JP2004108725A - Pressurization induction melting device - Google Patents

Pressurization induction melting device Download PDF

Info

Publication number
JP2004108725A
JP2004108725A JP2002274795A JP2002274795A JP2004108725A JP 2004108725 A JP2004108725 A JP 2004108725A JP 2002274795 A JP2002274795 A JP 2002274795A JP 2002274795 A JP2002274795 A JP 2002274795A JP 2004108725 A JP2004108725 A JP 2004108725A
Authority
JP
Japan
Prior art keywords
pressure vessel
water
induction melting
pair
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002274795A
Other languages
Japanese (ja)
Inventor
Takefumi Sugiyama
杉山 岳文
Kazuho Suzuki
鈴木 寿穂
Tomoki Shibata
芝田 智樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2002274795A priority Critical patent/JP2004108725A/en
Publication of JP2004108725A publication Critical patent/JP2004108725A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Muffle Furnaces And Rotary Kilns (AREA)
  • Furnace Details (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pressurization induction melting device capable of preventing a water cooled cable connecting an induction coil in a melting furnace incorporated in a pressure vessel with external power supply from being deformed even when pressurizing it and circulating cooling water inside the device securely. <P>SOLUTION: This pressurization induction melting device 1 comprises a pressure vessel 2 capable of being tightly closed, an induction melting furnace 6 incorporated in the vessel 2, a gas supply part 16 pressurizing the inside of the vessel 2, and the water cooling type cables 12a, 12b for conducting the induction coil 9 in the melting furnace 6 and high frequency power supply 10. A pair of metallic pipes 20a, 20b having a flange 24 overhanging on an outer peripheral side and a water passing passage 22 passing through along the longitudinal direction pass through an opening 5 in which the cables 12a, 12b pass through the vessel 2. A pair of insulation plates 30, 32 nipping the inside and outside of the flange 24 pass through the metallic pipes 20a, 20b. The insulation plates 30, 32 are fixed to a lid plate 44 which blocks the opening part 5 and through which the metallic pipes 20a, 20b pass. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えば高窒素鋼を製造するための加圧誘導溶解装置に関する。
【0002】
【従来の技術】
【特許文献1】
近年、ステンレス鋼中に窒素を含有させることにより、耐食性を向上させたり、硬度を高めることが試みられている。係る高窒素含有ステンレス鋼を製造するため、特開2000−202611号公報に示す溶解鋳造装置が知られている。
【0003】
上記高窒素鋼を得るため、例えば図5(A)に示すような加圧誘導溶解装置60も用いられる。係る溶解装置60は、圧力容器2と、その内側に配置した誘導溶解炉6と、外部の高周波電源10と、を備えている。圧力容器2は、図5(A)に示すように、金属の厚板からなる半球形状の蓋3および円筒形状の本体4からなり、係る本体4には、外部に連通する開口部5が閉鎖可能に開設されている。
また、上記誘導炉6は、図5(A)に示すように、上向きに開口し且つ外側に誘導コイル9を螺旋状に設けたものである。係るコイル9の両端と前記高周波電源10との間には、前記本体4の開口部5を貫通する一対の水冷ケーブル12a,12bが配線されている。
【0004】
前記圧力容器2における本体4の開口部5付近を図5(B)に拡大して示す。図示のように、水冷ケーブル12a,12bは、外周を覆う合成ゴム製の絶縁チューブ13と、中心部を貫通する導線(ケーブル)14と、両者の間で冷却水を循環させる送水部15とからなる多重構造体である。冷却水は、誘導コイル9や導線14が通電抵抗や周囲の磁界により、過加熱する事態を防ぐために用いられる。図5(B)に示すように、開口部5を囲う筒部5aの先端のフランジ5bには、円盤形の蓋板62がボルト65およびナット66により固定されている。係る蓋板62は、冷却水を循環させる中空部63を内蔵し、且つ上下一対の貫通孔64が穿孔されている。
【0005】
また、蓋板62の外側には、一対の絶縁板68,70がこれらを貫通するボルト74により固定される。係る絶縁板68,70には、上記一対の貫通孔64に個別に連通する一対の貫通孔69,71が穿孔されている。
図5(B)に示すように、互いに同軸心である一対の貫通孔64,69,71には、水冷ケーブル12a,12bが個別に貫通する。また、貫通孔64,69,71内に位置する各絶縁チューブ13は、絶縁リング72に固着kされていると共に、係る絶縁リング72は、絶縁板68,70間に挟まれて支持されている。
【0006】
図5(A)に示すように、密閉された圧力容器2内で、誘導溶解炉6内に図示しないステンレス鋼用の原料を装入し、誘導コイル9に高周波電流を通電することで、その周囲に形成される磁界により上記原料は誘導加熱され且つ溶融する。予め圧力容器2内は、約4気圧の窒素ガス雰囲気とされている。
次に、誘導溶解炉6内で溶けた原料は、圧力容器2内に予め配置された図示しない鋳型に鋳込まれた後、凝固して前記ステンレス鋼のインゴットになる。係る凝固の前に、上記窒素ガス雰囲気中の窒素が溶湯中に溶け込む結果、前述した高窒素含有ステンレス鋼のインゴットを得ることができる。
【0007】
ところで、圧力容器2内を前記のように高い気圧に加圧すると、水冷ケーブル12a,12bの絶縁チューブ13が圧迫されるため、送水部15が収縮する。この結果、冷却水が流れにくくなり、且つ少なった冷却水は、前記誘導溶解炉6からの熱で加熱されて水蒸気となる。これにより、誘導コイル9や導線14が過加熱されるため、これらが破損するおそれが生じる、という問題があった。
また、送水部15が収縮すると、図5(B)に示したように、水冷ケーブル12a,12に固着kされた絶縁リング72は、その固着部分kが破断するため、圧力容器2内の高窒素ガス雰囲気が急激に外部に漏洩する、という問題もあった。
【0008】
【発明が解決すべき課題】
本発明は、以上に説明した従来の技術における問題点を解決し、圧力容器に内蔵された誘導溶解炉の誘導コイルと外部の高周波電源とを接続する水冷ケーブルが、加圧時にも変形せず且つ内部の冷却水の循環が確実に行える加圧誘導溶解装置を提供する、ことを課題とする。
【0009】
【課題を解決するための手段】
本発明は、上記課題を解決するため、水冷ケーブルにおいて圧力容器を貫通する部分を金属パイプにより構成することに着想して成されたものである。
即ち、本発明の加圧誘導溶解装置(請求項1)は、密閉可能な圧力容器と、係る圧力容器に内蔵され周囲に誘導コイルを設けた誘導溶解炉と、上記圧力容器内を加圧するガス供給部と、上記誘導コイルと上記圧力容器外の高周波電源との間を導通する一対の水冷式ケーブルと、を含み、係る一対の水冷式ケーブルが上記圧力容器を貫通する開口部には、中間の外周側に張り出したフランジおよび長手方向に沿って貫通する通水路を有する一対の金属パイプが貫通し、上記フランジの内外を挟む一対の絶縁板は上記金属パイプを貫通させると共に、係る一対の絶縁板を、上記開口部を閉塞し且つ上記金属パイプを貫通させる蓋板に固定している、ことを特徴とする。
【0010】
これによれば、一対の水冷ケーブルにおいて、圧力容器の開口部を貫通する位置には、内側の中空部に冷却水を循環させる金属パイプが個別に配置され且つ係る金属パイプは、上記フランジを介して一対の絶縁板に挟まれてシールされつつ上記蓋板に支持される。これにより、圧力容器内が加圧されても冷却水の循環に支障が生じないと共に、各金属パイプと各絶縁板との間に隙間が生じないため、圧力容器内の圧力を所定レベルに保ちつつ、目的とする金属や合金に確実に溶解することが可能となる。従って、常温でガスとなる合金成分を含んだ金属や合金を加圧雰囲気下で確実且つ安全に誘導溶解することができる。
尚、上記金属パイプのフランジと一対の絶縁板との間や、外側の絶縁板と蓋板との間には、常法によるOリングなどのシール材が挟み込まれる。また、上記絶縁板は、例えばフェノール樹脂(商標名:ベークライト)のような合成樹脂や雲母のような有機または無機の絶縁材からなる。
【0011】
また、本発明には、前記金属パイプの両端には、前記水冷ケーブルの導線と接続する導線接続部および通水孔を内蔵するカプラが配置されている、加圧誘導溶解装置(請求項2)も含まれる。これによれば、金属パイプ中の中空部を通過した冷却水は、上記カプラの通水孔を経て水冷ケーブルにおける導線(ケーブル)と絶縁チューブとの間に位置する送水部に送られ、金属パイプ自体を導通した高周波電流は、上記カプラの導線接続部を経て水冷ケーブルの中心部に位置する導線に導通される。従って、金属パイプとその両側の水冷ケーブルとの間で、冷却水の循環および高周波電流の導通を確実に成さしめることが可能となる。
【0012】
更に、本発明には、前記一対の金属パイプとこれを貫通させる前記蓋板との間には、隙間が形成され、係る隙間内において上記金属パイプの外周に絶縁テープが巻き付けられている、加圧誘導溶解装置(請求項3)も含まれる。
これによれば、金属パイプと蓋板との間の絶縁が一層確保されるため、金属パイプ自体を導通する電流が不用意に漏電する事態を確実に防ぐことができる。
【0013】
また、本発明には、前記圧力容器には、前記誘導溶解炉で溶解された金属を所定の形状に鋳造する鋳型が配置されている、加圧誘導溶解装置(請求項4)も含まれる。これによれば、圧力容器内の誘導炉で溶解された金属や合金の溶湯を上記鋳型に鋳込むことにより、係る溶湯は圧力容器内のガス雰囲気により加圧されつつ凝固する。この結果、大気圧下では得られない量の合金成分を含むインゴットを確実に得ることができる。尚、上記鋳型の開口部には、常法による押し枠やタンディシュなどが配置されていても良い。
【0014】
更に、本発明には、前記圧力容器内を加圧するガス供給部は、係る圧力容器内を予め真空にし、または減圧する真空装置にも連通されている、加圧誘導溶解装置(請求項5)も含まれる。これによれば、上記真空装置により圧力容器内を一旦真空にしたりまたは減圧した後、ガス供給部の流路を切り替えて金属や合金に添加すべき所望成分のガスを、圧力容器内に所定の加圧状態で供給することができる。従って、所望量の合金成分を含む金属や合金の溶湯やインゴットを確実に得ることが可能となる。尚、上記真空装置には、例えば真空ポンプが挙げられる。
【0015】
【発明の実施の形態】
以下において、本発明の実施に好適な形態を図面と共に説明する。尚、以下にて前記図5に示した従来の技術と同じ部分や要素には共通する符号を用いる。
図1(A)は、本発明の加圧誘導溶解装置1の概略を示す。係る溶解装置1は、密閉可能な圧力容器2と、その内側に内蔵された誘導溶解炉6と、圧力容器2内を加圧するガス供給部16と、上記容器2の外部に位置する高周波電源10と、を備える。
圧力容器2は、図1(A)に示すように、例えばSUS304のようなステンレス鋼製の金属厚板からなる半球形状の蓋3および円筒形状の本体4からなり、係る本体4の下部には、外部に連通する開口部5が開設されている。上記蓋3は、開閉可能とされ且つガス供給部16のパイプ17の一端が接続されている。
【0016】
また、上記誘導炉6は、図1(A)に示すように、上向きに開口し且つその外側に螺旋状に設けた誘導コイル9とからなる。係るコイル9の両端と前記高周波電源10との間には、上記本体4の開口部5を貫通する一対の水冷ケーブル12a,12bが配線されている。尚、一対の水冷ケーブル12a,12bは、それぞれが2本以上の複数本からなる形態であっても良い。
更に、圧力容器2内には、誘導溶解炉6に隣接して上向きに開口する鋳型50、その上方の耐火物からなる押し枠56、およびタンディシュ54が配置されている。加えて、図1(A)に示すように、ガス供給部16は、ガス貯留部19および真空ポンプ(真空装置)18を含み、これらを端部に接続し且つ三方切替弁17aを介して圧力容器2の蓋3に接続する三つ又形状のパイプ17を有している。
【0017】
前記圧力容器2における本体4の開口部5付近を図1(B)に拡大して示す。
図1(B)に示すように、圧力容器2の内部および外部には、一対の水冷ケーブル12a,12bがそれぞれ配線され、これらの間は、金属パイプ20a,20bにより個別に接続されている。水冷ケーブル12a,12bは、外周を覆う合成ゴム製の絶縁チューブ13と、中心部を貫通する導線(ケーブル)14と、両者の間で冷却水を循環させる送水部15とからなる多重構造体である。係る冷却水は、誘導コイル9や導線14が内部の通電抵抗や周囲の磁界により、過加熱する事態を防ぐために用いられる。
【0018】
また、金属パイプ20a,20bは、例えば無酸素銅からなり、図1(B)および図2(A)に示すように、冷却水の通水路となる中空部22を長手方向の全長に沿って有するパイプ本体21と、係るパイプ本体21の中間で外周側に張り出した円盤形のフランジ24と、からなる。係るフランジ24は、例えばパイプ本体21の所定の位置に溶接することにより固定される。
図1(B)に示すように、金属パイプ20a,20bのパイプ本体21の両端には、上記と同じ無酸素銅からなるカプラ25,26が溶着されている。係るカプラ25,26は、金属パイプ20a,20bの中空部22と水冷ケーブル12a,12bの送水部15との間を連通する通水孔28、および水冷ケーブル12a,12bの導線14の端部と接続する導線接続部29を内蔵する。
【0019】
更に、図1(B)に示すように、金属パイプ20a,20bのフランジ24は、内外両側から一対の絶縁板30,32によって挟まれる。係る絶縁板30,32は、例えば尿素樹脂(商標名:ベークライト)からなり、図2(B)に示すように、円盤形の本体31と、それぞれの本体31が互いに対向する表面30a,32aに上記フランジ24,24の厚みの半分を受け入れる上下一対の凹部34と、係る凹部34の中心から外側の表面30b,32bに貫通する透孔36とを対称に有している。各本体31の周辺には、複数のボルト孔38が穿孔されている。
図1(B)に示すように、金属パイプ20a,20bは、各パイプ本体21を絶縁板30,32の透孔36に挿通し、各フランジ24を絶縁板30,32の凹部34,34内においてOリング(シール材)40を介して挟持されている。
【0020】
図1(B)に示すように、各フランジ24を挟んで金属パイプ20a,20bを支持した一対の絶縁板30,32は、それらのボルト孔38,38を貫通するボルト42が蓋板44の雌ネジ孔45に螺入することにより、圧力容器2の開口部5を閉塞する蓋板44に固定される。
図1(B)に示すように、圧力容器2の開口部5を囲う筒部5aの先端に溶着されたリング形のフランジ5bに、複数組のボルト46およびナット47により、開口部5を閉塞する金属製の蓋板44が固定される。
【0021】
係る蓋板44は、前記金属パイプ20a,20bの各パイプ本体21を隙間を介して貫通させる上下一対の通孔48と、前記一対の絶縁板30,32を貫通したボルト42とネジ結合する雌ネジ孔45と、を有する。
また、蓋板44は、前記同様のステンレス鋼からなる円盤形を呈し、内部に冷却水を独自に循環させる中空部49を有する。更に、蓋板44は、前記フランジ5bとの間および隣接する絶縁板32との間に、それぞれ径が異なる内外2重のOリング40,40を挟み付けている。係る蓋板44の通孔48を隙間を介して貫通する金属パイプ20a,20bの各パイプ本体21には、絶縁テープTが巻き付けられ、金属製の蓋板44と各パイプ本体21との間を絶縁している。
【0022】
以上のような加圧誘導溶解装置1は、次のようにして稼働される。
予め蓋3を開放して誘導溶解炉6内に目的とする合金成分に応じた原料を装入した後、図1(A)に示すように上記蓋3を閉じ、圧力容器2を密閉する。係る状態で、真空ポンプ18を駆動しパイプ17を介して圧力容器2内を一旦真空にした後、ガス供給部16のガス貯留部19から例えば窒素ガスをパイプ17を介して圧力容器2内に強制的に吹き込んで数気圧〜数10気圧程度に加圧する。
【0023】
次に、高周波電源10から内外の水冷ケーブル12a,12bおよび金属パイプ20a,20bを介して、誘導溶解炉6の誘導コイル9に数kHzの高周波電流を送電する。係る高周波電流により誘導コイル9から誘導溶解炉6内を貫通する磁界が形成され、係る磁界により誘導溶解炉6内に装入された原料が渦電流によって加熱され、徐々に溶けて溶湯となる。同時に、係る溶湯は、上記磁界により攪拌される。
次いで、誘導溶解炉6は、図示しない傾動手段により、図1(A)に示す圧力容器2内のタンディシュ54側に傾けられ、誘導溶解炉6内の溶湯を、押し枠56を介して鋳型50内に注湯する。この結果、例えば窒素を多めに含むステンレス鋼からなるインゴットを得ることができる。
【0024】
以上の通電、溶解、および鋳込みの各段階を通じて、通力容器2内は、数気圧以上に加圧されるが、水冷ケーブル12a,12bにおいて圧力容器2の開口部5を貫通する部分には、金属パイプ20a,20bが配置されているため、圧力容器2の内外における水冷ケーブル12a,12bの各送水部15に、冷却水を確実に循環させることができる。この結果、従来のように圧力容器2内の水冷ケーブル12a,12bの導線14や誘導コイル9が過加熱する事態を確実に防止できる。また、金属パイプ20a,20bは、シール材であるOリング40を介して絶縁板30,32間にフランジ24を挟み込まれているため、従来のように収縮変形に伴う隙間は生じず、圧力容器2内の加圧状態を確実に保つことができる。従って、以上のような加圧誘導溶解装置1によれば、安全且つ確実に加圧雰囲気下で金属の誘導溶解およびインゴット鋳造を行うことができる。
【0025】
【実施例】
ここで、本発明の具体的な実施例を、比較例と併せて説明する。
板厚20mmのステンレス鋼(SUS304)の厚板からなる本体2および蓋3により形成され且つ内部容積が4.0mの圧力容器2を2つ用意した。係る圧力容器2は、約1MPaの内圧に耐えことができる。
一方の圧力容器2は、前記誘導溶解炉6、ガス供給部16、鋳型50、水冷ケーブル12a,12b、高周波電源10、および前記図1(B)に示したように、圧力容器2の開口部5付近に金属パイプ20a,20bや絶縁板30,32などを内外に配置した実施例の加圧誘導溶解装置1とした。
【0026】
他方の圧力容器2は、前記誘導溶解炉6、ガス供給部16、鋳型50、水冷ケーブル12a,12b、高周波電源10、および前記図5(B)に示したように、圧力容器2の開口部5付近に上記水冷ケーブル12a,12bが貫通する絶縁板68,70などを内外に配置した比較例の加圧誘導溶解装置とした。
各例における誘導溶解炉6、鋳型50、および水冷ケーブル12a,12bは共通であり、実施例の金属パイプ20a,20bの中空部22の断面積は、水冷ケーブル12a,12bの送水部15の断面積と同じとした。
【0027】
各例の誘導溶解炉6内にステンレス鋼(SUS304)用の50kgの原料を装入し且つ蓋3を閉じて圧力容器2を密閉した後、ガス供給部16によって各例の圧力容器2内を一旦真空にしてから窒素ガスを徐々に充填して加圧した。
また、各例の高周波電源(70kW)10から、2kHzの高周波電流を水冷ケーブル12a,12b、または途中の金属パイプ20a,20bを介して、誘導溶解炉6の誘導コイル9に通電し、上記原料を加熱・溶解した。この際、溶解時の温度は、1600℃で且つ70分間保持した。
そして、各例において、圧力容器2内の圧力(内圧力)の変化に対し、水冷ケーブル12a,12b内における冷却水の流量および温度を測定した。その結果を図3のグラフに示した。
【0028】
図3のグラフに示ように、実施例の加圧誘導溶解装置1では、圧力容器2の内圧力が0.1MPaから0.9MPaに上昇しても冷却水の流量は僅かに低下し且つ冷却水の温度は約10℃上昇するに留まった。
一方、比較例の加圧誘導溶解装置では、図3のグラフに示ように、圧力容器2の内圧力が0.1MPaから0.8MPaに上昇するに応じて、冷却水の流量が約21リットル/分低下し且つ冷却水の温度が約38℃上昇した。尚、係る比較例では、上記冷却水の温度が上昇し過ぎて危険となったため、0.9MPaの内圧力における上記流量や温度の測定できなかった。
以上の結果は、実施例では、圧力容器2の開口部5付近に金属パイプ20a,20bを配置したことにより、その圧力容器2内が加圧されても冷却水の流量が殆ど低下せず、これにより当該冷却水の温度上昇も抑制されたことを示す。係る結果により、本発明の加圧誘導溶解装置1の効果が裏付けられた。
【0029】
図4は、前記加圧誘導溶解装置1における金属パイプ20a,20b付近の変形形態を示す。図4において、金属パイプ20a,20bのフランジ24は、内外両側から一対の絶縁板33a,33bによって挟まれる。
絶縁板33a,33bも前記同様の樹脂からなり、図4に示すように、内側の絶縁板33aは、両側面が平坦な円盤形で且つ上下一対の透孔36を有する。また、外側の絶縁板33bは、その内側面に上記フランジ24,24の厚み全体を受け入れる上下一対の深い凹部34と、これらの凹部34の中心から外側面に貫通する透孔36,36と、を有している。
【0030】
更に、上記絶縁板33a,33bの周辺には、複数のボルト孔38が穿孔されている。図4に示すように、金属パイプ20a,20bは、各パイプ本体21を絶縁板33a,33bの各透孔36に挿通すると共に、それらのフランジ24は、絶縁板33bの凹部34,34内に挿入され、且つOリング(シール材)40を介して挟持されている。尚、各フランジ24と絶縁板33aとの間にもそれぞれOリング40が介在している。
【0031】
図4に示すように、一対の絶縁板33a,33bは、それらのボルト孔38,38を貫通するボルト42により、圧力容器2の開口部5を閉塞する蓋板44に固定され、係る蓋板44は、圧力容器2の開口部5を囲う筒部5aの先端に設けられたリング形のフランジ5bに、複数組のボルト46およびナット47により固定される。また、蓋板44の通孔48を隙間を介して貫通する金属パイプ20a,20bの各パイプ本体21には、絶縁テープTが巻き付けられ、金属製の蓋板44とパイプ本体21との間を絶縁している。
上記絶縁板33a,33bを用いる形態にても、前記絶縁板30,32と同様の気密性や金属パイプ20a,20b中の冷却水の通水性などを確保できる。
【0032】
本発明は、以上において説明した形態に限定されるものではない。
例えば、圧力容器2は、蓋3が開閉可能であれば、前記円筒形状の本体4が横長の配置にされた形態としても良い。
また、金属パイプ20a,20bは、前記無酸素銅に限らず、各種の銅合金やアルミニウム合金製としても良い。例えば、パイプ本体21をアルミニウム合金の押出形材とした場合、水冷ケーブル12a,12bの通水部15とほぼ同じ径方向の位置に複数の中空部(22)を一体に形成することができ、係るパイプ本体21の中間の外周側に円盤形のフランジ24を溶接して組み立てても良い。
【0033】
また、上記パイプ本体21は、断面円形に限らず、4角形以上の正多角形または変形多角形の断面を有する形態としても良く、上記フランジ24も円盤の形状に限らず、4角形以上の正多角形または変形多角形の形状としても良い。
更に、上記フランジ24を挟持する一対の絶縁板は、前記絶縁板33aのように、両側面が平坦な板材としても良い。
尚、圧力容器2内で加圧するガスは、前記窒素に限らず、目的とする金属または合金の成分に応じて適宜選択することが可能である。
【0034】
【発明の効果】
以上に説明した本発明の加圧誘導溶解装置(請求項1)によれば、水冷ケーブルにおける圧力容器の開口部を貫通する位置には、内側の中空部に冷却水を循環させる金属パイプが個別に配置され、係る金属パイプは、フランジを介して一対の絶縁板に挟まれつつ蓋板に支持される。この結果、圧力容器内が加圧されても冷却水の循環に支障が生じず、各金属パイプと各絶縁板との間に隙間が生じないため、圧力容器内の圧力を所定レベルに保ちつつ、目的とする金属や合金に確実に溶解することが可能となる。従って、常温でガスとなる合金成分を含む合金などを加圧雰囲気下で確実且つ安全に誘導溶解することができる。
【0035】
また、請求項2の加圧誘導溶解装置によれば、金属パイプとその両側の水冷ケーブルとの間で、冷却水の循環および高周波電流の導通を確実に成さしめることができる。
更に、請求項3の加圧誘導溶解装置によれば、金属パイプと蓋板との間の絶縁が一層確保されるため、金属パイプ自体を導通する電流が不用意に漏電する事態を確実に防止できる。
【0036】
また、請求項4の加圧誘導溶解装置によれば、圧力容器内の誘導炉で溶解された金属の溶湯を上記鋳型に鋳込むと、係る溶湯は圧力容器内のガス雰囲気により加圧されつつ凝固するため、大気圧下では得られない量の合金成分を含むインゴットを確実に得ることができる。
更に、請求項5の加圧誘導溶解装置によれば、前記真空装置により圧力容器内を一旦真空にしたりまたは減圧した後、ガス供給部の流路を切り替えて金属に添加すべき所望のガスを圧力容器内に所定の加圧状態で供給することができる。
【図面の簡単な説明】
【図1】(A)は本発明の加圧誘導溶解装置を示す概略図、(B)は(A)中の一点鎖線部分Bの拡大図。
【図2】(A),(B)は図1(B)中に示した金属パイプまたは絶縁板の斜視図。
【図3】実施例および比較例の各加圧誘導溶解装置における圧力容器の内圧力と冷却水の通水量および温度との関係を示すグラフ。
【図4】図1(B)に示す部分おける変形形態を示す部分断面図。
【図5】(A)は従来の加圧誘導溶解装置を示す概略図、(B)は(A)中の一点鎖線部分Bの拡大図。
【符号の説明】
1………………………………加圧誘導溶解装置
2………………………………圧力容器
5………………………………開口部
6………………………………誘導溶解炉
9………………………………誘導コイル
10……………………………高周波電源
12a,12b………………水冷ケーブル
14……………………………導線
16……………………………ガス供給部
18……………………………真空ポンプ(真空装置)
20a,20b………………金属パイプ
22……………………………中空部(通水路)
24……………………………フランジ
25,26……………………カプラ
28……………………………通水孔
29……………………………導線接続部
30,32,33a,33b…絶縁板
44……………………………蓋板
50……………………………鋳型
T………………………………絶縁テープ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pressure induction melting apparatus for producing, for example, high nitrogen steel.
[0002]
[Prior art]
[Patent Document 1]
In recent years, attempts have been made to improve corrosion resistance and hardness by adding nitrogen to stainless steel. In order to produce such a high-nitrogen-containing stainless steel, a melting casting apparatus disclosed in Japanese Patent Application Laid-Open No. 2000-202611 is known.
[0003]
In order to obtain the high nitrogen steel, for example, a pressure induction melting apparatus 60 as shown in FIG. 5A is also used. The melting apparatus 60 includes the pressure vessel 2, the induction melting furnace 6 disposed inside the pressure vessel 2, and the external high-frequency power supply 10. As shown in FIG. 5A, the pressure vessel 2 includes a hemispherical lid 3 made of a thick metal plate and a cylindrical main body 4, and the main body 4 has an opening 5 communicating with the outside. It has been established as possible.
As shown in FIG. 5A, the induction furnace 6 has an upward opening and an induction coil 9 provided spirally on the outside. Between both ends of the coil 9 and the high-frequency power supply 10, a pair of water-cooling cables 12a and 12b penetrating the opening 5 of the main body 4 are wired.
[0004]
FIG. 5B is an enlarged view of the vicinity of the opening 5 of the main body 4 in the pressure vessel 2. As shown in the figure, the water-cooled cables 12a and 12b are made up of a synthetic rubber insulating tube 13 covering the outer periphery, a conducting wire (cable) 14 penetrating the center, and a water supply unit 15 for circulating cooling water between the two. Multiplex structure. The cooling water is used to prevent the induction coil 9 and the conductive wire 14 from being overheated due to the current-carrying resistance and the surrounding magnetic field. As shown in FIG. 5B, a disc-shaped lid plate 62 is fixed to a flange 5 b at the tip of a cylindrical portion 5 a surrounding the opening 5 with bolts 65 and nuts 66. The cover plate 62 has a built-in hollow portion 63 for circulating cooling water, and has a pair of upper and lower through holes 64 formed therein.
[0005]
Outside the lid plate 62, a pair of insulating plates 68 and 70 are fixed by bolts 74 penetrating therethrough. In the insulating plates 68 and 70, a pair of through holes 69 and 71 that individually communicate with the pair of through holes 64 are formed.
As shown in FIG. 5B, the water cooling cables 12a and 12b individually pass through a pair of through holes 64, 69 and 71 which are coaxial with each other. The insulating tubes 13 located in the through holes 64, 69, 71 are fixed to the insulating ring 72, and the insulating ring 72 is supported between the insulating plates 68, 70. .
[0006]
As shown in FIG. 5A, a raw material for stainless steel (not shown) is charged into an induction melting furnace 6 in a closed pressure vessel 2, and a high-frequency current is applied to an induction coil 9. The raw material is induction-heated and melted by the magnetic field formed around it. The inside of the pressure vessel 2 is previously set to a nitrogen gas atmosphere of about 4 atm.
Next, the raw material melted in the induction melting furnace 6 is cast into a mold (not shown) arranged beforehand in the pressure vessel 2, and then solidifies to form the stainless steel ingot. Prior to such solidification, the nitrogen in the nitrogen gas atmosphere dissolves into the molten metal, so that the above-described ingot of high-nitrogen-containing stainless steel can be obtained.
[0007]
By the way, when the inside of the pressure vessel 2 is pressurized to the high pressure as described above, the insulating tube 13 of the water-cooled cables 12a, 12b is pressed, so that the water supply section 15 contracts. As a result, it becomes difficult for the cooling water to flow, and the reduced cooling water is heated by the heat from the induction melting furnace 6 to become steam. As a result, the induction coil 9 and the conductive wire 14 are overheated, and there is a problem that they may be damaged.
When the water supply section 15 contracts, as shown in FIG. 5 (B), the insulating ring 72 fixed to the water-cooled cables 12a, 12 breaks the fixed portion k. There is also a problem that the nitrogen gas atmosphere leaks rapidly to the outside.
[0008]
[Problems to be solved by the invention]
The present invention solves the problems in the conventional technology described above, and a water-cooled cable that connects an induction coil of an induction melting furnace built in a pressure vessel to an external high-frequency power source does not deform even when pressurized. It is another object of the present invention to provide a pressure induction melting apparatus capable of reliably circulating cooling water inside.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention has been conceived by forming a portion of a water-cooled cable that penetrates a pressure vessel with a metal pipe.
That is, a pressurized induction melting apparatus of the present invention (claim 1) comprises a sealable pressure vessel, an induction melting furnace built in the pressure vessel and provided with an induction coil around the pressure vessel, and a gas for pressurizing the inside of the pressure vessel. The supply unit includes a pair of water-cooled cables that conduct between the induction coil and the high-frequency power supply outside the pressure vessel, and the pair of water-cooled cables has an intermediate portion in an opening that penetrates the pressure vessel. A pair of metal pipes having a flange protruding on the outer peripheral side and a water passage penetrating along the longitudinal direction penetrates, and a pair of insulating plates sandwiching the inside and outside of the flange penetrate the metal pipe and a pair of insulating plates. The plate is fixed to a lid plate that closes the opening and penetrates the metal pipe.
[0010]
According to this, in the pair of water-cooled cables, at positions penetrating through the opening of the pressure vessel, metal pipes for circulating the cooling water in the inner hollow portion are individually arranged, and the metal pipes are connected via the flange. Supported by the lid plate while being sealed between a pair of insulating plates. As a result, even if the inside of the pressure vessel is pressurized, there is no problem in circulation of the cooling water, and no gap is formed between each metal pipe and each insulating plate, so that the pressure in the pressure vessel is maintained at a predetermined level. In addition, it can be reliably dissolved in a target metal or alloy. Therefore, it is possible to reliably and safely induce and melt a metal or alloy containing an alloy component which becomes a gas at normal temperature under a pressurized atmosphere.
A sealing material such as an O-ring is sandwiched between the flange of the metal pipe and the pair of insulating plates or between the outer insulating plate and the cover plate. The insulating plate is made of, for example, a synthetic resin such as a phenol resin (trade name: Bakelite) or an organic or inorganic insulating material such as mica.
[0011]
In addition, according to the present invention, a pressure induction melting device is provided in which at both ends of the metal pipe, a coupler having a conductor connection part for connecting to a conductor of the water-cooled cable and a water hole are arranged. Is also included. According to this, the cooling water that has passed through the hollow part in the metal pipe is sent to the water supply part located between the conductive wire (cable) and the insulating tube in the water-cooled cable via the water hole of the coupler, and the metal pipe The high-frequency current that has conducted itself is conducted to the conductor located at the center of the water-cooled cable via the conductor connection of the coupler. Therefore, the circulation of the cooling water and the conduction of the high-frequency current can be reliably achieved between the metal pipe and the water-cooled cables on both sides thereof.
[0012]
Further, according to the present invention, a gap is formed between the pair of metal pipes and the lid plate that penetrates the metal pipe, and an insulating tape is wound around the outer periphery of the metal pipe in the gap. A pressure induction melting device (claim 3) is also included.
According to this, since the insulation between the metal pipe and the cover plate is further secured, it is possible to reliably prevent a situation in which a current flowing through the metal pipe itself is inadvertently leaked.
[0013]
Further, the present invention also includes a pressure induction melting apparatus (claim 4) in which the pressure vessel is provided with a mold for casting the metal melted in the induction melting furnace into a predetermined shape. According to this, by casting the molten metal or alloy melted in the induction furnace in the pressure vessel into the mold, the molten metal is solidified while being pressurized by the gas atmosphere in the pressure vessel. As a result, an ingot containing an alloy component in an amount that cannot be obtained at atmospheric pressure can be reliably obtained. In addition, a press frame, a tundish, or the like according to a conventional method may be arranged in the opening of the mold.
[0014]
Further, according to the present invention, the gas supply unit for pressurizing the inside of the pressure vessel is connected to a vacuum device for pre-evacuating or depressurizing the inside of the pressure vessel. Is also included. According to this, after the inside of the pressure vessel is once evacuated or depressurized by the vacuum device, the gas of the desired component to be added to the metal or alloy is switched by switching the flow path of the gas supply unit to a predetermined pressure in the pressure vessel. It can be supplied under pressure. Therefore, it is possible to reliably obtain a molten metal or an ingot of a metal or an alloy containing a desired amount of an alloy component. In addition, as said vacuum apparatus, a vacuum pump is mentioned, for example.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. In the following, the same reference numerals are used for the same parts and elements as those in the conventional technique shown in FIG.
FIG. 1A schematically shows a pressure induction melting apparatus 1 of the present invention. The melting apparatus 1 includes a sealable pressure vessel 2, an induction melting furnace 6 built in the inside thereof, a gas supply unit 16 for pressurizing the inside of the pressure vessel 2, and a high-frequency power source 10 located outside the vessel 2. And.
As shown in FIG. 1A, the pressure vessel 2 includes a hemispherical lid 3 made of a stainless steel metal plate such as SUS304 and a cylindrical main body 4, and a lower part of the main body 4. An opening 5 communicating with the outside is provided. The lid 3 can be opened and closed, and one end of a pipe 17 of the gas supply unit 16 is connected.
[0016]
As shown in FIG. 1 (A), the induction furnace 6 includes an induction coil 9 which opens upward and is spirally provided outside the opening. Between both ends of the coil 9 and the high-frequency power supply 10, a pair of water-cooling cables 12a and 12b penetrating the opening 5 of the main body 4 are wired. Note that the pair of water-cooled cables 12a, 12b may each be in the form of a plurality of two or more cables.
Further, in the pressure vessel 2, a mold 50 that opens upward adjacent to the induction melting furnace 6, a press frame 56 made of a refractory above the mold 50, and a tundish 54 are arranged. In addition, as shown in FIG. 1 (A), the gas supply unit 16 includes a gas storage unit 19 and a vacuum pump (vacuum device) 18, which are connected to the ends, and have a pressure via a three-way switching valve 17a. It has a three-pronged pipe 17 connected to the lid 3 of the container 2.
[0017]
FIG. 1B is an enlarged view of the vicinity of the opening 5 of the main body 4 in the pressure vessel 2.
As shown in FIG. 1 (B), a pair of water-cooling cables 12a, 12b are wired inside and outside the pressure vessel 2, respectively, and these are individually connected by metal pipes 20a, 20b. Each of the water-cooled cables 12a and 12b is a multiplex structure including a synthetic rubber insulating tube 13 covering the outer periphery, a conducting wire (cable) 14 penetrating the center, and a water supply unit 15 for circulating cooling water between the two. is there. Such cooling water is used to prevent the induction coil 9 and the conductive wire 14 from being overheated by the internal conduction resistance and the surrounding magnetic field.
[0018]
The metal pipes 20a and 20b are made of, for example, oxygen-free copper. As shown in FIGS. 1 (B) and 2 (A), the metal pipes 20a and 20b extend along the entire length in the longitudinal direction as a cooling water passage. And a disk-shaped flange 24 projecting to the outer peripheral side in the middle of the pipe main body 21. The flange 24 is fixed, for example, by welding to a predetermined position of the pipe body 21.
As shown in FIG. 1 (B), couplers 25 and 26 made of the same oxygen-free copper as described above are welded to both ends of the pipe main body 21 of the metal pipes 20a and 20b. The couplers 25 and 26 are provided with a water hole 28 communicating between the hollow portion 22 of the metal pipes 20a and 20b and the water supply portion 15 of the water cooling cables 12a and 12b, and an end of the conducting wire 14 of the water cooling cables 12a and 12b. A conductor connecting portion 29 for connection is built in.
[0019]
Further, as shown in FIG. 1B, the flanges 24 of the metal pipes 20a, 20b are sandwiched between a pair of insulating plates 30, 32 from both inside and outside. The insulating plates 30 and 32 are made of, for example, a urea resin (trade name: Bakelite). As shown in FIG. 2B, a disc-shaped main body 31 and surfaces 30a and 32a where the main bodies 31 face each other are provided. A pair of upper and lower recesses 34 for receiving half of the thickness of the flanges 24 and 24 and a through hole 36 penetrating from the center of the recess 34 to the outer surfaces 30b and 32b are provided symmetrically. A plurality of bolt holes 38 are drilled around each body 31.
As shown in FIG. 1B, in the metal pipes 20a and 20b, the respective pipe main bodies 21 are inserted into the through holes 36 of the insulating plates 30 and 32, and the respective flanges 24 are formed in the recesses 34 and 34 of the insulating plates 30 and 32. Are sandwiched via an O-ring (sealant) 40.
[0020]
As shown in FIG. 1B, the pair of insulating plates 30 and 32 supporting the metal pipes 20a and 20b with the respective flanges 24 interposed therebetween are formed by bolts 42 passing through the bolt holes 38 and 38 of the cover plate 44. By screwing into the female screw hole 45, the pressure vessel 2 is fixed to the cover plate 44 that closes the opening 5.
As shown in FIG. 1B, the opening 5 is closed by a plurality of sets of bolts 46 and nuts 47 on a ring-shaped flange 5b welded to the tip of a cylindrical portion 5a surrounding the opening 5 of the pressure vessel 2. The metal cover plate 44 is fixed.
[0021]
The cover plate 44 has a pair of upper and lower through holes 48 that penetrate the pipe bodies 21 of the metal pipes 20a and 20b through a gap, and a female threadedly connected to a bolt 42 that penetrates the pair of insulating plates 30 and 32. And a screw hole 45.
The cover plate 44 has a disk shape made of the same stainless steel as described above, and has a hollow portion 49 in which cooling water is circulated independently. Further, the cover plate 44 sandwiches the inner and outer double O-rings 40, 40 having different diameters between the flange plate 5b and the adjacent insulating plate 32, respectively. An insulating tape T is wound around each of the pipe bodies 21 of the metal pipes 20a and 20b that penetrate through the through hole 48 of the cover plate 44 through a gap, and a gap between the metal cover plate 44 and each of the pipe bodies 21 is formed. Insulated.
[0022]
The above-described pressure induction melting apparatus 1 is operated as follows.
After the lid 3 is opened and the raw material corresponding to the target alloy component is charged into the induction melting furnace 6, the lid 3 is closed and the pressure vessel 2 is sealed as shown in FIG. In this state, after the vacuum pump 18 is driven to evacuate the pressure vessel 2 once through the pipe 17, for example, nitrogen gas is supplied from the gas storage unit 19 of the gas supply unit 16 into the pressure vessel 2 via the pipe 17. The pressure is increased to about several to several tens of atmosphere by forcibly blowing.
[0023]
Next, a high-frequency current of several kHz is transmitted from the high-frequency power supply 10 to the induction coil 9 of the induction melting furnace 6 via the inner and outer water-cooled cables 12a and 12b and the metal pipes 20a and 20b. A magnetic field penetrating the induction melting furnace 6 from the induction coil 9 is formed by the high-frequency current, and the raw material charged into the induction melting furnace 6 is heated by the eddy current by the magnetic field and gradually melts into molten metal. At the same time, the molten metal is stirred by the magnetic field.
Next, the induction melting furnace 6 is tilted toward the tundish 54 in the pressure vessel 2 shown in FIG. 1A by tilting means (not shown). Pour the water inside. As a result, for example, an ingot made of stainless steel containing a large amount of nitrogen can be obtained.
[0024]
Through the above-described steps of energization, melting, and casting, the inside of the force-transmitting vessel 2 is pressurized to a pressure of several atmospheres or more, but the portions of the water-cooled cables 12a and 12b that penetrate through the opening 5 of the pressure vessel 2 include metal. Since the pipes 20a and 20b are arranged, the cooling water can be reliably circulated through the water supply sections 15 of the water cooling cables 12a and 12b inside and outside the pressure vessel 2. As a result, it is possible to reliably prevent the conductor 14 of the water cooling cables 12a and 12b in the pressure vessel 2 and the induction coil 9 from being overheated as in the related art. In addition, since the metal pipes 20a and 20b have the flange 24 sandwiched between the insulating plates 30 and 32 via the O-ring 40 as a sealing material, there is no gap caused by shrinkage deformation as in the related art, and the pressure vessel The pressurized state in 2 can be reliably maintained. Therefore, according to the pressurized induction melting apparatus 1 described above, it is possible to safely and reliably perform the induction melting of the metal and the ingot casting under the pressurized atmosphere.
[0025]
【Example】
Here, specific examples of the present invention will be described together with comparative examples.
Two pressure vessels 2 each formed by a main body 2 made of a thick plate of stainless steel (SUS304) having a plate thickness of 20 mm and a lid 3 and having an internal volume of 4.0 m 3 were prepared. Such a pressure vessel 2 can withstand an internal pressure of about 1 MPa.
One pressure vessel 2 includes the induction melting furnace 6, the gas supply unit 16, the mold 50, the water-cooled cables 12a and 12b, the high-frequency power source 10, and the opening of the pressure vessel 2 as shown in FIG. 5, the pressure induction melting apparatus 1 of the embodiment in which metal pipes 20a and 20b and insulating plates 30 and 32 were arranged inside and outside.
[0026]
The other pressure vessel 2 includes the induction melting furnace 6, the gas supply unit 16, the mold 50, the water-cooled cables 12a and 12b, the high-frequency power source 10, and the opening of the pressure vessel 2 as shown in FIG. 5, a pressure induction melting apparatus of a comparative example in which insulating plates 68 and 70 through which the water-cooled cables 12a and 12b penetrate was disposed inside and outside.
In each example, the induction melting furnace 6, the mold 50, and the water-cooled cables 12a, 12b are common, and the cross-sectional area of the hollow portion 22 of the metal pipes 20a, 20b in the embodiment is determined by cutting off the water supply section 15 of the water-cooled cables 12a, 12b. It was the same as the area.
[0027]
After loading 50 kg of raw material for stainless steel (SUS304) into the induction melting furnace 6 of each example, closing the lid 3 and sealing the pressure vessel 2, the inside of the pressure vessel 2 of each example is closed by the gas supply unit 16. Once a vacuum was established, nitrogen gas was gradually filled and pressurized.
In addition, a high-frequency current of 2 kHz is supplied to the induction coil 9 of the induction melting furnace 6 from the high-frequency power supply (70 kW) 10 of each example via the water-cooled cables 12a and 12b or the metal pipes 20a and 20b on the way, thereby supplying the above-mentioned raw material. Was heated and dissolved. At this time, the temperature at the time of dissolution was 1600 ° C. and kept for 70 minutes.
Then, in each example, the flow rate and temperature of the cooling water in the water-cooled cables 12a and 12b were measured with respect to changes in the pressure (internal pressure) in the pressure vessel 2. The results are shown in the graph of FIG.
[0028]
As shown in the graph of FIG. 3, in the pressurized induction melting apparatus 1 of the embodiment, even if the internal pressure of the pressure vessel 2 increases from 0.1 MPa to 0.9 MPa, the flow rate of the cooling water slightly decreases and the cooling is performed. The temperature of the water rose only about 10 ° C.
On the other hand, in the pressurized induction melting apparatus of the comparative example, as shown in the graph of FIG. 3, as the internal pressure of the pressure vessel 2 increases from 0.1 MPa to 0.8 MPa, the flow rate of the cooling water is about 21 liters. / Min and the temperature of the cooling water increased by about 38 ° C. In this comparative example, the flow rate and the temperature at an internal pressure of 0.9 MPa could not be measured because the temperature of the cooling water was too high to be dangerous.
The above results show that, in the embodiment, the metal pipes 20a and 20b are disposed near the opening 5 of the pressure vessel 2, so that even if the pressure vessel 2 is pressurized, the flow rate of the cooling water hardly decreases. This indicates that the rise in the temperature of the cooling water is also suppressed. These results confirmed the effect of the pressure induction melting apparatus 1 of the present invention.
[0029]
FIG. 4 shows a modification of the vicinity of the metal pipes 20a and 20b in the pressure induction melting apparatus 1. In FIG. 4, the flanges 24 of the metal pipes 20a and 20b are sandwiched between a pair of insulating plates 33a and 33b from both inside and outside.
The insulating plates 33a and 33b are also made of the same resin as described above. As shown in FIG. 4, the inner insulating plate 33a has a pair of upper and lower through-holes 36 having a flat disk shape on both sides. The outer insulating plate 33b has, on its inner surface, a pair of upper and lower deep recesses 34 for receiving the entire thickness of the flanges 24, 24, and through holes 36, 36 penetrating from the center of these recesses 34 to the outer surface. have.
[0030]
Further, a plurality of bolt holes 38 are formed around the insulating plates 33a and 33b. As shown in FIG. 4, the metal pipes 20a and 20b allow the respective pipe bodies 21 to pass through the respective through holes 36 of the insulating plates 33a and 33b, and the flanges 24 thereof are inserted into the concave portions 34 and 34 of the insulating plate 33b. It is inserted and sandwiched via an O-ring (sealant) 40. An O-ring 40 is also interposed between each flange 24 and the insulating plate 33a.
[0031]
As shown in FIG. 4, the pair of insulating plates 33 a and 33 b are fixed to a cover plate 44 that closes the opening 5 of the pressure vessel 2 by bolts 42 penetrating the bolt holes 38 and 38. Reference numeral 44 denotes a plurality of sets of bolts 46 and nuts 47 fixed to a ring-shaped flange 5b provided at the end of a cylindrical portion 5a surrounding the opening 5 of the pressure vessel 2. An insulating tape T is wound around each of the pipe bodies 21 of the metal pipes 20a and 20b that penetrate through the through hole 48 of the cover plate 44 through a gap, and the gap between the metal cover plate 44 and the pipe body 21 is formed. Insulated.
Even in the embodiment using the insulating plates 33a and 33b, the same airtightness as the insulating plates 30 and 32, water permeability of the cooling water in the metal pipes 20a and 20b, and the like can be ensured.
[0032]
The present invention is not limited to the embodiments described above.
For example, as long as the lid 3 can be opened and closed, the pressure vessel 2 may have a configuration in which the cylindrical main body 4 is arranged horizontally long.
Further, the metal pipes 20a and 20b are not limited to the oxygen-free copper and may be made of various copper alloys or aluminum alloys. For example, when the pipe body 21 is made of an extruded aluminum alloy, a plurality of hollow portions (22) can be integrally formed at substantially the same radial position as the water passage portion 15 of the water-cooled cables 12a and 12b. A disk-shaped flange 24 may be welded to the middle outer peripheral side of the pipe body 21 for assembly.
[0033]
Further, the pipe body 21 is not limited to a circular cross section, and may be a form having a cross section of a regular polygon or a deformed polygon having a quadrangle or more. The flange 24 is not limited to a disk shape and may have a regular shape having a quadrangle or more. The shape may be a polygon or a deformed polygon.
Further, the pair of insulating plates sandwiching the flange 24 may be made of a plate material having flat both side surfaces like the insulating plate 33a.
The gas to be pressurized in the pressure vessel 2 is not limited to the above-mentioned nitrogen, but can be appropriately selected according to the target metal or alloy component.
[0034]
【The invention's effect】
According to the above-described pressurized induction melting apparatus of the present invention (claim 1), a metal pipe for circulating cooling water through an inner hollow portion is individually provided at a position penetrating an opening of a pressure vessel in a water-cooled cable. And the metal pipe is supported by the lid plate while being sandwiched between a pair of insulating plates via a flange. As a result, even if the inside of the pressure vessel is pressurized, there is no problem in circulation of the cooling water, and no gap is formed between each metal pipe and each insulating plate, so that the pressure in the pressure vessel is maintained at a predetermined level. Thus, it can be reliably dissolved in a target metal or alloy. Therefore, it is possible to reliably and safely induce and melt an alloy containing an alloy component which becomes a gas at normal temperature under a pressurized atmosphere.
[0035]
According to the pressurized induction melting apparatus of the second aspect, the circulation of the cooling water and the conduction of the high-frequency current can be reliably achieved between the metal pipe and the water cooling cables on both sides thereof.
Furthermore, according to the pressure induction melting apparatus of the third aspect, the insulation between the metal pipe and the cover plate is further secured, so that the current flowing through the metal pipe itself is prevented from inadvertently leaking. it can.
[0036]
According to the pressure induction melting apparatus of claim 4, when the molten metal of the metal melted in the induction furnace in the pressure vessel is cast into the mold, the molten metal is pressurized by the gas atmosphere in the pressure vessel. Because of solidification, an ingot containing an alloy component in an amount that cannot be obtained under atmospheric pressure can be reliably obtained.
Further, according to the pressurized induction melting apparatus of claim 5, after the inside of the pressure vessel is once evacuated or depressurized by the vacuum device, the desired gas to be added to the metal is switched by switching the flow path of the gas supply unit. It can be supplied in a predetermined pressurized state in the pressure vessel.
[Brief description of the drawings]
FIG. 1A is a schematic view showing a pressure induction melting apparatus of the present invention, and FIG. 1B is an enlarged view of a dashed line portion B in FIG.
FIGS. 2A and 2B are perspective views of a metal pipe or an insulating plate shown in FIG. 1B.
FIG. 3 is a graph showing the relationship between the internal pressure of a pressure vessel, the flow rate of cooling water, and the temperature in each of the pressurized induction melting apparatuses of Examples and Comparative Examples.
FIG. 4 is a partial cross-sectional view showing a modification of the portion shown in FIG.
FIG. 5A is a schematic view showing a conventional pressure induction melting apparatus, and FIG. 5B is an enlarged view of a dashed line portion B in FIG.
[Explanation of symbols]
1 ……………………………………………………………………………………………………………………… Pressure vessel 5 ……………………………… Opening 6 Induction melting furnace 9 Induction coil 10 High frequency power supplies 12a, 12b … Water-cooled cable 14… Conductor 16… Gas supply unit 18… Vacuum pump (vacuum device)
20a, 20b Metal pipe 22 Hollow part (water passage)
24 Flange 25, 26 Coupler 28 Coupler hole 29 Water passage hole 29 …………………………………………………… ... Conducting wire connecting portions 30, 32, 33a, 33b Insulating plate 44... Lid plate 50... …………… Insulation tape

Claims (5)

密閉可能な圧力容器と、
上記圧力容器に内蔵され周囲に誘導コイルを設けた誘導溶解炉と、
上記圧力容器内を加圧するガス供給部と、
上記誘導コイルと上記圧力容器外の高周波電源との間を導通する一対の水冷式ケーブルと、を含み、
上記一対の水冷式ケーブルが上記圧力容器を貫通する開口部には、中間の外周側に張り出したフランジおよび長手方向に沿って貫通する通水路を有する一対の金属パイプが貫通し、上記フランジの内外を挟む一対の絶縁板は上記金属パイプを貫通させると共に、係る一対の絶縁板を、上記開口部を閉塞し且つ上記金属パイプを貫通させる蓋板に固定している、
ことを特徴とする加圧誘導溶解装置。
A sealable pressure vessel;
An induction melting furnace built in the pressure vessel and provided with an induction coil around;
A gas supply unit for pressurizing the inside of the pressure vessel,
A pair of water-cooled cables that conduct between the induction coil and the high-frequency power supply outside the pressure vessel,
In the opening through which the pair of water-cooled cables penetrates the pressure vessel, a pair of metal pipes having a flange projecting to an intermediate outer peripheral side and a water passage penetrating along the longitudinal direction penetrates, and the inside and outside of the flange are pierced. A pair of insulating plates sandwiching the metal pipe penetrates the metal pipe, and the pair of insulating plates is fixed to a lid plate that closes the opening and penetrates the metal pipe.
A pressure induction melting apparatus characterized by the above-mentioned.
前記金属パイプの両端には、前記水冷ケーブルの導線と接続する導線接続部および通水孔を内蔵するカプラが配置されている、
ことを特徴とする請求項1に記載の加圧誘導溶解装置。
At both ends of the metal pipe, a coupler incorporating a conductor connection portion and a water hole connected to the conductor of the water-cooled cable are arranged.
The pressurized induction melting apparatus according to claim 1, wherein:
前記一対の金属パイプとこれを貫通させる前記蓋板との間には、隙間が形成され、係る隙間内において上記金属パイプの外周に絶縁テープが巻き付けられている、
ことを特徴とする請求項1または2に記載の加圧誘導溶解装置。
A gap is formed between the pair of metal pipes and the lid plate that penetrates the insulating pipe, and an insulating tape is wound around the outer circumference of the metal pipe in the gap.
The pressure induction melting apparatus according to claim 1 or 2, wherein:
前記圧力容器には、前記誘導溶解炉で溶解された金属を所定の形状に鋳造する鋳型が配置されている、
ことを特徴とする請求項1乃至3の何れか一項に記載の加圧誘導溶解装置。
In the pressure vessel, a mold for casting the metal melted in the induction melting furnace into a predetermined shape is arranged,
The pressure induction melting apparatus according to any one of claims 1 to 3, wherein:
前記圧力容器内を加圧するガス供給部は、係る圧力容器内を予め真空にし、または減圧する真空装置にも連通されている、
ことを特徴とする請求項1乃至4の何れか一項に記載の加圧誘導溶解装置。
The gas supply unit for pressurizing the inside of the pressure vessel, the inside of the pressure vessel is previously evacuated, or is also connected to a vacuum device for reducing the pressure,
The pressurized induction melting apparatus according to any one of claims 1 to 4, wherein:
JP2002274795A 2002-09-20 2002-09-20 Pressurization induction melting device Withdrawn JP2004108725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002274795A JP2004108725A (en) 2002-09-20 2002-09-20 Pressurization induction melting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002274795A JP2004108725A (en) 2002-09-20 2002-09-20 Pressurization induction melting device

Publications (1)

Publication Number Publication Date
JP2004108725A true JP2004108725A (en) 2004-04-08

Family

ID=32271167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002274795A Withdrawn JP2004108725A (en) 2002-09-20 2002-09-20 Pressurization induction melting device

Country Status (1)

Country Link
JP (1) JP2004108725A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073450A (en) * 2005-09-09 2007-03-22 Meidensha Corp Conductor for high-frequency power supply
JP2011076843A (en) * 2009-09-30 2011-04-14 Sinfonia Technology Co Ltd Water-cooled cable, and vacuum heating device
CN103805786A (en) * 2014-01-23 2014-05-21 佛山市诺傲再生资源科技有限公司 High-efficiency electromagnetic induction heating based mixed nickel-copper-zinc metal recovery furnace
CN105605935A (en) * 2016-01-27 2016-05-25 安庆市鸿裕工业产品设计有限公司 Combustible and explosive defense module for charging of intermediate frequency furnace

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073450A (en) * 2005-09-09 2007-03-22 Meidensha Corp Conductor for high-frequency power supply
JP4710498B2 (en) * 2005-09-09 2011-06-29 株式会社明電舎 High frequency power supply conductor
JP2011076843A (en) * 2009-09-30 2011-04-14 Sinfonia Technology Co Ltd Water-cooled cable, and vacuum heating device
CN103805786A (en) * 2014-01-23 2014-05-21 佛山市诺傲再生资源科技有限公司 High-efficiency electromagnetic induction heating based mixed nickel-copper-zinc metal recovery furnace
CN105605935A (en) * 2016-01-27 2016-05-25 安庆市鸿裕工业产品设计有限公司 Combustible and explosive defense module for charging of intermediate frequency furnace

Similar Documents

Publication Publication Date Title
JP3049648B2 (en) Pressure molding method and pressure molding machine
CN105665908B (en) Using the point of resistance welding steel and aluminium workpiece of electrode package
US8074704B2 (en) Method and apparatus for semi-continuous casting of hollow ingots and products resulting therefrom
TW482882B (en) Metal melting apparatus
US20160312322A1 (en) Device and method for treating metallic materials
JPH0380578B2 (en)
JP2004108725A (en) Pressurization induction melting device
EP3060365B1 (en) Crystallizer for continuous casting and method for its production
US20010042608A1 (en) Liquid-cooled plate mold
CN104259446B (en) A kind of pollution-free high-efficient refinement titanium aluminum alloy method
CN104959557B (en) Method for electromagnetic continuous casting of bimetallic multilayer round billet
FR2566984A1 (en) ELECTRICAL CONNECTION DEVICE FOR PLACING IN WALL OF A METALLURGICAL CONTAINER IN CONTACT WITH A FUSION METAL
Beall et al. Production of Titanium Castings
JP2004060946A (en) Waste melting apparatus and waste melting method
JP4378818B2 (en) Induction heating melting furnace
JP4326923B2 (en) Rotary hot water casting equipment
CN1907601B (en) Method of and apparatus for manufacturing a joined body
JP2018502448A (en) Conductor arrangement and method of manufacturing the conductor arrangement
JP2005211927A (en) Bottom part molten metal discharging type casting apparatus
JPH05309470A (en) Low pressure casting apparatus
JP2000258067A (en) Floating melting apparatus and its casting
JP6588316B2 (en) Electromagnetic stirrer and molten metal tank provided with electromagnetic stirrer
KR102442579B1 (en) Method for manufacturing titanium casting parts
CN116399125B (en) Device for continuous induction smelting of metal cast ingot and application thereof
JP2003227687A (en) Metal melter

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050729

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Effective date: 20070107

Free format text: JAPANESE INTERMEDIATE CODE: A761