, the effects of false positive factors and false negative factors in PRP could be eliminated.
Example 1-3: Recovery test of β-glucan added to serum (treatment time)
3 ml of blood of a healthy person collected without adding an anticoagulant was allowed to stand at 4 ° C. for 1 hour, and then centrifuged at 1,000 × g for 10 minutes to obtain serum.
After adding 10 μl of an aqueous solution containing 10 pg of the same β-glucan preparation (Pakiman) as in Example 1-1 to 190 μl of this serum sample, 5 μl thereof was placed on a toxicpet plate 96F, and a 0.1 mol / l KOH aqueous solution was added. [Pretreatment agent] 20 μl was added, and the mixture was heated and maintained at 37 ° C. for a predetermined time, and used as a test liquid.

 そして、上記被検液に添加されたβ−グルカンを実施例1−1の場合と同様の手段により測定した。
 各加温時間についての測定結果を実施例1−1の場合と同様に表3として示す。
Then, β-glucan added to the test solution was measured by the same means as in Example 1-1.
The measurement results for each heating time are shown in Table 3 as in the case of Example 1-1.

Figure 2004109147
Figure 2004109147

 表3によると、加温時間0すなわち、該前処理剤を添加した後、直ちに被検液とした場合にはβ−グルカンの回収率は非常に低い。これに対して5分〜40分の加温時間を経たものを使用すれば血清に添加したβ−グルカンを定量的に検出することができた。すなわち、このような条件で前処理した際には偽陽性因子及び阻害因子を変性することができ、血清中のβ−グルカンの真の値を正確かつ高い信頼度を以て再現性よく検出することが可能であることが明らかである。 According to Table 3, when the heating time is 0, that is, when the test solution is used immediately after the addition of the pretreatment agent, the recovery of β-glucan is very low. On the other hand, by using the one after a heating time of 5 minutes to 40 minutes, β-glucan added to serum could be quantitatively detected. That is, when pretreated under such conditions, false positive factors and inhibitors can be denatured, and the true value of β-glucan in serum can be detected accurately and with high reliability with good reproducibility. It is clear that this is possible.

 実施例1−4:PPPへのβ−グルカン添加回収試験(前処理温度)
 血液1ml当たりヘパリンを5ユニット添加して採血した健常人の血液2mlを1,000×g、10分間遠心分離して、貧血小板血漿(PPP)を得た。このPPP試料190μlに40pgのアルカリゲネス・フェカリス・バール・ミキソゲネス(Alcaligenes faecalis var.myxogenes)IFO 13140由来のβ−グルカン(カードラン;和光純薬工業(株)販売)を含有する0.01モル/lNaOH水溶液10μlを添加した後、その5μlをトキシペットプレート96Fにとり、0.1モル/lKOH溶液20μlを加え、所定の温度において10分間加温保持し、これを被検液とした。
Example 1-4: Recovery test of β-glucan added to PPP (pretreatment temperature)
2 ml of blood of a healthy person collected by adding 5 units of heparin per 1 ml of blood was centrifuged at 1,000 × g for 10 minutes to obtain platelet poor plasma (PPP). 0.01 μl / l NaOH containing 190 μl of this PPP sample and 40 pg of β-glucan (curdlan; Wako Pure Chemical Industries, Ltd.) derived from Alcaligenes faecalis var. Myxogenes IFO 13140. After adding 10 μl of the aqueous solution, 5 μl of the solution was placed on a toxicpet plate 96F, 20 μl of a 0.1 mol / l KOH solution was added, and the mixture was heated and maintained at a predetermined temperature for 10 minutes to obtain a test solution.

 そして、上記被検液に添加されたβ−グルカンを実施例1−1の場合と同様の手段により測定した。各加温温度についての測定結果を実施例1−1の場合と同様に表4として示す。 Then, β-glucan added to the test solution was measured by the same means as in Example 1-1. The measurement results for each heating temperature are shown in Table 4 as in the case of Example 1-1.

Figure 2004109147
Figure 2004109147

 表4によれば、処理温度が4℃の場合にはβ−グルカンの回収率が低かったが、25℃以上の温度で処理すればPPPに添加したβ−グルカンを定量的に検出することができた。
 実施例1−5:真菌感染症患者PRP検体の測定
 真菌感染症の罹患が疑われる患者から実施例1と同様の方法で採血し、PRP検体を調製した。その5μlをトキシペットプレート96Fの各ウェルにとり、さらに0.1モル/lNaOH水溶液〔前処理剤〕20μlを加え、37℃で10分間加温保持し、被検液とした。以後実施例1−1と同様の手段によりGテストと反応させ、吸光度を測定した。実施例1−4と同じ既知量のカードランを標準試薬として用い、別に作成した検量線より上記被検液中のβ−グルカン含量を換算した結果を表5に示す。
According to Table 4, when the treatment temperature was 4 ° C, the recovery of β-glucan was low, but when the treatment was carried out at a temperature of 25 ° C or higher, β-glucan added to PPP could be quantitatively detected. did it.
Example 1-5: Measurement of PRP sample of fungal infection patient Blood was collected from a patient suspected of having a fungal infection in the same manner as in Example 1 to prepare a PRP sample. 5 µl of the solution was placed in each well of the toxicpet plate 96F, and 20 µl of a 0.1 mol / l NaOH aqueous solution [pretreatment agent] was added. The mixture was heated and maintained at 37 ° C for 10 minutes to obtain a test solution. Thereafter, it was reacted with the G test by the same means as in Example 1-1, and the absorbance was measured. Using the same known amount of curdlan as the standard reagent as in Examples 1-4, the results of converting the β-glucan content in the test solution from the calibration curve separately prepared are shown in Table 5.

Figure 2004109147
Figure 2004109147

 表5に示したように全例(No.1〜No.6)において高濃度のβ−グルカンが検出され(健常人のβ−グルカン含量:0.2±0.3pg/ml)、そのうちの3例(No.1〜No.3)については、血培にて、カンジダ・アルビカンス(Candida albicans)、カンジダ・トロピカリス(Candida tropicalis)およびクリプトコッカス・ネオフォルマンス(Cryptococcus neoformans)をそれぞれ検出し、1例(No.4)は血培では陰性であったが、死亡後の解剖による組織病理学的検査によりアスペルギルス・フミガツス(Aspergillus fumigatus)を検出した。残り2例(No.5、No.6)については、臨床症状、経過、薬剤感受性等から真菌感染を強く疑ったにもかかわらず血培では陰性であったが、抗真菌剤(ミコナゾール)投与により、臨床的に顕著な改善を見たことから真菌に感染していたものと考えられる。 As shown in Table 5, a high concentration of β-glucan was detected in all cases (No. 1 to No. 6) (β-glucan content of healthy human: 0.2 ± 0.3 pg / ml). In three cases (No. 1 to No. 3), Candida albicans, Candida tropicalis and Cryptococcus neoformans were respectively detected in blood cultures, and Candida albicans, Candida tropicalis and Cryptococcus neoformans were respectively detected. In one case (No. 4), blood culture was negative, but Aspergillus fumigatus was detected by histopathological examination by dissection after death. The remaining two cases (No. 5 and No. 6) were negative in blood culture despite strongly suspected fungal infection from clinical symptoms, progress, drug sensitivity, etc., but administration of an antifungal agent (Miconazole). As a result, clinically remarkable improvement was observed, and it is considered that the patient was infected with the fungus.

 従って、真菌感染症患者のPRPを本発明の前処理剤で処理した後にβ−グルカンを測定することによって、真菌感染症、とりわけ通常の検査法では診断がきわめて困難な深在性真菌感染症の診断を迅速かつ正確に行うことができた。
 実施例1−6:真菌感染症患者血清検体の測定
 真菌感染症の罹患が疑われる患者から実施例1−3と同様の方法で採血し、血清検体を調製した。その5μlをトキシペットプレート96Fの各ウェルにとり、さらに0.1モル/lKOH水溶液〔前処理剤〕20μlを加え、37℃で10分間加温保持し、被検液とした。以後実施例1−1と同様の手段によりGテストと反応させ、吸光度を測定した。実施例1−4と同じ既知量のカードランを標準試薬として用い、別に作成したの検量線より上記被検液中のβ−グルカン含量を換算した結果を表6に示す。
Therefore, by treating β-glucan after treating PRP of a fungal infection patient with the pretreatment agent of the present invention, fungal infections, especially deep fungal infections, which are extremely difficult to diagnose by ordinary test methods, can be measured. The diagnosis could be made quickly and accurately.
Example 1-6: Measurement of Serum Specimen of Fungal Infection Patient Blood was collected from a patient suspected of having a fungal infection by the same method as in Example 1-3 to prepare a serum specimen. 5 µl of the solution was placed in each well of the toxicpet plate 96F, and 20 µl of a 0.1 mol / l KOH aqueous solution [pretreatment agent] was further added thereto. Thereafter, it was reacted with the G test by the same means as in Example 1-1, and the absorbance was measured. Table 6 shows the results obtained by using the same known amount of curdlan as in Example 1-4 as a standard reagent and converting the β-glucan content in the test solution from a calibration curve prepared separately.

Figure 2004109147
Figure 2004109147

 表6に示したように全例(No.1〜No.5)において高濃度のβ−グルカンが検出され(健常人のβ−グルカン含量:0.2±0.2pg/ml)、そのうちの2例(No.1、No.2)については、血培にて、カンジダ・グリエルモンディ(Candida guilliermodi)およびカンジダ・クルセイ(Candida krusei)をそれぞれ検出し、1例(No.3)は血培では陰性であったが、死亡後の解剖による組織病理学的検査によりアスペルギルス・フミガツス(Aspergillus fumigatus)を検出した。残り2例(No.4、No.5)については、臨床症状、経過、薬剤感受性等から真菌感染を強く疑ったにもかかわらず血培では陰性であったが、抗真菌剤(アムホテリシンB、フルコナゾール)投与により、臨床的に顕著な改善を見たことから真菌感染症に感染していたものと考えられる。
 従って、真菌感染症患者の血清を本発明の前処理剤で処理した後にβ−グルカンを測定することによって、真菌感染症、とりわけ通常の検査法では診断がきわめて困難な深在性真菌感染症の診断を迅速かつ正確に行うことができた。
As shown in Table 6, in all cases (No. 1 to No. 5), a high concentration of β-glucan was detected (β-glucan content of healthy person: 0.2 ± 0.2 pg / ml), of which In two cases (No. 1 and No. 2), Candida guilliermodi and Candida krusei were detected in the blood culture, and one case (No. 3) was the blood culture. Was negative, but Aspergillus fumigatus was detected by histopathological examination by anatomy after death. The remaining two cases (No. 4 and No. 5) were negative in blood culture despite strongly suspected fungal infection based on clinical symptoms, progress, drug sensitivity, etc., but the antifungal agents (amphotericin B, Fluconazole) showed a marked clinical improvement, suggesting that the patient was infected with a fungal infection.
Therefore, by treating β-glucan after treating the serum of a patient with a fungal infection with the pretreatment agent of the present invention, fungal infections, especially deep fungal infections that are extremely difficult to diagnose with ordinary testing methods, can be obtained. The diagnosis could be made quickly and accurately.

 実施例1−7:β−グルカン測定用ゲル化法(比濁法)キット
 下記の構成試薬からなる、β−グルカン測定用ゲル化法(比濁法)キット(50検体用)を作成した。
(A)前処理剤 1.0ml
 0.1モル/lNaOH水溶液
(B)G因子系反応試薬(凍結乾燥品) 適量
 リムルス・ポリフェムス由来の市販ライセート(リムルスHSII−テストワコー,和光純薬工業(株)販売)に15%(W/V)デキストラン(分子量70,000)を添加し、3,500rpmで10分間遠心分離後、多孔性セルロースゲル(セルロファインGC−200m,生化学工業(株)販売)と混合し、ガラスフィルターで濾過し、その濾液を凍結乾燥したもの。
(C)G因子系反応試薬溶解・反応用緩衝液 5.0ml
 0.1モル/lトリス−塩酸緩衝液(pH8.0)
(D)標準β−グルカン試薬(凍結乾燥品) 適量
 市販カードラン(実施例1−4参照)
(E)標準β−グルカン試薬溶解用蒸留水(β−グルカン・フリー)1.0ml
(F)ブランクテスト用蒸留水(β−グルカン・フリー)1.0ml
Example 1-7: β-Glucan Measurement Gelation Method (Nephelometry) Kit A β-glucan measurement gelation method (nephelometry) kit (for 50 samples) was prepared, comprising the following components.
(A) Pretreatment agent 1.0ml
0.1 mol / l NaOH aqueous solution (B) Factor G-based reaction reagent (lyophilized product) Appropriate amount 15% (W /%) in commercially available lysate derived from Limulus polyphemus (Limulus HSII-Test Wako, sold by Wako Pure Chemical Industries, Ltd.) V) Add dextran (molecular weight 70,000), centrifuge at 3,500 rpm for 10 minutes, mix with a porous cellulose gel (Cellulofine GC-200m, manufactured by Seikagaku Corporation), and filter with a glass filter. And the filtrate is freeze-dried.
(C) Buffer for dissolution / reaction of factor G reaction reagent 5.0 ml
0.1 mol / l Tris-HCl buffer (pH 8.0)
(D) Standard β-glucan reagent (lyophilized product) Appropriate amount Commercially available curdlan (see Example 1-4)
(E) 1.0 ml of distilled water (β-glucan free) for dissolving a standard β-glucan reagent
(F) 1.0 ml of distilled water (β-glucan free) for blank test

 実施例1−8:β−グルカン測定用発色合成基質法キット
 下記の構成試薬からなる、β−グルカン測定用発色合成基質法キット(100検体用)を作成した。
(A)前処理剤 2.0ml
 0.1モル/lKOH水溶液
(B)G因子系反応試薬(凍結乾燥品) 適量
 タキプレウス・トリデンタツス由来のライセートに15%(W/V)デキストラン(分子量40,000)を添加し、3,500rpmで10分間遠心分離後、孔径0.20μmのナイロン膜フィルター(ナルゲンシリンジフィルター,直径25mm,ナルジェ社製)を通過させ、通過液をMS混液(0.8M塩化マグネシウムと6mM Boc−Leu−Gly−Arg−pNAとを含む)に添加し、凍結乾燥したもの。
(C)G因子系反応試薬溶解・反応用緩衝液 5.0ml
 0.2モル/lトリス−塩酸緩衝液(pH8.0)
(D)標準β−グルカン試薬(凍結乾燥品) 適量
 ブクリョウ菌由来のβ−グルカン調製品(パキマン)(実施例1−1参照)
(E)標準β−グルカン試薬溶解用蒸留水(β−グルカン・フリー)2.0ml
(F)ブランクテスト用蒸留水(β−グルカン・フリー) 2.0ml
Example 1-8: Chromogenic synthetic substrate method kit for β-glucan measurement A chromogenic synthetic substrate method kit for β-glucan measurement (for 100 samples) was prepared, comprising the following components.
(A) Pretreatment agent 2.0ml
0.1 mol / l KOH aqueous solution (B) Factor G-based reaction reagent (lyophilized product) Appropriate amount 15% (W / V) dextran (molecular weight 40,000) is added to lysate derived from Takipreus tridentatas at 3,500 rpm After centrifugation for 10 minutes, the mixture was passed through a nylon membrane filter having a pore size of 0.20 μm (Nalgen syringe filter, diameter: 25 mm, manufactured by Narge), and the passing solution was mixed with MS (0.8 M magnesium chloride and 6 mM Boc-Leu-Gly-Arg). -PNA) and freeze-dried.
(C) Buffer for dissolution / reaction of factor G reaction reagent 5.0 ml
0.2 mol / l Tris-HCl buffer (pH 8.0)
(D) Standard β-glucan reagent (freeze-dried product) Appropriate amount β-glucan preparation (pakiman) derived from Bacillus cerevisiae (see Example 1-1)
(E) 2.0 ml of distilled water (β-glucan free) for dissolving a standard β-glucan reagent
(F) Distilled water for blank test (β-glucan free) 2.0ml

カブトガニ・アメボサイト・ライセートの(1→3)−β−D−グルカン及びエンドトキシンによるカスケード反応の反応機構を示す。The reaction mechanism of the cascade reaction of horseshoe crab amebosite lysate by (1 → 3) -β-D-glucan and endotoxin is shown.

Claims (9)

 リムルス反応を利用して試料中の(1→3)−β−D−グルカンを測定する際に、リムルス反応に対する反応妨害因子を含む試料をリムルス反応に先立って処理するために使用する前処理剤であって、アルカリ金属水酸化物を主成分とすることを特徴とする前処理剤。 A pretreatment agent used to treat a sample containing a reaction interfering factor to the Limulus reaction prior to the Limulus reaction when measuring (1 → 3) -β-D-glucan in the sample using the Limulus reaction A pretreatment agent comprising an alkali metal hydroxide as a main component.  複数の溶液として保存され、使用時に該溶液が混合されることを特徴とする請求項1記載の前処理剤。 The pretreatment agent according to claim 1, wherein the pretreatment agent is stored as a plurality of solutions, and the solutions are mixed at the time of use.  リムルス反応に対する反応妨害因子を含む試料中に含まれる(1→3)−β−D−グルカンを、該反応を利用して検出する際に、リムルス反応に先立って試料を処理するための前処理方法において、請求項1または2に記載された前処理剤と試料を混合し、加温することを特徴とする前処理方法。 Pretreatment for treating a sample prior to the Limulus reaction when detecting (1 → 3) -β-D-glucan contained in a sample containing a reaction interfering factor to the Limulus reaction using the reaction A pretreatment method comprising mixing the sample with the pretreatment agent according to claim 1 or 2, and heating the mixture.  試料が血液由来の試料である請求項3記載の前処理方法。 The pretreatment method according to claim 3, wherein the sample is a blood-derived sample.  リムルス反応を利用して試料中の(1→3)−β−D−グルカンを測定する方法であって、試料を請求項3または4に記載の方法で前処理し、処理後の試料をリムルス試薬と混合して反応させ、基質の変化を検出することを特徴とする測定法。 A method for measuring (1 → 3) -β-D-glucan in a sample using the Limulus reaction, wherein the sample is pretreated by the method according to claim 3 or 4, and the sample after the treatment is subjected to Limulus. A measuring method characterized by detecting a change in a substrate by mixing and reacting with a reagent.  少なくとも下記の構成試薬からなることを特徴とする(1→3)−β−D−グルカンを測定するための測定用キット。
(A)請求項1記載の前処理剤。
(B)カブトガニ・アメボサイト・ライセートを原料として得られたリムルス試薬。
A measurement kit for measuring (1 → 3) -β-D-glucan, comprising at least the following constituent reagents:
(A) The pretreatment agent according to claim 1.
(B) Limulus reagent obtained from horseshoe crab amebosite lysate as a raw material.
 (B)のリムルス試薬が、(1→3)−β−D−グルカンに特異的に反応するリムルス試薬である請求項6記載の測定用キット。 7. The measurement kit according to claim 6, wherein the Limulus reagent of (B) is a Limulus reagent that specifically reacts with (1 → 3) -β-D-glucan.  構成試薬として、さらに下記(C)を含むことを特徴とする請求項6記載の測定用キット。
(C)(1→3)−β−D−グルカンの一定量を含む標準試薬。
The measurement kit according to claim 6, further comprising (C) below as a constituent reagent.
(C) A standard reagent containing a fixed amount of (1 → 3) -β-D-glucan.
 生体由来の試料中の(1→3)−β−D−グルカンを請求項5の測定法で定量し、該物質の測定値が一定量を超えたときに感染症に罹患した生体に由来する試料であると判定することを特徴とする試料の判定方法。 (1 → 3) -β-D-glucan in a sample derived from a living body is quantified by the measuring method according to claim 5, and when the measured value of the substance exceeds a certain amount, it is derived from a living body suffering from an infectious disease. A method for determining a sample, comprising determining that the sample is a sample.
JP2004005345A 1992-05-08 2004-01-13 Pretreatment agent, pretreatment method, measurement method using pretreated sample, measurement kit and sample determination method Expired - Lifetime JP3614849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004005345A JP3614849B2 (en) 1992-05-08 2004-01-13 Pretreatment agent, pretreatment method, measurement method using pretreated sample, measurement kit and sample determination method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP14201092 1992-05-08
JP2004005345A JP3614849B2 (en) 1992-05-08 2004-01-13 Pretreatment agent, pretreatment method, measurement method using pretreated sample, measurement kit and sample determination method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10042693A Division JP3524120B2 (en) 1992-05-08 1993-04-02 Pretreatment agent, pretreatment method, measurement method using pretreated sample, measurement kit, and sample determination method

Publications (2)

Publication Number Publication Date
JP2004109147A true JP2004109147A (en) 2004-04-08
JP3614849B2 JP3614849B2 (en) 2005-01-26

Family

ID=32299920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004005345A Expired - Lifetime JP3614849B2 (en) 1992-05-08 2004-01-13 Pretreatment agent, pretreatment method, measurement method using pretreated sample, measurement kit and sample determination method

Country Status (1)

Country Link
JP (1) JP3614849B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112980A (en) * 2005-01-27 2012-06-14 Seikagaku Kogyo Co Ltd Pretreatment agent for limulus measurement
JP2012531594A (en) * 2009-06-26 2012-12-10 チャールズ リバー ラボラトリーズ, インコーポレイテッド Heat-treated Limulus amoeba-like cell lysate
WO2014104352A1 (en) * 2012-12-28 2014-07-03 生化学工業株式会社 Pretreating agent for antithrombin iii for use in limulus test, and pretreatment method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112980A (en) * 2005-01-27 2012-06-14 Seikagaku Kogyo Co Ltd Pretreatment agent for limulus measurement
JP2012531594A (en) * 2009-06-26 2012-12-10 チャールズ リバー ラボラトリーズ, インコーポレイテッド Heat-treated Limulus amoeba-like cell lysate
US10473663B2 (en) 2009-06-26 2019-11-12 Charles River Laboratories, Inc. Heat-treated limulus amebocyte lysates
US10473664B2 (en) 2009-06-26 2019-11-12 Charles River Laboratories, Inc. Heat-treated limulus amebocyte lysates
US11221335B2 (en) 2009-06-26 2022-01-11 Charles River Laboratories, Inc. Heat-treated limulus amebocyte lysates
WO2014104352A1 (en) * 2012-12-28 2014-07-03 生化学工業株式会社 Pretreating agent for antithrombin iii for use in limulus test, and pretreatment method
US10132812B2 (en) 2012-12-28 2018-11-20 Seikagaku Corporation Pre-treatment agent and pre-treatment method for antithrombin III to be subjected to limulus test

Also Published As

Publication number Publication date
JP3614849B2 (en) 2005-01-26

Similar Documents

Publication Publication Date Title
JP3524120B2 (en) Pretreatment agent, pretreatment method, measurement method using pretreated sample, measurement kit, and sample determination method
KR100255260B1 (en) Reagent for endotoxin assay and method for endotoxin assay using the same
US5702882A (en) Reagent for endotoxin-specific assay
US8211651B2 (en) Method for measuring endotoxin and reagent kit for measuring endotoxin
JP2007078665A (en) Blood endotoxin measuring method
JPH06130064A (en) Peculiar measuring agent for endotoxin for solid phase-based reaction
US8790885B2 (en) Coagulogen raw material, process for producing the same, and method and apparatus for measuring physiologically active substance of biological origin using the same
EP0041089B1 (en) Improved chromogenic method of detecting endotoxins in blood
JP4814788B2 (en) Test method for interstitial cystitis
JP3614849B2 (en) Pretreatment agent, pretreatment method, measurement method using pretreated sample, measurement kit and sample determination method
WO2021000654A1 (en) Method for detecting heparin or heparin-like substances in blood and kit
JP3553656B2 (en) Method for measuring (1 → 3) -β-D-glucan
JP6674993B2 (en) Pretreatment agent and pretreatment method for antithrombin III subjected to Limulus test
JP2560139B2 (en) Amebocyte lysate with high specificity for β-glucans and method for producing the same
JPH11178599A (en) Reagent for measuring endotoxin and/or peptide glucan
JP2007240397A (en) METHOD OF MEASURING (1-&gt;3)-beta-D-GLUCAN
EP0260707B1 (en) Method for assaying plasma protein and measuring kit for the same
CN115201486A (en) Kit for detecting activity of vitamin K-dependent protein S
JPH11201973A (en) Manufacture of endotoxin specific lasate
CN114487407A (en) Angiotensin converting enzyme 2 detection kit
JPH10185924A (en) Limulus reaction activating material, inactivation method for the substance and measuring method thereof and limuleus reaction measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041027

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9