JP2004108345A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2004108345A
JP2004108345A JP2002275992A JP2002275992A JP2004108345A JP 2004108345 A JP2004108345 A JP 2004108345A JP 2002275992 A JP2002275992 A JP 2002275992A JP 2002275992 A JP2002275992 A JP 2002275992A JP 2004108345 A JP2004108345 A JP 2004108345A
Authority
JP
Japan
Prior art keywords
way catalyst
temperature
catalyst
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002275992A
Other languages
Japanese (ja)
Other versions
JP4178379B2 (en
Inventor
Hiroshi Tanada
棚田 浩
Hideo Nakai
中井 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2002275992A priority Critical patent/JP4178379B2/en
Publication of JP2004108345A publication Critical patent/JP2004108345A/en
Application granted granted Critical
Publication of JP4178379B2 publication Critical patent/JP4178379B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device of an internal combustion engine capable of efficiently and securely controlling HC when the internal combustion engine is started in cold state. <P>SOLUTION: A three-way conversion catalyst 22 formed of a transition metal included in a catalyst layer is installed in an exhaust emission passage 14. An HC trap 20 adsorbing HC and discharging the adsorbed HC at a specified temperature or higher is installed on the upstream side of the three-way conversion catalyst. In addition, an oxygen supply means 34 supplying oxygen to the three-way conversion catalyst is installed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関の排気浄化装置に係り、詳しくは、内燃機関の冷態始動時においてHC(炭化水素)を確実に浄化可能な排気浄化装置に関する。
【0002】
【関連する背景技術】
一般に、エンジン(内燃機関)は排気中の有害物質(HC、CO、NOx等)を三元触媒を用いて浄化する排気浄化装置を備えている。しかしながら、当該三元触媒は活性温度に達するまでは浄化性能を十分に発揮できず、三元触媒をエンジン本体に近接配置して早期活性化を図るようにしても、エンジンの冷態始動時には排出されるHCを十分に浄化できないという問題がある。
【0003】
この問題を解決するため、HCの吸着に有効なゼオライト層上に三元触媒層を備え、ゼオライト層にHCを吸着するとともに一定温度に達して脱離したHCを三元触媒層で浄化するHC吸着触媒が提案されている(例えば、特許文献1参照)。
一方、排気通路上にゼオライト等のHC吸着物質と三元触媒とを別体に設けるとともに三元触媒に流入する排気の空燃比を理論空燃比に保持し、HC吸着物質から脱離するHCを三元触媒で浄化させる構成の装置が開示されている(例えば、特許文献2参照)。
【0004】
また、炭化水素捕捉器と炭化水素を無害にする触媒組成物からなる触媒とを別体に設けるとともに触媒上流で酸素含有ガスを排ガスに混流させ、触媒を電気的加熱手段で加熱させて触媒の早期活性を図る構成の装置が開示されている(例えば、特許文献3参照)。
【0005】
【特許文献1】
特開平7−124468号公報
【特許文献2】
特開平5−149130号公報
【特許文献3】
特表平10−513526号公報
【0006】
【発明が解決しようとする課題】
しかしながら、HC吸着触媒のHCの脱離が開始される温度は約70℃〜150℃と低いのに対し三元成分の活性温度は約250℃〜350℃と高く、上記特許文献1や特許文献2の場合にあっては、一体に担持された三元成分或いは三元触媒が活性するまでは脱離したHCが浄化されずに排出されるという問題がある。
【0007】
この場合、始動時のエンジン制御において空燃比をリーン空燃比とし且つ点火時期をリタードさせて三元成分や三元触媒の早期昇温を図ることも考えられるが、同時にゼオライトからのHCの脱離も早くなり効果は低い。また、HC吸着触媒やHC吸着物質及び三元触媒を上記の如くエンジン本体に近接配置することも考えられるが、ゼオライトの耐熱温度は低く、HC吸着触媒やHC吸着物質の耐熱耐久性を確保できず、また排気圧が高くなりエンジンの出力性能が劣ることにもなり好ましいことではない。
【0008】
また、特許文献3に開示されるように触媒を電気的加熱手段で加熱させる場合には、電気的加熱手段を別途設ける必要があり、コストアップに繋がり好ましいことではない。
本発明はこのような問題点を解決するためになされたもので、その目的とするところは、内燃機関の冷態始動時においてHCを効率よく確実に浄化可能な内燃機関の排気浄化装置を提供することにある。
【0009】
【課題を解決するための手段】
上記した目的を達成するために、請求項1の内燃機関の排気浄化装置では、排気通路に設けられ、触媒層に遷移金属を包含してなる三元触媒と、前記三元触媒の排気上流側に位置して設けられ、HCを吸着するとともに該吸着したHCを一定温度以上で放出する機能を有し、触媒機能を有しないHCトラップと、前記三元触媒の排気上流側に酸素を供給する酸素供給手段とを備えることを特徴としている。
【0010】
このように、三元触媒が触媒層に遷移金属を包含していると、該遷移金属はCO(一酸化炭素)を吸着し酸化する能力が高いことから、内燃機関から排出されたCOが遷移金属に多く吸着され且つ酸素供給手段によって三元触媒に酸素が供給されることでCOの酸化反応が促進されることになり、当該酸化反応の反応熱で三元触媒が加熱昇温されて早期に活性温度(約250℃〜350℃)に到達する。特に、HCトラップは触媒機能を有していないことから、内燃機関から排出されたCOはHCトラップ上で酸化されることなく良好に三元触媒の遷移金属によって吸着、酸化されることになり、三元触媒は効率よく昇温される。
【0011】
従って、内燃機関の冷態始動時には、内燃機関からCOとともにHCが排出されてHCトラップに吸着され、該吸着されたHCは一定温度(約150℃)以上で脱離されて下流の三元触媒に向け放出されることになるが、この時点では三元触媒は既に活性温度に達していることになり、脱離したHCが三元触媒によって効率よく確実に浄化される。
【0012】
この場合、三元触媒を内燃機関本体に近接させなくてもよいので、HCトラップの耐熱耐久性も確保され、排気圧の上昇による内燃機関の出力低下もない。
また、三元触媒に高価な貴金属(Pt等)を大量に担持させなくてもHCを確実に浄化できるので、三元触媒の製造コストが削減される。
なお、酸素供給手段は内燃機関をリーン空燃比に設定して排気中の余剰酸素を増加させることによっても実現可能であるが、好ましくは、酸素供給手段はエアポンプからなる外部供給手段であるのがよく、このようにすれば内燃機関をリッチ空燃比側に設定して燃焼安定性を確保でき、内燃機関の出力性能の低下が防止される。
【0013】
また、請求項2の内燃機関の排気浄化装置では、前記三元触媒に包含される遷移金属は、少なくともニッケルを含むことを特徴としている。
即ち、遷移金属のうちニッケルはCOを吸着し酸化させる能力が特に高く、三元触媒にニッケルを含ませることにより、三元触媒でのCOの酸化反応量が十分に確保されて三元触媒が良好に昇温し、HCが確実に浄化される。
【0014】
好ましくは、三元触媒に包含される遷移金属は、触媒層全体に対し少なくともニッケル成分を10グラム/リットル以上含むようにするのがよい。
これにより、三元触媒でのCOの酸化反応量が不足なく十分に確保されて三元触媒が良好に昇温し、HCが確実に浄化される。
また、請求項3の内燃機関の排気浄化装置では、前記HCトラップはβ型ゼオライトからなることを特徴としている。
【0015】
即ち、β型ゼオライトは特にHC吸着能力が高く、三元触媒が活性化するまでHCをHCトラップに十分に保持でき、HCがより一層確実に浄化される。
また、請求項4の内燃機関の排気浄化装置では、さらに、前記三元触媒の温度を検出する触媒温度検出手段を備え、前記酸素供給手段は、前記触媒温度検出手段により検出される前記三元触媒の温度が所定温度以上になったとき、酸素の供給を開始することを特徴としている。
【0016】
即ち、三元触媒の温度が所定温度(ニッケルによるCOの酸化反応が開始される温度であって、例えば100℃)以上になったときに酸素供給手段により酸素の供給を開始することにより、適切なタイミングでCOの酸化が促進され、三元触媒の昇温がより一層効率よく実施される。
【0017】
【発明の実施の形態】
以下、本発明に係る内燃機関の排気浄化装置の実施形態を添付図面に基づき説明する。
図1を参照すると、車両に搭載された本発明に係る内燃機関の排気浄化装置の概略構成図が示されており、以下同図に基づいて本発明に係る内燃機関の排気浄化装置の構成を説明する。
【0018】
内燃機関(以下、単にエンジンという)1としては、吸気管噴射型の火花点火式ガソリンエンジンが採用される。吸気管噴射型の火花点火式ガソリンエンジンは公知であるため、構成の詳細についてはここでは説明を省略する。
エンジン1のシリンダヘッドには、各気筒毎に吸気ポートが形成されており、各吸気ポートと連通するようにして吸気マニホールド10の一端がそれぞれ接続されている。また、シリンダヘッド2には、各気筒毎に排気ポートが形成されており、各排気ポートと連通するようにして排気マニホールド12の一端がそれぞれ接続されている。
【0019】
排気マニホールド12には排気管(排気通路)14が接続されており、この排気管14には、車両の床下に位置してHCトラップ20が介装され、該HCトラップ20の下流に位置して三元触媒22が介装されている。
HCトラップ20は、多数のセルからなる多孔質モノリス型のコージライト担体を有し、各セルは例えば断面四角形状に形成されている。
【0020】
HCトラップ20のコージライト担体の表面には、β型ゼオライトを主成分とするHC吸着材が形成されている。β型ゼオライトは、HC、特にオレフィン系HCを吸着し、温度が上昇して一定温度(約150℃)に達すると当該吸着したHCを脱離させ放出する機能を有している。そして、β型ゼオライトは、細孔径が7.6〜7.8Åと他のゼオライト(MFI型、Y型等)よりも大きく吸着量が多く、脱離開始温度が高く(約150℃)、脱離終了温度も高く、高温域でのHC脱離割合が高いという特性を有している。つまり、HCトラップ20のHC吸着材としてβ型ゼオライトを使用することで、HC吸着能力を高め、できるだけ高温域までHCを吸着保持することが可能である。
【0021】
なお、HCトラップ20には触媒層が形成されておらず、当該HCトラップ20ではCO、NOxは浄化されることはない。
三元触媒22は、やはり多数のセルからなる多孔質モノリス型のコージライト担体23を有し、各セルは例えば断面四角形状に形成されている。図2を参照すると、三元触媒22の一つのセルの四半部が示されており、以下同図に基づき三元触媒22の構成を説明する。
【0022】
同図に示すように、三元触媒22は、コージライト担体23の表面に、下層側に三元触媒層24が形成され、上層側に三元触媒にニッケル(Ni)を含む三元触媒ニッケル層26が形成されて構成されている。
下層側の三元触媒層24は、貴金属として白金(Pt)、ロジウム(Rh)及びパラジウム(Pd)の少なくともいずれか一つを含み、排気空燃比が理論空燃比(ストイキオ)近傍にあるときにHC、CO、NOxの3成分を良好に浄化可能に構成されている。
【0023】
一方、上層側の三元触媒ニッケル層26は、上記同様に貴金属として白金(Pt)、ロジウム(Rh)及びパラジウム(Pd)の少なくともいずれか一つを含むとともに、さらに遷移金属の一つであるニッケル(Ni)を含んで構成されている。実際には、三元触媒中に酸化ニッケル(NiO)を含んで構成されている。詳しくは、三元触媒ニッケル層26は、NiOを触媒層全体に対し少なくとも10g(グラム)/L(リットル)以上含んでいる。
【0024】
Ni或いはNiOは、排ガス中のCOを吸着するとともに、酸素存在のもとで吸着したCOの酸化反応を促進する機能を有し、且つその機能が高いことが確認されており、Ni或いはNiOの含有量が多いほど排ガス中のCOを多く吸着し、酸化反応を促進させることができる。なお、三元触媒ニッケル層26を上層側に形成しているのは、排ガスに対する暴露面積を増やしてCOを吸着し易くするためである。
【0025】
図1に戻り、三元触媒ニッケル層26の上流部分からはエア通路30が延びており、エア通路30はチェックバルブ31、エアフィルタ32を介してエアポンプ(酸素供給手段)34の吐出口に接続されている。つまり、エアポンプ34が作動すると、三元触媒ニッケル層26の上流部分にエアポンプ34の作動量に応じた量の空気が供給され、排ガスとともに酸素が三元触媒ニッケル層26に流入する。
【0026】
また、排気管14には、HCトラップ20に流入する排ガスに含まれる酸素濃度を検出することで排気空燃比を検出するリニア空燃比センサ16が設けられており、三元触媒22には三元触媒22の温度、即ち触媒温度Tcatを検出する温度センサ(触媒温度検出手段)28が設けられている。
さらに、入出力装置、メモリ、CPU等を備えたECU(電子コントロールユニット)40が設置されており、このECU40により、エンジン1や本発明に係る内燃機関の排気浄化装置の総合的な制御が行われる。
【0027】
ECU40の入力側には、上述したリニア空燃比センサ16、温度センサ28等の各種センサ類が接続されており、これらセンサ類からの検出情報が入力する。
一方、ECU40の出力側には、エンジン1の燃料噴射弁や点火コイル(共に図示せず)、上記エアポンプ34等の各種デバイス類が接続されており、燃料噴射弁や点火コイルには、各種センサ類からの検出情報に基づき演算された目標空燃比に応じた燃料噴射量、点火時期等の最適制御信号がそれぞれ出力され、エアポンプ34には、各種センサ類からの検出情報に基づきポンプ作動量、ポンプ作動時期等の最適制御信号が出力される。
【0028】
以下、上記のように構成された本発明に係る排気浄化装置の作用を説明する。エンジン1が冷態にあり、三元触媒22が未だ活性状態にないような場合には、エンジン1自体の暖機や三元触媒22の活性化を図るべく、目標空燃比をリッチ空燃比としてエンジン1を始動させる。
このように目標空燃比をリッチ空燃比としてエンジン1を始動させると、エンジン1が冷態であり且つ酸素量が少ないことから、エンジン1から排気管14に排出される排ガス中にはHCとともにCOが多く含まれる。
【0029】
このように排出されたHCとCOとは、それぞれHCについてはHCトラップ20に吸着され、COについては触媒層を有しないHCトラップ20を浄化されることなく通過して三元触媒22の三元触媒ニッケル層26に吸着される。詳しくは、COは三元触媒ニッケル層26のNiに保持される。
エンジン1の暖機が進み、排ガスの昇温により三元触媒22の温度Tcatが上昇し始めるが、温度センサ28からの温度情報により、三元触媒22の温度Tcatが所定温度(Ni或いはNiOによるCOの酸化反応が開始される温度であって、例えば100℃)に達したら、エアポンプ34をCO量(例えば、目標空燃比)に応じた作動量で作動させる。これにより、三元触媒22に酸素が供給されることになり、三元触媒ニッケル層26に吸着されたCOが当該酸素と酸化反応を引き起こす。
【0030】
このように三元触媒ニッケル層26に吸着されたCOがエアポンプ34により供給される空気中の酸素と一気に酸化反応すると、酸化反応に応じた大量の反応熱が不足なく十分に発生することになり、当該反応熱によって三元触媒22が急速に加熱され昇温することになる。
図3を参照すると、三元触媒22に三元触媒ニッケル層26を備えるとともに三元触媒22の上流に空気供給を行った場合の触媒温度Tcatの時間変化がそれぞれ実線(NiO量:11.6g/L)、破線(NiO量:23.2g/L)、一点鎖線(NiO量:34.8g/L)で示されているが、空気供給を行うことにより、このように触媒温度Tcatが急激に上昇することになる。特に、NiO量が多いほど触媒温度Tcatは大きく昇温する。
【0031】
これにより、三元触媒22の温度Tcatが容易に活性温度(約250℃〜350℃)に到達することになり、三元触媒22の早期活性化が図られる。
なお、三元触媒22の温度Tcatが活性温度(約250℃)に達したら、エアポンプ34の作動は停止する。
一方、HCトラップ20に吸着されたHCは、上述したようにHCトラップ20が一定温度(約150℃)に達すると脱離を開始し、HCトラップ20から放出された当該HCは、下流側の三元触媒22に流入することになる。
【0032】
ところが、三元触媒22は、上述のように急速に昇温することになるため、HCトラップ20からHCが脱離を開始した時点では三元触媒22は既に活性状態になっており、HCトラップ20から放出され三元触媒22に流入するHCは三元触媒22によって確実に浄化処理される。
これにより、エンジン1の冷態始動時であっても、エンジン1から排出されるHCが効率よく確実に浄化される。なお、COについても三元触媒ニッケル層26で良好に酸化処理されるため、エンジン1の冷態始動時における排気浄化効率が全体的に向上することになる。
【0033】
また、HCトラップ20は比較的耐熱性が低いのであるが、三元触媒22を床下に配置させたままとし、エンジン1に近接させなくてもよいので、HCトラップ20の耐熱耐久性も確保され、排気圧の上昇によるエンジン1の出力低下もない。
さらに、三元触媒22に高価な貴金属(Pt等)を大量に担持させなくてもHCを確実に浄化できるので、三元触媒22の製造コストを削減することもできる。
【0034】
以上で本発明の実施形態の説明を終えるが、本発明は上記実施形態に限るものではない。
例えば、上記実施形態では、三元触媒22を下層側の三元触媒層24と上層側の三元触媒ニッケル層26とで構成するようにしているが、図4に示すように、三元触媒ニッケル層26を単層で設けるようにしてもよい。また、三元触媒ニッケル層の耐熱性が三元触媒層に比べて劣ることを考慮すると、図5に示すように、下層側に三元触媒ニッケル層26を設け、上層側に三元触媒層24を設けるようにしてもよい。この場合には、COの吸着能力はやや低下するものの、三元触媒22の耐久性が向上する。
【0035】
また、上記実施形態では、遷移金属としてCOの吸着及び酸化能力の高いニッケル(Ni)を用いるようにしたが、遷移金属であればマンガン(Mn)、銀(Ag)、銅(Cu)等如何なる元素であっても適用可能である。
また、上記実施形態では、三元触媒22の上流に空気を供給するようにしたが、HCの吸着性能に影響を与えない範囲でHCトラップ20の上流に空気を供給するようにしてもよい。
【0036】
また、上記実施形態では、エンジン1が吸気管噴射型ガソリンエンジンである場合を例に説明したが、エンジン1は筒内噴射型ガソリンエンジンであってもよいしディーゼルエンジンであってもよい。
また、上記実施形態では、エアポンプ34を用いて空気を供給するようにしたが、COと酸素とを同時に排出可能なエンジン(例えば、筒内噴射型ガソリンエンジン)においては、エンジン1をリーン空燃比運転(例えば、スライトリーン運転)することで三元触媒22に余剰酸素を供給するようにしてもよい。但し、上記実施形態のように外部供給手段たるエアポンプ34を用いるようにした方が、エンジン1をリッチ空燃比に設定して燃焼安定性を確保でき、エンジン1の低水温時の出力性能の低下を防止することができるという利点がある。
【0037】
また、上記実施形態では、温度センサ28を用いて三元触媒22の温度を検出するようにしたが、排気温度を検出する手段を設け、排気温度から三元触媒22の温度を推定することもできる。
【0038】
【発明の効果】
以上詳細に説明したように、本発明の請求項1の内燃機関の排気浄化装置によれば、三元触媒に遷移金属を包含するようにしたので、内燃機関から排出されたCOがHCトラップ上での酸化なく遷移金属に多く吸着され且つ酸素供給手段によって三元触媒に酸素が供給されることで三元触媒におけるCOの酸化反応が促進されることになり、当該酸化反応の反応熱によって三元触媒を加熱昇温させて早期に活性温度(約250℃〜350℃)に到達させることができる。
【0039】
従って、内燃機関の冷態始動時において、HCトラップから吸着されたHCが一定温度(約150℃)以上で脱離されて下流の三元触媒に向け放出されても、この時点において三元触媒を活性状態にしておくことができ、HCを三元触媒によって効率よく確実に浄化させることができる。
また、請求項2の内燃機関の排気浄化装置によれば、遷移金属にCOの吸着及び酸化能力の高いニッケルを含むようにしたので、三元触媒でのCOの酸化反応量を十分に確保して三元触媒を良好に昇温させ早期活性化を図るようにでき、HCを確実に浄化させることができる。
【0040】
また、請求項3の内燃機関の排気浄化装置によれば、HCトラップはHC吸着能力の高いβ型ゼオライトからなるようにしたので、三元触媒が活性化するまでHCをHCトラップに十分に保持でき、HCをより一層確実に浄化させることができる。
また、請求項4の内燃機関の排気浄化装置によれば、三元触媒の温度が所定温度(ニッケルによるCOの酸化反応が開始される温度であって、例えば100℃)以上になったときに酸素供給手段により酸素の供給を開始するようにしたので、適切なタイミングでCOの酸化を促進でき、三元触媒の昇温をより一層効率よく実施することができる。
【図面の簡単な説明】
【図1】車両に搭載された本発明に係る内燃機関の排気浄化装置の概略構成図である。
【図2】本発明に係る三元触媒の一つのセルの四半部を示す部分拡大断面図である。
【図3】三元触媒に三元触媒ニッケル層を備えるとともに三元触媒の上流に空気供給を行った場合の触媒温度Tcatの時間変化を示すタイムチャートである。
【図4】他の実施例に係る三元触媒の一つのセルの四半部を示す部分拡大断面図である。
【図5】さらに他の実施例に係る三元触媒の一つのセルの四半部を示す部分拡大断面図である。
【符号の説明】
1 エンジン
14 排気管
16 リニア空燃比センサ
20 HCトラップ
22 三元触媒
23 コージライト担体
24 三元触媒層
26 三元触媒ニッケル層
28 温度センサ(触媒温度検出手段)
30 エア通路
34 エアポンプ(酸素供給手段)
40 ECU(電子コントロールユニット)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust gas purification device for an internal combustion engine, and more particularly, to an exhaust gas purification device capable of reliably purifying HC (hydrocarbon) during a cold start of the internal combustion engine.
[0002]
[Related background art]
2. Description of the Related Art Generally, an engine (internal combustion engine) includes an exhaust gas purification device that purifies harmful substances (HC, CO, NOx, etc.) in exhaust gas using a three-way catalyst. However, the three-way catalyst cannot sufficiently exhibit purification performance until the temperature reaches the activation temperature, and even if the three-way catalyst is arranged close to the engine body to achieve early activation, the three-way catalyst is not discharged when the engine is cold started. There is a problem that the HC that is generated cannot be sufficiently purified.
[0003]
In order to solve this problem, a three-way catalyst layer is provided on a zeolite layer effective for adsorbing HC, and HC that adsorbs HC to the zeolite layer and purifies HC desorbed after reaching a certain temperature is purified by the three-way catalyst layer. An adsorption catalyst has been proposed (for example, see Patent Document 1).
On the other hand, the HC adsorbent such as zeolite and the three-way catalyst are separately provided on the exhaust passage, and the air-fuel ratio of the exhaust gas flowing into the three-way catalyst is maintained at the stoichiometric air-fuel ratio, and the HC desorbed from the HC adsorbent is removed A device configured to purify with a three-way catalyst is disclosed (for example, see Patent Document 2).
[0004]
In addition, a hydrocarbon trap and a catalyst made of a catalyst composition that renders the hydrocarbon harmless are separately provided, and an oxygen-containing gas is mixed with the exhaust gas upstream of the catalyst, and the catalyst is heated by an electric heating means to form a catalyst. A device having a configuration for achieving early activation is disclosed (for example, see Patent Document 3).
[0005]
[Patent Document 1]
JP-A-7-124468 [Patent Document 2]
JP-A-5-149130 [Patent Document 3]
Japanese Patent Publication No. Hei 10-513526
[Problems to be solved by the invention]
However, the temperature at which the desorption of HC from the HC adsorption catalyst is started is as low as about 70 ° C. to 150 ° C., whereas the activation temperature of the ternary component is as high as about 250 ° C. to 350 ° C. In the case of 2, there is a problem that the desorbed HC is discharged without purification until the integrally supported three-way component or three-way catalyst is activated.
[0007]
In this case, it is conceivable to set the air-fuel ratio to a lean air-fuel ratio and to retard the ignition timing in the engine control at the time of starting to quickly raise the temperature of the three-way component and the three-way catalyst, but at the same time, desorption of HC from the zeolite And the effect is low. It is also conceivable that the HC adsorption catalyst, the HC adsorption substance and the three-way catalyst are arranged close to the engine body as described above, but the heat resistance temperature of the zeolite is low, and the heat resistance and durability of the HC adsorption catalyst and the HC adsorption substance can be secured. This is not preferable because the exhaust pressure increases and the output performance of the engine deteriorates.
[0008]
Further, when the catalyst is heated by the electric heating means as disclosed in Patent Document 3, it is necessary to separately provide the electric heating means, which leads to an increase in cost, which is not preferable.
The present invention has been made to solve such a problem, and an object of the present invention is to provide an exhaust gas purification device for an internal combustion engine that can efficiently and reliably purify HC during a cold start of the internal combustion engine. Is to do.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, in the exhaust gas purifying apparatus for an internal combustion engine according to claim 1, a three-way catalyst provided in an exhaust passage and including a transition metal in a catalyst layer, and an exhaust gas upstream of the three-way catalyst A trap having a function of adsorbing HC and releasing the adsorbed HC at a certain temperature or higher, and having no catalytic function, and supplying oxygen to the exhaust gas upstream side of the three-way catalyst. Oxygen supply means.
[0010]
As described above, when the three-way catalyst includes a transition metal in the catalyst layer, the transition metal has a high ability to adsorb and oxidize CO (carbon monoxide). A large amount of metal is adsorbed and oxygen is supplied to the three-way catalyst by the oxygen supply means, so that the oxidation reaction of CO is accelerated, and the reaction heat of the oxidation reaction heats and raises the temperature of the three-way catalyst. To an activation temperature (about 250 ° C. to 350 ° C.). In particular, since the HC trap does not have a catalytic function, CO discharged from the internal combustion engine is adsorbed and oxidized by the transition metal of the three-way catalyst without being oxidized on the HC trap, The three-way catalyst is efficiently heated.
[0011]
Therefore, at the time of a cold start of the internal combustion engine, HC is discharged together with CO from the internal combustion engine and is adsorbed by the HC trap. The adsorbed HC is desorbed at a certain temperature (about 150 ° C.) or higher and the downstream three-way catalyst is discharged. At this time, the three-way catalyst has already reached the activation temperature, and the desorbed HC is efficiently and reliably purified by the three-way catalyst.
[0012]
In this case, since the three-way catalyst does not need to be brought close to the internal combustion engine body, the heat resistance and durability of the HC trap are ensured, and the output of the internal combustion engine does not decrease due to an increase in exhaust pressure.
In addition, since HC can be reliably purified without carrying a large amount of expensive noble metal (Pt or the like) on the three-way catalyst, the production cost of the three-way catalyst is reduced.
The oxygen supply means can also be realized by setting the internal combustion engine to a lean air-fuel ratio to increase excess oxygen in the exhaust gas, but preferably, the oxygen supply means is an external supply means comprising an air pump. By doing so, the combustion stability can be ensured by setting the internal combustion engine to the rich air-fuel ratio side, and the output performance of the internal combustion engine is prevented from lowering.
[0013]
In the exhaust gas purifying apparatus for an internal combustion engine according to claim 2, the transition metal contained in the three-way catalyst contains at least nickel.
That is, among the transition metals, nickel has a particularly high ability to adsorb and oxidize CO, and by including nickel in the three-way catalyst, the amount of oxidation reaction of CO in the three-way catalyst is sufficiently ensured and the three-way catalyst is used. The temperature rises favorably, and HC is reliably purified.
[0014]
Preferably, the transition metal included in the three-way catalyst contains at least 10 g / liter or more of a nickel component in the entire catalyst layer.
As a result, the amount of oxidation reaction of CO in the three-way catalyst is sufficiently ensured without shortage, the temperature of the three-way catalyst is satisfactorily increased, and HC is reliably purified.
Further, the exhaust gas purifying apparatus for an internal combustion engine according to claim 3 is characterized in that the HC trap is made of β-type zeolite.
[0015]
That is, β-type zeolite has a particularly high HC adsorbing ability, can sufficiently retain HC in the HC trap until the three-way catalyst is activated, and can purify HC more reliably.
The exhaust gas purifying apparatus for an internal combustion engine according to claim 4, further comprising catalyst temperature detecting means for detecting a temperature of the three-way catalyst, wherein the oxygen supply means includes a three-way catalyst detected by the catalyst temperature detecting means. When the temperature of the catalyst becomes equal to or higher than a predetermined temperature, the supply of oxygen is started.
[0016]
That is, when the temperature of the three-way catalyst becomes equal to or higher than a predetermined temperature (a temperature at which the oxidation reaction of CO by nickel is started, for example, 100 ° C.), the supply of oxygen is started by the oxygen supply means, so that Oxidation of CO is promoted at an appropriate timing, and the temperature of the three-way catalyst is more efficiently increased.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of an exhaust gas purifying apparatus for an internal combustion engine according to the present invention will be described with reference to the accompanying drawings.
Referring to FIG. 1, there is shown a schematic configuration diagram of an exhaust gas purifying apparatus for an internal combustion engine according to the present invention mounted on a vehicle, and the configuration of the exhaust gas purifying apparatus for an internal combustion engine according to the present invention will be described with reference to FIG. explain.
[0018]
As the internal combustion engine (hereinafter, simply referred to as an engine) 1, a spark-ignition gasoline engine of an intake pipe injection type is employed. Since the spark-ignition gasoline engine of the intake pipe injection type is known, the detailed description of the configuration is omitted here.
In the cylinder head of the engine 1, an intake port is formed for each cylinder, and one end of an intake manifold 10 is connected to communicate with each intake port. An exhaust port is formed in the cylinder head 2 for each cylinder, and one end of an exhaust manifold 12 is connected to communicate with each exhaust port.
[0019]
An exhaust pipe (exhaust passage) 14 is connected to the exhaust manifold 12. The exhaust pipe 14 is provided with an HC trap 20 located below the floor of the vehicle, and is located downstream of the HC trap 20. A three-way catalyst 22 is interposed.
The HC trap 20 has a porous monolith-type cordierite carrier composed of a large number of cells, and each cell is formed, for example, in a rectangular cross section.
[0020]
On the surface of the cordierite carrier of the HC trap 20, an HC adsorbent mainly composed of β-type zeolite is formed. β-type zeolite has a function of adsorbing HC, particularly olefinic HC, and desorbing and releasing the adsorbed HC when the temperature rises and reaches a certain temperature (about 150 ° C.). The β-type zeolite has a pore size of 7.6 to 7.8%, which is larger than other zeolites (MFI type, Y type, etc.), has a larger adsorption amount, has a higher desorption start temperature (about 150 ° C.), It has the characteristics that the desorption end temperature is high and the HC desorption ratio in the high temperature range is high. That is, by using β-type zeolite as the HC adsorbent of the HC trap 20, it is possible to increase the HC adsorbing ability and adsorb and hold HC as high as possible.
[0021]
Note that a catalyst layer is not formed in the HC trap 20, and CO and NOx are not purified in the HC trap 20.
The three-way catalyst 22 has a porous monolith-type cordierite carrier 23 also composed of a large number of cells, and each cell is formed, for example, in a square cross section. Referring to FIG. 2, a quarter of one cell of the three-way catalyst 22 is shown, and the configuration of the three-way catalyst 22 will be described below with reference to FIG.
[0022]
As shown in the figure, the three-way catalyst 22 has a three-way catalyst layer 24 formed on the lower layer side on the surface of a cordierite carrier 23 and a three-way catalyst nickel containing nickel (Ni) in the upper layer side. A layer 26 is formed.
The lower three-way catalyst layer 24 contains at least one of platinum (Pt), rhodium (Rh) and palladium (Pd) as a noble metal, and when the exhaust air-fuel ratio is near the stoichiometric air-fuel ratio (stoichio). The three components HC, CO, and NOx can be satisfactorily purified.
[0023]
On the other hand, the upper three-way catalyst nickel layer 26 contains at least one of platinum (Pt), rhodium (Rh), and palladium (Pd) as a noble metal as described above, and is one of transition metals. It is configured to include nickel (Ni). Actually, the three-way catalyst contains nickel oxide (NiO). Specifically, the three-way catalyst nickel layer 26 contains at least 10 g (gram) / L (liter) or more of NiO with respect to the entire catalyst layer.
[0024]
Ni or NiO has a function of adsorbing CO in the exhaust gas and promoting the oxidation reaction of the adsorbed CO in the presence of oxygen, and it has been confirmed that the function is high. The larger the content, the more CO in the exhaust gas is adsorbed, and the oxidation reaction can be promoted. The reason why the three-way catalyst nickel layer 26 is formed on the upper layer side is to increase the exposure area to the exhaust gas and facilitate the adsorption of CO.
[0025]
Returning to FIG. 1, an air passage 30 extends from an upstream portion of the three-way catalyst nickel layer 26, and the air passage 30 is connected to a discharge port of an air pump (oxygen supply means) 34 via a check valve 31 and an air filter 32. Have been. That is, when the air pump 34 operates, an amount of air corresponding to the operation amount of the air pump 34 is supplied to the upstream portion of the three-way catalyst nickel layer 26, and oxygen flows into the three-way catalyst nickel layer 26 together with the exhaust gas.
[0026]
Further, the exhaust pipe 14 is provided with a linear air-fuel ratio sensor 16 that detects an exhaust air-fuel ratio by detecting an oxygen concentration contained in exhaust gas flowing into the HC trap 20. A temperature sensor (catalyst temperature detecting means) 28 for detecting the temperature of the catalyst 22, that is, the catalyst temperature Tcat is provided.
Further, an electronic control unit (ECU) 40 including an input / output device, a memory, a CPU, and the like is provided. The ECU 40 controls the exhaust gas purifying apparatus for the engine 1 and the internal combustion engine according to the present invention. Is
[0027]
Various sensors such as the linear air-fuel ratio sensor 16 and the temperature sensor 28 described above are connected to an input side of the ECU 40, and detection information from these sensors is input.
On the other hand, various devices such as a fuel injection valve and an ignition coil (both not shown) of the engine 1 and the air pump 34 are connected to an output side of the ECU 40, and various sensors are connected to the fuel injection valve and the ignition coil. Optimum control signals such as a fuel injection amount and an ignition timing according to the target air-fuel ratio calculated based on the detection information from the sensors are output to the air pump 34. An optimal control signal such as a pump operation timing is output.
[0028]
Hereinafter, the operation of the exhaust gas purification apparatus according to the present invention configured as described above will be described. When the engine 1 is cold and the three-way catalyst 22 is not yet active, the target air-fuel ratio is set to the rich air-fuel ratio in order to warm up the engine 1 and activate the three-way catalyst 22. The engine 1 is started.
When the engine 1 is started with the target air-fuel ratio set to the rich air-fuel ratio in this manner, since the engine 1 is cold and has a small amount of oxygen, the exhaust gas discharged from the engine 1 to the exhaust pipe 14 contains CO together with HC. Are included.
[0029]
The HC and CO thus discharged are adsorbed by the HC trap 20 for HC, and pass through the HC trap 20 having no catalyst layer without purification for CO, and the three-way catalyst 22 Adsorbed on the catalytic nickel layer 26. Specifically, CO is retained in Ni of the three-way catalyst nickel layer 26.
Although the warming-up of the engine 1 proceeds and the temperature Tcat of the three-way catalyst 22 starts to rise due to the rise of the exhaust gas, the temperature Tcat of the three-way catalyst 22 becomes higher than the predetermined temperature (Ni or NiO) based on the temperature information from the temperature sensor 28. When the temperature reaches a temperature at which the oxidation reaction of CO is started, for example, 100 ° C., the air pump 34 is operated with an operation amount corresponding to the CO amount (for example, the target air-fuel ratio). As a result, oxygen is supplied to the three-way catalyst 22, and the CO adsorbed on the three-way catalyst nickel layer 26 causes an oxidation reaction with the oxygen.
[0030]
When the CO adsorbed on the three-way catalyst nickel layer 26 oxidizes at once with oxygen in the air supplied by the air pump 34, a large amount of reaction heat corresponding to the oxidation reaction is sufficiently generated without shortage. Then, the three-way catalyst 22 is rapidly heated by the reaction heat to increase the temperature.
Referring to FIG. 3, the time change of the catalyst temperature Tcat when the three-way catalyst 22 is provided with the three-way catalyst nickel layer 26 and air is supplied upstream of the three-way catalyst 22 is indicated by a solid line (NiO amount: 11.6 g). / L), a broken line (NiO amount: 23.2 g / L), and a dashed line (NiO amount: 34.8 g / L), the catalyst temperature Tcat is sharply increased by supplying air. Will rise. In particular, as the amount of NiO increases, the catalyst temperature Tcat increases significantly.
[0031]
As a result, the temperature Tcat of the three-way catalyst 22 easily reaches the activation temperature (about 250 ° C. to 350 ° C.), and early activation of the three-way catalyst 22 is achieved.
When the temperature Tcat of the three-way catalyst 22 reaches the activation temperature (about 250 ° C.), the operation of the air pump 34 stops.
On the other hand, the HC adsorbed by the HC trap 20 starts to be desorbed when the HC trap 20 reaches a certain temperature (about 150 ° C.) as described above, and the HC released from the HC trap 20 is discharged to the downstream side. It will flow into the three-way catalyst 22.
[0032]
However, since the temperature of the three-way catalyst 22 rises rapidly as described above, the three-way catalyst 22 is already in an active state at the time when HC starts to be desorbed from the HC trap 20, and the HC trap HC released from the catalyst 20 and flowing into the three-way catalyst 22 is reliably purified by the three-way catalyst 22.
As a result, even when the engine 1 is cold started, HC discharged from the engine 1 is efficiently and reliably purified. Since CO is also oxidized well in the three-way catalyst nickel layer 26, the exhaust gas purification efficiency at the time of cold start of the engine 1 is improved as a whole.
[0033]
Although the HC trap 20 has relatively low heat resistance, the heat resistance and durability of the HC trap 20 can be ensured because the three-way catalyst 22 does not need to be located close to the engine 1 while being kept under the floor. Also, there is no decrease in the output of the engine 1 due to the increase in the exhaust pressure.
Furthermore, since HC can be reliably purified without having to carry a large amount of expensive noble metals (such as Pt) on the three-way catalyst 22, the manufacturing cost of the three-way catalyst 22 can be reduced.
[0034]
The description of the embodiment of the present invention is finished above, but the present invention is not limited to the above embodiment.
For example, in the above embodiment, the three-way catalyst 22 is constituted by the lower three-way catalyst layer 24 and the upper three-way catalyst nickel layer 26. However, as shown in FIG. The nickel layer 26 may be provided as a single layer. Considering that the heat resistance of the three-way catalyst nickel layer is inferior to that of the three-way catalyst layer, as shown in FIG. 5, a three-way catalyst nickel layer 26 is provided on the lower side, and the three-way catalyst layer is provided on the upper side. 24 may be provided. In this case, the durability of the three-way catalyst 22 is improved although the CO adsorption capacity is slightly reduced.
[0035]
In the above embodiment, nickel (Ni) having a high CO adsorption and oxidation ability is used as the transition metal. However, any transition metal such as manganese (Mn), silver (Ag), and copper (Cu) is used. It is applicable even if it is an element.
Further, in the above embodiment, air is supplied upstream of the three-way catalyst 22, but air may be supplied upstream of the HC trap 20 within a range that does not affect HC adsorption performance.
[0036]
Further, in the above embodiment, the case where the engine 1 is an intake pipe injection type gasoline engine has been described as an example, but the engine 1 may be a direct injection type gasoline engine or a diesel engine.
Further, in the above embodiment, the air is supplied by using the air pump 34. However, in an engine capable of simultaneously discharging CO and oxygen (for example, a direct injection gasoline engine), the engine 1 has a lean air-fuel ratio. Excess oxygen may be supplied to the three-way catalyst 22 by performing an operation (for example, a lean lean operation). However, when the air pump 34 as the external supply means is used as in the above-described embodiment, the combustion stability can be ensured by setting the engine 1 to a rich air-fuel ratio, and the output performance of the engine 1 at a low water temperature decreases. Can be prevented.
[0037]
In the above embodiment, the temperature of the three-way catalyst 22 is detected using the temperature sensor 28. However, a means for detecting the exhaust gas temperature may be provided, and the temperature of the three-way catalyst 22 may be estimated from the exhaust gas temperature. it can.
[0038]
【The invention's effect】
As described in detail above, according to the exhaust gas purifying apparatus for an internal combustion engine of the first aspect of the present invention, the transition metal is included in the three-way catalyst, so that the CO discharged from the internal combustion engine is stored on the HC trap. The oxygen is supplied to the three-way catalyst by the oxygen supply means and is supplied to the three-way catalyst without being oxidized by the oxidation, thereby promoting the oxidation reaction of CO in the three-way catalyst. The activation temperature (about 250 ° C. to 350 ° C.) can be reached early by heating and raising the temperature of the raw catalyst.
[0039]
Therefore, at the time of cold start of the internal combustion engine, even if HC adsorbed from the HC trap is desorbed at a certain temperature (about 150 ° C.) or more and discharged toward the downstream three-way catalyst, at this time, the three-way catalyst Can be kept active, and HC can be efficiently and reliably purified by the three-way catalyst.
According to the exhaust gas purifying apparatus for an internal combustion engine of the second aspect, since the transition metal contains nickel having a high ability to adsorb and oxidize CO, a sufficient amount of CO oxidation reaction in the three-way catalyst is ensured. As a result, the temperature of the three-way catalyst can be satisfactorily increased to achieve early activation, and HC can be reliably purified.
[0040]
According to the exhaust gas purifying apparatus for an internal combustion engine of the third aspect, the HC trap is made of β-type zeolite having a high HC adsorbing ability, so that the HC is sufficiently held in the HC trap until the three-way catalyst is activated. Therefore, HC can be more reliably purified.
Further, according to the exhaust gas purifying apparatus for an internal combustion engine of the fourth aspect, when the temperature of the three-way catalyst becomes equal to or higher than the predetermined temperature (the temperature at which the oxidation reaction of CO by nickel is started, for example, 100 ° C.) Since the supply of oxygen is started by the oxygen supply means, the oxidation of CO can be promoted at an appropriate timing, and the temperature of the three-way catalyst can be raised more efficiently.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an exhaust gas purification device for an internal combustion engine according to the present invention mounted on a vehicle.
FIG. 2 is a partially enlarged sectional view showing a quarter of one cell of the three-way catalyst according to the present invention.
FIG. 3 is a time chart showing a change over time of a catalyst temperature Tcat when a three-way catalyst is provided with a three-way catalyst nickel layer and air is supplied upstream of the three-way catalyst.
FIG. 4 is a partially enlarged sectional view showing a quarter of one cell of a three-way catalyst according to another embodiment.
FIG. 5 is a partially enlarged cross-sectional view showing a quarter of one cell of a three-way catalyst according to still another embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Engine 14 Exhaust pipe 16 Linear air-fuel ratio sensor 20 HC trap 22 Three-way catalyst 23 Cordierite carrier 24 Three-way catalyst layer 26 Three-way catalyst nickel layer 28 Temperature sensor (catalyst temperature detecting means)
30 air passage 34 air pump (oxygen supply means)
40 ECU (electronic control unit)

Claims (4)

排気通路に設けられ、触媒層に遷移金属を包含してなる三元触媒と、
前記三元触媒の排気上流側に位置して設けられ、HCを吸着するとともに該吸着したHCを一定温度以上で放出する機能を有し、触媒機能を有しないHCトラップと、
前記三元触媒の排気上流側に酸素を供給する酸素供給手段と、
を備えることを特徴とする内燃機関の排気浄化装置。
A three-way catalyst provided in the exhaust passage and including a transition metal in the catalyst layer;
An HC trap that is provided on the exhaust gas upstream side of the three-way catalyst, has a function of adsorbing HC and releasing the adsorbed HC at a certain temperature or higher, and has no catalytic function;
Oxygen supply means for supplying oxygen to the exhaust upstream side of the three-way catalyst,
An exhaust gas purifying apparatus for an internal combustion engine, comprising:
前記三元触媒に包含される遷移金属は、少なくともニッケルを含むことを特徴とする、請求項1記載の内燃機関の排気浄化装置。The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the transition metal contained in the three-way catalyst includes at least nickel. 前記HCトラップはβ型ゼオライトからなることを特徴とする、請求項1または2記載の内燃機関の排気浄化装置。The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the HC trap is made of β-type zeolite. さらに、前記三元触媒の温度を検出する触媒温度検出手段を備え、
前記酸素供給手段は、前記触媒温度検出手段により検出される前記三元触媒の温度が所定温度以上になったとき、酸素の供給を開始することを特徴とする、請求項1乃至3のいずれか記載の内燃機関の排気浄化装置。
Further, a catalyst temperature detecting means for detecting the temperature of the three-way catalyst,
4. The oxygen supply unit according to claim 1, wherein the oxygen supply unit starts supplying oxygen when the temperature of the three-way catalyst detected by the catalyst temperature detection unit becomes equal to or higher than a predetermined temperature. An exhaust gas purifying apparatus for an internal combustion engine according to claim 1.
JP2002275992A 2002-09-20 2002-09-20 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4178379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002275992A JP4178379B2 (en) 2002-09-20 2002-09-20 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002275992A JP4178379B2 (en) 2002-09-20 2002-09-20 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004108345A true JP2004108345A (en) 2004-04-08
JP4178379B2 JP4178379B2 (en) 2008-11-12

Family

ID=32272015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002275992A Expired - Fee Related JP4178379B2 (en) 2002-09-20 2002-09-20 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4178379B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013034985A (en) * 2011-01-24 2013-02-21 Nissan Motor Co Ltd Exhaust gas cleaning system
US20220235685A1 (en) * 2019-10-11 2022-07-28 Vitesco Technologies GmbH Exhaust aftertreatment device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013034985A (en) * 2011-01-24 2013-02-21 Nissan Motor Co Ltd Exhaust gas cleaning system
US20220235685A1 (en) * 2019-10-11 2022-07-28 Vitesco Technologies GmbH Exhaust aftertreatment device

Also Published As

Publication number Publication date
JP4178379B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
JP5802260B2 (en) Method for reducing nitrous oxide in exhaust gas aftertreatment for lean burn engines
JP3311051B2 (en) Exhaust gas purification method and apparatus
US9810120B2 (en) Exhaust gas purifying system
JP3396378B2 (en) Method and apparatus for purifying exhaust gas of an internal combustion engine
EP2230002B1 (en) NOx reduction catalyst and exhaust system using the same
JP2010043569A (en) Exhaust emission control system and exhaust emission control method using same
WO2007145178A1 (en) Exhaust gas purifying apparatus and exhaust gas purifying method using the same
US8240139B2 (en) Method for purifying nitrogen oxide in exhaust gas and exhaust system operating the same
JP5163808B2 (en) Exhaust gas purification device for internal combustion engine
JP4507018B2 (en) Exhaust gas purification device for internal combustion engine
JP4178379B2 (en) Exhaust gas purification device for internal combustion engine
JP2004092535A (en) Emission control device
JP2004190549A (en) Exhaust emission control device of internal combustion engine
JP4998698B2 (en) Exhaust gas purification device
JP2010265831A (en) Exhaust emission control device
JP4770132B2 (en) HC adsorption catalyst and exhaust gas purification apparatus using the same
JP3629953B2 (en) Exhaust gas purification device for internal combustion engine
KR100282601B1 (en) Exhaust aftertreatment device for lean burn cars
JP3465584B2 (en) Exhaust gas purification device for internal combustion engine
JPH11159321A (en) Exhaust emission control device for automobile
JP2004089881A (en) Exhaust gas cleaning device
JP2010281266A (en) Exhaust emission control device for internal combustion engine
JP2002263450A (en) Exhaust emission control device
JP2003083049A (en) Exhaust emission control device
JP4051537B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080730

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080812

R151 Written notification of patent or utility model registration

Ref document number: 4178379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140905

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees