JP2004106729A - Drive controller for opening/closing body of vehicle - Google Patents

Drive controller for opening/closing body of vehicle Download PDF

Info

Publication number
JP2004106729A
JP2004106729A JP2002273092A JP2002273092A JP2004106729A JP 2004106729 A JP2004106729 A JP 2004106729A JP 2002273092 A JP2002273092 A JP 2002273092A JP 2002273092 A JP2002273092 A JP 2002273092A JP 2004106729 A JP2004106729 A JP 2004106729A
Authority
JP
Japan
Prior art keywords
relay
motor
opening
closing body
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002273092A
Other languages
Japanese (ja)
Other versions
JP4119212B2 (en
Inventor
Shinka Shu
周 振家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OI SEISAKUSHO CO Ltd
Mitsui Kinzoku ACT Corp
Original Assignee
OI SEISAKUSHO CO Ltd
Ohi Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OI SEISAKUSHO CO Ltd, Ohi Seisakusho Co Ltd filed Critical OI SEISAKUSHO CO Ltd
Priority to JP2002273092A priority Critical patent/JP4119212B2/en
Publication of JP2004106729A publication Critical patent/JP2004106729A/en
Application granted granted Critical
Publication of JP4119212B2 publication Critical patent/JP4119212B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Power-Operated Mechanisms For Wings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a drive controller for an opening/closing body of a vehicle capable of substantializing both speed adjustment by PWM control during motor drive by one semiconductor switch, and control power adjustment upon regenerative braking, and having an advantageous structure for reducing cost. <P>SOLUTION: A motor driving circuit 9 is composed: by connecting a first relay 11 which is a mechanical contact mechanism between one end side of a motor 2 and a battery 5, and a second relay 12 which is a mechanical contact mechanism between the other end side of the motor 2 and the battery 5; by connecting a third relay 13 and a fourth relay 14 which are mechanical contact mechanisms, between a ground GND and both of the first relay 11 and the second relay 12, respectively; and by connecting a FET15 which is the semiconductor switch between the third relay 13 and the fourth relay 14. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えば車両のスライドドアやバックドア等の車両用開閉体をモータを用いて駆動制御するための駆動制御装置に関するものである。
【0002】
【従来の技術】
従来、車両のスライドドアやバックドア等の車両用開閉体を、モータの正転駆動や逆転駆動によって自動開閉させる駆動制御装置が提案され、実用化されるに至っている。このような車両用開閉体の駆動制御装置では、通常、複数の電解効果型トランジスタ(FET:Field Effect Transistor)等の半導体スイッチを用いてモータ駆動回路を構成し、これら複数の半導体スイッチのオン/オフを制御してモータに対する通電方向を切り替えることで、車両用開閉体を開方向と閉方向との双方向に移動させるようにしている。また、この種の駆動制御装置では、これら複数の半導体スイッチへのパルス入力をパルス幅変調(PWM:Pulse Width Modulation)制御することで、その開閉速度を制御するようにしているのが一般的である(例えば、特許文献1参照。)。
【0003】
また、車両が急坂に停車している場合等においては、自重の影響で車両用開閉体の開閉速度が目標速度を上回る場合があり、この点を考慮して、PWM制御だけでは車両用開閉体の開閉速度を目標速度に抑えることができない場合に、モータ駆動回路を閉回路にしてモータを回生ブレーキ状態とし、車両用開閉体に対して制動力を働かせることで、その開閉速度を目標速度に近づける技術も提案されている。この場合、回生ブレーキによる制動力が大きくなりすぎると、車両用開閉体の開閉速度が急激に低下してスムーズな開閉動作が阻害されてしまうので、半導体スイッチのオン/オフを高速で切り替えながら、回生ブレーキ状態と、回生ブレーキを解除したフリーな状態とを交互に設定し、車両用開閉体に与える制動力を調整している(例えば、特許文献2参照。)。
【0004】
【特許文献1】特開平11−303505号公報
【特許文献2】
特開平10−246061号公報
【0005】
【発明が解決しようとする課題】
ところで、上述した従来の駆動制御装置では、4つのスイッチング手段をモータに接続してモータ駆動回路を構成しており、モータ駆動時のPWM制御による速度調整と、回生ブレーキ時における制動力調整との双方を実現できるように、これら4つのスイッチング手段の少なくとも2つに、高速でオン/オフの切り替えが可能なFET等の半導体スイッチを用いていた。
【0006】
しかしながら、FET等の半導体スイッチはそれ自体が比較的高価なため、このような半導体スイッチを複数用いた回路構成とすると、モータ駆動回路の低コスト化を図る上で障害となるといった問題がある。また、半導体スイッチは動作時の発熱量が大きいため、このような半導体スイッチを複数用いたモータ駆動回路では、大がかりな放熱機構の設置が要求され、この点からもモータ駆動回路の低コスト化が困難であるといった問題がある。
【0007】
本発明は、以上のような従来の実情に鑑みて創案されたものであって、1つの半導体スイッチでモータ駆動時のPWM制御による速度調整と回生ブレーキ時の制動力調整との双方を実現でき、低コスト化を図る上で有利な構成の車両用開閉体の駆動制御装置を提供することを目的としている。
【0008】
【課題を解決するための手段】
請求項1に記載の発明は、モータを正転駆動状態、正転回生ブレーキ状態、逆転駆動状態、逆転回生ブレーキ状態の何れかで動作させて、車両用開閉体の開閉動作及びその開閉速度を制御する車両用開閉体の駆動制御装置であって、前記モータの一端側とバッテリとの間、前記モータの他端側と前記バッテリとの間にそれぞれ設けられ、前記モータと前記バッテリとの接続状態を切り替えるための機械的接点機構である第1及び第2のリレーと、前記第1及び第2のリレーの双方とグラウンドとの間に各々設けられ、前記モータと前記グラウンドとの接続状態を切り替えるための機械的接点機構である第3及び第4のリレーと、前記第3のリレーと前記第4のリレーとの間に設けられ、パルス入力によって動作する半導体スイッチとを備えることを特徴とするものである。
【0009】
この請求項1に記載の車両用開閉体の駆動制御装置では、モータが正転駆動状態、正転回生ブレーキ状態、逆転駆動状態、逆転回生ブレーキ状態の何れの状態であっても、第3のリレーと第4のリレーとの間に設けられた半導体スイッチが必ず回路中に介在することになるので、この半導体スイッチのオン/オフを高速に切り替えることで、モータが正転駆動状態及び逆転駆動状態のときは、PWM制御による高精度な速度調整が実現されると共に、モータが正転回生ブレーキ状態及び逆転回生ブレーキ状態のときは、高精度な制動力の調整が実現できる。
【0010】
また、請求項2に記載の発明は、請求項1に記載の車両用開閉体の駆動制御装置において、前記第3のリレーと第4のリレーとが、2回路2接点のリレーとして構成されていることを特徴とするものである。
【0011】
この請求項2に記載の車両用開閉体の駆動制御装置では、第3のリレーと第4のリレーとが2回路2接点のリレーとして構成されており、これら第3のリレー及び第4のリレーの切り替えが共通の入力によって同時に制御されるので、これらの切り替え制御を簡便に行うことができる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
【0013】
本発明を適用した車両用開閉体の駆動制御装置の全体構成を図1に概略的に示す。この駆動制御装置1は、車両のスライドドアやバックドア等の車両用開閉体を開閉動作させる際の駆動源となるモータ2と、このモータ2の回転パルスを検出するロータリエンコーダ3と、車両の乗員によって操作される操作スイッチ4と、バッテリ5と、コントローラ6とを備えて構成される。そして、この駆動制御装置1では、ロータリエンコーダ3により検出されたモータ2の回転パルスをもとに車両用開閉体の開閉速度を算出し、その開閉速度を所定の目標速度に近づけるためのパルス信号を生成するパルス生成回路7と、操作スイッチ4からの操作入力及びパルス生成回路7により算出された車両用開閉体の開閉速度に応じて、後述するモータ駆動回路が備える各リレーを切り替え制御するリレー制御回路8と、モータ2を駆動するモータ駆動回路9とが、コントローラ6に設けられている。
【0014】
モータ駆動回路9は、図2に示すように、モータ2の一端側とバッテリ5との間に設けられた機械的接点機構である第1のリレー11と、モータ2の他端側とバッテリ5との間に設けられた機械的接点機構である第2のリレー12と、第1のリレー11及び第2のリレー12の双方とグラウンドGNDとの間に設けられた機械的接点機構である第3のリレー13及び第4のリレー14と、これら第3のリレー13と第4のリレー14との間に設けられた半導体スイッチであるMOS型NチャンネルのFET15とを備えている。
【0015】
第1のリレー11と第2のリレー12とは、常開接点NOを共通にしてバッテリ5にそれぞれ接続されている。また、第1のリレー11の常閉接点NCは、第3のリレー13の常閉接点NC及び第4のリレー14の常開接点NOに接続され、第2のリレー12の常閉接点NCは、第3のリレー13の常開接点NO及び第4のリレー14の常閉接点NCに接続されている。また、第1のリレー11の可動接点TRは、モータ2の一方の端子に接続され、第2のリレー12の可動接点TRは、モータ2の他方の端子に接続されている。そして、このモータ駆動回路9では、第1のリレー11及び第2のリレー12が、モータ2とバッテリ5との接続状態を切り替えるためのスイッチとして機能するようになっている。
【0016】
また、第3のリレー13の可動接点TRは、FET15のドレインに接続され、第4のリレー14の可動接点TRとFET15のソースとがグラウンドGNDに接続されている。すなわち、第3のリレー13の可動接点TRと第4のリレー14の可動接点TRとの間に、FET15が介在した構成となっている。また、第3のリレー13と第4のリレー14とは、2回路2接点のリレーとして構成されており、共通の入力で同時に切り替え操作が行われるようになっている。そして、このモータ駆動回路9では、第3のリレー13及び第4のリレー14が、モータ2とグラウンドGNDとの接続状態を切り替えるためのスイッチとして機能するようになっている。
【0017】
また、FET15のゲートには、パルス生成回路7により生成されたパルス信号P1が入力されるようになっており、このパルス入力によってFET15が動作してオン/オフの切り替えを高速に行えるようになっている。なお、半導体スイッチとしては、このようなMOS型NチャンネルのFET15に限らず、パルス入力によってオン/オフを高速で切り替え可能なあらゆる半導体スイッチが適用可能である。
【0018】
以上のように構成されるモータ駆動回路9では、リレー制御回路8からの制御信号に応じて、第1のリレー11、第2のリレー12、第3及び第4のリレー13がそれぞれ切り替え制御されることで、モータ2を正転駆動状態、正転回生ブレーキ状態、逆転駆動状態、逆転回生ブレーキ状態の何れかで動作させるようになっている。
【0019】
すなわち、リレー制御回路8からの制御信号に応じて、第1のリレー11を通電状態として可動接点TRを常開接点NOに接触させ、第2のリレー12を非通電状態として可動接点TRを常閉接点NCに接触させる。また、第3のリレー13及び第4のリレー14を通電状態として、それぞれの可動接点TRを常開接点NOに接触させる。これにより、図3に示すように、バッテリ5、第1のリレー11、モータ2、第2のリレー12、第3のリレー13、FET15、グラウンドGNDの順で電流が流れる回路が構成され、モータ2が正転駆動状態で動作されることになる。そして、モータ2が正転駆動状態で動作されることで、スライドドアやバックドア等の車両用開閉体に、例えば開く方向での駆動力が働くことになる。
【0020】
このとき、パルス生成回路7によってモータ2の回転速度に応じてPWM制御されたパルス信号P1が生成され、FET15のオン/オフがこのパルス信号P1に応じて高速で切り替えられることでモータ2の回転速度が制御されて、車両用開閉体の開く速度が目標速度に近付くように、高精度に速度調整されることになる。
【0021】
また、リレー制御回路8からの制御信号に応じて、第1のリレー11を非通電状態として可動接点TRを常閉接点NCに接触させ、第2のリレー12を通電状態として可動接点TRを常開接点NOに接触させる。また、第3のリレー13及び第4のリレー14を非通電状態として、それぞれの可動接点TRを常閉接点NCに接触させる。これにより、図4に示すように、バッテリ5、第2のリレー12、モータ2、第1のリレー11、第3のリレー13、FET15、グラウンドGNDの順で電流が流れる回路が構成され、モータ2が逆転駆動状態で動作されることになる。そして、モータ2が逆転駆動状態で動作されることで、スライドドアやバックドア等の車両用開閉体に、例えば閉じる方向での駆動力が働くことになる。
【0022】
このとき、パルス生成回路7によってモータ2の回転速度に応じてPWM制御されたパルス信号P1が生成され、FET15のオン/オフがこのパルス信号P1に応じて高速で切り替えられることでモータ2の回転速度が制御されて、車両用開閉体の閉じる速度が目標速度に近付くように、高精度に速度調整されることになる。
【0023】
また、リレー制御回路8からの制御信号に応じて、第1のリレー11を非通電状態として可動接点TRを常閉接点NCに接触させ、第2のリレー12を非通電状態として可動接点TRを常閉接点NCに接触させる。また、第3のリレー13及び第4のリレー14を非通電状態として、それぞれの可動接点TRを常閉接点NCに接触させる。これにより、図5に示すように、モータ2、第1のリレー11、第3のリレー13、FET15、第4のリレー14、第2のリレー12、モータ2の順で循環する閉回路が構成され、モータ2が発電制動状態である正転回生ブレーキ状態で動作されることになる。そして、モータ2が正転回生ブレーキ状態で動作されることで、スライドドアやバックドア等の車両用開閉体に、例えば開く方向での駆動力を抑える制動力が働くことになる。
【0024】
このとき、パルス生成回路7によって生成された周期的な繰り返しによるパルス信号P1でFET15を動作させると、パルス信号P1がLoレベルの期間はFET15がオフとなって開回路が構成され、モータ2は回生ブレーキを解除したフリーな状態とされる。そして、パルス信号P1に応じてFET15のオン/オフが高速で切り替えられることで、正転回生ブレーキ状態とフリーな状態とが交互に設定され、これにより、車両用開閉体に働く制動力の大きさが調整されることになる。また、この場合も、正転駆動時或いは逆転駆動時におけるPWM制御と同様に、モータ2の回転速度、すなわち車両用開閉体の移動速度に応じてパルス信号P1のHiレベルの期間とLoレベルの期間のデューティを変化させることで、制動力の大きさを更にきめ細かく調整することができる。
【0025】
また、リレー制御回路8からの制御信号に応じて、第1のリレー11を非通電状態として可動接点TRを常閉接点NCに接触させ、第2のリレー12を非通電状態として可動接点TRを常閉接点NCに接触させる。また、第3のリレー13及び第4のリレー14を通電状態として、それぞれの可動接点TRを常開接点NOに接触させる。これにより、図6に示すように、モータ2、第2のリレー12、第3のリレー13、FET15、第4のリレー14、第1のリレー11、モータ2の順で循環する閉回路が構成され、モータ2が発電制動状態である逆転回生ブレーキ状態で動作されることになる。そして、モータ2が逆転回生ブレーキ状態で動作されることで、スライドドアやバックドア等の車両用開閉体に、例えば閉じる方向での駆動力を抑える制動力が働くことになる。
【0026】
このとき、パルス生成回路7によって生成された周期的な繰り返しによるパルス信号P1でFET15のオン/オフを高速で切り替え、逆転回生ブレーキ状態とフリーな状態とを交互に設定することにより、車両用開閉体に働く制動力の大きさが調整されることになる。また、この場合も、正転駆動時或いは逆転駆動時におけるPWM制御と同様に、モータ2の回転速度、すなわち車両用開閉体の移動速度に応じてパルス信号P1のHiレベルの期間とLoレベルの期間のデューティを変化させることで、制動力の大きさを更にきめ細かく調整することができる。
【0027】
モータ2を以上のような正転駆動状態、正転回生ブレーキ状態、逆転駆動状態、逆転回生ブレーキ状態の各パターンで動作させる場合に、第1乃至第4のリレー11,12,13,14の切り替えをどのように行うかを図7に一覧で示す。この図7で示すように第1乃至第4のリレー11,12,13,14の切り替えを行うことによって、モータ2を正転駆動状態、正転回生ブレーキ状態、逆転駆動状態、逆転回生ブレーキ状態の何れのパターンで動作させるようにした場合でも、回路中に必ずFET15が介在することになる。
【0028】
したがって、モータ2を正転駆動状態或いは逆転駆動状態で動作させるときは、PWM制御されたパルス信号P1でFET15のオン/オフを高速に切り替えることで、モータ2の回転速度を調整して、車両用開閉体の開閉速度を目標速度に近付けることができる。また、モータ2を正転回生ブレーキ状態或いは逆転回生ブレーキ状態で動作させるときは、パルス信号P1でFET15のオン/オフを高速に切り替えてモータ2を回生ブレーキ状態とフリーな状態とに交互させることで、車両用開閉体に与える制動力の大きさを高精度に調整することができる。
【0029】
以上説明したように、本発明を適用した車両用開閉体の駆動制御装置1では、コントローラ2のモータ駆動回路9が4つの機械的接点機構である第1乃至第4のリレー11,12,13,14と、1つの半導体スイッチであるFET15を用いて構成され、第1乃至第4のリレー11,12,13,14の切り替えによってモータ2を正転駆動状態、正転回生ブレーキ状態、逆転駆動状態、逆転回生ブレーキ状態の何れかで動作させると共に、FET15のオン/オフを高速に切り替えることで、正転駆動時或いは逆転駆動時には車両用開閉体の開閉速度を高精度に制御し、また、正転回生ブレーキ時或いは逆転回生ブレーキ時には車両用開閉体に働く制動力を高精度に調整するようになっている。すなわち、この駆動制御装置1は、従来技術では複数のFETを用いて実現されていた機能と同様の機能を1つのFET15で実現できるようになっている。
【0030】
したがって、この駆動制御装置1では、従来複数のFETを用いてモータ駆動回路を構成していたことに起因する問題、すなわち、FET自体が比較的高価であることに加えて、複数のFETから発生する大量の熱を放熱するための大がかりな放熱機構の設置が要求されて低コスト化を図る上で支障をきたすといった問題を生じさせることなく、車両用開閉体の開閉動作及びその開閉速度を高精度に制御することができる。
【0031】
また、この駆動制御装置1では、モータ駆動回路9の第3のリレー13と第4のリレー14とが2回路2接点のリレーとして構成されており、これら第3のリレー13及び第4のリレー14の切り替えが共通の入力によって同時に制御されるようになっているので、これらの切り替え制御を簡便に行うことができる。
【0032】
【発明の効果】
本発明によれば、機械的接点機構である第1乃至第4のリレーと1つの半導体スイッチとを用い、これらの切り替えによって駆動源となるモータの動作状態を制御して、車両用開閉体の開閉動作及びその開閉速度を制御するようにしているので、複数の半導体スイッチを用いた場合には困難とされてきた装置コストの低コスト化を実現しながら、車両用開閉体の開閉動作及びその開閉速度の制御を高精度に行うことができる。
【図面の簡単な説明】
【図1】本発明を適用した車両用開閉体の駆動制御装置を概略的に示すブロック図である。
【図2】前記車両用開閉体の駆動制御装置が備えるモータ駆動回路を示す回路図である。
【図3】前記モータ駆動回路によりモータを正転駆動状態で動作させた様子を示す動作説明図である。
【図4】前記モータ駆動回路によりモータを逆転駆動状態で動作させた様子を示す動作説明図である。
【図5】前記モータ駆動回路によりモータを正転回生ブレーキ状態で動作させた様子を示す動作説明図である。
【図6】前記モータ駆動回路によりモータを逆転回生ブレーキ状態で動作させた様子を示す動作説明図である。
【図7】前記モータの動作状態と第1乃至第4のリレーの切り替え制御との関係を一覧で示す図である。
【符号の説明】
1 車両用開閉体の駆動制御装置
2 モータ
5 バッテリ
6 コントローラ
9 モータ駆動回路
11 第1のリレー
12 第2のリレー
13 第3のリレー
14 第4のリレー
15 FET
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a drive control device for driving and controlling a vehicle opening / closing body such as a sliding door and a back door of a vehicle using a motor.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a drive control device that automatically opens and closes a vehicle opening / closing body such as a sliding door or a back door of a vehicle by a forward rotation drive or a reverse rotation drive of a motor has been proposed and has been put to practical use. In such a drive control device for an opening / closing body for a vehicle, a motor drive circuit is generally configured using semiconductor switches such as a plurality of field effect transistors (FETs), and ON / OFF of the plurality of semiconductor switches is performed. By controlling the turning-off, the energizing direction to the motor is switched so that the vehicle opening / closing body is moved in both directions of the opening direction and the closing direction. Further, in this type of drive control device, the opening / closing speed is generally controlled by performing pulse width modulation (PWM) on the pulse input to the plurality of semiconductor switches. (For example, see Patent Document 1).
[0003]
Also, when the vehicle is stopped on a steep slope, the opening / closing speed of the vehicle opening / closing body may exceed the target speed due to the effect of its own weight. If the opening / closing speed cannot be suppressed to the target speed, the motor drive circuit is closed to put the motor in a regenerative braking state, and a braking force is applied to the vehicle opening / closing body, so that the opening / closing speed is adjusted to the target speed. Techniques for approaching this have also been proposed. In this case, if the braking force by the regenerative brake becomes too large, the opening / closing speed of the vehicle opening / closing body rapidly decreases and a smooth opening / closing operation is hindered. A regenerative braking state and a free state in which the regenerative braking is released are alternately set to adjust the braking force applied to the vehicle opening / closing body (for example, see Patent Document 2).
[0004]
[Patent Document 1] JP-A-11-303505 [Patent Document 2]
Japanese Patent Application Laid-Open No. Hei 10-246061
[Problems to be solved by the invention]
By the way, in the above-mentioned conventional drive control device, four switching means are connected to a motor to form a motor drive circuit, and the speed control by PWM control when driving the motor and the braking force adjustment during regenerative braking are performed. In order to realize both, a semiconductor switch such as an FET which can be turned on / off at high speed is used for at least two of these four switching means.
[0006]
However, since a semiconductor switch such as an FET is itself relatively expensive, a circuit configuration using a plurality of such semiconductor switches poses a problem in reducing the cost of a motor drive circuit. In addition, since the semiconductor switch generates a large amount of heat during operation, a motor drive circuit using a plurality of such semiconductor switches requires a large-scale heat radiation mechanism to be installed, which also reduces the cost of the motor drive circuit. There is a problem that it is difficult.
[0007]
The present invention has been made in view of the above-described conventional circumstances, and can realize both speed adjustment by PWM control when driving a motor and braking force adjustment during regenerative braking with one semiconductor switch. It is an object of the present invention to provide a drive control device for a vehicle opening / closing body having an advantageous configuration for reducing costs.
[0008]
[Means for Solving the Problems]
According to the first aspect of the present invention, the motor is operated in one of a forward rotation driving state, a forward rotation regenerative braking state, a reverse rotation driving state, and a reverse rotation regenerative braking state, thereby opening and closing the vehicle opening / closing body and the opening / closing speed thereof. A drive control device for a vehicle opening / closing body to be controlled, wherein the drive control device is provided between one end of the motor and a battery and between the other end of the motor and the battery, and is connected between the motor and the battery. First and second relays, which are mechanical contact mechanisms for switching states, are provided between each of the first and second relays and a ground, and connect the motor to the ground. Third and fourth relays, which are mechanical contact mechanisms for switching, and a semiconductor switch provided between the third relay and the fourth relay and operated by a pulse input. And it is characterized in and.
[0009]
In the drive control device for a vehicle opening / closing member according to the first aspect, the motor may be in the third state regardless of whether the motor is in the forward drive state, the forward regenerative brake state, the reverse drive state, or the reverse regenerative brake state. Since the semiconductor switch provided between the relay and the fourth relay is necessarily interposed in the circuit, the semiconductor switch is turned on / off at a high speed, so that the motor is driven in the normal rotation state and the reverse rotation state. In the state, high-precision speed adjustment by the PWM control is realized, and when the motor is in the forward rotation regenerative braking state and the reverse rotation regenerative braking state, highly accurate adjustment of the braking force can be realized.
[0010]
According to a second aspect of the present invention, in the drive control device for a vehicle opening / closing body according to the first aspect, the third relay and the fourth relay are configured as two-circuit two-contact relays. It is characterized by having.
[0011]
In the drive control device for a vehicle opening / closing body according to the second aspect, the third relay and the fourth relay are configured as two-circuit, two-contact relays, and the third relay and the fourth relay are provided. Are simultaneously controlled by a common input, so that these switching controls can be easily performed.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0013]
FIG. 1 schematically shows the entire configuration of a drive control device for a vehicle opening / closing body to which the present invention is applied. The drive control device 1 includes a motor 2 serving as a drive source for opening and closing a vehicle opening / closing body such as a sliding door or a back door of a vehicle, a rotary encoder 3 for detecting a rotation pulse of the motor 2, The vehicle includes an operation switch 4 operated by an occupant, a battery 5, and a controller 6. The drive control device 1 calculates the opening / closing speed of the vehicle opening / closing body based on the rotation pulse of the motor 2 detected by the rotary encoder 3, and generates a pulse signal for bringing the opening / closing speed close to a predetermined target speed. And a relay for switching and controlling each relay included in a motor drive circuit described later according to the operation input from the operation switch 4 and the opening / closing speed of the vehicle opening / closing body calculated by the pulse generation circuit 7. The controller 6 includes a control circuit 8 and a motor drive circuit 9 for driving the motor 2.
[0014]
As shown in FIG. 2, the motor drive circuit 9 includes a first relay 11 which is a mechanical contact mechanism provided between one end of the motor 2 and the battery 5, and the other end of the motor 2 and the battery 5. The second relay 12 is a mechanical contact mechanism provided between the first relay 11 and the second relay 12, and the second relay 12 is a mechanical contact mechanism provided between both the first relay 11 and the second relay 12 and the ground GND. The semiconductor device includes a third relay 13 and a fourth relay 14, and a MOS-type N-channel FET 15 which is a semiconductor switch provided between the third relay 13 and the fourth relay 14.
[0015]
The first relay 11 and the second relay 12 are connected to the battery 5 with a normally open contact NO in common. The normally closed contact NC of the first relay 11 is connected to the normally closed contact NC of the third relay 13 and the normally open contact NO of the fourth relay 14, and the normally closed contact NC of the second relay 12 is , Is connected to the normally open contact NO of the third relay 13 and the normally closed contact NC of the fourth relay 14. The movable contact TR of the first relay 11 is connected to one terminal of the motor 2, and the movable contact TR of the second relay 12 is connected to the other terminal of the motor 2. In the motor drive circuit 9, the first relay 11 and the second relay 12 function as switches for switching the connection state between the motor 2 and the battery 5.
[0016]
The movable contact TR of the third relay 13 is connected to the drain of the FET 15, and the movable contact TR of the fourth relay 14 and the source of the FET 15 are connected to the ground GND. That is, the FET 15 is interposed between the movable contact TR of the third relay 13 and the movable contact TR of the fourth relay 14. Further, the third relay 13 and the fourth relay 14 are configured as two-circuit, two-contact relays, and switching operations are performed simultaneously with a common input. In the motor drive circuit 9, the third relay 13 and the fourth relay 14 function as switches for switching the connection state between the motor 2 and the ground GND.
[0017]
Further, the pulse signal P1 generated by the pulse generation circuit 7 is input to the gate of the FET 15, and the input of the pulse causes the FET 15 to operate so that on / off switching can be performed at high speed. ing. The semiconductor switch is not limited to such a MOS N-channel FET 15, but any semiconductor switch that can be switched on / off at high speed by pulse input can be applied.
[0018]
In the motor drive circuit 9 configured as described above, the first relay 11, the second relay 12, the third and the fourth relay 13 are respectively switched and controlled according to the control signal from the relay control circuit 8. Thus, the motor 2 is operated in any of the forward drive state, the forward regenerative brake state, the reverse drive state, and the reverse regenerative brake state.
[0019]
That is, in response to a control signal from the relay control circuit 8, the first relay 11 is turned on, the movable contact TR is brought into contact with the normally open contact NO, the second relay 12 is turned off, and the movable contact TR is normally turned off. The contact is brought into contact with the closed contact NC. Further, the third relay 13 and the fourth relay 14 are energized to bring the respective movable contacts TR into contact with the normally open contacts NO. Thereby, as shown in FIG. 3, a circuit in which current flows in the order of the battery 5, the first relay 11, the motor 2, the second relay 12, the third relay 13, the FET 15, and the ground GND is formed. 2 is operated in the normal rotation drive state. When the motor 2 is operated in the normal rotation drive state, for example, a driving force in the opening direction acts on the vehicle opening / closing body such as the slide door or the back door.
[0020]
At this time, a pulse signal P1 subjected to PWM control is generated by the pulse generation circuit 7 in accordance with the rotation speed of the motor 2, and the ON / OFF of the FET 15 is switched at a high speed in accordance with the pulse signal P1 to thereby rotate the motor 2. The speed is controlled, and the speed is adjusted with high accuracy so that the opening speed of the vehicle opening / closing body approaches the target speed.
[0021]
Further, in response to a control signal from the relay control circuit 8, the first relay 11 is turned off and the movable contact TR is brought into contact with the normally closed contact NC. The second relay 12 is turned on and the movable contact TR is normally turned off. It is brought into contact with the open contact NO. Further, the third relay 13 and the fourth relay 14 are turned off, and the respective movable contacts TR are brought into contact with the normally closed contacts NC. As a result, as shown in FIG. 4, a circuit in which a current flows in the order of the battery 5, the second relay 12, the motor 2, the first relay 11, the third relay 13, the FET 15, and the ground GND is formed. 2 is operated in the reverse rotation driving state. When the motor 2 is operated in the reverse rotation driving state, a driving force in a closing direction, for example, acts on a vehicle opening / closing body such as a slide door or a back door.
[0022]
At this time, a pulse signal P1 subjected to PWM control is generated by the pulse generation circuit 7 in accordance with the rotation speed of the motor 2, and the ON / OFF of the FET 15 is switched at a high speed in accordance with the pulse signal P1 to thereby rotate the motor 2. The speed is controlled, and the speed is adjusted with high accuracy so that the closing speed of the vehicle opening / closing body approaches the target speed.
[0023]
Further, in response to a control signal from the relay control circuit 8, the first relay 11 is turned off and the movable contact TR is brought into contact with the normally closed contact NC. The second relay 12 is turned off and the movable contact TR is turned off. It is brought into contact with the normally closed contact NC. Further, the third relay 13 and the fourth relay 14 are turned off, and the respective movable contacts TR are brought into contact with the normally closed contacts NC. Thereby, as shown in FIG. 5, a closed circuit circulating in the order of the motor 2, the first relay 11, the third relay 13, the FET 15, the fourth relay 14, the second relay 12, and the motor 2 is configured. Thus, the motor 2 is operated in the forward rotation regenerative braking state, which is the dynamic braking state. When the motor 2 is operated in the forward rotation regenerative braking state, a braking force for suppressing the driving force in the opening direction, for example, acts on the vehicle opening / closing body such as the slide door or the back door.
[0024]
At this time, when the FET 15 is operated with the pulse signal P1 generated by the pulse generation circuit 7 by periodic repetition, the FET 15 is turned off while the pulse signal P1 is at the Lo level, thereby forming an open circuit. It is in a free state where the regenerative brake is released. Then, the ON / OFF of the FET 15 is switched at a high speed in response to the pulse signal P1, thereby alternately setting the normal regenerative braking state and the free state, whereby the magnitude of the braking force applied to the vehicle opening / closing body is increased. Will be adjusted. Also in this case, similarly to the PWM control at the time of the forward rotation drive or the reverse rotation drive, the period of the Hi level of the pulse signal P1 and the Lo level of the pulse signal P1 are changed according to the rotation speed of the motor 2, that is, the moving speed of the vehicle opening / closing body. By changing the duty of the period, the magnitude of the braking force can be more finely adjusted.
[0025]
Further, in response to a control signal from the relay control circuit 8, the first relay 11 is turned off and the movable contact TR is brought into contact with the normally closed contact NC. The second relay 12 is turned off and the movable contact TR is turned off. It is brought into contact with the normally closed contact NC. Further, the third relay 13 and the fourth relay 14 are energized to bring the respective movable contacts TR into contact with the normally open contacts NO. Thereby, as shown in FIG. 6, a closed circuit circulating in the order of the motor 2, the second relay 12, the third relay 13, the FET 15, the fourth relay 14, the first relay 11, and the motor 2 is configured. Then, the motor 2 is operated in the reverse rotation regenerative braking state, which is the power generation braking state. When the motor 2 is operated in the reverse rotation regenerative braking state, a braking force that suppresses, for example, the driving force in the closing direction acts on the vehicle opening / closing body such as the slide door or the back door.
[0026]
At this time, the on / off state of the FET 15 is switched at a high speed by the pulse signal P1 generated by the pulse generation circuit 7 by periodic repetition, and the reverse regenerative braking state and the free state are alternately set, thereby opening and closing the vehicle. The magnitude of the braking force acting on the body will be adjusted. Also in this case, similarly to the PWM control at the time of the forward rotation drive or the reverse rotation drive, the period of the Hi level of the pulse signal P1 and the Lo level of the pulse signal P1 are changed according to the rotation speed of the motor 2, that is, the moving speed of the vehicle opening / closing body. By changing the duty of the period, the magnitude of the braking force can be more finely adjusted.
[0027]
When the motor 2 is operated in each of the patterns of the forward rotation driving state, the forward rotation regenerative braking state, the reverse rotation driving state, and the reverse rotation regenerative braking state as described above, the first to fourth relays 11, 12, 13, and 14 are operated. FIG. 7 shows a list of how the switching is performed. By switching the first to fourth relays 11, 12, 13, and 14 as shown in FIG. 7, the motor 2 is driven in the normal rotation driving state, the normal rotation regenerative braking state, the reverse rotation driving state, and the reverse rotation regenerative braking state. Whichever pattern is used, the FET 15 is necessarily interposed in the circuit.
[0028]
Therefore, when the motor 2 is operated in the forward rotation driving state or the reverse rotation driving state, the rotation speed of the motor 2 is adjusted by switching on / off the FET 15 at a high speed by the PWM-controlled pulse signal P1. The opening / closing speed of the opening / closing body can be close to the target speed. When the motor 2 is operated in the forward rotation regenerative braking state or the reverse rotation regenerative braking state, the ON / OFF of the FET 15 is switched at high speed by the pulse signal P1 to alternate the motor 2 between the regenerative braking state and the free state. Thus, the magnitude of the braking force applied to the vehicle opening / closing body can be adjusted with high accuracy.
[0029]
As described above, in the drive control device 1 for a vehicle opening / closing body to which the present invention is applied, the motor drive circuit 9 of the controller 2 includes the first to fourth relays 11, 12, and 13 which are four mechanical contact mechanisms. , 14 and an FET 15 which is one semiconductor switch, and switches the first to fourth relays 11, 12, 13, 14 to drive the motor 2 in the forward rotation driving state, the forward rotation regenerative braking state, and the reverse rotation driving. State, or reverse regenerative braking state, and by switching ON / OFF of the FET 15 at high speed, the opening / closing speed of the vehicle opening / closing body is controlled with high precision at the time of forward rotation driving or reverse rotation driving, and At the time of forward regenerative braking or reverse regenerative braking, the braking force applied to the vehicle opening / closing body is adjusted with high precision. That is, the drive control device 1 is configured such that a function similar to the function realized by using a plurality of FETs in the related art can be realized by one FET 15.
[0030]
Therefore, in the drive control device 1, a problem caused by the conventional configuration of the motor drive circuit using a plurality of FETs, that is, the FET itself is relatively expensive, The opening and closing operation of the vehicle opening and closing body and the opening and closing speed of the opening and closing body for a vehicle can be increased without causing a problem that a large heat dissipation mechanism for dissipating a large amount of heat is required and hinders the cost reduction. It can be controlled with high precision.
[0031]
Further, in the drive control device 1, the third relay 13 and the fourth relay 14 of the motor drive circuit 9 are configured as two-circuit, two-contact relays, and the third relay 13 and the fourth relay Since the switching of 14 is controlled simultaneously by a common input, these switching controls can be easily performed.
[0032]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the operation state of the motor used as a drive source is controlled by using the 1st-4th relay which is a mechanical contact mechanism, and one semiconductor switch, and switching of these, and the opening / closing body for vehicles Since the opening / closing operation and the opening / closing speed are controlled, the opening / closing operation of the vehicle opening / closing body and the opening / closing operation of the vehicle opening / closing body are realized while realizing a reduction in apparatus cost, which has been difficult when a plurality of semiconductor switches are used. The opening / closing speed can be controlled with high accuracy.
[Brief description of the drawings]
FIG. 1 is a block diagram schematically showing a drive control device for a vehicle opening / closing body to which the present invention is applied.
FIG. 2 is a circuit diagram showing a motor drive circuit provided in the drive control device for the vehicle opening / closing body.
FIG. 3 is an operation explanatory diagram showing a state where the motor is operated in a normal rotation drive state by the motor drive circuit.
FIG. 4 is an operation explanatory diagram showing a state where the motor is operated in a reverse rotation driving state by the motor driving circuit.
FIG. 5 is an operation explanatory diagram showing a state where the motor is operated in a forward rotation regenerative braking state by the motor drive circuit.
FIG. 6 is an operation explanatory diagram showing a state where the motor is operated in a reverse rotation regenerative braking state by the motor drive circuit.
FIG. 7 is a view showing a list of a relationship between an operation state of the motor and switching control of first to fourth relays.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 vehicle opening / closing body drive control device 2 motor 5 battery 6 controller 9 motor drive circuit 11 first relay 12 second relay 13 third relay 14 fourth relay 15 FET

Claims (2)

モータを正転駆動状態、正転回生ブレーキ状態、逆転駆動状態、逆転回生ブレーキ状態の何れかで動作させて、車両用開閉体の開閉動作及びその開閉速度を制御する車両用開閉体の駆動制御装置であって、
前記モータの一端側とバッテリとの間、前記モータの他端側と前記バッテリとの間にそれぞれ設けられ、前記モータと前記バッテリとの接続状態を切り替えるための機械的接点機構である第1及び第2のリレーと、
前記第1及び第2のリレーの双方とグラウンドとの間に各々設けられ、前記モータと前記グラウンドとの接続状態を切り替えるための機械的接点機構である第3及び第4のリレーと、
前記第3のリレーと前記第4のリレーとの間に設けられ、パルス入力によって動作する半導体スイッチとを備えること
を特徴とする車両用開閉体の駆動制御装置。
Drive control of a vehicle opening / closing body that controls the opening / closing operation of the vehicle opening / closing body and its opening / closing speed by operating the motor in one of a forward rotation driving state, a forward rotation regenerative braking state, a reverse rotation driving state, and a reverse rotation regenerative braking state A device,
First and second mechanical contact mechanisms provided between the one end of the motor and the battery and between the other end of the motor and the battery, respectively, for switching a connection state between the motor and the battery. A second relay;
Third and fourth relays, which are provided between both the first and second relays and ground, and are mechanical contact mechanisms for switching a connection state between the motor and the ground,
A drive control device for a vehicle opening / closing body, comprising: a semiconductor switch provided between the third relay and the fourth relay and operated by a pulse input.
前記第3のリレーと第4のリレーとが、2回路2接点のリレーとして構成されていること
を特徴とする請求項1に記載の車両用開閉体の駆動制御装置。
The drive control device for a vehicle opening / closing body according to claim 1, wherein the third relay and the fourth relay are configured as a relay having two circuits and two contacts.
JP2002273092A 2002-09-19 2002-09-19 Drive control device for vehicle opening / closing body Expired - Fee Related JP4119212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002273092A JP4119212B2 (en) 2002-09-19 2002-09-19 Drive control device for vehicle opening / closing body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002273092A JP4119212B2 (en) 2002-09-19 2002-09-19 Drive control device for vehicle opening / closing body

Publications (2)

Publication Number Publication Date
JP2004106729A true JP2004106729A (en) 2004-04-08
JP4119212B2 JP4119212B2 (en) 2008-07-16

Family

ID=32269936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002273092A Expired - Fee Related JP4119212B2 (en) 2002-09-19 2002-09-19 Drive control device for vehicle opening / closing body

Country Status (1)

Country Link
JP (1) JP4119212B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009027819A2 (en) * 2007-08-30 2009-03-05 Thomas Frommer System and method for dynamic braking a vehicle closure system
JP2009520893A (en) * 2005-12-21 2009-05-28 ブローゼ ファールツオイクタイレ ゲーエムベーハー ウント コムパニー カーゲー,コーブルク Method and apparatus for controlling the closing action of a vehicle body part for a vehicle
WO2013099646A1 (en) * 2011-12-28 2013-07-04 シロキ工業株式会社 Drive device for opening/closing body
KR101330235B1 (en) 2007-11-20 2013-11-15 현대모비스 주식회사 Motor driving circuit of active geometry controlled suspension system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520893A (en) * 2005-12-21 2009-05-28 ブローゼ ファールツオイクタイレ ゲーエムベーハー ウント コムパニー カーゲー,コーブルク Method and apparatus for controlling the closing action of a vehicle body part for a vehicle
JP4929291B2 (en) * 2005-12-21 2012-05-09 ブローゼ ファールツオイクタイレ ゲーエムベーハー ウント コムパニー カーゲー,コーブルク Method and apparatus for controlling the closing action of a vehicle body part for a vehicle
US8234817B2 (en) 2005-12-21 2012-08-07 Brose Fahrzeugteile Gmbh & Co. Kg, Coburg Method and device for controlling the closing movement of a chassis component for vehicles
WO2009027819A2 (en) * 2007-08-30 2009-03-05 Thomas Frommer System and method for dynamic braking a vehicle closure system
WO2009027819A3 (en) * 2007-08-30 2009-04-30 Thomas Frommer System and method for dynamic braking a vehicle closure system
US8103416B2 (en) 2007-08-30 2012-01-24 Flextronics Automotive Inc. System and method for dynamic braking a vehicle closure system
KR101330235B1 (en) 2007-11-20 2013-11-15 현대모비스 주식회사 Motor driving circuit of active geometry controlled suspension system
WO2013099646A1 (en) * 2011-12-28 2013-07-04 シロキ工業株式会社 Drive device for opening/closing body
US9401255B2 (en) 2011-12-28 2016-07-26 Shiroki Corporation Drive device for opening/closing body

Also Published As

Publication number Publication date
JP4119212B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
US6841955B2 (en) Moving body drive control device
GB2209636B (en) Actuating devices for movable components
JP2008132919A (en) Electric power steering control device
CN108625712B (en) Opening/closing body control device for vehicle
JP3375502B2 (en) Electric power steering device
CN106014063A (en) Opening/closing body control device and opening/closing body control method
JP2004106729A (en) Drive controller for opening/closing body of vehicle
JP2000097137A (en) Device for controlling power feeding to electric motor of starter of motor vehicle, especially of automobile
JPH1094106A (en) Driver of electric vehicle
WO2014034264A1 (en) Switching method and device therefor
JP2007224659A (en) Vehicle door control device
CA2396618A1 (en) Motor control apparatus for a railway switch machine
JP2009067174A (en) Control device of electric power steering device
JPH10246061A (en) Auto sliding-door device
JP7272220B2 (en) Opening/closing body driving device and its control method
GB2390943A (en) Switching arrangement for connecting load to PWM supply
JP2005217774A5 (en)
KR950031869A (en) Control device of elevator door
KR101116132B1 (en) H-bridge circuit For Electric Parking Brake
JP4006091B2 (en) Camera system and interchangeable lens having an abnormally large current generation prevention device
JP2010155500A (en) Electric power steering control device
JP7272219B2 (en) Opening/closing body driving device and its control method
JP4180460B2 (en) Electric shutter opening and closing device
JP2001329749A (en) Power slide door control device for vehicle
JP3642182B2 (en) Motor drive control device for electric vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4119212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees