JP2004109003A - Optical rainfall measuring device - Google Patents

Optical rainfall measuring device Download PDF

Info

Publication number
JP2004109003A
JP2004109003A JP2002273479A JP2002273479A JP2004109003A JP 2004109003 A JP2004109003 A JP 2004109003A JP 2002273479 A JP2002273479 A JP 2002273479A JP 2002273479 A JP2002273479 A JP 2002273479A JP 2004109003 A JP2004109003 A JP 2004109003A
Authority
JP
Japan
Prior art keywords
optical fiber
rainfall
falling
optical
fiber sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002273479A
Other languages
Japanese (ja)
Other versions
JP4007888B2 (en
Inventor
Takeshi Kawamura
川村 武司
Showa Miyauchi
宮内 将和
Tomohiro Kawamoto
川本 智宏
Etsuji Ishibashi
石橋 悦治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002273479A priority Critical patent/JP4007888B2/en
Publication of JP2004109003A publication Critical patent/JP2004109003A/en
Application granted granted Critical
Publication of JP4007888B2 publication Critical patent/JP4007888B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical rainfall measuring device capable of extending the distance from a rainfall observation point to a remote monitoring point, and increasing the number of connections of rain gages to a single core optical fiber. <P>SOLUTION: A tensile strain is generated in an optical fiber sensor 6 having an FBG element by a tipping operation of a tipping bucket 12 by using a tipping-bucket rain gage. A change in the reflection wavelength caused by the strain is examined, to thereby perform tipping detection, and the number of times of the wavelength change is counted, to thereby enable rainfall measurement by each rain gage 1 at a remote place. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、転倒升式雨量計に転倒升の転倒を検知する光ファイバセンサを附属させ、複数地点のリアルタイムでの雨量観測を遠隔地において1台の装置で行うことを可能ならしめた光式雨量計測装置に関する。
【0002】
【従来の技術】
雨量観測は、気象観測器メーカが販売している気象庁検定品の機械式の自己記録式観測器や電気式(データロガー式)観測器などを現場(観測点)に設置して行うのが一般的であった。しかし、これ等は電源の無いところでは使えず、データを読み取って連絡する監視人なども必要とする。また、雷サージなどで機器が損傷するなどして使用不能になる場合があるなど、多くの問題点を有している。
【0003】
また、商用電源の無い所では太陽電池を使用し、データを無線で送信することも行われているが、この場合には電源容量とシステム費の観点からデータの送信頻度が30分に1回とか、早くても10分に1回程度に規制され、リアルタイムでのデータ収集ができていない。
【0004】
そこで、これ等の問題を解決できる方法として、既に各種の光式雨量計が開発され、一部実用に供されている。例えば、本出願人が提案しているものでは、磁力の作用で電圧を発生するウイーガンド素子を利用し、その素子の起電力を利用して発光ダイオードを光らせ、発光回数をカウントするものがある。
【0005】
また、別の方式として監視装置側から雨量計の光ファイバに直流光を出力しておいて一定雨量となったときに雨量計の動作で光を遮断し、その遮断回数をカウントして雨量を求めるものもある。
【0006】
【発明が解決しようとする課題】
従来の光式雨量計は、光の伝送状況の有無を観測するので、観測点からデータを収集して処理する監視点までが比較的短距離の場合にしか適用できない。或いは、1芯の光ファイバによるデータ収集では、分波器等を用いて各観測点からの波長を変えないと1台の装置による複数点の監視ができないなどの問題がある。
【0007】
この発明は、これ等の問題点を無くした構造も比較的簡単な光式雨量計測装置を提供する。
【0008】
【課題を解決するための手段】
上記の課題を解決するため、この発明においては、転倒升式雨量計と、転倒升の転倒時に引っ張り歪を与えられるFBG素子を用いた光ファイバセンサと、この光ファイバセンサからの反射波長を計測する反射波長計測装置とを有し、前記反射波長計測装置で計測した反射波長変化の回数をカウントして雨量計測を行うようにした光式雨量計測装置を提供する。
【0009】
この雨量計測装置は、光ファイバセンサの常時形状を楕円又はそれに近似した形の輪にし、その輪の長軸方向の一端側を固定部、他端側を受力部にし、受力部とそれに引っ張り歪を加える張力付与部との間に所要の遊びを生じさせておくと好ましい。
【0010】
また、転倒升の中心直下のバランスウエイトを張力付与部にして光ファイバセンサの輪の中に入り込ませ、升の転倒によるバランスウエイトの変位を利用して光ファイバセンサの受力部に引っ張り歪を与えるようにしたり、光ファイバセンサの受力部を張力付与部との係合位置に保持するガイド部材を設けたり、光ファイバセンサに対する引っ張り歪の付与が転倒升の片側への転倒時にのみなされるようにしたりするのも好ましい。
【0011】
さらに、この発明の装置を用いた雨量計測は、反射波長計測装置で計測したFBG素子の反射波長を常時モニタし、現時点での計測波長と現時点に近い過去の計測波長の差分を求め、その差分が所定値を越えたときのみ転倒升が転倒したと判定してその転倒回数をカウントし、時間当りのカウント数から計測雨量を求める方法で行うのがよい。
【0012】
【作用】
この発明の装置は、転倒升の転倒動作を利用して光ファイバセンサに引っ張り歪を生じさせる。この方法で光ファイバに与え得る引っ張り歪はさほど大きくはないが、高感度素子として知られるFBG(ファイバーブラッググレーティング)素子を使用しているので、観測点から監視点までの距離が長くなっても転倒升の転倒検知が行える。
【0013】
FBG素子は、引っ張り歪を生じると光の反射波長が変化する。その波長変化を波長計で監視すると、複数の観測点における転倒升の転倒の有無を1芯の光ファイバを用いて同時に検知することができ、多点のリアルタイムでの同時観測が可能になる。
【0014】
なお、FBG素子を用いた光ファイバセンサは、張力付与部に遊び無しで接触させておくと、転倒升の片側への転倒が光ファイバの剛性に邪魔されて遅れ、左右の升の転倒のタイミングがずれて正確な計測が望めなくなるが、光ファイバセンサを、予め引っ張り力が与えられたときの形状に近似した形の輪にしておいてそのセンサの受力部と張力付与部との間に遊びをつけたものは、升が転倒し終える頃に張力付与部から受力部に引っ張り力が加えられるので、上記の不具合が生じない。
【0015】
また、転倒升式雨量計に設けられている転倒タイミング調整用のバランスウエイトを張力付与部として使用するものは、現状の雨量計を特別な改造をせずに利用できる利点がある。
【0016】
さらに、光ファイバの受力部を張力付与部から外れ止めするガイドを設けたものは、動作不良が防止される。
【0017】
また、升の転倒検出は、左右の升の転倒をそれぞれ検出することもできるが、この場合にはどちらの升が転倒したかを区別するために波長の異なるFBG素子を2組設ける必要があり、1芯の光ファイバを用いた多点観測では素子数増のために1台の監視装置に接続できる観測点の総数が減少して好ましくない。これに対し、転倒升の片側への転倒のみを検知するものは、ひとつの雨量計に用いるFBG素子が1組でよく、1芯の光ファイバを用いて同時監視を行える観測点の数を増加させ得る。
【0018】
このほか、FBG素子の波長変化の計測において初期値を固定し、その初期値との比較で現時点の波長変化を求めると、温度変化による波長変化を升の転倒による波長変化と誤認する虞れが生じる。升の転倒力で光ファイバに与え得る張力は限られており、大きな波長変化が得られないからである。後に述べるこの発明の計測方法によればその誤認を防止でき、システムの信頼性が向上する。
【0019】
【発明の実施の形態】
図1に、この発明の雨量計測装置を用いた観測システムの全体構成を示す。
【0020】
図中1は、各観測点に設置する光式雨量計、2は遠隔の監視局舎などに設置する監視制御装置、3は必要に応じて設ける光スイッチ、4はFBG素子の反射波長(歪)を計測する波長計、5は光ファイバを示す。光ファイバ5は図では2本設けており、それぞれの光ファイバ5に光式雨量計1がシリアルに多数接続されている。
【0021】
FBG素子の波長を計測する方法では、波長計による処理速度が比較的速く、処理の仕方によっては50Hz周期で計測を行える。従って、光スイッチ3を用いて各光ファイバの接続状態を切り替えることでより数多くの雨量計を1台の監視制御装置2で監視することが可能である。図1は、その例を示している。
【0022】
光式雨量計の内部構造を図2に示す。この光式雨量計1は、円筒11の中に、転倒升12、雨水を左右の升に交互に注入する漏斗13及び2個の排水筒14を設けた転倒升式雨量計と、升の転倒を検知する光ファイバセンサ6と後述の附属要素とから成る。転倒升式雨量計は市販品でよい。
【0023】
図3、図4は、雨量計1の要部の詳細を示す。附属要素としてここでは2種類のガイド7、8と、止め具9を設けている。また、光ファイバセンサ6はFBG素子を有するセンサであり、これを楕円に近い輪にして設置している。この光ファイバセンサ6は光ファイバ5に直列に接続される。
【0024】
転倒升式雨量計は、升の中央直下にバランスウエイト15を吊り下げており、このウエイトを張力付与部にして図4に示すように、その外周に光ファイバセンサ6の受力部6aを遊びGをもって巻き掛けている。また、光ファイバセンサ6の輪の長軸方向他端側は片方の排水筒14を支持具にしてその筒の外周に巻きつけ、外れないようにゴム等のクッション材を介して止め具9で固定している。
【0025】
なお、排水筒14に対する光ファイバセンサ6の固定は、曲げ半径を35mm以上にして巻きつけによる損失をできるだけ発生させないようにしておくのがよい。受力部6aも曲げによる張力をできるだけ発生させないように曲げ半径を定めるのがよい。また、この受力部6aがバランスウエイト15から外れたり、バランスウエイトに対するフィット位置がばらついたりすると、升の転倒検知が不安定になったり検知不能になったりするので、受力部6aをバランスウエイト15から外れ止めして定位置でバランスウエイトに係止させるガイド7や光ファイバの輪の長手途中を受け支えるガイド8などを設けておくのがよい。図示のガイド7はバランスウエイト15のバランスの崩れを防ぐために突き出し長さを短くするのがよく、ガイド8があるとガイド7の突き出し長さをあまり長くせずに済む。
【0026】
また、光ファイバが周囲の物体に引っ掛ったりすると断線等につながる虞れがあるので、それを防止する保護カバー10も設けておくのがよく、既存の転倒弁の回転中心を支える台座プレート16にその役割をもたせれば、余分な付属品を必要としなくなって好ましい。
【0027】
ガイドは図6に示すようなものでもよい。図6のガイド7Aは光ファイバをUスロットに収納して保持するものであり、受力部6aの引っ張り力付与時の曲率半径変動や光ファイバ6の変位が起こり難い。
【0028】
このように構成した光式雨量計1は、升に雨水が注入されて転倒升12が片側に転倒するとバランスウエイト15が変位し、受力部6aとの間の遊びGが小さくなる。そしてその遊びGが升が転倒し終える前に無くなり(図5参照)、転倒升の更なる転倒で光ファイバセンサ6に張力が付与される。
【0029】
このとき、受力部6aが図5のように引っ張られてその受力部6aの曲げ半径が小さくなりすぎると、受力部6aの曲げ伸ばしが繰り返されるため耐久性の面で好ましくないので、バランスウエイト15による引っ張りのみで検知に必要な波長変化を生じさせ得る場合には受力部6aの曲げ半径の変化をあまり大きくしない方がよい。
【0030】
転倒升12が中立位置に戻り、或いは反対側に転倒すると受力部6aに与えられていた張力は無くなる。従って、引っ張り歪の有無による反射波長変化の繰り返し数をカウントすることで、雨量をある単位、例えば0.5mm単位或いは1mm単位で計測することができる。
【0031】
図7は、反射波長の計測例である。1芯の光ファイバに中心波長の異なる複数のFBG素子を挿入しておき、各素子からの反射波の中心波長からのずれを計測して所定の変化があれば転倒升が動作したと判断し、動作回数をカウントする。そして、時間当りのカウント数から雨量を求める。図7は、転倒升が動作するまではある波長で推移していたものが、転倒升の動作によって波長がシフトする様子を示している。FBG素子の反射波長は、図7(b)に示すように温度によっても変化するため、固定した初期値と比較すると温度変化による波長変化を転倒升の動作による波長変化と誤認する可能性がある。その誤認を無くすために直前の値に対して相対値で所定値以上の波長シフトが観察された場合に転倒升が転倒したと判断する。
【0032】
その判断方法の具体例を以下に列挙する。
【0033】
方法1:図8(a)に▲1▼で示すように、2つの連続するサンプリング値の差分を採り、その差がある一定値を越えたときに変化ありと判断する。
【0034】
方法2:▲1▼の変化があった場合、図8(a)の▲2▼で示すように、その時の直前のデータ(イ) と変化後の数回のデータを比較し、継続性を評価して変化が所定回数以上継続したときに変化ありと判断する。
【0035】
方法3:図8(b)の▲3▼で示すように、想定される変化の周期よりも短い間隔をあけた2点のデータの差分を採り、その差がある一定値を越えたときに変化ありと判断する。
【0036】
方法4:図8(c)に▲4▼で示すように、想定される変化の周期よりも短い間隔をあけた2点の前後数回のデータの平均値に関して差分を採り、その差がある一定値以上変化したときに変化ありと判断する。
【0037】
方法5:図8(b)に▲5▼で示すように、想定される変化の周期よりも短い間隔をあけた2点のデータの差分を採り、その差がある一定値を越え、かつ、その状態が所定回数以上継続したときに変化ありと判断する。
【0038】
これ等のうち、継続性を評価して判断を行う方法2や方法5は、ノイズによる誤判断も防止され、システムの信頼性をより高めるのに役立つ。
【0039】
上記1〜5のいずれかの方法による判断機能を図1の監視制御装置2に付加すれば、雨量の自動観測が行える。
【0040】
【発明の効果】
以上述べたように、この発明の雨量計測装置は、転倒升式雨量計を用いて転倒升の転倒動作でFBG素子を有する光ファイバセンサに引っ張り歪を生じさせ、その歪による反射波長の変化の回数をカウントして雨量を求めるので、光式雨量計を用いた従来の雨量計測装置の欠点を無くすことができる。即ち、観測点から監視点までの距離を延ばし、1芯の光ファイバで対応する観測点の数も増やすことができ、広いエリアをリアルタイムできめ細かく観測できるシステムを構築できる。この装置は光式雨量計の特徴が生かされるので安価で信頼性も高い。
【0041】
なお、この発明の方法で転倒升の転倒動作確認を行うものは、誤判断が防止され、計測精度がより良くなる。
【図面の簡単な説明】
【図1】この発明の雨量計測装置を用いた観測システムの全体構成を示す図
【図2】光式雨量計の全体構成を示す図
【図3】光式雨量計の要部の詳細を示す正面図
【図4】同上の要部の平面図
【図5】升の転倒時の状況を示す平面図
【図6】(a)ガイドの他の例を示す平面図
(b)同上のX−X線部の断面図
【図7】(a)反射波長の計測例を示す図
(b)温度変化による波長変化を示す図
【図8】誤判断防止のための判断方法の解説図
【符号の説明】
1 光式雨量計
2 監視制御装置
3 光スイッチ
4 波長計
5 光ファイバ
6 FBG素子を有する光ファイバセンサ
6a 受力部
7、7A、8 ガイド
9 止め具
10 保護カバー
11 円筒
12 転倒升
13 漏斗
14 排水筒
15 バランスウエイト
16 台座プレート
G 遊び
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides an optical fiber sensor that attaches an optical fiber sensor for detecting the falling of a falling hill to a falling hill type rain gauge, so that it is possible to perform rainfall observation at a plurality of points in real time with a single device in a remote place. The present invention relates to a rainfall measuring device.
[0002]
[Prior art]
Generally, rainfall observation is conducted by installing on-site (observation points) mechanical self-recording or electric (data logger) observation equipment certified by the Japan Meteorological Agency sold by weather observation equipment manufacturers. It was a target. However, they cannot be used where there is no power supply, and require an observer to read and contact the data. In addition, there are many problems such as the equipment being damaged due to a lightning surge or the like and becoming unusable.
[0003]
Also, where there is no commercial power source, solar cells are used to transmit data wirelessly. In this case, data transmission frequency is once every 30 minutes from the viewpoint of power supply capacity and system cost. Or, it is restricted to once every 10 minutes at the earliest, and real-time data collection is not possible.
[0004]
Therefore, as a method for solving these problems, various optical rain gauges have already been developed and some of them have been put to practical use. For example, one proposed by the present applicant is to use a Wiegand element that generates a voltage by the action of a magnetic force, use an electromotive force of the element to make a light-emitting diode glow, and count the number of times of light emission.
[0005]
Also, as another method, direct current light is output from the monitoring device to the optical fiber of the rain gauge, and when the rainfall reaches a certain level, the light is cut off by the operation of the rain gauge, and the number of cutoffs is counted to reduce the rainfall. There are also things to ask for.
[0006]
[Problems to be solved by the invention]
The conventional optical rain gauge measures the presence or absence of a light transmission state, and is therefore applicable only when the distance from the observation point to the monitoring point where data is collected and processed is relatively short. Alternatively, in data collection using a single-core optical fiber, there is a problem that a single device cannot monitor a plurality of points unless the wavelength from each observation point is changed using a duplexer or the like.
[0007]
The present invention provides an optical rainfall measuring device that eliminates these problems and has a relatively simple structure.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, in the present invention, an overhang type rain gauge, an optical fiber sensor using an FBG element capable of giving a tensile strain when the overturning overturn is applied, and a reflection wavelength from the optical fiber sensor are measured. A reflection wavelength measuring device for measuring rainfall by counting the number of changes in the reflection wavelength measured by the reflection wavelength measuring device.
[0009]
In this rainfall measuring device, the shape of the optical fiber sensor is always an ellipse or a ring having a shape similar to the ellipse, and one end in the long axis direction of the ring is a fixed portion, and the other end is a force receiving portion. It is preferable that a required play is generated between the tension applying portion that applies tensile strain and the tension applying portion.
[0010]
In addition, the balance weight immediately below the center of the falling slab is used as a tension applying part to enter the optical fiber sensor loop, and the displacement of the balance weight due to the falling of the slab is used to apply tensile strain to the force receiving part of the optical fiber sensor. Or a guide member for holding the force receiving portion of the optical fiber sensor in the engagement position with the tension applying portion, or the application of the tensile strain to the optical fiber sensor is considered when the tipping roll falls to one side. It is also preferable to do so.
[0011]
Further, in the rainfall measurement using the apparatus of the present invention, the reflection wavelength of the FBG element measured by the reflection wavelength measurement apparatus is constantly monitored, and the difference between the current measurement wavelength and the past measurement wavelength close to the current time is obtained. It is preferable to determine that the falling cell has fallen only when the value exceeds a predetermined value, count the number of times of falling, and obtain the measured rainfall from the count number per time.
[0012]
[Action]
The device according to the present invention generates tensile strain in the optical fiber sensor by utilizing the overturning operation of the overturning box. Although the tensile strain that can be applied to the optical fiber by this method is not so large, since the FBG (Fiber Bragg Grating) element known as a high-sensitivity element is used, even if the distance from the observation point to the monitoring point becomes long, The fall detection of the fall measure can be performed.
[0013]
When tensile strain occurs in the FBG element, the reflection wavelength of light changes. If the wavelength change is monitored by a wavelength meter, it is possible to simultaneously detect the presence or absence of the overturning at a plurality of observation points using a single-core optical fiber, and it is possible to perform simultaneous observation at multiple points in real time.
[0014]
In addition, when the optical fiber sensor using the FBG element is brought into contact with the tension applying portion without play, the falling of the falling box to one side is hindered by the rigidity of the optical fiber, and the timing of the falling of the right and left boxes is delayed. However, accurate measurement cannot be expected due to the deviation, but the optical fiber sensor is made into a ring similar in shape to the shape when the pulling force is applied in advance, and between the receiving part and the tension applying part of the sensor. In the case of the play, since the pulling force is applied to the force receiving portion from the tension applying portion at the time when the box has fallen over, the above-described problem does not occur.
[0015]
In addition, the one that uses the balance weight for adjusting the falling timing provided in the falling rain gauge as a tension applying part has an advantage that the current rain gauge can be used without special modification.
[0016]
Further, a device provided with a guide for preventing the force receiving portion of the optical fiber from coming off from the tension applying portion prevents malfunction.
[0017]
The fall detection of the square can also detect the fall of each of the left and right squares. In this case, however, it is necessary to provide two sets of FBG elements having different wavelengths in order to distinguish which square has fallen. In multi-point observation using a single-core optical fiber, the total number of observation points that can be connected to one monitoring device is undesirably reduced due to an increase in the number of elements. On the other hand, the one that detects only the fall of one side of the overturning cell is one set of FBG elements used for one rain gauge, and the number of observation points that can be monitored simultaneously using one optical fiber increases. I can make it.
[0018]
In addition, if the initial value is fixed in the measurement of the wavelength change of the FBG element and the current wavelength change is obtained by comparing with the initial value, the wavelength change due to the temperature change may be erroneously recognized as the wavelength change due to the falling of the box. Occurs. This is because the tension that can be applied to the optical fiber by the overturning force of the box is limited, and a large wavelength change cannot be obtained. According to the measuring method of the present invention described later, the erroneous recognition can be prevented, and the reliability of the system is improved.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an overall configuration of an observation system using the rainfall measuring device of the present invention.
[0020]
In the figure, 1 is an optical rain gauge installed at each observation point, 2 is a monitoring control device installed in a remote monitoring station building, 3 is an optical switch provided as needed, 4 is a reflection wavelength (distortion) of an FBG element. 5) denotes an optical fiber. In the figure, two optical fibers 5 are provided, and a number of optical rain gauges 1 are serially connected to each optical fiber 5.
[0021]
In the method of measuring the wavelength of the FBG element, the processing speed by the wavelength meter is relatively high, and the measurement can be performed at a cycle of 50 Hz depending on the processing method. Therefore, by switching the connection state of each optical fiber using the optical switch 3, it is possible to monitor more rain gauges with one monitoring and control device 2. FIG. 1 shows an example thereof.
[0022]
FIG. 2 shows the internal structure of the optical rain gauge. The optical rain gauge 1 includes a falling rain gauge having a falling cylinder 12, a funnel 13 for alternately injecting rainwater into left and right cells, and two drainage tubes 14 in a cylinder 11, and a falling cell. An optical fiber sensor 6 for detecting the above and an accessory element described later. The overhang type rain gauge may be a commercially available product.
[0023]
3 and 4 show the details of the main part of the rain gauge 1. FIG. Here, two types of guides 7 and 8 and a stopper 9 are provided as accessory elements. The optical fiber sensor 6 is a sensor having an FBG element, and is installed as a ring close to an ellipse. This optical fiber sensor 6 is connected to the optical fiber 5 in series.
[0024]
In the falling rain gauge, a balance weight 15 is hung directly below the center of the rack, and the force receiving portion 6a of the optical fiber sensor 6 plays around the outer periphery of the balance weight 15 as shown in FIG. G wrapped around. The other end of the optical fiber sensor 6 in the major axis direction is wound around the outer circumference of one of the drainage tubes 14 using the drainage tube 14 as a support member, and is stopped by a stopper 9 via a cushion material such as rubber so as not to come off. It is fixed.
[0025]
It is preferable to fix the optical fiber sensor 6 to the drainage tube 14 by setting the bending radius to 35 mm or more so as to minimize the loss caused by winding. The bending radius is preferably determined so that the receiving portion 6a also generates as little tension as possible due to bending. If the force receiving portion 6a comes off the balance weight 15 or the fitting position with respect to the balance weight varies, the falling detection of the cell becomes unstable or undetectable. It is preferable to provide a guide 7 for preventing the optical fiber from coming off and locking the balance weight at a fixed position and a guide 8 for supporting the optical fiber loop in the longitudinal direction. The projected length of the illustrated guide 7 is preferably shortened in order to prevent the balance weight 15 from being unbalanced. When the guide 8 is provided, the projected length of the guide 7 does not need to be too long.
[0026]
Further, if the optical fiber is caught on a surrounding object, there is a possibility that the wire may be disconnected. Therefore, it is preferable to provide a protective cover 10 for preventing the disconnection. It is preferable to have such a role, because no extra accessories are required.
[0027]
The guide may be as shown in FIG. The guide 7A shown in FIG. 6 stores and holds the optical fiber in the U-slot, so that the radius of curvature and the displacement of the optical fiber 6 during the application of the pulling force of the force receiving portion 6a are unlikely to occur.
[0028]
In the optical rain gauge 1 configured as described above, when rainwater is injected into the box and the falling box 12 falls on one side, the balance weight 15 is displaced, and the play G between the light receiving section 6a and the force receiving section 6a is reduced. Then, the play G disappears before the box is overturned (see FIG. 5), and the tension is applied to the optical fiber sensor 6 by further overturning of the box.
[0029]
At this time, if the receiving portion 6a is pulled as shown in FIG. 5 and the bending radius of the receiving portion 6a becomes too small, the bending and extension of the receiving portion 6a are repeated, which is not preferable in terms of durability. If the wavelength change required for detection can be caused only by pulling by the balance weight 15, it is better not to make the change in the bending radius of the force receiving portion 6a too large.
[0030]
When the falling box 12 returns to the neutral position or falls down to the opposite side, the tension applied to the force receiving portion 6a is lost. Therefore, the rainfall can be measured in a certain unit, for example, 0.5 mm unit or 1 mm unit by counting the number of repetitions of the change of the reflection wavelength depending on the presence or absence of the tensile strain.
[0031]
FIG. 7 is a measurement example of the reflection wavelength. A plurality of FBG elements having different center wavelengths are inserted into a single-core optical fiber, and the deviation of the reflected wave from each element from the center wavelength is measured. , Count the number of operations. Then, the amount of rain is obtained from the number of counts per hour. FIG. 7 shows a state in which the wavelength has shifted at a certain wavelength until the overturning cell operates, but the wavelength shifts due to the operation of the overturning cell. Since the reflection wavelength of the FBG element also changes depending on the temperature as shown in FIG. 7B, there is a possibility that the wavelength change due to the temperature change is erroneously recognized as the wavelength change due to the operation of the overturn when compared with the fixed initial value. . In order to eliminate the misconception, when a wavelength shift that is a predetermined value or more is observed as a relative value with respect to the immediately preceding value, it is determined that the tipping box has fallen.
[0032]
Specific examples of the determination method are listed below.
[0033]
Method 1: As shown by (1) in FIG. 8 (a), a difference between two consecutive sampling values is obtained, and when the difference exceeds a certain value, it is determined that there is a change.
[0034]
Method 2: When there is a change in (1), as shown by (2) in FIG. 8 (a), the immediately preceding data (a) and the data after the change are compared several times to determine the continuity. It is determined that there is a change when the change has continued for a predetermined number of times or more.
[0035]
Method 3: As shown by {circle around (3)} in FIG. 8 (b), a difference between two points of data at intervals shorter than the assumed period of change is obtained, and when the difference exceeds a certain value. Judge that there is a change.
[0036]
Method 4: As shown by {circle around (4)} in FIG. 8 (c), a difference is obtained with respect to the average value of data several times before and after two points separated by an interval shorter than the assumed period of change, and there is a difference. It is determined that there is a change when it changes by a certain value or more.
[0037]
Method 5: As shown by {circle around (5)} in FIG. 8 (b), a difference between two points of data at intervals shorter than the assumed period of change is obtained, and the difference exceeds a certain value, and When the state has continued for a predetermined number of times or more, it is determined that there is a change.
[0038]
Among these methods, the method 2 and the method 5 in which the continuity is evaluated to make a determination also prevent erroneous determination due to noise, and serve to further enhance the reliability of the system.
[0039]
If the determination function by any one of the above methods 1 to 5 is added to the monitoring and control device 2 of FIG. 1, automatic observation of rainfall can be performed.
[0040]
【The invention's effect】
As described above, the rainfall measuring device of the present invention causes a fiber strain having an FBG element to generate a tensile strain by the overturning operation of the overturning type rainfall gauge, and the change of the reflection wavelength due to the distortion is generated. Since the rainfall is obtained by counting the number of times, the drawbacks of the conventional rainfall measuring device using the optical rain gauge can be eliminated. That is, the distance from the observation point to the monitoring point can be extended, the number of observation points corresponding to one optical fiber can be increased, and a system capable of real-time and detailed observation of a wide area can be constructed. This device is inexpensive and highly reliable because of the features of the optical rain gauge.
[0041]
In the case of checking the falling motion of the falling box by the method of the present invention, erroneous determination is prevented and the measurement accuracy is improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing an overall configuration of an observation system using the rainfall measuring device of the present invention; FIG. 2 is a diagram showing an overall configuration of an optical rain gauge; FIG. 3 is a diagram showing details of a main part of the optical rain gauge; FIG. 4 is a plan view showing a situation when the box is overturned. FIG. 6A is a plan view showing another example of the guide. FIG. FIG. 7A is a diagram showing a measurement example of a reflection wavelength, FIG. 7B is a diagram showing a wavelength change due to a temperature change, and FIG. 8 is an explanatory diagram of a judgment method for preventing erroneous judgment. Description】
DESCRIPTION OF SYMBOLS 1 Optical rain gauge 2 Monitoring and control apparatus 3 Optical switch 4 Wavelength meter 5 Optical fiber 6 Optical fiber sensor 6a having FBG element Power receiving parts 7, 7A, 8 Guide 9 Stopper 10 Protective cover 11 Cylinder 12 Falling down funnel 14 Drainage cylinder 15 Balance weight 16 Base plate G Play

Claims (6)

転倒升式雨量計と、転倒升の転倒時に引っ張り歪を与えられるFBG素子を用いた光ファイバセンサと、この光ファイバセンサからの反射波長を計測する反射波長計測装置とを有し、前記反射波長計測装置で計測した反射波長変化の回数をカウントして雨量計測を行うようにした光式雨量計測装置。A falling-bulb-type rain gauge, an optical fiber sensor using an FBG element capable of giving a tensile strain when the falling-bulk falls down, and a reflection wavelength measuring device for measuring a reflection wavelength from the optical fiber sensor. An optical rainfall measurement device that counts the number of changes in the reflected wavelength measured by the measurement device to measure rainfall. 光ファイバセンサの常時形状を楕円又はそれに近似した形の輪にし、その輪の長軸方向の一端側を固定部、他端側を受力部にし、受力部とそれに引っ張り歪を加える張力付与部との間に所要の遊びを生じさせた請求項1記載の光式雨量計測装置。The constant shape of the optical fiber sensor is an ellipse or a ring having a shape similar to the ellipse, one end in the long axis direction of the ring is a fixed portion, the other end is a force receiving portion, and the force receiving portion and the tension application to apply tensile strain thereto. The optical rainfall measuring device according to claim 1, wherein a required play is generated between the optical rainfall measuring device and the portion. 転倒升の中心直下のバランスウエイトを張力付与部にして光ファイバセンサの輪の中に入り込ませ、升の転倒によるバランスウエイトの変位を利用して光ファイバセンサの受力部に引っ張り歪を与えるようにした請求項2記載の光式雨量計測装置。The balance weight just below the center of the falling slab is used as a tension applying part and enters the loop of the optical fiber sensor, and a tensile strain is applied to the force receiving part of the optical fiber sensor using the displacement of the balance weight due to the falling of the slab. 3. The optical rainfall measuring device according to claim 2, wherein: 光ファイバセンサの受力部を張力付与部との係合位置に保持するガイド部材を設けた請求項2又は3記載の光式雨量計測装置。The optical rainfall measuring device according to claim 2 or 3, further comprising a guide member for holding the force receiving portion of the optical fiber sensor at an engagement position with the tension applying portion. 光ファイバセンサに対する引っ張り歪の付与が転倒升の片側への転倒時にのみなされるようにした請求項1乃至4のいずれかに記載の光式雨量計測装置。The optical rainfall measuring device according to any one of claims 1 to 4, wherein the application of the tensile strain to the optical fiber sensor is considered when the falling slop falls to one side of the falling slop. 請求項1乃至5のいずれかに記載の雨量計測装置を用いて行う雨量計測方法であって、反射波長計測装置で計測したFBG素子の反射波長を常時モニタし、現時点での計測波長と現時点に近い過去の計測波長の差分を求め、その差分が所定値を越えたときのみ転倒升が転倒したと判定してその転倒回数をカウントし、時間当りのカウント数から計測雨量を求める雨量計測方法。A rainfall measurement method using the rainfall measurement device according to any one of claims 1 to 5, wherein the reflection wavelength of the FBG element measured by the reflection wavelength measurement device is constantly monitored, and the current measurement wavelength and the current measurement wavelength are measured. A rainfall measuring method for determining a difference between measured wavelengths in the past in the past, determining that a falling box has fallen only when the difference exceeds a predetermined value, counting the number of times of falling, and obtaining a measured rainfall from a count per time.
JP2002273479A 2002-09-19 2002-09-19 Optical rainfall measuring device and method Expired - Fee Related JP4007888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002273479A JP4007888B2 (en) 2002-09-19 2002-09-19 Optical rainfall measuring device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002273479A JP4007888B2 (en) 2002-09-19 2002-09-19 Optical rainfall measuring device and method

Publications (2)

Publication Number Publication Date
JP2004109003A true JP2004109003A (en) 2004-04-08
JP4007888B2 JP4007888B2 (en) 2007-11-14

Family

ID=32270223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002273479A Expired - Fee Related JP4007888B2 (en) 2002-09-19 2002-09-19 Optical rainfall measuring device and method

Country Status (1)

Country Link
JP (1) JP4007888B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349370A (en) * 2005-06-13 2006-12-28 Ntt Infranet Co Ltd Optical rainfall measuring apparatus and optical rainfall measuring system
KR101567255B1 (en) 2014-11-05 2015-11-09 주식회사 이제이텍 Tipping bucket type rain gauge
KR101600573B1 (en) * 2014-09-30 2016-03-07 에스제이포토닉스 주식회사 Sensor based on fiber bragg gratings and observation system using the same
CN105629343A (en) * 2015-12-25 2016-06-01 无锡信大气象传感网科技有限公司 Rain collector of clean tipping bucket type rain sensor
CN105629344A (en) * 2015-12-25 2016-06-01 无锡信大气象传感网科技有限公司 Rain collector of tipping bucket type rain sensor
CN107907921A (en) * 2017-12-27 2018-04-13 盐城工学院 Double with temperature self-compensation characteristic turn over funneling fiber grating rain sensor
CN111427102A (en) * 2020-06-02 2020-07-17 云南师范大学 Open-air rainfall measuring device
CN113189679A (en) * 2021-04-20 2021-07-30 上海宏英智能科技股份有限公司 Piezoelectric rainfall measuring meter
CN113687449A (en) * 2021-08-23 2021-11-23 河北冀云气象技术服务有限责任公司 Intelligent tipping bucket type rainfall measuring device
CN113945998A (en) * 2021-09-18 2022-01-18 武汉理工大学 Method for monitoring rainfall intensity and runoff accumulated water on underlying surface based on amplitude sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879836B (en) * 2012-09-10 2016-12-21 北京佳讯飞鸿电气股份有限公司 Use pluviometer and the railway anti-disaster rainfall monitoring system of optical fiber measurement

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08166468A (en) * 1994-12-12 1996-06-25 Sumitomo Electric Ind Ltd Rainfall detection system
JPH10141922A (en) * 1996-11-12 1998-05-29 Hitachi Cable Ltd Multipoint strain and temperature sensor
JP2000298010A (en) * 1999-04-14 2000-10-24 Choryo Seigyo System Kk Strain sensor utilizing optical fiber and deformation- monitoring system using the strain sensor
JP2000356686A (en) * 1999-06-11 2000-12-26 Sumitomo Electric Ind Ltd Rainfall measuring device
JP2001296111A (en) * 2000-04-14 2001-10-26 Foundation Of River & Basin Integrated Communications Japan Optical sensor for detecting opening and shutting of hand hole lid
JP2001296307A (en) * 2000-04-14 2001-10-26 Foundation Of River & Basin Integrated Communications Japan Optical current direction sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08166468A (en) * 1994-12-12 1996-06-25 Sumitomo Electric Ind Ltd Rainfall detection system
JPH10141922A (en) * 1996-11-12 1998-05-29 Hitachi Cable Ltd Multipoint strain and temperature sensor
JP2000298010A (en) * 1999-04-14 2000-10-24 Choryo Seigyo System Kk Strain sensor utilizing optical fiber and deformation- monitoring system using the strain sensor
JP2000356686A (en) * 1999-06-11 2000-12-26 Sumitomo Electric Ind Ltd Rainfall measuring device
JP2001296111A (en) * 2000-04-14 2001-10-26 Foundation Of River & Basin Integrated Communications Japan Optical sensor for detecting opening and shutting of hand hole lid
JP2001296307A (en) * 2000-04-14 2001-10-26 Foundation Of River & Basin Integrated Communications Japan Optical current direction sensor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349370A (en) * 2005-06-13 2006-12-28 Ntt Infranet Co Ltd Optical rainfall measuring apparatus and optical rainfall measuring system
KR101600573B1 (en) * 2014-09-30 2016-03-07 에스제이포토닉스 주식회사 Sensor based on fiber bragg gratings and observation system using the same
WO2016052974A1 (en) * 2014-09-30 2016-04-07 에스제이포토닉스 주식회사 Optical fiber bragg grating-based sensor and measurement device using same
KR101567255B1 (en) 2014-11-05 2015-11-09 주식회사 이제이텍 Tipping bucket type rain gauge
CN105629343A (en) * 2015-12-25 2016-06-01 无锡信大气象传感网科技有限公司 Rain collector of clean tipping bucket type rain sensor
CN105629344A (en) * 2015-12-25 2016-06-01 无锡信大气象传感网科技有限公司 Rain collector of tipping bucket type rain sensor
CN107907921A (en) * 2017-12-27 2018-04-13 盐城工学院 Double with temperature self-compensation characteristic turn over funneling fiber grating rain sensor
CN107907921B (en) * 2017-12-27 2024-05-24 盐城工学院 Double-turndown funnel type fiber bragg grating rainfall sensor with temperature self-compensation characteristic
CN111427102A (en) * 2020-06-02 2020-07-17 云南师范大学 Open-air rainfall measuring device
CN113189679A (en) * 2021-04-20 2021-07-30 上海宏英智能科技股份有限公司 Piezoelectric rainfall measuring meter
CN113687449A (en) * 2021-08-23 2021-11-23 河北冀云气象技术服务有限责任公司 Intelligent tipping bucket type rainfall measuring device
CN113945998A (en) * 2021-09-18 2022-01-18 武汉理工大学 Method for monitoring rainfall intensity and runoff accumulated water on underlying surface based on amplitude sensor

Also Published As

Publication number Publication date
JP4007888B2 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
JP2004109003A (en) Optical rainfall measuring device
KR100921432B1 (en) Rotor Blade of a Wind Power Plant
US8348611B2 (en) Wind turbine having a sensor system for detecting deformation in a wind turbine rotor blade and corresponding method
CN101488805B (en) Optical fiber disturbance detection method and apparatus
CN104848980B (en) Bridge cable Suo Li online test methods and system based on Fibre Optical Sensor
EA022899B1 (en) Improvements in distributed fibre optic sensing
CN112202493A (en) Fault detection method, device and system for communication line
EP2761263B1 (en) Optical fibre grating sensor system and method
CN102506916B (en) Distributed sensor network using weak reflection fiber Bragg grating (FBG) and precise positioning method of each FBG
WO1995025274A1 (en) Method and apparatus scanning a fiber optic network
CN101283384A (en) Apparatus and method for detecting intrusion by using fiber Bragg grating sensor
JP4005708B2 (en) PC material with strain detection
CN111024283B (en) Multi-parameter optical fiber sensing detection method and system for down-leading optical cable
CN112648931A (en) Cast-in-place pile optical fiber monitoring system and method
JP2006349370A (en) Optical rainfall measuring apparatus and optical rainfall measuring system
AU2019361360A1 (en) Temperature monitoring device, temperature monitoring method, and temperature monitoring system
JPWO2019189192A1 (en) Fiber optic sensor and analysis method
JP3373188B2 (en) Displacement measurement system using optical fiber
CN112393687A (en) Actually measured displacement measuring device of steel strand relative test anchorage device for static load anchoring test
CN110243548A (en) A kind of optical cable connecting box infiltration detection system
CN103900529B (en) Power transmission line dip measuring device and its method based on fiber grating sensing technology
CN100397034C (en) Monitor device for anchorage cable long term working state and its method
CN2692629Y (en) Monitor for long-period warking state of anchorage cable
CN207850994U (en) A kind of optical fiber acoustic emission system of monitoring explosive damage and failure process
CN101813496A (en) Fiber Bragg grating sensor and Raman sensor-fused sensing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050906

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051102

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051124

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060320

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees