JP2004107172A - Method of forming optical element - Google Patents

Method of forming optical element Download PDF

Info

Publication number
JP2004107172A
JP2004107172A JP2002274969A JP2002274969A JP2004107172A JP 2004107172 A JP2004107172 A JP 2004107172A JP 2002274969 A JP2002274969 A JP 2002274969A JP 2002274969 A JP2002274969 A JP 2002274969A JP 2004107172 A JP2004107172 A JP 2004107172A
Authority
JP
Japan
Prior art keywords
optical
optical material
optical element
die
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002274969A
Other languages
Japanese (ja)
Other versions
JP4190241B2 (en
Inventor
Hiroaki Fujita
藤田 浩明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fuji Photo Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Optical Co Ltd filed Critical Fuji Photo Optical Co Ltd
Priority to JP2002274969A priority Critical patent/JP4190241B2/en
Publication of JP2004107172A publication Critical patent/JP2004107172A/en
Application granted granted Critical
Publication of JP4190241B2 publication Critical patent/JP4190241B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/72Barrel presses or equivalent, e.g. of the ring mould type

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of forming an optical element provided with an excellent optical functional surface free from recessed part due to residual air in a cavity. <P>SOLUTION: The method of forming the optical device is composed of a process for preparing a nearly barrel type optical base material 10 provided with two plane surfaces 10a formed by holding a nearly spherical lumpy optical base material 10' between an upper die 12 for base material and a lower die 13 for base material and press forming to transfer a plane upper die face 12a or a plane lower die surface 13a and a side surface 10b having a bulged center part, a process for press forming the nearly barrel type optical base material 10 by setting in a cavity of an optical device forming die provided with a drum die 1, an upper die 2 and a lower die 3, arranging so that the side surface 10b of the optical base material faces an upper die transfer surface 2a and a lower die transfer surface 3a, holding the optical base material 10 between the upper die 2 and the lower die 3 and heating and pressing and a process for obtaining the optical element 20 provided with the optical functional surface 20a by decreasing the temperature of the inside of the cavity to cool the optical base material 10. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、光学素材(ないしはガラス素材)を上型と下型で挟み込んで加熱加圧することにより、光学素子(ないしはガラス成形品)を成形するための方法に関する。
【0002】
【従来の技術】
近年、胴型と上型と下型とを備えた光学素子成形用型のキャビティ内に光学素材(ないしはガラス素材)を配置し、前記上型と下型で光学素材(ないしはガラス素材)を挟み込んで加熱しながら加圧することにより、光学素子(ないしはガラス成形品)を成形するといった、「プレス成形法」が行われるようになった。
【0003】
そして、例えば図5に示すような光学機能面20Aを備えたスリット型光学素子20を成形する場合、従来技術によれば、図6に示すような円柱状の光学素材(ないしはガラス素材)100を、胴型1と上型2と下型3とを備えた光学素子成形用型のキャビティ内にセットした後、前記上型2と下型3とで円柱状の光学素材(ないしはガラス素材)100を挟み込み、加熱しながら加圧してプレス成形し、前記光学素材(ないしはガラス素材)の側面100bに上型2および下型3の転写面を転写し、光学機能面20Aを備えたスリット型光学素子20(ないしはガラス成形品)を成形していた(図7参照)。
【0004】
なお従来技術によれば、ガラス板などの板状素材を切削加工によって円盤状に切り出し、図6に示すような、円形に切り抜かれたガラス板表面100aと、その側面100bとからなる円柱状の光学素材100を作製し、この光学素材100を光学素子成形用型のキャビティ内にセットし、プレス成形することによって、前記側面100bに上型2および下型3の転写面を転写して、光学機能面20Aを備えたスリット型レンズ20を成形していた。
【0005】
図7は、図5に示すスリット型光学素子20を成形するための光学素子成形用型の例を示すものであり、図7(a)は、円柱状の光学素材(ないしはガラス素材)100を光学素子成形用型のキャビティ内にセットしたときに、前記光学素材(ないしはガラス素材)を板状ガラス板表面100a側からみたときの断面図であり、図7(b)は、円柱状の光学素材(ないしはガラス素材)を側面100b側からみたときの断面図である。
なお図中の符号1Aは、上型2や下型3をガイドするための胴型1に形成されたエア通路で、キャビティ内のエアを排出するための通路を示す。
【0006】
【発明が解決しようとする課題】
従来技術のごとく、板状のガラス素材を切り抜いて作製した円柱状の光学素材を使用した場合、光学素子成形用型のキャビティ内に前記光学素材100をセットし、上型2または下型3の転写面と光学素材の側面100bとを対峙させたときに、図7(a)に示すように、側面100bの円周方向においては、上型2または下型3の転写面中央部分と前記光学素材100とがフィットし、転写面と光学素材との間に密閉空間が発生していないが、図7(b)に示すように、側面100bの長手方向(ガラス板の厚み方向)においては、転写面中央部分と光学素材100との間に密閉空間が発生し、その密閉空間内のエアを除去するのが困難であった。
【0007】
図8は、従来技術による光学素子の成形方法を説明する図である。
図8(a)は図7(b)の部分拡大図であり、光学素子成形用型にセットされた光学素材(ないしはガラス素材)100を側面100b側からみた断面図である。
図8(a)に示すように、ガラス板などを切り抜いて作製した円柱状の光学素材(ないしはガラス素材)100を光学素子成形用型のキャビティ内にセットし、この光学素材の側面100bを、上型転写面2Aまたは下型転写面3Aと対峙するように配置した場合、転写面の曲率が大きいと(凹面のRがきついと)、転写面中央部分と光学素材100との間に密閉空間が発生し、この光学素材(ないしはガラス素材)100を加熱しながら加圧しプレス成形すると、図8(b)に示すように、光学素材(ないしはガラス素材)100と上型転写面A(または下型転写面3A)との間に残留したエアによって、光学素材(ないしはガラス素材)100に凹み101が形成され、成形されたスリット型光学素子20の光学機能面の表面精度を低下させていた。
【0008】
つまり、例えばスリット型光学素子のような光学機能面の曲率の大きな光学素材を成形するにあたって、従来技術のようにガラス板を切り抜いて成形した円柱状の光学素材(ないしはガラス素材)100を使用した場合、側面100bの長手方向が平坦であるため、曲率の大きな転写面(凹面のRがきつい転写面)を使用して光学素子(ないしはガラス成形品)を成形するときに、転写面と光学素材との間に密閉空間が発生していた。
そして、プレス成形のときにエア通路1Aからキャビティ内のエアを除去するにあたって、前記密閉空間内のエアが残留しやすく、このエアによって凹み101が形成されるなどの形状転写性能に問題が発生し、成形された光学素子(ないしはガラス成形品)20の光学機能面20Aの表面精度が低下するなど、光学素子(ないしはガラス成形品)の質を悪化させていた。
また光学素材(ないしはガラス素材)と転写面の間のエア残留を防止するための方法も知られているが(特許文献1、特許文献2を参照)、特許文献1の場合、光学素材に溝等の加工処理を施す必要があり、加工コストが高くなってしまい、特許文献2の場合は、特殊な加圧制御が必要となり、操作が複雑になってしまっていた。
またガラス板などを切り抜いて作製した前記円柱状の光学素材(ないしはガラス素材)の側面100bを曲面研磨加工し、側面100bに丸みを施す事も考えられるが、この場合も加工コストが高くなってしまう。
【0009】
そこで、この発明は、光学素材(ないしはガラス素材)と転写面との間に密閉空間が発生するのを防止し、キャビティ内の残留エアによる凹み等のない良好な光学機能面を備えるとともに、安価に製造できる光学素子の成形方法を提供することを目的とする。
【0010】
【特許文献1】
特開平5−163026号公報(第3頁、第2図)
【特許文献2】
特開平7−315855号公報(第3−6頁)
【0011】
【課題を解決するための手段】
上述の目的を達成するため、この発明による光学素子の成形方法は、取得すべき光学素子の体積と同一の体積を有する略球形の塊状光学素材を作製した後、前記塊状光学素材を素材用上型と素材用下型とで挟み込んで押圧成形し、平面状の上型面または下型面を転写して形成した2つの平面と、中央部分が膨らんだ側面とを備えた略樽型の光学素材を作製する工程と、前記略樽型の光学素材を、胴型と上型と下型とを備えた光学素子成形用型のキャビティ内にセットし、前記光学素材の側面を上型転写面および下型転写面に対峙させるように配置した後、前記光学素材を上型と下型とで挟み込み、加熱状態で加圧してプレス成形する工程と、キャビティ内の温度を下げて光学素材を冷却し、光学機能面を備えた光学素子を取得する工程とからなる。
【0012】
【発明の実施の形態】
以下にこの発明の好適な実施例を図面を参照して説明する。
【0013】
図1は、この発明の実施例による光学素材(ないしはガラス素材)10の作製工程を説明するものである。
この実施例では、光学素材(ないしはガラス素材)10を作製するにあたって、まず加熱して溶融状態にした溶融光学素材(ないしは溶融ガラス素材)を、所定の形状、径を有するノズル11から滴下し、略球形の塊状光学素材(ないしは塊状ガラス素材)10´を作製する(図1(a)参照)。滴下した溶融光学素材(ないしは溶融ガラス素材)は、空中を落下する間に冷却され、略球形となる。
【0014】
このとき、溶融光学素材(ないしは溶融ガラス素材)の温度、粘性、ノズル11の形状、径、ノズル11からの押出し方法等を適宜設定して、滴下量を調整することによって、作製される塊状光学素材(ないしは塊状ガラス素材)10´の体積を所望の体積に調整することができるとともに、滴下量を高精度で同一化することができ、塊状光学素子(ないしは塊状ガラス素材)10´を複数作製するときに、高い体積精度を維持することができる。
【0015】
そして、取得すべき光学素子(ないしはガラス成形品)20の体積と同一の体積を有する略球形の塊状光学素材(ないしは塊状ガラス素材)10´を作製した後、図1(b)に示すように、前記略球形の塊状光学素材(ないしは塊状ガラス素材)10´を素材用上型12と素材用下型13とで挟み込んで押圧成形し、平面状の上型面12aと下型面13aとを転写することによって、2つの平面10aと、中央部分が膨らんだ側面10bとを備えた光学素材(ないしはガラス素材)10を作製する。
つまり、略球形の塊状光学素材(ないしは塊状ガラス素材)10´を、上下から平面で押しつぶすことによって、円柱の胴体中央部分が膨らんだような、略樽型の光学素材(ないしはガラス素材)10を作製する(図1(c)参照)。
【0016】
図1(b)に示すように、略球形の塊状光学素材(ないしは塊状ガラス素材)10´を、素材用上型12と素材用下型13との間に複数個配置した後、前記塊状光学素材(ないしは塊状ガラス素材)を加熱して軟化させ、その後、素材用上型12を降下し、前記塊状光学素材(ないしは塊状ガラス素材)10´を圧縮することによって、略樽型の光学素材(ないしはガラス素材)10を一度に複数個作製することができる。
【0017】
また、従来技術の如く切削加工によって作製した光学素材100に比べて、高い体積精度を維持することができ、さらに切削加工後に円柱状の光学素材の側面100bを曲面加工して側面に丸みを施すよりも、安価で、かつ容易に光学素材(ないしはガラス素材)10を作製することができる。
【0018】
この実施例では、加熱軟化した塊状光学素材(ないしは塊状ガラス素材)10´を素材用上型12と素材用下型13を使用して押圧成形した後、徐々に冷却し、その後前記素材用上型12を上昇させ、略樽型の光学素材(ないしはガラス素材)10を取得する。
【0019】
続いて、上述のようにして作製した略樽型の光学素材(ないしはガラス素材)10を、光学素子成形用型のキャビティ内にセットし、光学素子(ないしはガラス成形品)を成形する。
【0020】
図2および図3は、この発明の実施例による光学素子(ないしはガラス成形品)20の成形工程を説明するものである。
図2および図3に示す光学素子成形用型は、図5に示すスリット型光学素子20を成形するための光学素子成形用型であり、図2は、光学素子成形用型のキャビティ内にセットした光学素材(ないしはガラス素材)10を平面10a側からみたときの断面図であり、図2は、光学素子成形用型のキャビティ内にセットした光学素材(ないしはガラス素材)10を側面10b側からみたときの断面図である。
なお図中の符号1Aは、上型2や下型3をガイドするための胴型1に形成されたエア通路で、キャビティ内のエアを排出するための通路を示す。
【0021】
この実施例では、胴型1と上型2と下型3とを備えた光学素子成形用型のキャビティ内に前記略樽型の光学素材10(ないしはガラス素材)をセットし、この前記光学素材(ないしはガラス素材)10を前記上型2と下型3とで挟み込み、加熱しながら加圧してプレス成形することによって、図5に示すようなスリット型光学素子20を成形する。
【0022】
光学素子成形用型のキャビティ内に光学素材10をセットするにあたって、図2(a)及び図3(a)に示すように、略樽型の光学素材10の側面10bを上型転写面2aおよび下型転写面3aに対峙させるように配置した後、図2(b)及び図3(b)に示すように、前記光学素材を上型2と下型3とで挟み込み、加熱して光学素材10を軟化させるとともに、上型2を降下して加圧し、プレス成形する。
【0023】
図4は、図3の部分拡大図であり、光学素子成形用型にセットされた光学素材(ないしはガラス素材)10を側面10b側からみた断面図である。
図3(a)の部分拡大図である図4(a)に示すように、略樽型の光学素材(ないしはガラス素材)10を光学素子成形用型のキャビティ内にセットし、この光学素材10の中央部分が膨らんだ側面10bを、上型転写面2Aおよび下型転写面3Aと対峙させた場合、側面10bの中央部分と転写面がフィットし、側面10bの両端が開放された状態となったいるため、転写面と光学素材10との間に密閉空間の発生を防止することができる。
【0024】
そして図3(b)の部分拡大図である図4(b)に示すように、キャビティ内にセットした光学素材10を加熱しながら、上型2を降下して加圧するにあたって、転写面と光学素材10との間に密閉空間がないため、転写面と光学素材10との間のエアの除去が容易であり、エア通路1Aからキャビティ内のエアを容易に排出することができる。つまり従来技術による光学素子の成形方法のように、エア残留によって光学素子に凹み101が発生する心配がなく、転写面による転写性能が向上し、表面精度が高い光学機能面20Aを備えた光学素子20を成形することができる。
【0025】
なお、例えば、光学素子成形用型をチャンバ内(図示せず)に配設するとともに、前記チャンバ内の真空特性を高くしておくことによって、プレス成形時、キャビティ内のエアが、胴型1に形成されたエア通路1Aから吸引されるようにしてキャビティ外に排出され、キャビティ内のエア除去が容易となる。
【0026】
また、転写面と光学素材との間に密閉空間を形成させないように、略樽型の光学素材の側面10bにおける中央部分の曲率が、光学素子成形用型の上型転写面2aまたは下型転写面3aの曲率より大きくなるように、前記光学素材10を作製することが好ましい(図4(a)参照)。
【0027】
さらに、光学素子成形用型のキャビティ内に略樽型の光学素材10をセットし、中央部分が膨らんだ側面10bを下型3の上に配置したときに、前記光学素材10が10°以上傾斜しないように、光学素材10の素材厚を調整することが好ましい(図4(a)参照)。
この発明による光学素材10では側面10bの中央部分が膨らんでいるため、側面10bの中央部分が下型転写面3aに接地されることとなり、配置が不安定となる。そのため、例えば光学素材10の素材厚の薄い光学素材10を光学素子成形用型のキャビティ内にセットした場合、前記光学素材10がキャビティ内で大きく傾き、光学素子の成形に悪影響が発生するが、光学素材10の素材厚を調整しておくことによって、胴型1の内周面に囲まれたキャビティー内での光学素材10の大幅な傾きを抑制することができ、例えば、光学素材10が10°以上傾斜しないように調整することができる。
【0028】
なお、光学素材の側面10bの曲率や、光学素材10の素材厚の調整は、略球状の塊状光学素材10´を素材用上型12と素材用下型13とで挟み込んで押圧成形するときに、前記塊状光学素材10´を上下から押圧する力(例えば素材用上型を降下する度合)を調整することによって、容易に調整できる。
【0029】
すなわち、この実施例のように、略球形の塊状光学押圧成形により略樽型の光学素材を押圧成形することによって作製した略樽型の光学素材(ないしはガラス素材)10を、光学素子成形用型のキャビティ内に前記光学素材10をセットし、光学素材の側面10bを上型転写面2aおよび下型転写面3aに対峙させるように配置した場合、図1(a)に示すように、側面10bの円周方向においても、上型2または下型3の転写面中央部分と前記光学素材10とがフィットし、また図2(a)に示すように、光学素材側面10bの長手方向(光学素材の厚み方向)においても、上型2または下型3の転写面中央部分と前記光学素材10とがフィットし、転写面と光学素材10との間に密閉空間が発生することを防止することができる。
【0030】
なお、この実施例では、加熱によって軟化させた略樽型の光学素材(ないしはガラス素材)10を、上型2と下型3で加圧してプレス成形した後、徐々に冷却し、その後、前記上型12を上昇させ、高い表面精度をもつ光学機能面20Aを備えた光学素子(ないしはガラス成形品)20を取得した。
【0031】
【発明の効果】
以上説明したように、この発明によれば、取得すべき光学素子の体積と同一の体積を有する略球形の塊状光学素材を作製した後、前記塊状光学素材を素材用上型と素材用下型とで挟み込んで押圧成形し、平面状の上型面または下型面を転写して形成した2つの平面と、中央部分が膨らんだ側面とを備えた略樽型の光学素材を作製する工程と、前記略樽型の光学素材を、胴型と上型と下型とを備えた光学素子成形用型のキャビティ内にセットし、前記光学素材の側面を上型転写面および下型転写面に対峙させるように配置した後、前記光学素材を上型と下型とで挟み込み、加熱状態で加圧してプレス成形する工程と、キャビティ内の温度を下げて光学素材を冷却し、光学機能面を備えた光学素子を取得する工程とから光学素子を成形する。
これによって、例えば光学機能面の曲率の大きなスリット型光学素子を成形する場合(曲率の大きな転写面を備えた上型や下型を使用する場合)においても、転写面と光学素材(ないしはガラス素材)との間に密閉空間が形成されることがなく、キャビティ内のエア除去を容易に行うことができる。そして、残留エアによる悪影響を受ける虞がないため、転写面を光学素材(ないしはガラス素材)に転写するにあたっての形状転写性能が高く、高い表面精度をもつ光学機能面を備えた光学素子を取得することができる。
【図面の簡単な説明】
【図1】本発明の実施例による光学素材の作製方法を説明する図。
【図2】光学素子成形用型のキャビティ内にセットした光学素材を平面側からみたときの断面図。
【図3】光学素子成形用型のキャビティ内にセットした光学素材を側面側からみたときの断面図。
【図4】図3の部分拡大図。
【図5】光学素子の斜視図。
【図6】従来技術による光学素材の斜視図。
【図7】光学素子成形用型のキャビティ内にセットした光学素材の断面図。
【図8】従来技術による光学素材の成形方法を説明する図。
【符号の説明】
1  胴型
2  上型
2a 上型転写面
3  下型
3a 下型転写面
10´ 塊状光学素材(ないしは塊状ガラス素材)
10  光学素材(ないしはガラス素材)
10a 平面
10b 側面
20 光学素材(ないしはガラス素材)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for molding an optical element (or glass molded product) by sandwiching an optical material (or glass material) between an upper mold and a lower mold and applying heat and pressure.
[0002]
[Prior art]
In recent years, an optical material (or glass material) is arranged in a cavity of an optical element molding die having a body mold, an upper mold, and a lower mold, and the optical material (or glass material) is sandwiched between the upper mold and the lower mold. The press-forming method, in which an optical element (or a glass molded product) is formed by pressurizing while heating at, has come to be performed.
[0003]
Then, for example, when the slit type optical element 20 having the optical function surface 20A as shown in FIG. 5 is formed, according to the related art, a columnar optical material (or glass material) 100 as shown in FIG. After being set in the cavity of the optical element molding die having the body die 1, the upper die 2 and the lower die 3, the upper die 2 and the lower die 3 are used to form a cylindrical optical material (or glass material) 100. , And press-molding by applying pressure while heating, the transfer surfaces of the upper mold 2 and the lower mold 3 are transferred to the side surface 100b of the optical material (or glass material), and the slit-type optical element having the optical function surface 20A is provided. 20 (or a glass molded product) (see FIG. 7).
[0004]
According to the related art, a plate-shaped material such as a glass plate is cut into a disk shape by cutting, and as shown in FIG. 6, a columnar glass plate surface 100a cut into a circular shape and a side surface 100b thereof. An optical material 100 is prepared, the optical material 100 is set in a cavity of an optical element molding die, and press-molded to transfer the transfer surfaces of the upper mold 2 and the lower mold 3 to the side surface 100b, thereby obtaining an optical material. The slit type lens 20 having the functional surface 20A was molded.
[0005]
FIG. 7 shows an example of an optical element molding die for molding the slit type optical element 20 shown in FIG. 5, and FIG. 7 (a) shows a cylindrical optical material (or glass material) 100. FIG. 7B is a cross-sectional view of the optical material (or glass material) when viewed from the surface 100a of the plate-like glass plate when set in the cavity of the mold for molding an optical element. It is sectional drawing when a raw material (or glass material) is seen from the side surface 100b side.
Reference numeral 1A in the figure denotes an air passage formed in the body mold 1 for guiding the upper mold 2 and the lower mold 3 and for discharging air in the cavity.
[0006]
[Problems to be solved by the invention]
As in the prior art, when a columnar optical material produced by cutting out a plate-like glass material is used, the optical material 100 is set in the cavity of the optical element molding die, and the upper die 2 or the lower die 3 When the transfer surface and the side surface 100b of the optical material are opposed to each other, as shown in FIG. 7A, in the circumferential direction of the side surface 100b, the center of the transfer surface of the upper mold 2 or the lower mold 3 and the optical element. Although the material 100 fits and no sealed space is generated between the transfer surface and the optical material, as shown in FIG. 7B, in the longitudinal direction of the side surface 100b (the thickness direction of the glass plate), A sealed space is generated between the central portion of the transfer surface and the optical material 100, and it is difficult to remove air in the sealed space.
[0007]
FIG. 8 is a diagram for explaining a method of molding an optical element according to the related art.
FIG. 8A is a partially enlarged view of FIG. 7B, and is a cross-sectional view of the optical material (or glass material) 100 set in the optical element molding die as viewed from the side surface 100b side.
As shown in FIG. 8A, a columnar optical material (or glass material) 100 produced by cutting out a glass plate or the like is set in a cavity of an optical element molding die, and a side surface 100b of the optical material is When the transfer surface is arranged so as to face the upper transfer surface 2A or the lower transfer surface 3A, if the curvature of the transfer surface is large (the concave R is sharp), a closed space is formed between the central portion of the transfer surface and the optical material 100. When the optical material (or glass material) 100 is pressurized while being heated while being heated, as shown in FIG. 8B, the optical material (or glass material) 100 and the upper mold transfer surface A (or lower mold transfer surface A) are formed. A recess 101 is formed in the optical material (or glass material) 100 due to the air remaining between the mold transfer surface 3A) and the surface accuracy of the optical function surface of the formed slit optical element 20 is reduced. Not had.
[0008]
In other words, when molding an optical material having a large curvature of the optical function surface such as a slit-type optical element, for example, a columnar optical material (or glass material) 100 formed by cutting out a glass plate and forming it as in the related art was used. In this case, since the longitudinal direction of the side surface 100b is flat, when the optical element (or glass molded product) is formed using a transfer surface having a large curvature (a transfer surface with a concave R being tight), the transfer surface and the optical material are formed. And a closed space was created between them.
When air in the cavity is removed from the air passage 1A at the time of press molding, air in the closed space tends to remain, and this air causes a problem in shape transfer performance such as formation of a dent 101. The quality of the optical element (or glass molded product) is deteriorated, for example, the surface accuracy of the optical functional surface 20A of the molded optical element (or glass molded product) 20 is reduced.
Although a method for preventing air from remaining between an optical material (or a glass material) and a transfer surface is also known (see Patent Documents 1 and 2), in the case of Patent Document 1, a groove is formed in the optical material. It is necessary to perform such processing as described above, which increases the processing cost. In the case of Patent Document 2, a special pressurization control is required, and the operation is complicated.
In addition, it is conceivable that the side surface 100b of the cylindrical optical material (or the glass material) produced by cutting out a glass plate or the like is subjected to a curved surface polishing process and the side surface 100b is rounded, but also in this case, the processing cost is increased. I will.
[0009]
Therefore, the present invention prevents a closed space from being generated between the optical material (or glass material) and the transfer surface, provides a good optical function surface without dents or the like due to residual air in the cavity, and provides a low cost. It is an object of the present invention to provide a method for molding an optical element which can be manufactured at a high speed.
[0010]
[Patent Document 1]
JP-A-5-163026 (page 3, FIG. 2)
[Patent Document 2]
JP-A-7-315855 (pages 3-6)
[0011]
[Means for Solving the Problems]
In order to achieve the above object, a method for molding an optical element according to the present invention includes the steps of: preparing a substantially spherical massive optical material having the same volume as the volume of an optical element to be obtained; A substantially barrel-shaped optic having two flat surfaces formed by pressing and pressing between a mold and a lower mold for a material, and transferring a flat upper mold surface or a lower mold surface, and a center portion bulging side surface. A step of preparing a material, setting the substantially barrel-shaped optical material in a cavity of an optical element molding die having a barrel die, an upper die, and a lower die, and setting a side surface of the optical material to an upper die transfer surface; And after being arranged so as to face the lower mold transfer surface, the optical material is sandwiched between an upper mold and a lower mold, press-molded by applying pressure in a heated state, and cooling the optical material by lowering the temperature in the cavity. And obtaining an optical element having an optical function surface That.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[0013]
FIG. 1 illustrates a manufacturing process of an optical material (or glass material) 10 according to an embodiment of the present invention.
In this embodiment, when producing the optical material (or glass material) 10, first, a molten optical material (or molten glass material) heated and melted is dropped from a nozzle 11 having a predetermined shape and diameter. A substantially spherical massive optical material (or massive glass material) 10 'is produced (see FIG. 1A). The dropped molten optical material (or molten glass material) is cooled while falling in the air and becomes substantially spherical.
[0014]
At this time, the temperature and viscosity of the molten optical material (or the molten glass material), the shape and diameter of the nozzle 11, the method of extrusion from the nozzle 11, and the like are appropriately set, and the amount of the dropped optical material is adjusted by adjusting the dropping amount. The volume of the raw material (or bulk glass material) 10 ′ can be adjusted to a desired volume, and the drop amount can be equalized with high accuracy, and a plurality of bulk optical elements (or bulk glass material) 10 ′ are produced. In this case, high volume accuracy can be maintained.
[0015]
Then, after forming a substantially spherical massive optical material (or massive glass material) 10 'having the same volume as the optical element (or glass molded product) 20 to be acquired, as shown in FIG. The above-mentioned substantially spherical massive optical material (or massive glass material) 10 ′ is sandwiched between a material upper mold 12 and a material lower mold 13 and pressed to form a flat upper mold surface 12 a and lower mold surface 13 a. By the transfer, an optical material (or glass material) 10 having two flat surfaces 10a and a side surface 10b whose central portion is swollen is produced.
That is, a substantially barrel-shaped optical material (or glass material) 10 ′ is obtained by crushing a substantially spherical massive optical material (or massive glass material) 10 ′ from above and below with a plane, so that the central portion of the cylindrical body expands. It is manufactured (see FIG. 1C).
[0016]
As shown in FIG. 1 (b), after a plurality of substantially spherical massive optical materials (or massive glass materials) 10 ′ are arranged between a material upper mold 12 and a material lower mold 13, The material (or lump glass material) is heated and softened, and then the upper mold for material 12 is lowered to compress the lump optical material (or lump glass material) 10 ′, thereby obtaining a substantially barrel-shaped optical material ( (Or glass material) 10 can be produced at a time.
[0017]
Also, compared to the optical material 100 produced by cutting as in the prior art, higher volume accuracy can be maintained, and after the cutting, the side surface 100b of the columnar optical material is curved and the side surface is rounded. The optical material (or glass material) 10 can be produced more easily and cheaply.
[0018]
In this embodiment, after heating and softening a lump optical material (or lump glass material) 10 ′ using an upper mold for material 12 and a lower mold for material 13, it is gradually cooled, and then gradually cooled. The mold 12 is raised to obtain a substantially barrel-shaped optical material (or glass material) 10.
[0019]
Subsequently, the substantially barrel-shaped optical material (or glass material) 10 produced as described above is set in the cavity of the optical element molding die, and the optical element (or glass molded product) is molded.
[0020]
2 and 3 illustrate a process of forming an optical element (or glass molded product) 20 according to an embodiment of the present invention.
The optical element molding die shown in FIGS. 2 and 3 is an optical element molding die for molding the slit optical element 20 shown in FIG. 5, and FIG. FIG. 2 is a cross-sectional view of the optical material (or glass material) 10 viewed from the plane 10a side, and FIG. 2 shows the optical material (or glass material) 10 set in the cavity of the optical element molding die from the side surface 10b side. It is sectional drawing at the time of seeing.
Reference numeral 1A in the figure denotes an air passage formed in the body mold 1 for guiding the upper mold 2 and the lower mold 3 and for discharging air in the cavity.
[0021]
In this embodiment, the substantially barrel-shaped optical material 10 (or glass material) is set in a cavity of an optical element molding die having a body die 1, an upper die 2, and a lower die 3, and the optical material is set. (Or a glass material) 10 is sandwiched between the upper mold 2 and the lower mold 3, and pressurized while heating to form a slit-type optical element 20 as shown in FIG. 5.
[0022]
In setting the optical material 10 in the cavity of the optical element molding die, as shown in FIGS. 2A and 3A, the side surface 10b of the substantially barrel-shaped optical material 10 is moved to the upper mold transfer surface 2a and the upper mold transfer surface 2a. After being arranged so as to face the lower mold transfer surface 3a, the optical material is sandwiched between the upper mold 2 and the lower mold 3 as shown in FIGS. While softening 10, the upper mold 2 is lowered and pressurized to perform press molding.
[0023]
FIG. 4 is a partially enlarged view of FIG. 3, and is a cross-sectional view of the optical material (or glass material) 10 set in the optical element molding die as viewed from the side surface 10b side.
As shown in FIG. 4A which is a partially enlarged view of FIG. 3A, a substantially barrel-shaped optical material (or glass material) 10 is set in a cavity of an optical element molding die. When the side surface 10b whose central portion is expanded is opposed to the upper mold transfer surface 2A and the lower mold transfer surface 3A, the center portion of the side surface 10b and the transfer surface fit, and both ends of the side surface 10b are open. Therefore, it is possible to prevent the generation of a closed space between the transfer surface and the optical material 10.
[0024]
Then, as shown in FIG. 4B, which is a partially enlarged view of FIG. 3B, the upper mold 2 is lowered and pressurized while heating the optical material 10 set in the cavity. Since there is no closed space between the material 10 and the air, the air between the transfer surface and the optical material 10 can be easily removed, and the air in the cavity can be easily discharged from the air passage 1A. That is, unlike the molding method of the optical element according to the prior art, there is no fear that the air element forms the dent 101 due to the residual air, the transfer performance by the transfer surface is improved, and the optical element having the optical function surface 20A with high surface accuracy is provided. 20 can be molded.
[0025]
In addition, for example, by disposing an optical element molding die in a chamber (not shown) and increasing the vacuum characteristics in the chamber, the air in the cavity during press molding is reduced by the body mold 1. The air is discharged from the cavity while being sucked from the air passage 1A formed in the cavity, and the air in the cavity is easily removed.
[0026]
Also, the curvature of the central portion on the side surface 10b of the substantially barrel-shaped optical material is set to the upper mold transfer surface 2a or the lower mold transfer mold of the optical element molding die so as not to form a closed space between the transfer surface and the optical material. It is preferable to manufacture the optical material 10 so as to be larger than the curvature of the surface 3a (see FIG. 4A).
[0027]
Furthermore, when the substantially barrel-shaped optical material 10 is set in the cavity of the optical element molding die, and the side face 10b whose central portion is expanded is placed on the lower mold 3, the optical material 10 is inclined by 10 ° or more. It is preferable to adjust the material thickness of the optical material 10 so that it does not occur (see FIG. 4A).
In the optical material 10 according to the present invention, since the central portion of the side surface 10b is bulged, the central portion of the side surface 10b is grounded to the lower mold transfer surface 3a, and the arrangement becomes unstable. Therefore, for example, when the optical material 10 having a small material thickness of the optical material 10 is set in the cavity of the optical element molding die, the optical material 10 is largely tilted in the cavity, which adversely affects the molding of the optical element. By adjusting the material thickness of the optical material 10, a large inclination of the optical material 10 in the cavity surrounded by the inner peripheral surface of the barrel mold 1 can be suppressed. It can be adjusted so that it does not tilt more than 10 °.
[0028]
The curvature of the side surface 10b of the optical material and the adjustment of the material thickness of the optical material 10 are adjusted when the substantially spherical massive optical material 10 'is sandwiched between the material upper mold 12 and the material lower mold 13 and pressed. It can be easily adjusted by adjusting the force (for example, the degree of lowering the material upper die) of pressing the bulk optical material 10 ′ from above and below.
[0029]
That is, as in this embodiment, a substantially barrel-shaped optical material (or glass material) 10 produced by press-molding a substantially barrel-shaped optical material by substantially spherical bulk optical pressure molding is used as an optical element molding die. When the optical material 10 is set in the cavity and the side surface 10b of the optical material is arranged so as to face the upper mold transfer surface 2a and the lower mold transfer surface 3a, as shown in FIG. In the circumferential direction, the center of the transfer surface of the upper mold 2 or the lower mold 3 fits with the optical material 10, and as shown in FIG. 2A, the longitudinal direction of the optical material side surface 10b (optical material In the thickness direction of the upper mold 2 or the lower mold 3, the central portion of the transfer surface of the upper mold 2 or the lower mold 3 fits with the optical material 10, thereby preventing the occurrence of a closed space between the transfer surface and the optical material 10. it can.
[0030]
In this embodiment, the substantially barrel-shaped optical material (or glass material) 10 softened by heating is press-molded by the upper mold 2 and the lower mold 3, and then gradually cooled, and thereafter, The upper mold 12 was raised to obtain an optical element (or glass molded product) 20 having an optical functional surface 20A having high surface accuracy.
[0031]
【The invention's effect】
As described above, according to the present invention, after producing a substantially spherical bulk optical material having the same volume as the volume of the optical element to be obtained, the bulk optical material is formed into a material upper mold and a material lower mold. Forming a substantially barrel-shaped optical material having two flat surfaces formed by transferring a flat upper mold surface or a lower mold surface, and a central portion bulging; Setting the substantially barrel-shaped optical material in a cavity of an optical element molding die having a body die, an upper die, and a lower die, and setting the side surfaces of the optical material to an upper die transfer surface and a lower die transfer surface. After being arranged so as to face each other, the optical material is sandwiched between an upper mold and a lower mold, and a step of press-molding by pressurizing in a heated state, cooling the optical material by lowering the temperature in the cavity, and cooling the optical functional surface. Forming the optical element from the step of obtaining the provided optical element.
Thereby, for example, even when a slit type optical element having a large curvature of the optical function surface is formed (when an upper mold or a lower mold having a transfer surface with a large curvature is used), the transfer surface and the optical material (or glass material) are used. ) Does not form a closed space, and air in the cavity can be easily removed. Since there is no possibility that the transfer surface is adversely affected by the residual air, an optical element having a high shape transfer performance when transferring the transfer surface to an optical material (or a glass material) and having an optical functional surface with high surface accuracy is obtained. be able to.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining a method for producing an optical material according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of an optical material set in a cavity of an optical element molding die when viewed from a plane side.
FIG. 3 is a cross-sectional view of an optical material set in a cavity of an optical element molding die when viewed from a side.
FIG. 4 is a partially enlarged view of FIG. 3;
FIG. 5 is a perspective view of an optical element.
FIG. 6 is a perspective view of an optical material according to the related art.
FIG. 7 is a sectional view of an optical material set in a cavity of an optical element molding die.
FIG. 8 is a diagram illustrating a method for molding an optical material according to a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Drum 2 Upper mold 2a Upper mold transfer surface 3 Lower mold 3a Lower mold transfer surface 10 'Block optical material (or block glass material)
10 Optical material (or glass material)
10a flat surface 10b side surface 20 optical material (or glass material)

Claims (4)

取得すべき光学素子の体積と同一の体積を有する略球形の塊状光学素材(10´)を作製した後、前記塊状光学素材(10´)を素材用上型(12)と素材用下型(13)とで挟み込んで押圧成形し、
平面状の上型面(12a)または下型面(13a)を転写して形成した2つの平面(10a)と、中央部分が膨らんだ側面(10b)とを備えた略樽型の光学素材(10)を作製する工程と、
前記略樽型の光学素材(10)を、胴型(1)と上型(2)と下型(3)とを備えた光学素子成形用型のキャビティ内にセットし、前記光学素材の側面(10b)を上型転写面(2a)および下型転写面(3a)に対峙させるように配置した後、前記光学素材(10)を上型(2)と下型(3)とで挟み込み、加熱状態で加圧してプレス成形する工程と、
キャビティ内の温度を下げて光学素材(10)を冷却し、光学機能面(20a)を備えた光学素子(20)を取得する工程とからなることを特徴とする光学素子の成形方法。
After producing a substantially spherical massive optical material (10 ') having the same volume as the volume of the optical element to be acquired, the massive optical material (10') is divided into an upper mold for material (12) and a lower mold for material ( 13) and press-molded.
A substantially barrel-shaped optical material (2) having two flat surfaces (10a) formed by transferring the flat upper mold surface (12a) or lower mold surface (13a) and a side surface (10b) whose central portion is bulged. 10) a step of producing;
The substantially barrel-shaped optical material (10) is set in a cavity of an optical element molding die having a body die (1), an upper die (2) and a lower die (3), and a side surface of the optical material. After arranging (10b) so as to face the upper mold transfer surface (2a) and the lower mold transfer surface (3a), the optical material (10) is sandwiched between the upper mold (2) and the lower mold (3), A step of press-forming by applying pressure in a heated state;
Cooling the optical material (10) by lowering the temperature in the cavity to obtain an optical element (20) having an optically functional surface (20a).
略樽型の光学素材の側面(10b)における中央部分の曲率が、光学素子成形用型の上型転写面(2a)または下型転写面(3a)の曲率より大きいことを特徴とする請求項1に記載の光学素子の成形方法。The curvature of the center part of the side surface (10b) of the substantially barrel-shaped optical material is larger than the curvature of the upper die transfer surface (2a) or the lower die transfer surface (3a) of the optical element molding die. 2. The method for molding an optical element according to 1. 押圧力を調整しながら素材用上型(12)と素材用下型(13)とで、略球形の塊状光学素材(10´)を挟み込んで押圧成形し、素材厚を調整した略樽型の光学素材(10)を作製するとともに、
光学素子成形用型のキャビティ内に前記光学素材(10)をセットし、下型(3)の上に配置したときに、前記光学素材(10)が10°以上傾斜しないようにすることを特徴とする請求項1または2に記載の光学素子の成形方法。
While adjusting the pressing force, the substantially spherical block-shaped optical material (10 ') is sandwiched between the upper mold for material (12) and the lower mold for material (13) and press-molded to adjust the material thickness. While producing the optical material (10),
The optical material (10) is set in a cavity of an optical element molding die, and when the optical material (10) is placed on the lower mold (3), the optical material (10) is not inclined by more than 10 °. The method for molding an optical element according to claim 1.
加熱して溶融状態にした溶融光学素材をノズル(11)から滴下し、略球形の塊状光学素材(10´)を作製することを特徴とする請求項1から3の何れか1項に記載の光学素子の成形方法。The molten optical material which has been heated to a molten state is dropped from a nozzle (11) to produce a substantially spherical massive optical material (10 '). Optical element molding method.
JP2002274969A 2002-09-20 2002-09-20 Optical element molding method Expired - Fee Related JP4190241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002274969A JP4190241B2 (en) 2002-09-20 2002-09-20 Optical element molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002274969A JP4190241B2 (en) 2002-09-20 2002-09-20 Optical element molding method

Publications (2)

Publication Number Publication Date
JP2004107172A true JP2004107172A (en) 2004-04-08
JP4190241B2 JP4190241B2 (en) 2008-12-03

Family

ID=32271301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002274969A Expired - Fee Related JP4190241B2 (en) 2002-09-20 2002-09-20 Optical element molding method

Country Status (1)

Country Link
JP (1) JP4190241B2 (en)

Also Published As

Publication number Publication date
JP4190241B2 (en) 2008-12-03

Similar Documents

Publication Publication Date Title
IL145042A (en) Compression molding of optical lenses
WO2014097830A1 (en) Molded glass article production method, and mold
JP2592575B2 (en) Method for manufacturing intraocular lens
CN113354265A (en) Forming die, shell with different thicknesses, processing method of shell and electronic device
JP2004107172A (en) Method of forming optical element
JP2000095532A (en) Press-formed optical element, its production, die for press-forming optical element and device for press- forming optical element
US6823694B2 (en) Method of manufacturing glass optical elements
JP2007186392A (en) Method of molding thermoplastic base material
JP2000281360A (en) Optical blank for forming, production of optical blank for forming and method for forming optical parts
JP3681114B2 (en) Manufacturing method of glass optical element
JPH09249424A (en) Molding of optical element
JPH07330347A (en) Method for forming optical element
JP2000053428A (en) Production of optical element, its producing device and optical element
JPH10138356A (en) Manufacture of material for molding optical element, manufacture of optical element and method for molding the optical element
JP3953624B2 (en) Optical element molding equipment
JP2621956B2 (en) Optical element molding method
JP6545060B2 (en) Glass element and method of manufacturing glass element
JP2000086255A (en) Method for molding optical element
JP6884080B2 (en) Optical element molding method and optical element molding mold
JP6374809B2 (en) Optical element manufacturing apparatus and optical element manufacturing method
JP3850062B2 (en) Optical element manufacturing method and optical element mold
JP2002220241A (en) Method for forming optical element
JP4436561B2 (en) Optical element manufacturing method
JPH01316252A (en) Forming method for optical element
JP2011126758A (en) Molding die for optical element and method for molding optical element by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees