JP2004107329A - Method for producing 4'-c-ethynyl-2'-deoxypurine nucleoside - Google Patents

Method for producing 4'-c-ethynyl-2'-deoxypurine nucleoside Download PDF

Info

Publication number
JP2004107329A
JP2004107329A JP2003298047A JP2003298047A JP2004107329A JP 2004107329 A JP2004107329 A JP 2004107329A JP 2003298047 A JP2003298047 A JP 2003298047A JP 2003298047 A JP2003298047 A JP 2003298047A JP 2004107329 A JP2004107329 A JP 2004107329A
Authority
JP
Japan
Prior art keywords
group
compound
formula
compound represented
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003298047A
Other languages
Japanese (ja)
Other versions
JP4383126B2 (en
Inventor
Satoru Kogo
向後 悟
Kenji Kitano
北濃 健司
Kohei Yamada
山田 浩平
Shinji Sakata
坂田 紳二
Hiroshi Orui
大類 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamasa Shoyu KK
Original Assignee
Yamasa Shoyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamasa Shoyu KK filed Critical Yamasa Shoyu KK
Priority to JP2003298047A priority Critical patent/JP4383126B2/en
Publication of JP2004107329A publication Critical patent/JP2004107329A/en
Application granted granted Critical
Publication of JP4383126B2 publication Critical patent/JP4383126B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing 4'-C-ethynyl-2'-deoxypurine nucleoside by using 2'-deoxypurine nucleoside as a starting material. <P>SOLUTION: This method for producing 4'-C-ethynyl-2'-deoxypurine nucleoside is provided by oxidizing a hydroxymethyl group at the 4' position of a compound expressed by formula [VII] to an aldehyde group, then converting it to a bromovinyl group, converting again to an ethynyl group by treating with a strong base to obtain a compound expressed by formula [VIII], then removing blocking groups at 3' and 5' positions of the compound to obtain a compound of which R is H, further phosphorylating as desired to obtain a compound expressed by formula [I]. In each of the above formulae, B is a purine (including azapurine or deazapurine) base; R is H or phosphate residue; and R2 to R4 are each a protecting group. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、2’−デオキシプリンヌクレオシドを出発原料とした4’−C−エチニル−2’−デオキシプリンヌクレオシドの製造法に関するものである。 The present invention relates to a method for producing 4'-C-ethynyl-2'-deoxypurine nucleoside using 2'-deoxypurine nucleoside as a starting material.

 大類らは、下記式[I]で表される4’−C−エチニル−2’−デオキシプリンヌクレオシドを合成し、それら化合物の抗HIV活性を測定した結果、(1)AZTと同等あるいはAZTを凌ぐ優れた抗HIV活性を有すること、(2)AZT、ddI、ddC、d4T、3TCなどの複数の抗HIV剤に耐性を有する多剤耐性ウイルス株にも有効なことを明らかにした(J. Med. Chem.,43(2000), 4516-4525)。 The general group synthesized 4′-C-ethynyl-2′-deoxypurine nucleosides represented by the following formula [I] and measured the anti-HIV activity of those compounds. As a result, (1) equivalent to AZT or AZT (2) It has been shown that it has superior anti-HIV activity, and (2) it is also effective against multidrug-resistant virus strains that are resistant to multiple anti-HIV agents such as AZT, ddI, ddC, d4T, and 3TC (J. Med. Chem., 43 (2000), 4516-4525).

Figure 2004107329
          [I]
(式中、Bはプリン塩基を示し、Rは水素原子またはリン酸残基を示す。)
Figure 2004107329
[I]
(In the formula, B represents a purine base, and R represents a hydrogen atom or a phosphate residue.)

 4’位にエチニル基を有するプリンヌクレオシド誘導体の合成については、大類らによって、糖を出発原料とし、エチニル基を導入した糖と核酸塩基を縮合して合成する方法が報告されているが(J.Med.Chem., 43 (2000),4516−4525)、この方法は工程数が長く、収率も低いため、必ずしも最良の方法とはいえない。 Regarding the synthesis of purine nucleoside derivatives having an ethynyl group at the 4′-position, a method of synthesizing a saccharide with an ethynyl group-introduced saccharide and a nucleobase using a saccharide as a starting material has been widely reported (J Med. Chem., 43 (2000), 4516-4525), which is not always the best method because of the long number of steps and low yield.

 また、ヌクレオシドを出発原料とする4’位にエチニル基を有するヌクレオシドの合成に関しては、ピリミジンヌクレオシドの合成のみが報告されているだけで(Bioorganic and Medicinal Chemistry Letters, 9(1999), 385−388,J.Med.Chem.,(1999), 42, 2901−2908)、ヌクレオシドを出発原料とした4’位にエチニル基を有するプリンヌクレオシドの合成に関してはまったく報告されていない。 As for the synthesis of nucleosides having an ethynyl group at the 4'-position from nucleosides as starting materials, only the synthesis of pyrimidine nucleosides has been reported (Bioorganic and Medicinal Chemistry Letters, 9 (1999), 385-388, J. Med. Chem., (1999), 42, 2901-2908), and there has been no report on the synthesis of a purine nucleoside having an ethynyl group at the 4'-position from a nucleoside as a starting material.

J.Med.Chem., 43 (2000),4516-4525J. Med.Chem., 43 (2000), 4516-4525 Bioorganic and Medicinal Chemistry Letters, 9(1999), 385-388Bioorganic and Medicinal Chemistry Letters, 9 (1999), 385-388 J.Med.Chem.,(1999), 42, 2901-2908J. Med.Chem., (1999), 42, 2901-2908

 本発明者らは、従来の糖を出発原料とする方法の上記問題を解決するため、ヌクレオシドを出発原料とする4’−C−エチニル−2’−デオキシプリンヌクレオシドの合成法を検討した結果、既に報告されている4’−C−エチニルピリミジンヌクレオシドの合成法は、4’位にエチニル基を有するプリンヌクレオシドの合成法としてはそのまま採用できないことを確認した。すなわち、既報においては、たとえばチミジンから4’位にアルデヒド基を有する化合物を合成し、該化合物のアルデヒド基をWittig反応によりクロロビニル基に変換し、さらにブチルリチウムで処理することにより4’−C−エチニルチミジンとしている。この条件をプリンヌクレオシドに適用したところ、クロロビニル基のエチニル基への変換反応は進行しにくく、低収率でしか目的とする化合物を得ることができなかった。 The present inventors have studied a method for synthesizing 4′-C-ethynyl-2′-deoxypurine nucleoside using a nucleoside as a starting material in order to solve the above-mentioned problems of the conventional method using a sugar as a starting material. It has been confirmed that the previously reported method for synthesizing 4'-C-ethynylpyrimidine nucleoside cannot be directly employed as a method for synthesizing purine nucleosides having an ethynyl group at the 4'-position. That is, in the previous report, for example, a compound having an aldehyde group at the 4'-position is synthesized from thymidine, the aldehyde group of the compound is converted to a chlorovinyl group by Wittig reaction, and further treated with butyllithium to obtain 4'-C -Ethynyl thymidine. When these conditions were applied to purine nucleosides, the conversion of the chlorovinyl group to the ethynyl group hardly proceeded, and the desired compound could be obtained only in low yield.

 また、クロロビニル基のエチニル基への変換に用いられているブチルリチウムは、湿気、酸素等を完全に排除した系において、−78℃の超低温で反応を行わなければならず、大スケールの反応では適当ではないと考えられる。 In addition, butyl lithium used for conversion of a chlorovinyl group to an ethynyl group must be reacted at a very low temperature of -78 ° C in a system in which moisture, oxygen, etc. are completely excluded, and a large-scale reaction is required. It is not considered appropriate.

 本発明者らは、上記問題点を克服するため鋭意検討を重ねた結果、クロロビニル基の代わりにブロモビニル基とすることにより、ブチルリチウム以外の強塩基も使用することができ、エチニル基への変換反応も簡便で穏和な条件で行うことができ、もって良好な収率でエチニル化合物を合成できることを見出し、本発明を完成させた。 The present inventors have conducted intensive studies to overcome the above problems, and as a result, by using a bromovinyl group instead of a chlorovinyl group, a strong base other than butyllithium can be used. The present inventors have found that the conversion reaction can be carried out easily and under mild conditions, and that an ethynyl compound can be synthesized with a good yield, thereby completing the present invention.

 したがって、本発明は、下記第1〜5工程によりなる、上記式[I]で表される4’−C−エチニル−2’−デオキシプリンヌクレオシドの製造法に関するものである。 Accordingly, the present invention relates to a method for producing 4'-C-ethynyl-2'-deoxypurine nucleoside represented by the above formula [I], comprising the following first to fifth steps.

第1工程;
 式[II]で表される化合物の3’位水酸基を保護し、式[IV]で表される化合物を得る工程
The first step;
A step of protecting the 3′-hydroxyl group of the compound represented by the formula [II] to obtain a compound represented by the formula [IV]

Figure 2004107329
   [II]        [III]       [IV]
Figure 2004107329
[II] [III] [IV]

第2工程;
 式[IV]で表される化合物の4’位にヒドロキシメチル基を導入し、式[V]で表される化合物を得る工程
The second step;
Step of introducing a hydroxymethyl group at the 4′-position of the compound represented by the formula [IV] to obtain a compound represented by the formula [V]

Figure 2004107329
     [IV]                 [V]
Figure 2004107329
[IV] [V]

第3工程;
 式[V]で表される化合物の5’位水酸基を保護し、式[VII]で表される化合物を得る工程
Third step;
A step of protecting the 5′-hydroxyl group of the compound represented by the formula [V] to obtain a compound represented by the formula [VII]

Figure 2004107329
     [V]           [VI]        [VII]
Figure 2004107329
[V] [VI] [VII]

第4工程;
 式[VII]で表される化合物の4’位ヒドロキシメチル基をアルデヒド基へと酸化した後、これをブロモビニル基へと変換し、引き続き、強塩基で処理してエチニル基に変換し、式[VIII]で表される化合物を得る工程
Fourth step;
After oxidizing the 4'-hydroxymethyl group of the compound represented by the formula [VII] to an aldehyde group, this is converted to a bromovinyl group, and subsequently treated with a strong base to convert it to an ethynyl group. For obtaining a compound represented by the formula VIII]

Figure 2004107329
     [VII]                [VIII]
Figure 2004107329
[VII] [VIII]

第5工程;
 式[VIII]で表される化合物の3’,5’位保護基を除去し、Rが水素である化合物を得、さらに所望によりリン酸化し、式[I]で表される化合物を得る工程
Fifth step;
Step of removing the protecting group at the 3 ′, 5′-position of the compound represented by the formula [VIII] to obtain a compound in which R is hydrogen, and further, if necessary, phosphorylating to obtain a compound represented by the formula [I]

Figure 2004107329
    [VIII]                 [I]
(上記各式中、Bはプリン(アザプリンまたはデアザプリンも含む)塩基を示し、Rは水素原子またはリン酸残基を示し、R2〜R4は保護基を示す。)
Figure 2004107329
[VIII] [I]
(In each of the above formulas, B represents a purine (including azapurine or deazapurine) base, R represents a hydrogen atom or a phosphate residue, and R2 to R4 represent protecting groups.)

 上述したように、本発明は、デオキシヌクレオシドを出発原料として、目的とする4’−C−エチニル−2’−デオキシプリンヌクレオシドを効率的に合成することができるため、大量製造に適した実用的な製造法である。 As described above, the present invention can efficiently synthesize a target 4′-C-ethynyl-2′-deoxypurine nucleoside using deoxynucleosides as a starting material, and is therefore suitable for mass production. Manufacturing method.

 本発明方法により得られる化合物は、前記式[I]で表されるものであり、式中のBで表される塩基としては、プリン(アザプリン及びデアザプリンをも含む)塩基を例示することができる。 The compound obtained by the method of the present invention is represented by the above formula [I], and as the base represented by B in the formula, a purine (including azapurine and deazapurine) base can be exemplified. .

 このようなプリン塩基は、ハロゲン原子、アルキル基、ハロアルキル基、アルケニル基、ハロアルケニル基、アルキニル基、アミノ基、アルキルアミノ基、水酸基、ヒドロキシアミノ基、アミノキシ基、アルコキシ基、メルカプト基、アルキルメルカプト基、アリール基、アリールオキシ基、シアノ基などの置換基を有していてもよく、置換基の数及び位置は特に制限されるものではない。 Such purine bases include halogen atoms, alkyl groups, haloalkyl groups, alkenyl groups, haloalkenyl groups, alkynyl groups, amino groups, alkylamino groups, hydroxyl groups, hydroxyamino groups, aminoxy groups, alkoxy groups, mercapto groups, alkylmercapto groups. It may have a substituent such as a group, an aryl group, an aryloxy group, and a cyano group, and the number and position of the substituent are not particularly limited.

 置換基としてのハロゲン原子としては、塩素、フッ素、ヨウ素、臭素が例示される。アルキル基としては、メチル、エチル、プロピルなどの炭素数1〜7の低級アルキル基が例示される。ハロアルキル基としては、フルオロメチル、ジフルオロメチル、トリフルオロメチル、ブロモメチル、ブロモエチルなどの炭素数1〜7のアルキルを有するハロアルキル基が例示される。アルケニル基としては、ビニル、アリルなどの炭素数2〜7のアルケニル基が例示される。ハロアルケニル基としては、ブロモビニル、クロロビニルなどの炭素数2〜7のアルケニルを有するハロアルケニル基が例示される。アルキニル基としては、エチニル、プロピニルなどの炭素数2〜7のアルキニル基が例示される。アルキルアミノ基としては、メチルアミノ、エチルアミノなどの炭素数1〜7のアルキルを有するアルキルアミノ基が例示される。 ハ ロ ゲ ン Examples of the halogen atom as a substituent include chlorine, fluorine, iodine, and bromine. Examples of the alkyl group include lower alkyl groups having 1 to 7 carbon atoms such as methyl, ethyl and propyl. Examples of the haloalkyl group include haloalkyl groups having an alkyl having 1 to 7 carbon atoms, such as fluoromethyl, difluoromethyl, trifluoromethyl, bromomethyl, and bromoethyl. Examples of the alkenyl group include alkenyl groups having 2 to 7 carbon atoms such as vinyl and allyl. Examples of the haloalkenyl group include haloalkenyl groups having 2 to 7 carbon atoms, such as bromovinyl and chlorovinyl. Examples of the alkynyl group include alkynyl groups having 2 to 7 carbon atoms, such as ethynyl and propynyl. Examples of the alkylamino group include alkylamino groups having 1 to 7 carbon atoms such as methylamino and ethylamino.

 アルコキシ基としては、メトキシ、エトキシなどの炭素数1〜7のアルコキシ基が例示される。アルキルメルカプト基としては、メチルメルカプト、エチルメルカプトなどの炭素数1〜7のアルキルを有するアルキルメルカプト基が例示される。アリール基としては、フェニル基;メチルフェニル、エチルフェニルなどの炭素数1〜5のアルキルを有するアルキルフェニル基;メトキシフェニル、エトキシフェニルなどの炭素数1〜5のアルコキシを有するアルコキシフェニル基;ジメチルアミノフェニル、ジエチルアミノフェニルなどの炭素数1〜5のアルキルアミノを有するアルキルアミノフェニル基;クロロフェニル、ブロモフェニルなどのハロゲノフェニル基などが例示される。 Examples of the alkoxy group include C1-C7 alkoxy groups such as methoxy and ethoxy. Examples of the alkyl mercapto group include alkyl mercapto groups having alkyl having 1 to 7 carbon atoms, such as methyl mercapto and ethyl mercapto. Examples of the aryl group include a phenyl group; an alkylphenyl group having 1 to 5 carbon atoms such as methylphenyl and ethylphenyl; an alkoxyphenyl group having 1 to 5 carbon atoms such as methoxyphenyl and ethoxyphenyl; Examples thereof include an alkylaminophenyl group having an alkylamino having 1 to 5 carbon atoms such as phenyl and diethylaminophenyl; and a halogenophenyl group such as chlorophenyl and bromophenyl.

 プリン系の塩基を具体的に例示すれば、プリン、6−アミノプリン(アデニン)、6−ヒドロキシプリン、6−フルオロプリン、6−クロロプリン、6−メチルアミノプリン、6−ジメチルアミノプリン、6−トリフルオロメチルアミノプリン、6−ベンゾイルアミノプリン、6−アセチルアミノプリン、6−ヒドロキシアミノプリン、6−アミノオキシプリン、6−メトキシプリン、6−アセトキシプリン、6−ベンゾイルオキシプリン、6−メチルプリン、6−エチルプリン、6−トリフルオロメチルプリン、6−フェニルプリン、6−メルカプトプリン、6−メチルメルカプトプリン、6−アミノプリン−1−オキシド、6−ヒドロキシプリン−1−オキシド、2−アミノ−6−ヒドロキシプリン(グアニン)、2、6−ジアミノプリン、2−アミノ−6−クロロプリン、2−アミノ−6−ヨードプリン、2−アミノプリン、2−アミノ−6−メルカプトプリン、2−アミノ−6−メチルメルカプトプリン、2−アミノ−6−ヒドロキシアミノプリン、2−アミノ−6−メトキシプリン、2−アミノ−6−ベンゾイルオキシプリン、2−アミノ−6ーアセトキシプリン、2−アミノ−6−メチルプリン、2−アミノ−6−サイクロプロピルアミノメチルプリン、2−アミノ−6−フェニルプリン、2−アミノ−8−ブロモプリン、6−シアノプリン、6−アミノ−2−クロロプリン(2−クロロアデニン)、6−アミノ−2−フルオロプリン(2−フルオロアデニン)、6−アミノ−3−デアザプリン、6−アミノ−8−アザプリン、2−アミノ−6−ヒドロキシ−8−アザプリン、6−アミノ−7−デアザプリン、6−アミノ−1−デアザプリン、6−アミノ−2−アザプリンなどが挙げられる。 Specific examples of purine bases include purine, 6-aminopurine (adenine), 6-hydroxypurine, 6-fluoropurine, 6-chloropurine, 6-methylaminopurine, 6-dimethylaminopurine, 6 -Trifluoromethylaminopurine, 6-benzoylaminopurine, 6-acetylaminopurine, 6-hydroxyaminopurine, 6-aminooxypurine, 6-methoxypurine, 6-acetoxypurine, 6-benzoyloxypurine, 6-methyl Purine, 6-ethylpurine, 6-trifluoromethylpurine, 6-phenylpurine, 6-mercaptopurine, 6-methylmercaptopurine, 6-aminopurine-1-oxide, 6-hydroxypurine-1-oxide, 2- Amino-6-hydroxypurine (guanine), 2,6-diaminop 2-amino-6-chloropurine, 2-amino-6-iodopurine, 2-aminopurine, 2-amino-6-mercaptopurine, 2-amino-6-methylmercaptopurine, 2-amino-6- Hydroxyaminopurine, 2-amino-6-methoxypurine, 2-amino-6-benzoyloxypurine, 2-amino-6-acetoxypurine, 2-amino-6-methylpurine, 2-amino-6-cyclopropylamino Methyl purine, 2-amino-6-phenylpurine, 2-amino-8-bromopurine, 6-cyanopurine, 6-amino-2-chloropurine (2-chloroadenine), 6-amino-2-fluoropurine ( 2-fluoroadenine), 6-amino-3-deazapurine, 6-amino-8-azapurine, 2-amino-6-hydroxy-8-a Purine, 6-amino-7-deazapurine, 6-amino-1-deazapurine, such as 6-amino-2-azapurine the like.

 以下、本発明方法を工程毎に説明する。 Hereinafter, the method of the present invention will be described step by step.

 第1工程は式[II]で表される化合物の3’位水酸基を保護し、式[IV]で表される化合物を得る工程である。 The first step is a step of protecting the 3′-hydroxyl group of the compound represented by the formula [II] to obtain a compound represented by the formula [IV].

Figure 2004107329
   [II]         [III]        [IV]
(式中、Bはプリン(アザプリンまたはデアザプリンも含む)塩基を示し、R1、R2は保護基を示す。)
Figure 2004107329
[II] [III] [IV]
(In the formula, B represents a purine (including azapurine or deazapurine) base, and R1 and R2 represent protecting groups.)

 式[IV]で表される化合物は、式[II]で表される化合物の5’位水酸基を保護した後、3’位水酸基を5’位保護基とは除去法の異なる保護基で保護し、引き続き、5'位水酸基の保護基を選択的に除去して得ることができる。 The compound represented by the formula [IV] is obtained by protecting the 5'-hydroxyl group of the compound represented by the formula [II], and then protecting the 3'-hydroxyl group with a protecting group different from the 5'-protecting group. Subsequently, the protective group at the 5′-position hydroxyl group can be selectively removed to obtain the compound.

 R1で表される5’位水酸基の保護基としては、ヌクレオシドの5’位水酸基の保護基として常用されているものであればよく、具体的には、ジメトキシトリチル、メトキシトリチル、トリチル、t−ブチルジメチルシリル、t−ブチルジフェニルシリル、ベンゾイル基などが例示される。また、R2で表される3'位水酸基の保護基としては、水酸基などで通常使用されるものであればよく、たとえばエーテル系保護基、アシル系保護基、シリル系保護基、アセタール系保護基などを例示することができる。 The protecting group for the 5′-hydroxyl group represented by R1 may be any one that is commonly used as a protecting group for the 5′-hydroxyl group of a nucleoside, and specifically, dimethoxytrityl, methoxytrityl, trityl, t- Examples thereof include butyldimethylsilyl, t-butyldiphenylsilyl, and a benzoyl group. The protecting group for the hydroxyl group at the 3'-position represented by R2 may be any of those commonly used for a hydroxyl group, such as an ether-based protecting group, an acyl-based protecting group, a silyl-based protecting group, and an acetal-based protecting group. And the like.

 より具体的には、エーテル系保護基としては、メチルエーテル、第3級ブチルエーテル、ベンジルエーテル、メトキシベンジルエーテル、トリチルエーテルなどを、アシル系保護基としてはアセチル、ベンゾイル、ピバロイルなどを、シリル系保護基としてはt−ブチルジメチルシリル、t−ブチルジフェニルシリル、トリメチルシリル、トリエチルシリルなどを、アセタール系保護基としてはイソプロピリデン、エチリデン、メチリデン、ベンジリデン、テトラヒドロピラニル、メトキシメチルなどをそれぞれ使用することができる。 More specifically, the ether-based protecting groups include methyl ether, tertiary butyl ether, benzyl ether, methoxybenzyl ether, and trityl ether; the acyl-based protecting groups include acetyl, benzoyl, and pivaloyl; As the group, t-butyldimethylsilyl, t-butyldiphenylsilyl, trimethylsilyl, triethylsilyl, and the like, and as the acetal-based protecting group, isopropylidene, ethylidene, methylidene, benzylidene, tetrahydropyranyl, methoxymethyl, and the like can be used. it can.

 引き続き行う5’位保護基の除去は、使用した保護基に応じ、酸性加水分解、アルカリ性加水分解、フッ化テトラブチルアンモニウム処理、接触還元などの通常の処理方法から適宜選択して行えばよい。 The subsequent removal of the 5'-protecting group may be appropriately selected from ordinary processing methods such as acidic hydrolysis, alkaline hydrolysis, tetrabutylammonium fluoride treatment, and catalytic reduction, depending on the protecting group used.

 第2工程は、式[IV]で表される化合物の4’位にヒドロキシメチル基を導入し、式[V]で表される化合物を得る工程である。 The second step is a step of introducing a hydroxymethyl group at the 4'-position of the compound represented by the formula [IV] to obtain a compound represented by the formula [V].

Figure 2004107329
     [IV]                 [V]
(式中、Bはプリン(アザプリンまたはデアザプリンも含む)塩基を示し、R2は保護基を示す。)
Figure 2004107329
[IV] [V]
(In the formula, B represents a purine (including azapurine or deazapurine) base, and R2 represents a protecting group.)

 式[V]で表される化合物は、式[IV]で表される化合物の5’位をアルデヒド基へ変換後、ホルムアルデヒドとのアルドール反応による4'位へのヒドロキシメチル基の導入及びアルデヒド基の還元を経て合成することができる。 The compound represented by the formula [V] is obtained by converting the 5'-position of the compound represented by the formula [IV] to an aldehyde group, introducing an hydroxymethyl group into the 4'-position by an aldol reaction with formaldehyde, and adding an aldehyde group. Can be synthesized through reduction.

 式[IV]で表される化合物の5’−ヒドロキシメチル基をアルデヒドに変換する場合の酸化剤としては、無水クロム酸、ピリジンと無水酢酸との複合試薬、ピリジンクロロクロメート、ピリジンジクロメートなどのクロム系酸化剤;デス−マーチン試薬などの高原子価ヨウ素酸化剤;ジメチルスルホキシドと無水酢酸、塩化オキサリルまたはジシクロヘキシルカルボジイミドとを組み合わせて用いるジメチルスルホキシド系酸化剤などを例示することができる。 Examples of the oxidizing agent for converting the 5′-hydroxymethyl group of the compound represented by the formula [IV] to an aldehyde include chromic anhydride, a complex reagent of pyridine and acetic anhydride, pyridine chlorochromate and pyridine dichromate. Chromium-based oxidizing agents; high-valent iodine oxidizing agents such as Dess-Martin reagent; dimethylsulfoxide-based oxidizing agents using dimethylsulfoxide in combination with acetic anhydride, oxalyl chloride or dicyclohexylcarbodiimide;

 反応条件は用いる酸化剤により異なり、たとえば、1−エチル−3−(ジメチルアミノプロピル)カルボジイミド塩酸塩とジメチルスルホキシドを用いて酸化する場合、トルエンなどの有機溶媒とジメチルスルホキシドの混合溶媒中、必要によりアルゴン、窒素などの不活性ガス雰囲気下、式[IV]化合物1モルに対して1−エチル−3−(ジメチルアミノプロピル)カルボジイミド塩酸塩を1〜5モル用い、10〜50℃で1〜2時間程度反応させることにより実施できる。 The reaction conditions vary depending on the oxidizing agent to be used. For example, when oxidizing using 1-ethyl-3- (dimethylaminopropyl) carbodiimide hydrochloride and dimethyl sulfoxide, if necessary, a mixed solvent of an organic solvent such as toluene and dimethyl sulfoxide may be used. Under an atmosphere of an inert gas such as argon or nitrogen, 1 to 5 mol of 1-ethyl-3- (dimethylaminopropyl) carbodiimide hydrochloride is used per 1 mol of the compound of the formula [IV] at a temperature of 10 to 50 ° C. and 1 to 2 mol. The reaction can be carried out by reacting for about an hour.

 次に、4’位へのヒドロキシメチル基の導入は、得られたアルデヒド化合物とホルムアルデヒドとのアルドール反応により実施することができる。 Next, introduction of a hydroxymethyl group at the 4'-position can be carried out by an aldol reaction between the obtained aldehyde compound and formaldehyde.

 アルドール化は、テトラヒドロフラン、ジオキサンなどの有機溶媒中、1〜5モルの水酸化ナトリウムなどの塩基存在下、アルデヒド化合物1モルに対して1〜10モルのホルムアルデヒドを用い、反応させることにより実施することができる。 The aldolization is carried out in an organic solvent such as tetrahydrofuran or dioxane in the presence of 1 to 5 mol of a base such as sodium hydroxide, by reacting with 1 to 10 mol of formaldehyde with respect to 1 mol of the aldehyde compound. Can be.

 引き続き行うアルデヒド基の還元は、メタノール、エタノール、ジエチルエーテル、テトラヒドロフラン等の有機溶媒中、アルデヒド化合物1モルに対して、1〜5モルの水素化ホウ素ナトリウム、水素化リチウムアルミニウムなどの還元剤を用い、−78℃から室温で15分から1時間程度反応させればよい。 Subsequent reduction of the aldehyde group is performed using a reducing agent such as sodium borohydride or lithium aluminum hydride in an organic solvent such as methanol, ethanol, diethyl ether or tetrahydrofuran in an amount of 1 to 5 moles per mole of the aldehyde compound. The reaction may be carried out at -78 ° C to room temperature for about 15 minutes to 1 hour.

 第3工程は、式[V]で表される化合物の5’位に保護基を導入する工程である。 The third step is a step of introducing a protecting group at the 5′-position of the compound represented by the formula [V].

Figure 2004107329
     [V]           [VI]        [VII]
(式中、Bはプリン(アザプリンまたはデアザプリンも含む)塩基を示し、R2とR4は保護基を示す。)   
Figure 2004107329
[V] [VI] [VII]
(In the formula, B represents a purine (including azapurine or deazapurine) base, and R2 and R4 represent protecting groups.)

 式[VII]で表される化合物は、式[V]で表される化合物の4’位ヒドロキシメチル基を保護した後、5’位水酸基を4’位ヒドロキシメチル基の保護基とは除去法の異なる保護基で保護し、引き続き、4’位ヒドロキシメチル基の保護基を選択的に除去して得られる。 The compound represented by the formula [VII] is obtained by protecting the 4′-hydroxymethyl group of the compound represented by the formula [V] and then removing the 5′-hydroxyl group from the protecting group of the 4′-hydroxymethyl group. And the protective group at the 4′-position hydroxymethyl group is then selectively removed.

 R3で表される4’位ヒドロキシメチル基の保護基としては、ヌクレオシドの5’位水酸基の保護基として常用されているものであればよく、具体的には、ジメトキシトリチル、メトキシトリチル、トリチル、t−ブチルジメチルシリル、t−ブチルジフェニルシリル、ベンゾイル基などが例示される。また、R4で表される5'位水酸基の保護基としては、水酸基などで通常使用されるものであればよく、たとえばエーテル系保護基、アシル系保護基、シリル系保護基、アセタール系保護基などを例示することができる。 The protecting group for the 4'-hydroxymethyl group represented by R3 may be any one that is commonly used as a protecting group for the 5'-hydroxyl group of a nucleoside, and specifically, dimethoxytrityl, methoxytrityl, trityl, Examples thereof include t-butyldimethylsilyl, t-butyldiphenylsilyl, and a benzoyl group. The protecting group for the 5'-hydroxyl group represented by R4 may be any one which is usually used as a hydroxyl group, such as an ether-based protecting group, an acyl-based protecting group, a silyl-based protecting group, and an acetal-based protecting group. And the like.

 より具体的には、エーテル系保護基としては、メチルエーテル、第3級ブチルエーテル、ベンジルエーテル、メトキシベンジルエーテル、トリチルエーテルなどを、アシル系保護基としてはアセチル、ベンゾイル、ピバロイルなどを、シリル系保護基としてはt−ブチルジメチルシリル、t−ブチルジフェニルシリル、トリメチルシリル、トリエチルシリルなどを、アセタール系保護基としてはイソプロピリデン、エチリデン、メチリデン、ベンジリデン、テトラヒドロピラニル、メトキシメチルなどをそれぞれ使用することができる。 More specifically, the ether-based protecting groups include methyl ether, tertiary butyl ether, benzyl ether, methoxybenzyl ether, and trityl ether; the acyl-based protecting groups include acetyl, benzoyl, and pivaloyl; As the group, t-butyldimethylsilyl, t-butyldiphenylsilyl, trimethylsilyl, triethylsilyl, and the like, and as the acetal-based protecting group, isopropylidene, ethylidene, methylidene, benzylidene, tetrahydropyranyl, methoxymethyl, and the like can be used. it can.

 4’位ヒドロキシメチル基の保護基の除去は、使用した保護基に応じ、酸性加水分解、アルカリ性加水分解、フッ化テトラブチルアンモニウム処理、接触還元などの通常の処理方法から適宜選択して行えばよい。 The removal of the protecting group at the 4′-hydroxymethyl group may be appropriately selected from ordinary processing methods such as acidic hydrolysis, alkaline hydrolysis, tetrabutylammonium fluoride treatment, and catalytic reduction depending on the protecting group used. Good.

 第4工程は、式[VII]で表される化合物の4’位ヒドロキシメチル基をエチニル基に変換する工程である。 The fourth step is a step of converting the 4′-hydroxymethyl group of the compound represented by the formula [VII] to an ethynyl group.

Figure 2004107329
      [VII]                [VIII]
(式中、Bはプリン(アザプリンまたはデアザプリンも含む)塩基を示し、R2とR4は保護基を示す。)
Figure 2004107329
[VII] [VIII]
(In the formula, B represents a purine (including azapurine or deazapurine) base, and R2 and R4 represent protecting groups.)

 エチニル基への反感反応は、式[VII]化合物の4’位ヒドロキシメチル基をアルデヒド基へと酸化した後、これをブロモビニル基へと変換し、引き続き、強塩基処理により脱臭化水素処理することにより実施できる。 The reaction against the ethynyl group is performed by oxidizing the 4'-hydroxymethyl group of the compound of the formula [VII] to an aldehyde group, converting it to a bromovinyl group, and then subjecting it to a dehydrobromination treatment by a strong base treatment. Can be implemented.

 式[VII]で表される化合物の4’−ヒドロキシメチル基をアルデヒド基に変換する場合、用いる酸化剤としては、無水クロム酸、ピリジンと無水酢酸との複合試薬、ピリジンクロロクロメート、ピリジンジクロメートなどのクロム系酸化剤;デス−マーチン試薬などの高原子価ヨウ素酸化剤;ジメチルスルホキシドと無水酢酸、塩化オキサリルまたはジシクロヘキシルカルボジイミドとを組み合わせて用いるジメチルスルホキシド系酸化剤などを例示することができる。 When converting the 4′-hydroxymethyl group of the compound represented by the formula [VII] to an aldehyde group, oxidizing agents used include chromic anhydride, a complex reagent of pyridine and acetic anhydride, pyridine chlorochromate, pyridine dichromate Oxidizing agents such as chromium-based oxidizing agents; high-valent iodine oxidizing agents such as Dess-Martin reagent; dimethylsulfoxide-based oxidizing agents using a combination of dimethylsulfoxide and acetic anhydride, oxalyl chloride or dicyclohexylcarbodiimide.

 反応条件は用いる酸化剤により異なり、たとえば、1−エチル−3−(ジメチルアミノプロピル)カルボジイミド塩酸塩とジメチルスルホキシドを用いて酸化する場合、トルエンなどの有機溶媒とジメチルスルホキシドの混合溶媒中、必要によりアルゴン、窒素などの不活性ガス雰囲気下、式[IV]化合物1モルに対して1−エチル−3−(ジメチルアミノプロピル)カルボジイミド塩酸塩を1〜5モル用い、10〜50℃で1〜2時間程度反応させることにより実施できる。 The reaction conditions vary depending on the oxidizing agent to be used. For example, when oxidizing using 1-ethyl-3- (dimethylaminopropyl) carbodiimide hydrochloride and dimethyl sulfoxide, if necessary, a mixed solvent of an organic solvent such as toluene and dimethyl sulfoxide may be used. Under an atmosphere of an inert gas such as argon or nitrogen, 1 to 5 mol of 1-ethyl-3- (dimethylaminopropyl) carbodiimide hydrochloride is used per 1 mol of the compound of the formula [IV] at a temperature of 10 to 50 ° C. and 1 to 2 mol. The reaction can be carried out by reacting for about an hour.

 アルデヒド基のブロモビニル基への変換は、テトラヒドロフランなどの有機溶媒中、アルデヒド化合物1モルに対して、1〜5モルのブロモメチレントリフェニルホスホラン、または、四臭化炭素とトリフェニルホスフィンの組み合わせを用い、−78℃〜室温で反応させることにより実施できる。 The conversion of the aldehyde group into a bromovinyl group is performed by using 1 to 5 mol of bromomethylene triphenylphosphorane or a combination of carbon tetrabromide and triphenylphosphine with respect to 1 mol of the aldehyde compound in an organic solvent such as tetrahydrofuran. The reaction can be carried out at -78 ° C to room temperature.

 ブロモビニル化合物の脱ブロモ化水素処理に使用する強塩基としては、アルキルリチウム、グリニヤール試薬などの有機金属試薬、ジイソプロピルアミン、ヘキサメチルジシラザンなどの金属アミド、カリウムt−ブトキシド等を用いることで実施でき、特にカリウムt−ブトキシドが好ましい。 The strong base used for the dehydrobromination treatment of the bromovinyl compound can be carried out by using alkyllithium, an organic metal reagent such as a Grignard reagent, a metal amide such as diisopropylamine or hexamethyldisilazane, or potassium t-butoxide. Particularly, potassium t-butoxide is preferred.

 脱ブロモ化水素処理の条件は用いる試薬により異なり、たとえば、カリウムt−ブトキシドを用いる場合、テトラヒドロフランなどの有機溶媒中、ハロビニル化合物1モルに対してカリウムt−ブトキシド1〜5モル用い、−40℃〜室温で15分〜2時間程度反応させることにより実施できる。 Conditions for the dehydrobromination treatment differ depending on the reagent used. For example, when potassium t-butoxide is used, 1 to 5 mol of potassium t-butoxide is used per mol of a halovinyl compound in an organic solvent such as tetrahydrofuran at -40 ° C. The reaction can be carried out at room temperature for about 15 minutes to 2 hours.

 第5工程は、こうして得られた化合物[VIII]の保護基を除去して、Rが水素である化合物を得、必要に応じてリン酸化して式[I]化合物を得る工程である。 The fifth step is a step of removing the protecting group of the compound [VIII] thus obtained to obtain a compound in which R is hydrogen, and phosphorylating as necessary to obtain a compound of the formula [I].

Figure 2004107329
      [VIII]                 [I]
(式中、Bはプリン(アザプリンまたはデアザプリンも含む)塩基を示し、Rは水素原子またはリン酸残基を示し、R2とR4は保護基を示す。)
Figure 2004107329
[VIII] [I]
(Wherein, B represents a purine (including azapurine or deazapurine) base, R represents a hydrogen atom or a phosphate residue, and R2 and R4 represent protecting groups.)

 保護基の除去は、使用した保護基に応じ、酸性加水分解、アルカリ性加水分解、フッ化テトラブチルアンモニウム処理、接触還元などの通常の処理方法から適宜選択して行えばよい。 The removal of the protecting group may be appropriately selected from ordinary processing methods such as acidic hydrolysis, alkaline hydrolysis, tetrabutylammonium fluoride treatment, and catalytic reduction, depending on the protecting group used.

 さらに、所望により塩基中のアミノ基を脱アミノしたい場合には、アデノシンデアミナーゼ、シチジンデアミナーゼなどの各種デアミナーゼを用いて常法により脱アミノすることも可能である。 Further, if it is desired to deaminate the amino group in the base, it is possible to deaminate by a conventional method using various deaminase such as adenosine deaminase and cytidine deaminase.

 また、Rがモノリン酸残基、ジリン酸残基などのリン酸残基である化合物を得る場合には、Rが水素原子である化合物をオキシ塩化リン、テトラクロロピロリン酸などのヌクレオシドの5'位の選択的なリン酸化に使用されるリン酸化剤と反応させることにより、遊離酸型または塩型の目的化合物を得ることができる。 When a compound in which R is a phosphate residue such as a monophosphate residue or a diphosphate residue is obtained, a compound in which R is a hydrogen atom is substituted with 5 ′ of a nucleoside such as phosphorus oxychloride or tetrachloropyrophosphate. By reacting with a phosphorylating agent used for selective phosphorylation at the position, a free acid type or salt type target compound can be obtained.

 このようにして得られる式[I]化合物及びその中間体は、一般のヌクレオシド、ヌクレオチドの単離精製に使用されている方法(例えば、再結晶法、イオン交換カラムクロマトグラフィー、吸着カラムクロマトグラフィーなど)を適宜組み合せて分離精製することができる。 The compound of formula [I] thus obtained and its intermediates can be obtained by a method used for isolating and purifying general nucleosides and nucleotides (eg, recrystallization, ion exchange column chromatography, adsorption column chromatography, etc.). ) Can be appropriately combined for separation and purification.

 以下、本発明を合成例をあげて具体的に説明するが、本発明はこれらによって何等限定されるものではない。
合成例1:4’−C−エチニル−2’−デオキシアデノシンの合成
(1)N−benzoyl−3’−O−tert−butyldimethylsilyl−2’−deoxyadenosine(化合物2)の合成
Hereinafter, the present invention will be described specifically with reference to Synthesis Examples, but the present invention is not limited thereto.
Synthesis Example 1: Synthesis of 4′-C-ethynyl-2′-deoxyadenosine (1) Synthesis of N 6 -benzoyl-3′-O-tert-butyldimethylsilyl-2′-deoxyadenosine (Compound 2)

Figure 2004107329
Figure 2004107329

 N−benzoyl−2’−deoxy−5’−O−dimethoxytrityladenosine 1(2.00g、3.04mmol)をジメチルホルムアミド(6.00ml)に溶解し、イミダゾール(0.83g、12.2mmol)、tert−ブチルクロロジメチルシラン(0.92g、6.10mmol)を加え、室温で終夜撹拌した。 N 6 -benzoyl-2′-deoxy-5′-O-dimethyloxytrityladenosine 1 (2.00 g, 3.04 mmol) was dissolved in dimethylformamide (6.00 ml), imidazole (0.83 g, 12.2 mmol), tert. -Butylchlorodimethylsilane (0.92 g, 6.10 mmol) was added, and the mixture was stirred at room temperature overnight.

 メタノールを加えて反応を停止させた後、反応液を酢酸エチルで希釈し、有機層を水洗、乾燥(無水硫酸マグネシウム上)した。乾燥剤をろ去後、ろ液を減圧下濃縮した。得られた残さをクロロホルム(70.0ml)に溶解し、氷冷下、トルエンスルホン酸1水和物(2.00g)のメタノール溶液(30.0ml)を滴下し、同温度で30分撹拌した。 After the reaction was stopped by adding methanol, the reaction solution was diluted with ethyl acetate, and the organic layer was washed with water and dried (over anhydrous magnesium sulfate). After the desiccant was removed by filtration, the filtrate was concentrated under reduced pressure. The obtained residue was dissolved in chloroform (70.0 ml), and a methanol solution (30.0 ml) of toluenesulfonic acid monohydrate (2.00 g) was added dropwise under ice-cooling, followed by stirring at the same temperature for 30 minutes. .

 反応液に飽和炭酸水素ナトリウム水溶液を加え撹拌した後、有機層を無水硫酸マグネシウム上で乾燥した。溶液を減圧下濃縮し、残さをシリカゲルカラムクロマトグラフィー(シリカゲル 100cc、ヘキサン:酢酸エチル=1:3)により精製し、白色泡状の化合物2(1.20g、2.56mmol、84.2%)を得た。 (5) A saturated aqueous sodium hydrogen carbonate solution was added to the reaction solution, and the mixture was stirred, and then the organic layer was dried over anhydrous magnesium sulfate. The solution was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (silica gel @ 100 cc, hexane: ethyl acetate = 1: 3) to give compound 2 as a white foam (1.20 g, 2.56 mmol, 84.2%). Got.

H−NMR(CDCl) δ 9.05(1H、s、NH)、8.78(1H、s、H−8)、8.10(1H、s、H−2)、8.09−7.52(5H、m、aromatic)、6.37(1H、dd、H−1’、J=5.36、9.28)、5.78(1H、dd、5’−OH、J=1.92、11.2)、4.74(1H、d、H−3’、J=4.88)、4.17(1H、s、H−4’)、4.00−3.74(2H、m、H−5’)、3.07(1H、m、H−2’a)、2.27(1H、m、H−2’b)、0.94(9H、s、t−Bu)、0.13(6H、s、Me). 1 H-NMR (CDCl 3) δ 9.05 (1H, s, NH), 8.78 (1H, s, H-8), 8.10 (1H, s, H-2), 8.09- 7.52 (5H, m, aromatic), 6.37 (1H, dd, H-1 ', J = 5.36, 9.28), 5.78 (1H, dd, 5'-OH, J = 1.92, 11.2), 4.74 (1H, d, H-3 ', J = 4.88), 4.17 (1H, s, H-4'), 4.00-3.74. (2H, m, H-5 '), 3.07 (1H, m, H-2'a), 2.27 (1H, m, H-2'b), 0.94 (9H, s, t) -Bu), 0.13 (6H, s, Me).

(2)N−benzoyl−3’−O−tert−butyldimethylsilyl−2’−deoxy−4’−C−hydroxymethyladenosine(化合物3)の合成 (2) Synthesis of N 6 -benzoyl-3′-O-tert-butyldimethylsilyl-2′-deoxy-4′-C-hydroxymethyladenosine (Compound 3)

Figure 2004107329
Figure 2004107329

 化合物 2(2.55g、5.43mmol)をトルエン(10.0ml)、ジメチルスルホキシド(15.0ml)に溶解し、1−エチル−3−(ジメチルアミノプロピル)カルボジイミド塩酸塩(3.12g、16.3mmol)、ピリジン(0.41ml)、トリフルオロ酢酸(0.21ml)を加え、室温で2時間撹拌した。反応液を酢酸エチルで希釈した後、有機層を水洗、乾燥(無水硫酸マグネシウム上)した。乾燥剤をろ去後、ろ液を減圧下濃縮し、粗アルデヒドを得た。粗アルデヒドをジオキサン(15.0ml)に溶解し、37% ホルムアルデヒド水溶液(2.86ml)、2N 水酸化ナトリウム水溶液(2.86ml)を加え、室温で1時間撹拌した。 Compound # 2 (2.55 g, 5.43 mmol) was dissolved in toluene (10.0 ml) and dimethyl sulfoxide (15.0 ml), and 1-ethyl-3- (dimethylaminopropyl) carbodiimide hydrochloride (3.12 g, 16 0.3 mmol), pyridine (0.41 ml) and trifluoroacetic acid (0.21 ml), and the mixture was stirred at room temperature for 2 hours. After diluting the reaction solution with ethyl acetate, the organic layer was washed with water and dried (over anhydrous magnesium sulfate). After removing the drying agent by filtration, the filtrate was concentrated under reduced pressure to obtain a crude aldehyde. The crude aldehyde was dissolved in dioxane (15.0 ml), a 37% aqueous formaldehyde solution (2.86 ml) and a 2N aqueous sodium hydroxide solution (2.86 ml) were added, and the mixture was stirred at room temperature for 1 hour.

 反応液を酢酸で中和後、酢酸エチルで希釈し、水洗、乾燥した。乾燥剤をろ去後、ろ液を減圧下濃縮して得られた残さをエタノール(25.0ml)に溶解し、氷冷下、水素化ホウ素ナトリウム(0.21g、5.55mmol)を加え、30分撹拌した。反応液を酢酸で中和後、酢酸エチルで希釈し、水洗、乾燥(無水硫酸マグネシウム上)した。乾燥剤をろ去後、ろ液を減圧下濃縮し、残さをシリカゲルカラムクロマトグラフィー(シリカゲル 300cc、ヘキサン:酢酸エチル=1:3〜1:4〜1:5)により精製し、淡黄色泡状の化合物 3(1.68g、3.36mmol、61.9%)を得た。 (4) The reaction solution was neutralized with acetic acid, diluted with ethyl acetate, washed with water and dried. After removing the desiccant by filtration, the filtrate was concentrated under reduced pressure, and the obtained residue was dissolved in ethanol (25.0 ml). Under ice cooling, sodium borohydride (0.21 g, 5.55 mmol) was added. Stir for 30 minutes. The reaction solution was neutralized with acetic acid, diluted with ethyl acetate, washed with water and dried (over anhydrous magnesium sulfate). After removing the desiccant by filtration, the filtrate was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (silica gel @ 300 cc, hexane: ethyl acetate = 1: 3-1 to 1: 4-1: 5) to give a pale yellow foam. Compound # 3 (1.68 g, 3.36 mmol, 61.9%) was obtained.

H−NMR(CDCl) δ 9.05(1H、s、NH)、8.79(1H、s、H−8)、8.08(1H、s、H−2)、8.04−7.52(5H、m、aromatic)、6.44(1H、dd、H−1’)、5.56(1H、br.d、OH)、4.94(1H、dd、H−3’、J=1.48、5.88)、3.86−3.63(4H、m、H−5’ and H−6’)、3.24(1H、m、H−2’a)、2.67(1H、br.s、OH)、2.38(1H、m、H−2’b)、0.96(9H、s、t−Bu)、0.19、0.18(each 3H、s、Me). 1 H-NMR (CDCl 3) δ 9.05 (1H, s, NH), 8.79 (1H, s, H-8), 8.08 (1H, s, H-2), 8.04- 7.52 (5H, m, aromatic), 6.44 (1H, dd, H-1 '), 5.56 (1H, br.d, OH), 4.94 (1H, dd, H-3'). , J = 1.48, 5.88), 3.86-3.63 (4H, m, H-5 'and H-6'), 3.24 (1H, m, H-2'a), 2.67 (1H, br.s, OH), 2.38 (1H, m, H-2'b), 0.96 (9H, s, t-Bu), 0.19, 0.18 (each 3H, s, Me).

(3)N−benzoyl−3’−O−tert−butyldimethylsilyl−4’−C−dimethoxytrityloxymethyladenosine(化合物4)の合成 (3) Synthesis of N 6 -benzoyl-3′-O-tert-butyldimethylsilyl-4′-C-dimethyoxytrityloxymethyladenosine (Compound 4)

Figure 2004107329
Figure 2004107329

 化合物 3(0.84g、1.68mmol)をジクロロメタン(17.0ml)に溶解し、氷冷下、トリエチルアミン(0.47ml、3.37mmol)、塩化ジメトキシトリチル(0.85g、2.51mmol)を加え、30分撹拌した。メタノールを加えて反応を停止させた後、有機層を飽和炭酸水素ナトリウム水溶液で洗浄した。有機層を無水硫酸マグネシウム上で乾燥後、減圧下濃縮し、残さをシリカゲルカラムクロマトグラフィー(シリカゲル 200cc、ヘキサン:酢酸エチル=2:1〜1:1)により精製し、淡黄色泡状の化合物 4(0.91g、1.13mmol、67.3%)を得た。 Compound # 3 (0.84 g, 1.68 mmol) was dissolved in dichloromethane (17.0 ml), and triethylamine (0.47 ml, 3.37 mmol) and dimethoxytrityl chloride (0.85 g, 2.51 mmol) were added under ice-cooling. The mixture was stirred for 30 minutes. After stopping the reaction by adding methanol, the organic layer was washed with a saturated aqueous solution of sodium hydrogen carbonate. The organic layer was dried over anhydrous magnesium sulfate, concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (silica gel @ 200 cc, hexane: ethyl acetate = 2: 1 to 1: 1) to give pale yellow foamy compound # 4 (0.91 g, 1.13 mmol, 67.3%).

H−NMR(CDCl) δ 9.30(1H、bs、NH)、8.94(1H、s、H−8)、8.24(1H、s、H−2)、8.18−6.94(18H、m、aromatic)、6.41(1H、dd、H−1’、J=5.84、8.80)、5.36(1H、br.s、OH)、4.85(1H、d、H−3’、J=3.92)、4.42(1H、br.d、H−5’a)、3.91(6H、s、OMe)、3.78(1H、br、t、H−5’b)、3.66(1H、d、H−6’a、J=10.76)、3.28(1H、m、H−2’a)、3.20(1H、d、H−6’b、J=10.76)、2.41(1H、m、H−2’b)、0.89(9H、s、t−Bu)、0.13、0.11(each 3H、s、Me). 1 H-NMR (CDCl 3) δ 9.30 (1H, bs, NH), 8.94 (1H, s, H-8), 8.24 (1H, s, H-2), 8.18- 6.94 (18H, m, aromatic), 6.41 (1H, dd, H-1 ', J = 5.84, 8.80), 5.36 (1H, br.s, OH); 85 (1H, d, H-3 ', J = 3.92), 4.42 (1H, br.d, H-5'a), 3.91 (6H, s, OMe), 3.78 ( 1H, br, t, H-5'b), 3.66 (1H, d, H-6'a, J = 10.76), 3.28 (1H, m, H-2'a), 3 .20 (1H, d, H-6'b, J = 10.76), 2.41 (1H, m, H-2'b), 0.89 (9H, s, t-Bu), 0. 13, 0.11 (each 3H, s, Me).

(4)N−benzoyl−3’,5’−di−O−tert−butyldimethylsilyl−2’−deoxy−4’−C−hydroxymethyladenosine(化合物5)の合成 (4) Synthesis of N 6 -benzyl-3 ′, 5′-di-O-tert-butyldimethylsilyl-2′-deoxy-4′-C-hydroxymethyladenosine (Compound 5)

Figure 2004107329
Figure 2004107329

 化合物 4(1.61g、2.01mmol)をジメチルホルムアミド(8.00ml)に溶解し、イミダゾール(0.41g、6.02mmol)、tert−ブチルクロロジメチルシラン(0.45g、2.99mmol)を加え、室温で終夜撹拌した。メタノールを加えて反応を停止させた後、反応液を酢酸エチルで希釈し、有機層を水洗、乾燥(無水硫酸マグネシウム上)した。乾燥剤をろ去し、ろ液を減圧下濃縮した。得られた残さをクロロホルム(70.0ml)に溶解し、氷冷下、トルエンスルホン酸1水和物(1.00g)のメタノール溶液(30.0ml)を滴下し、同温度で30分撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え撹拌した後、有機層を無水硫酸マグネシウム上で乾燥した。得られた溶液を減圧下濃縮し、残さをシリカゲルカラムクロマトグラフィー(シリカゲル 200cc、ヘキサン:酢酸エチル=3:1)により精製し白色泡状の化合物 5(1.00g、1.63mmol、81.1%)を得た。 Compound # 4 (1.61 g, 2.01 mmol) was dissolved in dimethylformamide (8.00 ml), and imidazole (0.41 g, 6.02 mmol) and tert-butylchlorodimethylsilane (0.45 g, 2.99 mmol) were added. The mixture was stirred overnight at room temperature. After stopping the reaction by adding methanol, the reaction solution was diluted with ethyl acetate, and the organic layer was washed with water and dried (over anhydrous magnesium sulfate). The drying agent was removed by filtration, and the filtrate was concentrated under reduced pressure. The obtained residue was dissolved in chloroform (70.0 ml), and a methanol solution (30.0 ml) of toluenesulfonic acid monohydrate (1.00 g) was added dropwise under ice cooling, followed by stirring at the same temperature for 30 minutes. . After adding a saturated aqueous sodium hydrogen carbonate solution to the reaction solution and stirring, the organic layer was dried over anhydrous magnesium sulfate. The obtained solution was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (silica gel @ 200 cc, hexane: ethyl acetate = 3: 1) to give compound # 5 as a white foam (1.00 g, 1.63 mmol, 81.1). %).

H−NMR(CDCl) δ 9.09(1H、bs、NH)、8.80(1H、s、H−8)、8.28(1H、s、H−2)、8.04−7.51(5H、m、aromatic)、6.52(1H、t、H−1’、J=6.32)、4.87(1H、dd、H−3’、J=4.40、6.36)、3.90−3.72(4H、m、H−5’ and H−6’)、3.03(1H、m、H−2’a)、2.60(1H、m、H−2’b)、2.53(1H、br.s、OH)、0.95、0.89(each 9H、s、t−Bu)、0.16、0.06(each 6H、s、Me). 1 H-NMR (CDCl 3) δ 9.09 (1H, bs, NH), 8.80 (1H, s, H-8), 8.28 (1H, s, H-2), 8.04- 7.51 (5H, m, aromatic), 6.52 (1H, t, H-1 ', J = 6.32), 4.87 (1H, dd, H-3', J = 4.40, 6.36), 3.90-3.72 (4H, m, H-5 'and H-6'), 3.03 (1H, m, H-2'a), 2.60 (1H, m , H-2'b), 2.53 (1H, br.s, OH), 0.95, 0.89 (each 9H, s, t-Bu), 0.16, 0.06 (each 6H, s, Me).

(5)N−benzoyl−3’,5’−di−O−tert−butyldimethylsilyl−4’−C−ethynyl−2’−deoxyadenosine(化合物6)の合成 (5) Synthesis of N 6 -benzoyl-3 ′, 5′-di-O-tert-butyldimethylsilyl-4′-C-ethynyl-2′-deoxyadenosine (compound 6)

Figure 2004107329
Figure 2004107329

 化合物 5(1.84g、3mmol)をトルエン(4.8ml)を、ジメチルスルホキシド(9.6ml)に溶解し、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩(1.57g、8.19mmol)、ピリジン(0.22ml)、トリフルオロ酢酸(0.11ml)を加え、室温で30分間撹拌した。反応液を酢酸エチルで希釈した後、有機層を水洗、乾燥(無水硫酸マグネシウム上)した。乾燥剤をろ去後、ろ液を減圧下濃縮し、粗アルデヒドを得た。 Compound # 5 (1.84 g, 3 mmol) was dissolved in dimethyl sulfoxide (9.6 ml) in toluene (4.8 ml), and 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (1.57 g, 8.19 mmol), pyridine (0.22 ml) and trifluoroacetic acid (0.11 ml) were added, and the mixture was stirred at room temperature for 30 minutes. After diluting the reaction solution with ethyl acetate, the organic layer was washed with water and dried (over anhydrous magnesium sulfate). After removing the drying agent by filtration, the filtrate was concentrated under reduced pressure to obtain a crude aldehyde.

 ブロモメチルトリフェニルホスホニウムブロミド(2.64g、6.05mmol)をテトラヒドロフラン(34.8ml)に懸濁し、−40℃下でカリウムt−ブトキシド(1.01g、9.00mmol)を加え、アルゴン雰囲気下、同温度で1時間撹拌した。この懸濁液に上記の粗アルデヒドのテトラヒドロフラン溶液(5.8ml)溶液を滴下し、同温度で1時間撹拌した。飽和塩化アンモニウム水溶液(30ml)を加えた後、室温で10分撹拌し、この液を酢酸エチルで希釈した。分液を行った後、有機層を飽和食塩水で洗浄し、無水硫酸ナトリウム上で乾燥した。減圧下乾固し、残さをシリカゲルカラムクロマトグラフィー(シリカゲル 35g、ヘキサン:酢酸エチル=4:1〜3:1〜2:1)により精製し、粗ブロモビニル体1.84gを得た。 Bromomethyltriphenylphosphonium bromide (2.64 g, 6.05 mmol) was suspended in tetrahydrofuran (34.8 ml), and potassium tert-butoxide (1.01 g, 9.00 mmol) was added at −40 ° C., and under an argon atmosphere. And stirred at the same temperature for 1 hour. To this suspension, a solution of the above crude aldehyde in tetrahydrofuran (5.8 ml) was added dropwise, and the mixture was stirred at the same temperature for 1 hour. After adding a saturated aqueous ammonium chloride solution (30 ml), the mixture was stirred at room temperature for 10 minutes, and the liquid was diluted with ethyl acetate. After liquid separation, the organic layer was washed with saturated saline and dried over anhydrous sodium sulfate. The residue was purified by silica gel column chromatography (silica gel @ 35 g, hexane: ethyl acetate = 4: 1 to 3: 1 to 2: 1) to obtain 1.84 g of a crude bromovinyl compound.

 粗ブロモビニル体をテトラヒドロフラン(61ml)に溶解し、−40℃下、カリウムt−ブトキシド(0.897g、8.00mmol)を加え、アルゴン雰囲気下、同温度で30分間撹拌した。飽和塩化アンモニウム水溶液(30ml)を加えた後、室温で10分撹拌した。反応液を酢酸エチルで希釈した後、分液を行い、有機層を飽和食塩水で洗浄し、無水硫酸ナトリウム上で乾燥した。減圧下乾固し、残さをシリカゲルカラムクロマトグラフィー(シリカゲル 17g、ヘキサン:酢酸エチル=4:1〜2:1〜2:3)により精製し、泡状の化合物 6(1.2g、1.97mmol、66%)を得た。 The crude bromovinyl compound was dissolved in tetrahydrofuran (61 ml), potassium tert-butoxide (0.897 g, 8.00 mmol) was added at -40 ° C, and the mixture was stirred at the same temperature for 30 minutes under an argon atmosphere. After adding a saturated ammonium chloride aqueous solution (30 ml), the mixture was stirred at room temperature for 10 minutes. After diluting the reaction solution with ethyl acetate, liquid separation was performed, and the organic layer was washed with brine and dried over anhydrous sodium sulfate. The residue was purified by silica gel column chromatography (silica gel @ 17 g, hexane: ethyl acetate = 4: 1 to 2: 1: 2: 3) to give a foamed compound # 6 (1.2 g, 1.97 mmol). , 66%).

H−NMR(CDCl) δ 8.99(1H、br.s、NH)、8.81(1H、s、H−8)、8.30(1H、s、H−2)、8.04−7.51(5H、m、aromaic)、6.54(1H、dd、H−1’、J=7.3、4.9)、4.83(1H、t、H−3’、J=6.8)、3.97(1H、d、H−5’a、J=11.2)、3.81(1H、d、H−5’b、J=11.2)、2.82-2.75(1H、m、H−2’)、2.72-2.64(1H、m、H−2’)、2.57(1H、s、ethynyl)、0.94、0.89(each 9H、s、t−Bu)、0.14、0.13、0.08、0.04(each 3H、s、Me). 1 H-NMR (CDCl 3 ) δ 8.99 (1 H, br.s, NH), 8.81 (1 H, s, H-8), 8.30 (1 H, s, H-2), 8. 04-7.51 (5H, m, aromatic), 6.54 (1H, dd, H-1 ', J = 7.3, 4.9), 4.83 (1H, t, H-3', J = 6.8), 3.97 (1H, d, H-5'a, J = 11.2), 3.81 (1H, d, H-5'b, J = 11.2), 2 .82-2.75 (1H, m, H-2 '), 2.72-2.64 (1H, m, H-2'), 2.57 (1H, s, ethynyl), 0.94, 0.89 (each 9H, s, t-Bu), 0.14, 0.13, 0.08, 0.04 (each 3H, s, Me).

(6)4’−C−ethynyl−2’−deoxyadenosine(化合物7)の合成 (6) Synthesis of 4'-C-ethyl-2'-deoxyadenosine (compound 7)

Figure 2004107329
Figure 2004107329

 化合物 6(0.118g、0.235mmol)をテトラヒドロフラン(3.2ml)に溶解し、フッ化テトラブチルアンモニウム(1M テトラヒドロフラン溶液、0.7ml、0.7mmol)を加え、室温で30分撹拌した。反応液を減圧下濃縮した後、残さをシリカゲルカラムクロマトグラフィー(シリカゲル 8cc、クロロホルム:メタノール=20:1)により粗精製し、脱シリル体を得た。 {Compound} 6 (0.118 g, 0.235 mmol) was dissolved in tetrahydrofuran (3.2 ml), tetrabutylammonium fluoride (1 M tetrahydrofuran solution, 0.7 ml, 0.7 mmol) was added, and the mixture was stirred at room temperature for 30 minutes. After the reaction solution was concentrated under reduced pressure, the residue was roughly purified by silica gel column chromatography (silica gel @ 8 cc, chloroform: methanol = 20: 1) to obtain a desilylated product.

 脱シリル体をメタノール(2.1ml)に溶解し、28% アンモニア水(0.7ml)を加え、室温で終夜撹拌した。反応液を減圧下濃縮した後、残さをシリカゲルカラムクロマトグラフィー(シリカゲル 8cc、クロロホルム:メタノール=20:1〜10:1)により精製し、化合物7(0.057g、0.207mmol、88.2%)を得た。 The desilylated compound was dissolved in methanol (2.1 ml), 28% aqueous ammonia (0.7 ml) was added, and the mixture was stirred at room temperature overnight. After the reaction solution was concentrated under reduced pressure, the residue was purified by silica gel column chromatography (silica gel @ 8 cc, chloroform: methanol = 20: 1 to 10: 1) to give compound 7 (0.057 g, 0.207 mmol, 88.2%). ) Got.

1H−NMR(DMSO−d) δ 8.33(1H、s、purine−H)、8.15(1H、s、purine−H)、7.30(2H、br s、NH2)、6.36(1H、t、J=6.4Hz、H−1’)、5.54(1H、d、J=5.4Hz、OH)、5.53(1H、t、J=5.4Hz、OH)、4.58(1H、q、J=5.9Hz、H−3’)、3.66(1H、dd、J=12.2、5.4Hz、H−5’)、3.56(1H、dd、J=11.7、7.3Hz、H−5’)、3.50(1H、s、ethynyl−H)、2.76(1H、dt、J=13.2、6.4Hz、H−2’)、2.41(1H、dt、J=13.2、6.8Hz、H−2’). 1 H-NMR (DMSO-d 6) δ 8.33 (1H, s, purine-H), 8.15 (1H, s, purine-H), 7.30 (2H, br s, NH 2), 6.36 (1H, t, J = 6.4 Hz, H-1 '), 5.54 (1H, d, J = 5.4 Hz, OH), 5.53 (1H, t, J = 5.4 Hz) , OH), 4.58 (1H, q, J = 5.9 Hz, H-3 '), 3.66 (1H, dd, J = 12.2, 5.4 Hz, H-5'); 56 (1H, dd, J = 11.7, 7.3 Hz, H-5 '), 3.50 (1H, s, ethylyl-H), 2.76 (1H, dt, J = 13.2, 6 .4 Hz, H-2 '), 2.41 (1H, dt, J = 13.2, 6.8 Hz, H-2').

合成例2:4’−C−エチニル−2’−デオキシイノシン(化合物8)の合成 Synthesis Example 2: Synthesis of 4'-C-ethynyl-2'-deoxyinosine (Compound 8)

Figure 2004107329
Figure 2004107329

 化合物 7(22mg、0.08mmol)のトリス塩酸緩衝液(6ml、pH7.5)溶液にアデノシンデアミナーゼ(0.044ml、20unit)を加え、40℃下で2.5時間撹拌した。室温まで冷ました後、逆相ODSシリカゲルカラム(50g)に付し、水(500ml)を流して脱塩した後、2.5%エタノール水溶液を流して化合物8を溶出させた。さらにイソプロパノールにより粉末化を行い、化合物8を16mg(72%)得た。 Adenosine deaminase (0.044 ml, 20 units) was added to a solution of Compound 7 (22 mg, 0.08 mmol) in Tris-HCl buffer (6 ml, pH 7.5), and the mixture was stirred at 40 ° C. for 2.5 hours. After cooling to room temperature, the mixture was applied to a reverse-phase ODS silica gel column (50 g), desalted by flowing water (500 ml), and then a 2.5% aqueous ethanol solution was passed to elute Compound 8. Further powdering was carried out with isopropanol to obtain 16 mg (72%) of compound 8.

1H−NMR (DMSO−d) δ 12.28(1H、brs、NH)、8.29(1H、s、purine−H)、8.06(1H、s、purine−H)、6.32(1H、dd、J=6.8、4.9Hz、H−1’)、5.57(1H、d、J=5.4Hz、OH)、5.32(1H、t、J=5.9Hz、OH)、4.56(1H、dt、J=6.4、5.4Hz、H−3’)、3.65(1H、dd、J=12.2、5.9Hz、H−5’)、3.57(1H、dd、J=11.7、6.4Hz、H−5’)、3.50(1H、s、ethynyl−H)、2.66(1H、dt、J=12.2、5.9Hz、H−2’)、2.46(1H、dt、J=13.2、6.9Hz、H−2’). 1 H-NMR (DMSO-d 6) δ 12.28 (1H, brs, NH), 8.29 (1H, s, purine-H), 8.06 (1H, s, purine-H), 6. 32 (1H, dd, J = 6.8, 4.9 Hz, H-1 ′), 5.57 (1H, d, J = 5.4 Hz, OH), 5.32 (1H, t, J = 5) 9.5 Hz, OH), 4.56 (1H, dt, J = 6.4, 5.4 Hz, H-3 ′), 3.65 (1H, dd, J = 12.2, 5.9 Hz, H−) 5 '), 3.57 (1H, dd, J = 11.7, 6.4 Hz, H-5'), 3.50 (1H, s, ethylyl-H), 2.66 (1H, dt, J = 12.2, 5.9 Hz, H-2 '), 2.46 (1H, dt, J = 13.2, 6.9 Hz, H-2').

合成例3:9−(2−デオキシ−4−C−エチニル−β−D−リボ−ペントフラノシル)−2,6−ジアミノプリンの合成
(1)9−(2−deoxy−β−D−ribo−pentofuranosyl)−2,6−dibenzamidopurine(化合物10)の合成
Synthesis Example 3: Synthesis of 9- (2-deoxy-4-C-ethynyl-β-D-ribo-pentofuranosyl) -2,6-diaminopurine (1) 9- (2-deoxy-β-D- Synthesis of ribo-pentofuranosyl) -2,6-dibenzamidopurine (compound 10)

Figure 2004107329
Figure 2004107329

 化合物9(26.2g、100mmol)をピリジンで2回共沸した後、ピリジン(400ml)に懸濁させ、0℃でクロロトリメチルシラン(88ml、700mmol)を10分かけて滴下した。0℃で30分間撹拌した後、塩化ベンゾイル(82ml、700mmol)を20分かけて滴下し、さらに室温で2時間撹拌した。0℃で反応液に氷水(200ml)をゆっくり注ぎ、15分間撹拌した後、同温度で濃アンモニア水(300ml)を滴下し30分間撹拌した。減圧下で溶媒を留去し、残さに酢酸エチル(600ml)、飽和重曹水(600ml)を注ぎ、0℃で1時間撹拌した。析出した結晶をろ取し、水、酢酸エチルで洗浄後、真空乾燥して無色結晶状の化合物10(36.22g、76%)を得た。 Compound 9 (26.2 g, 100 mmol) was azeotroped twice with pyridine, suspended in pyridine (400 ml), and chlorotrimethylsilane (88 ml, 700 mmol) was added dropwise at 0 ° C. over 10 minutes. After stirring at 0 ° C. for 30 minutes, benzoyl chloride (82 ml, 700 mmol) was added dropwise over 20 minutes, and the mixture was further stirred at room temperature for 2 hours. Ice water (200 ml) was slowly poured into the reaction solution at 0 ° C., and the mixture was stirred for 15 minutes, and then concentrated ammonia water (300 ml) was added dropwise at the same temperature, followed by stirring for 30 minutes. The solvent was distilled off under reduced pressure, and ethyl acetate (600 ml) and saturated aqueous sodium hydrogen carbonate (600 ml) were poured into the residue, followed by stirring at 0 ° C. for 1 hour. The precipitated crystals were collected by filtration, washed with water and ethyl acetate, and dried under vacuum to obtain colorless crystalline compound 10 (36.22 g, 76%).

H−NMR (DMSO−d) δ 11.19、10.98(each 1H、s、NH)、8.61(1H、s、H−8)、8.07−7.50(10H、s、aromatic)、6.42(1H、t、H−1’、J=7.32)、5.33(1H、d、3’−OH、J=3.88)、4.93(1H、t、5’−OH、J=5.36)、4.44(1H、b.m、H−3’)、3.88(1H、b.m、H−4’)、3.62(1H、m、H−5’a)、3.55(1H、m、H−5’b)、2.79(1H、m、H−2’a)、2.33(1H、m、H−2’b). 1 H-NMR (DMSO-d 6 ) δ 11.19, 10.98 (each 1H, s, NH), 8.61 (1H, s, H-8), 8.07-7.50 (10H, s, aromatic, 6.42 (1H, t, H-1 ', J = 7.32), 5.33 (1H, d, 3'-OH, J = 3.88), 4.93 (1H) , T, 5'-OH, J = 5.36), 4.44 (1H, bm, H-3 '), 3.88 (1H, bm, H-4'), 3.62 (1H, m, H-5'a), 3.55 (1H, m, H-5'b), 2.79 (1H, m, H-2'a), 2.33 (1H, m, H-2'b).

(2)9−(2−deoxy−3−O−tert−butyldimethylsilyl−β−D−ribo−pentofuranosyl)−2,6−dibenzamidopurine(化合物11)の合成 (2) Synthesis of 9- (2-deoxy-3-O-tert-butyldimethylsilyl-β-D-ribo-pentofuranosyl) -2,6-dibenzamidopurine (Compound 11)

Figure 2004107329
Figure 2004107329

 化合物10(36.22g、76.4mmol)をピリジンで2回共沸脱水した後、ピリジン(300ml)に溶解し、室温で塩化ジメトキシトリチル(37.6g、111mmol)を加え、3時間撹拌した。反応液にエタノール(10ml)を加え、減圧下、溶媒を留去した。残さを酢酸エチル(250ml)に懸濁させ、水を加えた後、セライトろ過して不溶物を除去した。有機層を回収し、さらに水で2回、飽和食塩水で1回洗浄し、無水硫酸ナトリウム上で乾燥した。溶媒を留去し、残さをシリカゲルカラムクロマトグラフィー(シリカゲル 300g、クロロホルム〜クロロホルム:メタノール=200:1〜100:1〜50:1)にて精製した。得られた残さ(69.9g)をジメチルホルムアミドで2回共沸脱水した後、ジメチルホルムアミド(370ml)に溶解し、イミダゾール(8.8g、129mmol)、tert−ブチルクロロジメチルシラン(16.5g、109mmol)を加え室温で一晩攪拌した。 Compound 10 (36.22 g, 76.4 mmol) was azeotropically dehydrated twice with pyridine, then dissolved in pyridine (300 ml), dimethoxytrityl chloride (37.6 g, 111 mmol) was added at room temperature, and the mixture was stirred for 3 hours. Ethanol (10 ml) was added to the reaction solution, and the solvent was distilled off under reduced pressure. The residue was suspended in ethyl acetate (250 ml), water was added, and the mixture was filtered through celite to remove insolubles. The organic layer was collected, further washed twice with water and once with a saturated saline solution, and dried over anhydrous sodium sulfate. The solvent was distilled off, and the residue was purified by silica gel column chromatography (silica gel @ 300 g, chloroform-chloroform: methanol = 200: 1 to 100: 1 to 50: 1). The obtained residue (69.9 g) was azeotropically dehydrated twice with dimethylformamide, then dissolved in dimethylformamide (370 ml), and imidazole (8.8 g, 129 mmol) and tert-butylchlorodimethylsilane (16.5 g, 109 mmol) and stirred at room temperature overnight.

 反応液に水を注ぎ、減圧下で溶媒を留去した。残さを酢酸エチル(500ml)に溶解し、水(500mlx3)、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を留去し、得られた残さをクロロホルム(510ml)に溶解し、0℃でトルエンスルホン酸1水和物−メタノール溶液(14.6g、 76.8mmol in 220ml of MeOH)をゆっくり滴下した(5分間)。0℃で15分間攪拌した後、飽和重曹水(600ml)を加えて中和し、有機層を回収後、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を留去し、さらに酢酸エチル(150ml)で共沸した。残さに酢酸エチル(300ml)を加え、室温で30分間攪拌した後、析出した結晶をろ取した。結晶を酢酸エチルで洗浄後、真空乾燥して無色結晶状の化合物11(28.76g、64%)を得た。 水 Water was poured into the reaction solution, and the solvent was distilled off under reduced pressure. The residue was dissolved in ethyl acetate (500 ml), washed with water (500 ml × 3) and brine, and dried over anhydrous sodium sulfate. The solvent was distilled off, the obtained residue was dissolved in chloroform (510 ml), and a solution of toluenesulfonic acid monohydrate-methanol (14.6 g, {76.8 mmol} in {220 ml} of MeOH) was slowly added dropwise at 0 ° C ( 5 minutes). After stirring at 0 ° C. for 15 minutes, saturated sodium bicarbonate solution (600 ml) was added for neutralization. The organic layer was collected, washed with saturated saline, and dried over anhydrous sodium sulfate. The solvent was distilled off and azeotroped with ethyl acetate (150 ml). Ethyl acetate (300 ml) was added to the residue, and the mixture was stirred at room temperature for 30 minutes, and the precipitated crystals were collected by filtration. The crystals were washed with ethyl acetate and then dried in vacuo to obtain colorless crystalline compound 11 (28.76 g, 64%).

H−NMR(CDCl) δ 9.33、9.17(each 1H、s、NH)、8.07−7.45(10H、m、aromatic)、6.29(1H、dd、H−1’、J=6.36、7.80)、4.95(1H、b.m、H−3’)、4.86(1H、b.t、5’−OH)、4.04(1H、b.d、H−4’)、3.95(1H、m、H−5’a)、3.85(1H、m、H−5’b)、1.42(1H、m、H−2’a)、2.30(1H、m、H−2’b). 1 H-NMR (CDCl 3) δ 9.33,9.17 (each 1H, s, NH), 8.07-7.45 (10H, m, aromatic), 6.29 (1H, dd, H- 1 ′, J = 6.36, 7.80), 4.95 (1H, bm, H-3 ′), 4.86 (1H, bt, 5′-OH), 4.04 ( 1H, bd, H-4 '), 3.95 (1H, m, H-5'a), 3.85 (1H, m, H-5'b), 1.42 (1H, m, H-2'a), 2.30 (1H, m, H-2'b).

(3)9−(2−deoxy−3−O−tert−butyldimethylsilyl−4−C−hydroxymethyl−β−D−ribo−pentofuranosyl)−2,6−dibenzamidopurine(化合物12)の合成 (3) Synthesis of 9- (2-deoxy-3-O-tert-butyldimethylsilyl-4-C-hydroxymethyl-β-D-ribo-pentofuranosyl) -2,6-dibenzamidopurine (Compound 12)

Figure 2004107329
Figure 2004107329

 化合物11(50.0g、85.0mmol)をジメチルスルホキシド(290ml)−トルエン(190ml)に溶解し、室温下で1−エチル−3−(ジメチルアミノプロピル)カルボジイミド塩酸塩(24.6g、 127.5mmol)、ピリジン(6.9ml、 85.0mmol)、トリフルオロ酢酸(3.3ml、 42.5mmol)を加え2時間攪拌した。反応液に0℃で酢酸エチル(750ml)、氷水(750ml)を加え1時間攪拌した。析出した結晶(一部のホルミル体)をろ取し、ろ液の有機層を回収した。有機層を水で2回、飽和食塩水で1回洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を留去し残さとろ取した結晶をあわせて、粗アルデヒドを得た。粗アルデヒドをジオキサン(240ml)に溶解し、室温下で37%ホルムアルデヒド水溶液(45ml)、2N水酸化ナトリウム水溶液(45ml)を加え、室温で3時間攪拌した。 Compound 11 (50.0 g, 85.0 mmol) was dissolved in dimethyl sulfoxide (290 ml) -toluene (190 ml), and 1-ethyl-3- (dimethylaminopropyl) carbodiimide hydrochloride (24.6 g, {127. 5 mmol), pyridine (6.9 ml, 85.0 mmol) and trifluoroacetic acid (3.3 ml, 42.5 mmol) were added and stirred for 2 hours. Ethyl acetate (750 ml) and ice water (750 ml) were added to the reaction solution at 0 ° C., and the mixture was stirred for 1 hour. The precipitated crystals (part of the formyl compound) were collected by filtration, and the organic layer of the filtrate was recovered. The organic layer was washed twice with water and once with saturated saline, and dried over anhydrous sodium sulfate. The solvent was distilled off, and the residue and the collected crystals were combined to obtain a crude aldehyde. The crude aldehyde was dissolved in dioxane (240 ml), a 37% aqueous formaldehyde solution (45 ml) and a 2N aqueous sodium hydroxide solution (45 ml) were added at room temperature, and the mixture was stirred at room temperature for 3 hours.

 反応液を氷酢酸(8.6ml)で中和し、酢酸エチル(700ml)で抽出した。有機層を水、飽和重曹水、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を留去し、得られた残さをエタノール(360ml)に溶解し、0℃で水素化ホウ素ナトリウム(3.2g、 85.0mmol)を加え、同温で30分間攪拌した。反応液に氷酢酸(2.5ml)を加えて反応を停止し、クロロホルム−メタノール(10:1)(1.1L)で抽出した。有機層を水、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を留去し、さらに酢酸エチル(200ml)で共沸した。残さに酢酸エチル(500ml)を加え、室温で5分間攪拌した後、析出した結晶をろ取した。結晶を酢酸エチルで洗浄し、真空乾燥して化合物12を無色の結晶として30.83g(59%)得た。 The reaction solution was neutralized with glacial acetic acid (8.6 ml) and extracted with ethyl acetate (700 ml). The organic layer was washed with water, saturated aqueous sodium hydrogen carbonate, and saturated saline, and then dried over anhydrous sodium sulfate. The solvent was distilled off, the obtained residue was dissolved in ethanol (360 ml), sodium borohydride (3.2 g, 85.0 mmol) was added at 0 ° C., and the mixture was stirred at the same temperature for 30 minutes. Glacial acetic acid (2.5 ml) was added to the reaction solution to stop the reaction, and the mixture was extracted with chloroform-methanol (10: 1) (1.1 L). The organic layer was washed with water and saturated saline, and then dried over anhydrous sodium sulfate. The solvent was distilled off, and azeotroped with ethyl acetate (200 ml). Ethyl acetate (500 ml) was added to the residue, and the mixture was stirred at room temperature for 5 minutes, and the precipitated crystals were collected by filtration. The crystals were washed with ethyl acetate and dried under vacuum to obtain 30.83 g (59%) of compound 12 as colorless crystals.

H−NMR(DMSO−d) δ 11.21、11.01(each 1H、s、NH)、8.63−7.50(12H、m、aromatic)、6.43(1H、t、H−1’、J=6.32)、4.91(1H、t、OH、J=5.36)、4.78(1H、t、H−3’、J=5.84)、4.47(1H、t、OH、J=6.36)、3.65−3.52(4H、m、H−5’ and H−6’)、2.96(1H、m、H−2’a)、2.43(1H、m、H−2’b)、0.89(9H、s、t−Bu)、0.10(6H、s、Me). 1 H-NMR (DMSO-d 6) δ 11.21,11.01 (each 1H, s, NH), 8.63-7.50 (12H, m, aromatic), 6.43 (1H, t, H-1 ', J = 6.32), 4.91 (1H, t, OH, J = 5.36), 4.78 (1H, t, H-3', J = 5.84), 4 .47 (1H, t, OH, J = 6.36), 3.65-3.52 (4H, m, H-5 'and H-6'), 2.96 (1H, m, H-2) 'a), 2.43 (1H, m, H-2'b), 0.89 (9H, s, t-Bu), 0.10 (6H, s, Me).

(4)9−(2−deoxy−3−O−tert−butyldimethylsilyl−4−C−dimethoxytrityloxymethyl−β−D−ribo−pentofuranosyl)−2,6−dibenzamidopurine(化合物13)の合成 (4) Synthesis of 9- (2-deoxy-3-O-tert-butyldimethylsilyl-4-C-dimethyoxytriethyloxymethyl-β-D-ribo-pentofuranosyl) -2,6-dibenzamidopurine (Compound 13)

Figure 2004107329
Figure 2004107329

 化合物12(24.8g、40.0mmol)をジメチルホルムアミドで1回共沸脱水した後、ジメチルホルムアミド(200ml)に溶解し、トリエチルアミン(11.2ml、80.0mmol)、塩化ジメトキシトリチル(20.3g、60.0mmol)を加え室温で1時間攪拌した。反応液を酢酸エチル(600ml)で抽出し、水(600mlx3)、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を留去し、残さをシリカゲルカラムクロマトグラフィー(シリカゲル 600g、クロロホルム〜クロロホルム−酢酸エチル5:1〜2:1〜1:2〜1:3〜酢酸エチル)にて精製し、化合物13(22.2g、60%)得た。 Compound 12 (24.8 g, 40.0 mmol) was azeotropically dehydrated once with dimethylformamide, then dissolved in dimethylformamide (200 ml), triethylamine (11.2 ml, 80.0 mmol), dimethoxytrityl chloride (20.3 g) , 60.0 mmol) and stirred at room temperature for 1 hour. The reaction solution was extracted with ethyl acetate (600 ml), washed with water (600 ml × 3) and brine, and dried over anhydrous sodium sulfate. The solvent was distilled off, and the residue was purified by silica gel column chromatography (silica gel @ 600 g, chloroform-chloroform-ethyl acetate 5: 1 to 2: 1 to 1: 2 to 1: 3 to ethyl acetate) to give compound 13 (22 .2 g, 60%).

H−NMR(CDCl) δ 9.33、9.24(each 1H、s、NH)、8.13−6.89(25H、m、aromatic)、6.27(1H、t、H−1’、J=6.84)、5.14(1H、dd、H−3’、J=3.92、6.36)、4.59(1H、dd、5’−OH、J=5.40、8.32)、4.30(1H、dd、H−5’a、J=5.36、12.72)、3.87(6H、s、OMe)、3.82(1H、dd、H−5’b、J=8.80、12.2)、3.59(1H、d、H−6’a、J=10.76)、3.27(1H、m、H−2’a)、3.18(1H、d、H−6’b、J=10.72)、2.48(1H、m、H−2’b)、0.84(9H、s、t−Bu)、0.09、0.07(each 3H、Me). 1 H-NMR (CDCl 3) δ 9.33,9.24 (each 1H, s, NH), 8.13-6.89 (25H, m, aromatic), 6.27 (1H, t, H- 1 ′, J = 6.84), 5.14 (1H, dd, H-3 ′, J = 3.92, 6.36), 4.59 (1H, dd, 5′-OH, J = 5) .40, 8.32), 4.30 (1H, dd, H-5'a, J = 5.36, 12.72), 3.87 (6H, s, OMe), 3.82 (1H, dd, H-5'b, J = 8.80, 12.2), 3.59 (1H, d, H-6'a, J = 1.76), 3.27 (1H, m, H-) 2'a), 3.18 (1H, d, H-6'b, J = 10.72), 2.48 (1H, m, H-2'b), 0.84 (9H, s, t) -Bu), 0.09, 0.07 (each 3H Me).

(5)9−(2−deoxy−3,5−di−O−tert−butyldimethylsilyl−4−C−hydroxymethyl−β−D−ribo−pentofuranosyl)−2,6−dibenzamidopurine(化合物14)の合成  (5) Synthesis of 9- (2-deoxy-3,5-di-O-tert-butyldimethylsilyl-4-C-hydroxymethyl-β-D-ribo-pentofuranosyl) -2,6-dibenzamidopurine (Compound 14)

Figure 2004107329
Figure 2004107329

 化合物13(29.9g、32.5mmol)をジメチルホルムアミドで2回共沸脱水した後、ジメチルホルムアミド(100ml)に溶解し、イミダゾール(3.3g、48.8mmol)、tert−ブチルクロロジメチルシラン(5.9g、39.0mmol)を加え室温で一晩攪拌した。反応液を酢酸エチル(300ml)で抽出し、水(300mlx3)、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を留去し、得られた残さをクロロホルム(620ml)に溶解し、−10℃でトルエンスルホン酸−メタノール溶液(6.2g、32.5mmol in 190ml of MeOH)をゆっくり滴下した(5分間)。同温で20分間攪拌した後、飽和重曹水(300ml)を加えて中和した。有機層を回収し、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を留去し、残さをシリカゲルカラムクロマトグラフィー(シリカゲル 300g、クロロホルム〜クロロホルム−酢酸エチル2:1〜1:1〜1:2)にて精製し、無色結晶の化合物14(17.5g、74%)を得た。 Compound 13 (29.9 g, 32.5 mmol) was azeotropically dehydrated twice with dimethylformamide, then dissolved in dimethylformamide (100 ml), imidazole (3.3 g, 48.8 mmol), tert-butylchlorodimethylsilane ( 5.9 g, 39.0 mmol) and stirred at room temperature overnight. The reaction solution was extracted with ethyl acetate (300 ml), washed with water (300 ml × 3) and brine, and dried over anhydrous sodium sulfate. The solvent was distilled off, the obtained residue was dissolved in chloroform (620 ml), and a toluenesulfonic acid-methanol solution (6.2 g, 32.5 mmol in 190 ml of MeOH) was slowly added dropwise at −10 ° C. (5 minutes). . After stirring at the same temperature for 20 minutes, saturated aqueous sodium hydrogen carbonate (300 ml) was added to neutralize. The organic layer was recovered, washed with saturated saline, and dried over anhydrous sodium sulfate. The solvent was distilled off, and the residue was purified by silica gel column chromatography (silica gel @ 300 g, chloroform-chloroform-ethyl acetate 2: 1 to 1: 1 to 1: 2) to obtain colorless compound 14 (17.5 g, 74). %).

H−NMR(CDCl) δ 9.20、9.16(each 1H、s、NH)、8.13(1H、s、H−8)、8.03−7.48(10H、m、aromatic)、6.45(1H、t、H−1’、J=6.32)、4.99(1H、t、H−3’、J=6.36)、3.91−3.73(4H、m、H−5’ and H−6’)、3.12(1H、m、H−2’a)、2.71(1H、b.dd、OH)、2.54(1H、m、H−2’b)、0.93、0.86(each 9H、s、t−Bu)、0.16、0.15、0.02、0.007(each 3H、s、Me). 1 H-NMR (CDCl 3) δ 9.20,9.16 (each 1H, s, NH), 8.13 (1H, s, H-8), 8.03-7.48 (10H, m, aromatic), 6.45 (1H, t, H-1 ', J = 6.32), 4.99 (1H, t, H-3', J = 6.36), 3.91-3.73. (4H, m, H-5 'and H-6'), 3.12 (1H, m, H-2'a), 2.71 (1H, b.dd, OH), 2.54 (1H, m, H-2'b), 0.93, 0.86 (each 9H, s, t-Bu), 0.16, 0.15, 0.02, 0.007 (each 3H, s, Me) .

(6)9−(2−deoxy−3,5−di−O−tert−butyldimethylsilyl−4−C−ethynyl−β−D−ribo−pentofuranosyl)−2,6−dibenzamidopurine(化合物15)の合成 (6) Synthesis of 9- (2-deoxy-3,5-di-O-tert-butyldimethylsilyl-4-C-ethynyl-β-D-ribo-pentofuranosyl) -2,6-dibenzamidopurine (Compound 15)

Figure 2004107329
Figure 2004107329

 化合物14(510mg、0.7mmol)をジメチルスルホキシド(2.4ml)とトルエン(1.6ml)の混合溶媒に溶解し、室温下で1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩(400mg、2.1mmol)、ピリジン(57ml、 0.7mmol)、トリフルオロ酢酸(27ml、 0.35mmol)を加え5時間攪拌した。反応液を酢酸エチルで抽出し、水、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を留去し、未精製のアルデヒド体を得た。 Compound 14 (510 mg, 0.7 mmol) was dissolved in a mixed solvent of dimethyl sulfoxide (2.4 ml) and toluene (1.6 ml), and 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride was added at room temperature. (400 mg, 2.1 mmol), pyridine (57 ml, 0.7 mmol) and trifluoroacetic acid (27 ml, 0.35 mmol) were added and stirred for 5 hours. The reaction solution was extracted with ethyl acetate, washed with water and saturated saline, and dried over anhydrous sodium sulfate. The solvent was distilled off to obtain an unpurified aldehyde.

 ブロモトリフェニルホスホニウムブロミド(611mg、 1.4mmol)をテトラヒドロフラン(8ml)に懸濁させ、−40℃でカリウムtert−ブトキシド(236mg 、2.1mmol)を加え、同温で2時間攪拌し、ホスホランを調製した。−40℃でアルデヒド体のテトラヒドロフラン溶液(8ml)を滴下し、1.5時間攪拌した。飽和塩化アンモニウム水を加え、酢酸エチルで抽出した。飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を留去し、残さをシリカゲルカラムクロマトグラフィー(シリカゲル 20g、ヘキサン:酢酸エチル3:1〜2:1〜1:1)にて粗精製し、ブロモビニル体459mg(81%)を得た。 Bromotriphenylphosphonium bromide (611 mg, 1.4 mmol) was suspended in tetrahydrofuran (8 ml), potassium tert-butoxide (236 mg, 2.1 mmol) was added at −40 ° C., and the mixture was stirred at the same temperature for 2 hours, and phosphorane was added. Prepared. At −40 ° C., a tetrahydrofuran solution of the aldehyde compound (8 ml) was added dropwise, and the mixture was stirred for 1.5 hours. Saturated aqueous ammonium chloride was added, and the mixture was extracted with ethyl acetate. After washing with saturated saline, it was dried over anhydrous sodium sulfate. The solvent was distilled off, and the residue was roughly purified by silica gel column chromatography (silica gel @ 20 g, hexane: ethyl acetate 3: 1 to 2: 1 to 1: 1) to obtain 459 mg (81%) of a bromovinyl compound.

 ブロモビニル体(459mg、 0.57mmol)をテトラヒドロフラン(13ml)に溶解し、カリウムtert−ブトキシド(255mg、 2.28mmol)を加え、室温で30分間攪拌した。反応液に飽和塩化アンモニウム水を加え、酢酸エチルで抽出した。飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を留去し、残さをシリカゲルカラムクロマトグラフィー(シリカゲル 5g、ヘキサン:酢酸エチル2:1〜1:1)にて粗精製し、化合物15(325mg、78%)を得た。 The bromovinyl compound (459 mg, 0.57 mmol) was dissolved in tetrahydrofuran (13 ml), potassium tert-butoxide (255 mg, 2.28 mmol) was added, and the mixture was stirred at room temperature for 30 minutes. A saturated aqueous ammonium chloride solution was added to the reaction solution, and the mixture was extracted with ethyl acetate. After washing with saturated saline, it was dried over anhydrous sodium sulfate. The solvent was distilled off, and the residue was roughly purified by silica gel column chromatography (silica gel @ 5 g, hexane: ethyl acetate 2: 1 to 1: 1) to obtain Compound 15 (325 mg, 78%).

H−NMR(CDCl) δ 9.25、9.17(each 1H、s、NH)、8.19(1H、s、H−8)、8.04−7.44(10H、m、aromatic)、6.53(1H、dd、H−1’、J=4.88、6.84)、4.84(1H、t、H−3’、J=6.84)、4.02(1H、d、H−5’a、J=10.76)、3.83(1H、d、H−5’b、J=11.24)、2.84(1H、m、H−2’a)、2.67(1H、m、H−2’)、2.55(1H、s、ethynyl)、0.94(9H、s、t−Bu)、0.90(9H、s、t−Bu)、0.15(3H、s、Me)、0.13(3H、s、Me)、0.08(3H、s、Me)、0.06(3H、s、Me). 1 H-NMR (CDCl 3) δ 9.25,9.17 (each 1H, s, NH), 8.19 (1H, s, H-8), 8.04-7.44 (10H, m, aromatic), 6.53 (1H, dd, H-1 ', J = 4.88, 6.84), 4.84 (1H, t, H-3', J = 6.84), 4.02. (1H, d, H-5'a, J = 10.76), 3.83 (1H, d, H-5'b, J = 11.24), 2.84 (1H, m, H-2) 'a), 2.67 (1H, m, H-2'), 2.55 (1H, s, ethylyl), 0.94 (9H, s, t-Bu), 0.90 (9H, s, t-Bu), 0.15 (3H, s, Me), 0.13 (3H, s, Me), 0.08 (3H, s, Me), 0.06 (3H, s, Me).

(7)9−(2−deoxy−4−C−cyano−β−D−ribo−pentofuranosyl)−2,6−diaminopurine(化合物16)の合成 (7) Synthesis of 9- (2-deoxy-4-C-cyano-β-D-ribo-pentofuranosyl) -2,6-diaminopurine (Compound 16)

Figure 2004107329
Figure 2004107329

 化合物15(212mg、0.29mmol)をテトラヒドロフラン(4ml)に溶解し、フッ化テトラブチルアンモニウム(1M テトラヒドロフラン溶液、1.2ml、1.2mmol)を加え室温で30分間攪拌した。反応液にシリカゲル(1.5g)を加え、溶媒を留去した後、シリカゲルカラムクロマトグラフィー(シリカゲル 10g、クロロホルム:メタノール=100:1〜50:1)にて粗精製し、脱シリル体94mg(65%)を得た。 Compound 15 (212 mg, 0.29 mmol) was dissolved in tetrahydrofuran (4 ml), tetrabutylammonium fluoride (1 M tetrahydrofuran solution, 1.2 ml, 1.2 mmol) was added, and the mixture was stirred at room temperature for 30 minutes. Silica gel (1.5 g) was added to the reaction solution, and the solvent was distilled off. The residue was roughly purified by silica gel column chromatography (silica gel @ 10 g, chloroform: methanol = 100: 1 to 50: 1), and 94 mg of the desilyl compound (94 mg) 65%).

 脱シリル体(28mg、0.06mmol)をメタノール(1ml)に溶解し、40%メチルアミン水溶液(2ml)を加え、室温で一晩攪拌した。溶媒を留去し、残さをシリカゲルカラムクロマトグラフィー(シリカゲル 3g、クロロホルム:-メタノール=50:1〜20:1〜10:1)にて粗精製し、化合物16を無色の結晶として11mg(68%)得た。 (4) The desilylated product (28 mg, 0.06 mmol) was dissolved in methanol (1 ml), a 40% aqueous solution of methylamine (2 ml) was added, and the mixture was stirred at room temperature overnight. The solvent was distilled off, and the residue was roughly purified by silica gel column chromatography (silica gel @ 3 g, chloroform: -methanol = 50: 1 to 20: 1 to 10: 1) to obtain 11 mg of compound 16 as colorless crystals (68%). )Obtained.

1H−NMR(DMSO−d) δ 7.89(1H、s、H−8)、6.71(2H、br s、NH2)、6.20(1H、t、J=6.3Hz、H−1’)、5.74(2H、br s、NH2)、5.59(1H、t、J=5.9Hz、OH)、5.47(1H、d、J=4.9Hz、OH)、4.50(1H、q、J=5.9Hz、H−3’)、3.65(1H、dd、J=11.7、5.4Hz、H−5’)、3.56(1H、dd、J=11.7、7.3Hz、H−5’)、3.46(1H、s、ethynyl−H)、2.64(1H、dt、J=12.7、6.4Hz、H−2’)、2.32(1H、dt、J=13.2、6.4Hz、H−2’). 1 H-NMR (DMSO-d 6 ) δ 7.89 (1H, s, H-8), 6.71 (2H, brs, NH 2 ), 6.20 (1H, t, J = 6.3 Hz) , H-1 ′), 5.74 (2H, brs, NH 2 ), 5.59 (1H, t, J = 5.9 Hz, OH), 5.47 (1H, d, J = 4.9 Hz) , OH), 4.50 (1H, q, J = 5.9 Hz, H-3 '), 3.65 (1H, dd, J = 11.7, 5.4 Hz, H-5'); 56 (1H, dd, J = 11.7, 7.3 Hz, H-5 '), 3.46 (1H, s, ethylyl-H), 2.64 (1H, dt, J = 12.7, 6) .4 Hz, H-2 '), 2.32 (1H, dt, J = 13.2, 6.4 Hz, H-2').

合成例4:4'−C−エチニル−2'−デオキシグアノシン(化合物17)の合成 Synthesis Example 4: Synthesis of 4′-C-ethynyl-2′-deoxyguanosine (Compound 17)

Figure 2004107329
Figure 2004107329

 化合物16(30mg、0.103mmol)のトリス塩酸緩衝液(7.8ml、pH7.5)溶液にアデノシンデアミナーゼ(0.057ml、20unit)を加え、40℃下で2時間撹拌した。室温まで冷ました後、反応液を逆相ODSシリカゲルカラム(50g)に付し、水(500ml)を流して脱塩した後、2.5%エタノール水溶液を流して化合物17を溶出させた。さらに、水より再結晶を行い、化合物17を15mg(50%)得た。 Adenosine deaminase (0.057 ml, 20 units) was added to a solution of compound 16 (30 mg, 0.103 mmol) in Tris-HCl buffer (7.8 ml, pH 7.5), and the mixture was stirred at 40 ° C for 2 hours. After cooling to room temperature, the reaction solution was applied to a reverse-phase ODS silica gel column (50 g), desalted by flowing water (500 ml), and then a 2.5% aqueous ethanol solution was passed to elute Compound 17. Further, recrystallization was performed from water to obtain 15 mg (50%) of compound 17.

1H−NMR(DMSO−d) δ 10.61(1H、br s、NH)、7.90(1H、s、H−8)、6.48(2H、br s、NH2)、6.13(1H、dd、J=7.3、5.9Hz、H−1’)、5.51(1H、d、J=4.9Hz、OH)、5.30(1H、t、J=5.9Hz、OH)、4.47(1H、dt、J=6.4、5.4Hz、H−3’)、3.62(1H、dd、J=12.2、6.4Hz、H−5’)、3.54(1H、dd、J=12.2、6.4Hz、H−5’)、3.47(1H、s、ethynyl−H)、2.56(1H、dt、J=12.2、6.4Hz、H−2’)、2.36(1H、dt、J=12.7、6.8Hz、H−2’).

1 H-NMR (DMSO-d 6) δ 10.61 (1H, br s, NH), 7.90 (1H, s, H-8), 6.48 (2H, br s, NH 2), 6 .13 (1H, dd, J = 7.3, 5.9 Hz, H-1 ′), 5.51 (1H, d, J = 4.9 Hz, OH), 5.30 (1H, t, J = 5.9 Hz, OH), 4.47 (1 H, dt, J = 6.4, 5.4 Hz, H-3 '), 3.62 (1 H, dd, J = 12.2, 6.4 Hz, H −5 ′), 3.54 (1H, dd, J = 12.2, 6.4 Hz, H−5 ′), 3.47 (1H, s, ethylyl-H), 2.56 (1H, dt, J = 12.2, 6.4 Hz, H-2 '), 2.36 (1H, dt, J = 12.7, 6.8 Hz, H-2').

Claims (1)

下記第1〜5工程によりなる、下記式[I]で表される4’−C−エチニル−2'−デオキシプリンヌクレオシドの製造法。
Figure 2004107329
          [I]
(式中、Bはプリン塩基を示し、Rは水素原子またはリン酸残基を示す。)
第1工程;
 式[II]で表される化合物の3’位水酸基を保護し、式[IV]で表される化合物を得る工程
Figure 2004107329
     [II]        [III]        [IV]
第2工程;
 式[IV]で表される化合物の4’位にヒドロキシメチル基を導入し、式[V]で表される化合物を得る工程
Figure 2004107329
     [IV]                  [V]
第3工程;
 式[V]で表される化合物の5’位水酸基を保護し、式[VII]で表される化合物を得る工程
Figure 2004107329
     [V]          [VI]         [VII]
第4工程;
 式[VII]で表される化合物の4’位ヒドロキシメチル基をアルデヒド基へと酸化した後、これをブロモビニル基へと変換し、引き続き、強塩基で処理してエチニル基に変換し、式[VIII]で表される化合物を得る工程
Figure 2004107329
    [VII]                 [VIII]
第5工程;
 式[VIII]で表される化合物の3’、5’位保護基を除去し、Rが水素である化合物を得、さらに所望によりリン酸化し、式[I]で表される化合物を得る工程
Figure 2004107329
    [VIII]                 [I]
(上記各式中、Bはプリン(アザプリンまたはデアザプリンも含む)塩基を示し、Rは水素原子またはリン酸残基を示し、R2〜R4は保護基を示す。)

A method for producing 4′-C-ethynyl-2′-deoxypurine nucleoside represented by the following formula [I], comprising the following first to fifth steps:
Figure 2004107329
[I]
(In the formula, B represents a purine base, and R represents a hydrogen atom or a phosphate residue.)
The first step;
A step of protecting the 3′-hydroxyl group of the compound represented by the formula [II] to obtain a compound represented by the formula [IV]
Figure 2004107329
[II] [III] [IV]
The second step;
Step of introducing a hydroxymethyl group at the 4′-position of the compound represented by the formula [IV] to obtain a compound represented by the formula [V]
Figure 2004107329
[IV] [V]
Third step;
A step of protecting the 5′-hydroxyl group of the compound represented by the formula [V] to obtain a compound represented by the formula [VII]
Figure 2004107329
[V] [VI] [VII]
Fourth step;
After oxidizing the 4'-hydroxymethyl group of the compound represented by the formula [VII] to an aldehyde group, this is converted to a bromovinyl group, and subsequently treated with a strong base to convert it to an ethynyl group. For obtaining a compound represented by the formula VIII]
Figure 2004107329
[VII] [VIII]
Fifth step;
Removing the protecting groups at the 3 ′ and 5′-positions of the compound represented by the formula [VIII] to obtain a compound in which R is hydrogen, and optionally phosphorylating to obtain a compound represented by the formula [I]
Figure 2004107329
[VIII] [I]
(In each of the above formulas, B represents a purine (including azapurine or deazapurine) base, R represents a hydrogen atom or a phosphate residue, and R2 to R4 represent protecting groups.)

JP2003298047A 2002-08-28 2003-08-22 Process for producing 4'-C-ethynyl-2'-deoxypurine nucleoside Expired - Lifetime JP4383126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003298047A JP4383126B2 (en) 2002-08-28 2003-08-22 Process for producing 4'-C-ethynyl-2'-deoxypurine nucleoside

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002248053 2002-08-28
JP2003298047A JP4383126B2 (en) 2002-08-28 2003-08-22 Process for producing 4'-C-ethynyl-2'-deoxypurine nucleoside

Publications (2)

Publication Number Publication Date
JP2004107329A true JP2004107329A (en) 2004-04-08
JP4383126B2 JP4383126B2 (en) 2009-12-16

Family

ID=32301227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003298047A Expired - Lifetime JP4383126B2 (en) 2002-08-28 2003-08-22 Process for producing 4'-C-ethynyl-2'-deoxypurine nucleoside

Country Status (1)

Country Link
JP (1) JP4383126B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018092728A1 (en) 2016-11-16 2018-05-24 国立研究開発法人国立国際医療研究センター Nucleoside derivative having physical activities including anti-viral activity
US11718637B2 (en) 2020-03-20 2023-08-08 Gilead Sciences, Inc. Prodrugs of 4′-C-substituted-2-halo-2′- deoxyadenosine nucleosides and methods of making and using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018092728A1 (en) 2016-11-16 2018-05-24 国立研究開発法人国立国際医療研究センター Nucleoside derivative having physical activities including anti-viral activity
US10933067B2 (en) 2016-11-16 2021-03-02 National Center For Global Health And Medicine Nucleoside derivative having physiological activity such as antiviral activity
US11718637B2 (en) 2020-03-20 2023-08-08 Gilead Sciences, Inc. Prodrugs of 4′-C-substituted-2-halo-2′- deoxyadenosine nucleosides and methods of making and using the same

Also Published As

Publication number Publication date
JP4383126B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
EP1177202B1 (en) 4&#39;-c-ethynyl purine nucleosides
KR20030092006A (en) Method for the synthesis of 2&#39;,3&#39;- dideoxy-2&#39;,3&#39;-didehydronucleosides
AU2002255654A1 (en) Method for the synthesis of 2&#39;,3&#39;-dideoxy -2&#39;,3&#39;-didehydronucleosides
MXPA00011473A (en) Novel nucleosides having bicyclic sugar moiety.
WO2005005450A1 (en) Method of synthesizing cyclic bisdinucleoside
JP4593917B2 (en) Method for preparing purine nucleosides
IL111569A (en) Process for large-scale preparation of 2&#39;, 3&#39;-did4ehydro-3&#39;- deoxythymidine (d4t) from 5-methyluridine
HU208149B (en) Process for producing deoxyfluoronucleoside derivatives
WO1997037993A1 (en) 9-(2-DEOXY-2-FLUORO-4-THIO-β-D-ARABINOFURANOSYL)PURINE DERIVATIVES
JP7025064B2 (en) Stereoselective synthesis of 4&#39;-substituted nucleoside derivatives
JPH051092A (en) Nucleoside derivative and its production
JP4076114B2 (en) 4&#39;-C-ethynylpurine nucleoside compounds
JPH08245685A (en) Production of 1-(2&#39;-deoxy-2&#39;,2&#39;-difluoro-d- ribopentofuranosyl)cytosine from 2-deoxy-2&#39;,2&#39;-difluoro- beta-d-ribopentopyranose
JPH0853490A (en) 2&#39;-deoxy-2&#39;,2&#39;-dihalogeno-4&#39;-thionucleoside
KR20080099263A (en) Process for preparing gemcitabine and associated intermediates
JP4802712B2 (en) Solution phase synthesis of ribonucleic acid compounds and oligonucleic acid compounds
JP4383126B2 (en) Process for producing 4&#39;-C-ethynyl-2&#39;-deoxypurine nucleoside
JP4691101B2 (en) 1-α-halo-2,2-difluoro-2-deoxy-D-ribofuranose derivative and method for producing the same
EP0653437B1 (en) Process for preparing AZT and derivatives thereof
JPH09328497A (en) 4&#39;-fluoromethylnucleoside
JP4039790B2 (en) 4&#39;-C-ethynylpyrimidine nucleoside compounds
JP3165420B2 (en) D-pentofuranose derivative and method for producing the same
JPH07165785A (en) Preparation of 3&#39;-fluoropyrimidine nucleoside
JP5599078B2 (en) Process for producing adenosine tetraphosphate compounds
JP2008195648A (en) 4&#39;-selenonucleoside and 4&#39;-selenonucleotide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090616

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090917

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090918

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3