JP2004106210A - Mold for manufacturing coated molded article and manufacturing method for coated molded article - Google Patents

Mold for manufacturing coated molded article and manufacturing method for coated molded article Download PDF

Info

Publication number
JP2004106210A
JP2004106210A JP2002268402A JP2002268402A JP2004106210A JP 2004106210 A JP2004106210 A JP 2004106210A JP 2002268402 A JP2002268402 A JP 2002268402A JP 2002268402 A JP2002268402 A JP 2002268402A JP 2004106210 A JP2004106210 A JP 2004106210A
Authority
JP
Japan
Prior art keywords
mold
paint
molded product
coating
molded article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002268402A
Other languages
Japanese (ja)
Other versions
JP3983144B2 (en
Inventor
Kenji Nakatani
中谷 健司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Chemicals Ltd filed Critical Teijin Chemicals Ltd
Priority to JP2002268402A priority Critical patent/JP3983144B2/en
Publication of JP2004106210A publication Critical patent/JP2004106210A/en
Application granted granted Critical
Publication of JP3983144B2 publication Critical patent/JP3983144B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1679Making multilayered or multicoloured articles applying surface layers onto injection-moulded substrates inside the mould cavity, e.g. in-mould coating [IMC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/38Polymers of cycloalkenes, e.g. norbornene or cyclopentene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3044Bumpers

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique which can equally coat the entire surface area of a molded article with paint in a short time after molding when the molded article is formed by the crosslinking polymerization of a norbornene type monomer is coated with an in-mold coating method to manufacture a coated molded article, can form a coating film to the molded article by strong adhesive strength and dispenses with additional treatment even when a coating film is further provided on that coating film. <P>SOLUTION: In the mold for manufacturing the coated molded article, a paint injection port is provided to at least either one of a cavity mold and a core mold when the molded article is formed by the crosslinking polymerization of a mixture containing the norbornene type monomer to be coated by the in-mold coating method, the temperature of the surface of the mold remoter than the paint injection port is controlled so as to become a higher temperature, with respect to the mold on the side provided with the paint injection port. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は軽量で耐衝撃性に優れたノルボルネン系架橋重合体の成形に関するものである。さらに詳しくは、インモールドコーティング法で塗装した成形物の製造を効果的に行うための技術に関する。
【0002】
【従来の技術】
ノルボルネン系架橋重合体は、軽量で耐衝撃性が高いことで、自動車のバンパー、建機のカバー、医療機の外装品など幅広く使われている。しかしノルボルネン系架橋重合体は分子構造中に二重結合を有しており、それが酸化されるため時間が経つにつれ変色する。そのため、ノルボルネン系架橋重合体は、審美性を要求される場合には一般に、重合体表面を塗装して使用する。
【0003】
しかし塗装は、ノルボルネン系架橋重合体が分子中に二重結合を持ち、その一部が酸化され極性基をもった後でないと塗膜が密着しないので、通常成形後48時間以上放置する必要がある。しかしながらそのようにしても架橋重合体のベースはオレフィンであり、長期間使用した場合、塗装剥がれを起こすこともあり、そのため塗装前にプライマーを塗布したり、サンディングなどの塗装前処理をおこなっている。
【0004】
特にサンディングはロボットの使用も一部できるが多くは人手によるものであり、また微粉末の飛散もあり、経済的にも衛生上も改善が望まれている。かかる問題点を解決するために、樹脂成形物を作成した後、同じ金型内に塗料を注入して成形物表面に塗装を施すインモールドコーティングが提案されている(例えば特許文献1,2参照。)。
【0005】
【特許文献1】
特開2001−71345号公報(段落番号0017〜0023)
【0006】
【特許文献2】
特開平11−300776号公報(段落番号0005)
【0007】
【発明が解決しようとする課題】
しかしながら、従来のインモールドコーティングでは塗料を成形物の表面全域に均等に塗布することが難しいという問題点や、塗膜と成形物との間の接着力が不足するといった問題点、この塗膜の上に更に塗装する場合には、付加的な処理が必要となる問題点が残されていた。
【0008】
本発明は、このような問題を解決し、ノルボルネン系モノマーを架橋重合せしめて成形物となし、インモールドコーティング法で塗装をおこない塗装成形物を製造する場合に、成形後短時間で、塗料を成形物の表面全域に均等に塗布でき、塗膜が成形物と強固な接着力を有するようにすることができ、また、その塗膜の上に更に塗膜をもうける場合にも、付加的な処理が不要になる技術を提供することを目的としている。
【0009】
本発明のさらに他の目的および利点は、以下の説明から明らかになるであろう。
【0010】
【課題を解決するための手段】
本発明者は先に環状オレフィン樹脂のインモールドコーティング法を提案した(特開2001−71345号公報)。そして、このインモールドコーティング法を塗装前処理に適用すれば成形後直ちに塗装できること、プライマー処理やサンディングなどの人手のかかる作業工程を省略でき、また使用する塗装の種類も多様化できることから、本インモールドコーティングの金型について鋭意検討し、本発明に到達した。
【0011】
すなわち本発明の一態様によれば、ノルボルネン系モノマーを含む混合物をキャビティ金型とコア金型とからなる金型内に注入し、架橋重合せしめて成形物となし、当該成形物にインモールドコーティング法で塗装をおこない塗装成形物を製造するための塗装成形物製造用金型において、少なくともキャビティ金型とコア金型とのいずれかに塗料注入口を有し、塗料注入口の設けられた側の金型について、塗料注入口からより遠い金型表面の温度を、より高温になるように制御できるようになした塗装成形物製造用金型が提供される。
【0012】
塗料注入口の設けられた側の金型について、塗料注入口近傍の金型表面の熱交換速度を、他の金型表面部分に比べ大きくできるようになすこと、成形物の端部分に、縦バリと横バリとが、成形物側から見てこの順序に生じるようなバリ生成構造を設けること、成形物の開口部となすべき部分に0.5mm以上の厚みの薄皮を形成するようになすこと、金型を水平に設置した場合に、塗料注入口を、実質的に当該金型の底部にあるように設けることが好ましい。塗装の信頼性が向上するからである。
【0013】
また、本発明の他の一態様によれば、上記の塗装成形物製造用金型を使用し、ノルボルネン系モノマーを含む混合物を架橋重合せしめて成形物となし、ついで、当該成形物にインモールドコーティング法で塗装をおこなう塗装成形物の製造方法において、少なくとも塗料注入時には、当該金型を水平に設置し、塗料注入口の設けられた側の金型について、塗料注入口近傍の塗膜の硬化速度が、他の部分の硬化速度に比べ遅くならないように、注入塗料温度および金型表面の熱交換速度を調節し、塗料注入口の設けられた側の金型について、塗料注入口からより遠い金型表面の温度をより高温になるように制御した金型に塗料を注入する塗装成形物の製造方法が提供される。
【0014】
なお、以下に説明する発明の実施の形態や図面の中で、本発明の更なる特徴が明らかにされる。
【0015】
【発明の実施の形態】
以下に、本発明の実施の形態を図、表、実施例等を使用して説明する。なお、これらの図、表、実施例等および説明は本発明を例示するものであり、本発明の範囲を制限するものではない。本発明の趣旨に合致する限り他の実施の形態も本発明の範疇に属し得ることは言うまでもない。
【0016】
上記本発明において、塗料注入口の設けられた側の金型(以下、「塗料注入口の設けられた側の金型」を金型Aと略称する場合がある。)について、金型表面の温度や熱交換速度を問題にするのは、塗料の硬化に影響を及ぼすのが金型Aであり、他の側の金型は直接塗料とは接触しないため塗料の硬化に影響を及ぼす度合いが小さいからである。
【0017】
通常金型は、凹形状を有する側の金型をキャビティ金型、凸形状を有する側の金型をコア金型と呼称するが、キャビティ金型に接する成形物面のみが審美性を要求され、塗装される場合が多い。このような場合には、キャビティ金型に塗料注入口を設けることになる。一方、コア金型に接する成形物面のみを塗装する場合には、コア金型に塗料注入口を設けることになり、成形物の両面に塗装する場合には、キャビティ金型とコア金型とに塗料注入口を設けることになる。
【0018】
なお、簡略化のため、以下の説明では、キャビティ金型に塗料注入口が設けられている場合を主体に説明する。
【0019】
本発明のノルボルネン系モノマーはノルボルネン骨格を分子中に少なくとも1つ有し、触媒を使用して架橋重合して、ノルボルネン系架橋重合体を得る。上記におけるノルボルネン系モノマーを含む混合物は、ノルボルネン系モノマーと架橋重合のための触媒とを含有する。この混合物の状態は金型に注入する前に存在するものであっても、金型に注入した後に実現されるものであってもよい。
【0020】
そして、この混合物をキャビティ金型とコア金型とからなる金型内で架橋重合と成形とを同時におこなう反応射出成形(Reaction Injection Molding 略してRIM法)やレジントランスファー成形(Resin transfer Molding 略してRTM)で寸法精度良く成形することができる。触媒としては、タングステン(W)、モリブデン(Mo)など、あるいは、ルテニウム(Ru)など金属をベースとしたものが知られている。
【0021】
この重合体は成形原料が液状であるため、複雑な形状もこのRIMやRTM成形法で、比較的安価にかつ容易に成形できる。また、この重合体は、スチレン−ブタジエン、エチレン−プロピレン−ジエン系のエラストマーが添加されていると耐衝撃性は更に向上するし、あるいは、成形原料に、ガラス繊維、炭素繊維などの繊維補強材やガラス微粒子などを添加し、補強して使用することができる。
【0022】
本発明のノルボルネン系モノマーの具体例としては、ジシクロペンタジエン、トリシクロペンタジエン、シクロペンタジエン−メチルシクロペンタジエン共二量体、5−エチリデンノルボルネン、ノルボルネン、ノルボルナジエン、5−シクロヘキセニルノルボルネン、1,4,5,8−ジメタノ−1,4,4a,5,6,7,8,8a−オクタヒドロナフタレン、1,4−メタノ−1,4,4a,5,6,7,8,8a−オクタヒドロナフタレン、6−エチリデン−1,4,5,8−ジメタノ−1,4,4a,5,6,7,8,8a−オクタヒドロナフタレン、6−エチリデン−1,4−メタノ−1,4,4a,5,6,7,8,8a−オクタヒドロナフタレン、1,4,5,8−ジメタノ−1,4,4a,5,8,8a−ヘキサヒドロナフタレン、エチレンビス(5−ノルボルネン)などを挙げることができ、これらの混合物も使用することができる。特にジシクロペンタジエンまたはそれを50モル%以上、好ましくは70モル%以上含む混合物が好適に用いられる。
【0023】
また、必要に応じて、酸素、窒素などの異種元素を含有する極性基を有するメタセシス重合性環状オレフィンを共重合モノマーとして用いることができる。かかる共重合モノマーも、ノルボルネン構造単位を有するものが好ましくかつ極性基としてはエステル基、エーテル基、シアノ基、N−置換イミド基、ハロゲン基などが好ましい。かかる共重合モノマーの具体例としては、5−メトキシカルボニルノルボルネン、5−(2−エチルヘキシロキシ)カルボニル−5−メチルノルボルネン、5−フェニロキシメチルノルボルネン、5−シアノノルボルネン、6−シアノ−1,4,5,8−ジメタノ−1,4,4a,5,6,7,8,8a−オクタヒドロナフタレン,N−ブチルナディック酸イミド、5−クロルノルボルネンなどを挙げることができる。
【0024】
本発明の架橋重合体を得るための触媒としては、メタセシス触媒系としてよく知られているものを使い、触媒成分としてタングステン、レニウム、タンタル、モリブデンなどの金属のハライドやアンモニウム塩などの塩類と活性化剤成分として周期律表第I〜第III族の金属のアルキル化物を中心とする有機金属化合物、特にテトラアルキル錫、アルキルアルミニウム化合物、アルキルアルミニウムハライド化合物などからなる複合触媒をあげることができ、あるいはルテニウムカルベン錯体からなる触媒が挙げられる。前者は一般的には触媒成分を含むモノマー液Aと活性化剤成分を含むモノマー液Bとの2液を混合せしめることにより短時間で重合せしめる。後者は、一般的にはモノマー液と触媒成分とを混合せしめ、あるいは混合過熱せしめることにより重合せしめる。
【0025】
本発明において2液混合せしめて重合せしめる場合、たとえばモノマー液A(溶液A)中には、メタセシス重合触媒系の触媒成分が含有されている。かかる触媒成分としては、タングステン、レニウム、タンタル、モリブデンなどの金属のハライドやアンモニウム塩が用いられるが、特にタングステン化合物が好ましい。
【0026】
かかるタングステン化合物としては、タングステンヘキサハライド、タングステンオキシハライドなどが好ましく、より具体的にはタングステンヘキサクロライド、タングステンオキシクロライドなどが好ましい。
【0027】
かかるタングステン化合物は、直接モノマーに添加すると、直ちにカチオン重合を開始することが分かっており好ましくない。従って、かかるタングステン化合物は不活性溶媒、たとえばベンゼン、トルエン、クロロベンゼンなどに予め懸濁し、少量のアルコール系化合物および/またはフェノール系化合物を添加することによって可溶化させて使用するのが好ましい。
【0028】
さらに上述した如き、好ましくない重合を予防するためにタングステン化合物1モルに対し、約1〜5モルのルイス塩基またはキレート化剤を添加することが好ましい。かかる添加剤としてはアセチルアセトン、アセト酢酸アルキルエステル類、テトラヒドロフラン、ベンゾニトリルなどを挙げることができる。極性モノマーを用いる場合には、前述の如く、そのものがルイス塩基である場合があり、上記の如き化合物を特に加えなくてもその作用を有している場合もある。前述の如くして、触媒成分を含むモノマー液A(溶液A)は、実質上充分な安定性を有することになる。
【0029】
一方、本発明におけるモノマー液B(溶液B)中には、たとえば、メタセシス重合触媒系の活性化剤成分が含有されている。この活性化剤成分は、周期律表第I〜第III族の金属のアルキル化物を中心とする有機金属化合物、特にテトラアルキル錫、アルキルアルミニウム化合物、アルキルアルミニウムハライド化合物が好ましく、具体的には塩化ジエチルアルミニウム、ジ塩化エチルアルミニウム、トリオクチルアルミニウム、ジオクチルアルミニウムアイオダイド、テトラブチル錫などを挙げることができる。これら活性化剤成分としての有機金属化合物をモノマーに溶解することにより、モノマー液B(溶液B)が形成される。
【0030】
基本的には前記溶液Aおよび溶液Bを混合し、金型内に注入することによって、架橋重合体成形物を得ることができるが、上記組成のままでは、重合反応が非常に速く開始されるので、成形金型に十分流れ込まない間に硬化が起こることもあり問題となる場合もある。このような場合には活性調節剤を用いることが好ましい。
【0031】
かかる調節剤としてはルイス塩基類が一般に用いられ、なかんずく、エーテル類、エステル類、ニトリル類などが用いられる。具体例としては安息香酸エチル、ブチルエーテル、ジグライムなどを挙げることができる。かかる調節剤は一般的に、有機金属化合物の活性化剤の成分の溶液(溶液B)の側に添加して用いられる。前述と同様にルイス塩基を有するモノマーを使用する場合には、それに調節剤の役目を兼ねさせることができる。
【0032】
メタセシス重合触媒系の使用量は、たとえば触媒成分としてタングステン化合物を用いる場合は、上記原料モノマーに対するタングステン化合物の比率は、モル基準で約1,000対1〜15,000対1、好ましくは2,000対1の付近であり、また、活性化剤成分はアルキルアルミニウム類を用いる場合には、上記原料モノマーに対するアルミニウム化合物の比率は、モル基準で約100対1〜10,000対1、好ましくは200対1〜1,000対1の付近が用いられる。さらに上述した如きキレート化剤や調節剤については、実験によって上記触媒系の使用量に応じて、適宜調節して用いることができる。
【0033】
本発明における架橋重合体の成形物には、実用に当たってその特性を改良または維持するために更にその目的に応じた各種添加剤を配合することができる。かかる添加剤としては、充填剤、顔料、酸化防止剤、光安定剤、難燃剤、高分子改良剤などがある。このような添加剤は、本発明の架橋重合体が成形されて後は添加することが不可能であるから添加する場合には予め前述した原料溶液に添加しておく必要がある。
【0034】
その最も容易な方法としては、前記溶液Aおよび溶液Bのいずれかまたは両方に前もって添加しておく方法を挙げることができるが、その場合、その液中の反応性の強い触媒成分、活性化剤成分と実用上差支えある程度には反応せず、かつ重合を阻害しないものでなくてはならない。どうしても、その反応が避け得ないものが共存しても、重合を実質的に阻害しないものあるいは短時間には阻害しないものの場合は、モノマーと混合して、第三液を調製し、重合直前に混合使用することもできる。
【0035】
また、重合触媒または活性化剤を第三液とし、これを含まない溶液Aまたは溶液Bに上記添加物を添加する方法も考えられる。さらに、固体の充填剤の場合であって、両成分が混合されて、重合反応を開始する直前あるいは重合しながら、その空隙を充分に埋め得る形状の物については、成形金型内に充填しておくことも可能である。
【0036】
また、本発明による成形物は、酸化防止剤を添加しておくことが好ましく、そのため、フェノール系またはアミノ系の酸化防止剤を予め溶液中に加えておくことが望ましい。これら酸化防止剤の具体例としては、2,6−ジ−t−ブチル−p−クレゾール、N,N’−ジフェニル−p−フェニレンジアミン、テトラキス[メチレン(3,5−ジ−t−ブチル−4−ヒドロキシシンナメート)]メタンなどが挙げられる。
【0037】
また、本発明における成形物は、添加剤として他の重合体をモノマー溶液状態の時に添加しておいて得てもよい。かかる添加剤としてはエラストマーが、成形物の耐衝撃性を高めることおよび溶液の粘度を調節する上で効果がある。かかる目的に用いられるエラストマーとしては、スチレン−ブタジエン−スチレントリブロックゴム、スチレン−イソプレン−スチレントリブロックゴム、ポリブタジエン、ポリイソプレン、ブチルゴム、エチレンプロピレン−ジエンターポリマー、ニトリルゴムなど広範なエラストマーを挙げることができる。
【0038】
本発明の成形方法は、たとえば、ノルボルネン系モノマー成分と触媒系成分(活性化剤がある場合は活性化剤も含む)との混合物をキャビティ金型とコア金型とからなる金型内で重合せしめる。通常二つの金型には温度差をつける。これは成形物が高温金型側に密着し、収縮によって生じるヒケが低温金型側に集中して高温金型側には発現しないようにするためであり、通常キャビティ金型が高温金型になり、成形物の意匠面(美観を必要とされる側の面)を形成する役割を担う。金型温度は25〜120℃であり、金型間の温度差は5〜100℃が一般的であるが、成形物の意匠面になる側の金型温度は40〜120℃、一方成形物の裏側となる側の金型温度は25〜85℃、金型間の温度差は20〜85℃が好ましい。
【0039】
金型の材質は、スチール、鋳造あるいは鍛造のアルミニウム、亜鉛合金などの鋳造や溶射、ニッケルや銅などの電鋳、および樹脂などが挙げられる。金型表面が塗装表面になるので金型表面は#800以上の鏡面仕上げが好ましい。また、金型にはつなぎ目のない一体品が好ましい。
【0040】
本発明の塗装成形物の製造方法におけるインラインコーティング法(以下、IMCと略称する場合もある)による塗装では、成形物の架橋が充分進行した段階、すなわち成形物の表面が塗料の注入圧力、流動圧力に耐え得る状態になった段階で、インジェクターにより金型に設けた塗料注入口から、塗料を型内に注入する。通常は成形物の意匠面は高温側の金型であり、塗装面となるので注入口は、通常高温側金型であるキャビティ金型に設ける。
【0041】
塗料の注入圧力は3〜44MPa、好ましくは7〜34MPaである。3MPa未満では金型と成形物表面との間に塗料が充分浸透、流動せず、逆に44MPaを越えると塗料注入設備を強化しなければならず、また金型の強度も上げる必要が出る。
【0042】
塗料を注入後、塗料を成形物に充分密着させ硬化させるために、金型を成形時の状態に保持しても、あるいは型締め圧力を増圧してもよい。塗料の硬化時間は20秒〜10分であり、好ましくは60秒〜4分である。20秒より短いと塗料の硬化は不十分であり、10分を超えると生産性が悪化する。
【0043】
本発明で使用される塗料は、本発明の趣旨に反しない限りどのようなものでもよいが、(a)不飽和ポリエステル樹脂、エポキシアクリレートオリゴマー、ポリエステルアクリレートオリゴマーまたはウレタンアクリレートオリゴマーと(b)それらと共重合可能なエチレン性不飽和モノマーからなるビヒクル成分および(c)重合開始剤を含有するものを例示することができる。
【0044】
不飽和ポリエステル樹脂、エポキシアクリレートオリゴマー、ポリエステルアクリレートオリゴマーまたはウレタンアクリレートオリゴマーは、いずれも分子内に不飽和二重結合を有しており、エチレン性不飽和モノマーからなるビヒクル成分と、重合開始剤である有機過酸化物の熱分解で発生する活性ラジカルにより硬化反応が始まるが、この活性化ラジカルがノルボルネン架橋重合体(成形物)に残存する不飽和結合と反応する結果、成形物と塗料が化学結合し、塗料の強固な密着性が発現するものと推察される。
【0045】
特に好ましい塗料は、エポキシアクリレートオリゴマーまたはウレタンアクリレートオリゴマーを主成分とする塗料である。
【0046】
塗料のビヒクル成分であるエチレン性不飽和モノマーとしては、たとえばスチレン、α−メチルスチレン、クロルスチレン、ビニルトルエン、ジビニルベンゼン、メチル(メタ)アクリレート、1,6−ヘキサンジオールジアクリレート、トリプロピレングリコールジアクリレート、トリメチロールプロパントリ(メタ)アクリレート、シリコンアクリレート、シリコンジアクリレートなどが挙げられる。エチレン性不飽和モノマーの配合量は、前記の不飽和ポリエステル樹脂またはオリゴマー100重量部に対し20〜200重量部、好ましくは40〜160重両部である。
【0047】
ビヒクル成分を重合するための重合開始剤は有機過酸化物が好ましい。その具体例としては、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、ラウロイルパーオキサイド、t−アミルパーオキシ−2−エチルヘキサノエート、ベンゾイルパーオキサイド、t−ブチルパ−オキシ−2−エチルヘキサノエートなどを挙げることができる。有機過酸化物の配合量は、ビヒクル成分100重量部に対し、0.1〜15重量部であるのが一般的である。
【0048】
本発明で使用される塗料は、前記成分のほかに着色用の顔料および/または染料成分が加わり、その他必要に応じ離型剤、硬化促進剤、重合禁止剤、紫外線吸収剤、光安定剤、改質樹脂、表面調整剤などを配合する。
【0049】
インモールドコーティング法で塗装する場合、塗装すべき表面の全領域を完全に塗装することが必要である。
【0050】
塗料の観点からは、本発明に係るノルボルネン系モノマーを用いた成形温度が120℃以下と低いため、低温度で硬化する特長を持っていることが好ましい。しかしながら、低温硬化性を高めると、室温での塗料のポットライフ(使用可能時間、保存性)が短くなり作業性が悪くなる問題がある。従って、本発明に係る塗料としては、硬化性と保存性とを兼ね備えた塗料、即ち温度依存性の大きな塗料が好ましい。
【0051】
一方、このような塗料を キャビティ金型と成形物との隙間に注入すると、金型温度で硬化が開始され、塗料粘度が急激に上昇することになる。
【0052】
この場合、塗料が成形物の塗装すべき表面全域に行き渡らないうちに、塗料粘度が上昇するとそれ以上には塗料が流れず、塗装の不完全が発生する。塗料粘度の増加を押さえるためには金型温度を低くすると良いが、硬化が遅くなり、生産性の低下を生じる。さらに未硬化の塗料が成形物のエッジから染み出し、キャビティ金型とコア金型との接合面から外部へ溢れ出し金型周囲を汚す原因となり得る。
【0053】
上記欠点を解消するためにはキャビティ金型温度を制御することが好ましい。すなわち、塗料注入口からより遠いキャビティ金型表面の温度を、より高温になるように制御することが好ましい。具体的には、たとえば、成形物形状と塗料注入口位置とに応じてキャビティ金型を複数区域に分けて温度制御を行い、塗料注入口より遠い周辺部分や成形物エッジ周辺部分のキャビティ金型温度を他の部分より高目に制御できるような金型とすればよい。
【0054】
このようにすれば、塗料注入口から注入された塗料は最初キャビティ金型温度が若干低めの領域を流れるが、この時は粘度が上昇する前であり、流れやすい。一方、キャビティ金型の周辺部分に到達した塗液は高めのキャビティ金型温度で反応して粘度が上昇する。粘度が上昇すると塗液の流れが低下し、キャビティ金型とコア金型との接合面から外部へ溢れ出すことはない。
【0055】
重要なのは、塗料注入口からより遠いキャビティ金型表面の温度を、より高温にすることであり、塗料注入口からより遠いキャビティ金型表面の温度を、どの程度高温にするかは、実験等で適宜定めることができる。「金型Aについて、塗料注入口からより遠い金型表面の温度を、より高温になるように制御できるようになした」のは、金型Aの全面について成立する必要はなく、一般的にいえば、できるだけ広い範囲で成立していることが好ましい。なお、塗料注入口からより遠いキャビティ金型表面かどうかは、塗料注入口からの直線距離で判断することができる。
【0056】
また、金型Aについて、塗料注入口近傍の金型表面の熱交換速度を、他の金型表面部分に比べ大きくできることが好ましい。この理由は次の通りである。
【0057】
塗料注入装置は通常金型からの伝導熱で塗料が硬化しないように冷却されている。そのために金型A表面の塗料注入口近傍では金型Aの温調と注入装置の冷却とが拮抗して金型の表面温度が低目になりやすく、注入した塗料の硬化が不十分になり成形物との接着力が低下する問題がある。
【0058】
これを防ぐためには、たとえば注入口近傍の金型Aの熱交換速度を大きくして注入装置からの冷却の影響を極力小さくすることが必要である。これは、熱交換パイプの密度を上げる等により注入口近傍の金型Aの熱交換面積を広くすることや熱媒の循環量を増大させる等の方法によって達成することができる。あるいは、成形用とは別系統の補助ヒータを組み込んで温度管理を行う方法も考えられる。公知のどのような方法によってもよい。
【0059】
なお「注入口近傍」とは注入口とその周辺部分とを意味する。どの辺りまで周辺部分とするかは、注入した塗料の硬化の具合を見て適宜定めることができる。注入口から直線距離で少なくとも10cmまでの周辺部分の熱交換速度を、他の金型表面部分に比べ大きくできることが好ましい。
【0060】
また、成形物の観点からは、塗料を成形物の最外周まで均一に注入するためには、成形物の端部分に、縦バリと横バリとが、成形物側から見てこの順序に生じるようなバリ生成構造を設けることが好ましい。
【0061】
これを図で説明すると次の通りである。図1はその比較用の図であり、縦バリが存在していない。すなわち、図1は、塗装膜5で塗装された成形物4を金型内に有する、キャビティ金型2とコア金型3とよりなる金型1の断面図を表す。図1では、成形物の端部分に、横バリ6のみが存在している。
【0062】
これに対し、図2は、塗装膜5で塗装された成形物4を金型内に有する、キャビティ金型2とコア金型3とよりなる金型1で、縦バリが存在している場合の断面図を表す。図2では、成形物の端部分に、まず、縦バリ7があり、ついで横バリ6がある。このようなバリ生成構造を設けることが好ましい。
【0063】
なお、上記において、縦バリと横バリとは、図2に示すように金型が水平に置かれた場合に、バリが縦方向に生ずるか横方向に生ずるかによって定まる。
【0064】
この場合、縦バリは、鉛直方向にある場合にとどまらず、斜め方向であってもよい。要は、塗料が下方から上方に向かって進行するようになっていることが重要である。
【0065】
これに対し、横バリは、実質的に水平方向であればよい。実質的にとは、図2に示すように金型が水平に置かれた場合に、キャビティ金型とコア金型とのパーティングラインが、上下からの金型締め付け圧力で充分締め付けられる程度であることを意味する。従って、目で見て傾いている程度であってもよい場合もある。塗料が上方から下方に向かって進行するようになっていることは好ましくない。
【0066】
このようにすると、成形物端部分に直に横バリが出ているのではなく、縦バリを介して横バリにつながっている状態となる。この場合、キャビティ金型にそって流れてきた塗液は縦バリ部をぬらし、横バリ部で行き止まる。このようにすれば、成形物とキャビティ金型との間に隙間が生じやすくなって、塗料が成形物の外周部分まで均一に行き渡り、部分的に塗装されない成形物の発生を抑制できることが判明した。
【0067】
なお、成形原料注入口付近の部分も、塗料の注入に際しては、成形物の端部分に該当する。図3は、ライナー8からフィルムゲート9を経て金型1に流れ込んだ成形原料が硬化して生じた成形物4が塗装膜5で塗装された様子を示す、金型1の断面図である。
【0068】
このような場合には、フィルムゲート9に横バリが生じることになる。従って図3に示すように縦バリ7が生じるようになっていることが好ましい。
【0069】
成形物には時として開口部が設けられることが多い。成形原料で開口部付きの成形物を作成する場合は金型にO−リング等を使用して成形原料が流れ込まない部分を作成し、これを成形物の開口部としていることが多い。
【0070】
しかしながら、インモールドコーティングにおいては、O−リングで十分塗料の進入を防止できない場合が多く、キャビティ金型を金型Aとした場合、開口部を経由して、コア金型側に塗料が回り込むことが多い。この場合、コア金型は通常金型温度がキャビティ金型より低いために、塗料が短時間で硬化せず、未硬化の塗料で成形物内面や金型が汚れる問題が発生する。
【0071】
上記問題点を解決するためには、成形物に開口部を設ける必要がある場合に、開口部予定部分に成形物本来の厚みより薄い皮膜を設けてキャビティ金型側からコア金型側に塗液の流れるのを防止することが好ましい。
【0072】
当該薄皮部分は、0.5mm以上であることが好ましい。成形後、後処理で切り取る必要があるので、作業性を勘案して0.5〜2mm程度の厚みがより好ましい。更に好ましくは0.5〜1mmの厚みである。
【0073】
塗料注入口は、金型を水平に設置した場合に、実質的に当該金型の底部にあるように設けることが好ましい。塗料が下方から上方に向かってスムーズに注入され、縦バリ部分においてもスムーズに塗料が流れる結果、未塗装部分の発生を抑制できるからである。
【0074】
なお、本発明において、「金型を水平に設置すること」は、物理的な水平設置にとどまる必要はない。同様に、「塗料注入口が実質的に金型の底部にあること」は、必ずしも物理的に金型の最低部にあることを意味するものではない。要するに、塗料が、成形物表面を、縦バリ部分を含め、下方から上方に向かってスムーズに流れるようになっていればよい。従って、「金型を水平に設置すること」や「塗料注入口が実質的に金型の底部にあること」の要件は、金型が設置され、塗料注入口が金型の底部近傍に設置された結果、塗料が、縦バリ部分を含め、下方から上方に向かってスムーズに流れるようになっていれば、充足されたものと考えることができる。
【0075】
上記のような要件を満たす金型を使用した場合、ノルボルネン系モノマーを含む混合物を架橋重合せしめて成形物となし、ついで、当該成形物にインモールドコーティング法で塗装をおこなう場合に、少なくとも塗料注入時には、当該金型を水平に設置し、塗料注入口の設けられた側の金型について、塗料注入口近傍の塗膜の硬化速度が、他の部分の硬化速度に比べ遅くならないように、注入塗料温度および金型表面の熱交換速度を調節し、塗料注入口の設けられた側の金型について、塗料注入口からより遠い金型表面の温度をより高温になるように制御した金型に塗料を注入すると、良好な塗装成形物を製造することができる。
【0076】
ここで、「少なくとも塗料注入時には」としたのは、成形原料注入時等には金型を水平に設置する必要はない場合があり得るからである。
【0077】
塗料注入口の設けられた側の金型について、塗料注入口近傍の塗膜の硬化速度が、他の部分の硬化速度に比べ遅くならないように、注入塗料温度および金型表面の熱交換速度を調節できているかどうかは、塗装成形物について、塗料注入口近傍の塗膜が他の部分に比べ硬化の度合いが不十分となっていないかどうかで判断することができる。たとえば指で押さえて簡単に指跡が残るようでは硬化不足であると判断される場合が多い。従って、注入塗料温度および金型表面の熱交換速度を適宜変更し、塗装成形物の塗装状態を観察する実験をすることによって、適切な条件を選択することができる。
【0078】
また、「塗料注入口の設けられた側の金型について、塗料注入口からより遠い金型表面の温度をより高温になるように制御した金型に塗料を注入する」ことは、塗料の注入の際に、「塗料注入口の設けられた側の金型について、塗料注入口からより遠い金型表面の温度がより高温になっている」ことを必ずしも意味するものではない。すなわち、成形原料注入前に「塗料注入口の設けられた側の金型について、塗料注入口からより遠い金型表面の温度がより高温になっている」ことで十分である場合が多い。上記条件は、このような場合も包含する。このようにすれば、塗料が成形物表面にスムーズに行き渡るという目的を達成できるからである。
【0079】
かくして得られた塗装処理(下塗り処理)をした成形物は、次いでトップコートすることでノルボルネン系架橋重合体の製品となる。もちろん、下塗り処理とトップコートとを兼用し、一度のIMCで最終の塗装品を作成することも行われる。
【0080】
トップコート用の塗料は、その種類は幅広く使用でき、特に限定されず、ウレタン系、アクリルウレタン系、アルキド樹脂系、アミノ樹脂系、エポキシ樹脂系、アクリル系、ビニル樹脂系、脂肪酸エステル系、シリコン樹脂系など広く使われる。これらの中でウレタン系、アクリルウレタン系が好適である。
【0081】
トップコート塗装は1層塗りでも多層塗り(品種の異なった多層塗りも含む)でもその用途に応じて実施される。
【0082】
かくして得られたトップコート後の成形物は、軽量で耐衝撃性に優れ、また色彩に富んだ成形物であり、かつ当該色彩が耐久性に優れており、バンパーやエアーデフレクターなどの自動車部品、建機やゴルフカートなどの外装部品、浴室用洗い場、浴槽等の浴室構成品、MRなどの医療機器の外装部品など幅広く使われる。
【0083】
【実施例】
以下本発明のIMC用金型を塗装例を挙げてより具体的に説明する。なお、採用した評価方法は次の通りである。
【0084】
(塗装の耐久テスト)
JIS K5400記載の方法に従い、1mm角の碁盤目テストをおこなった。1mm間隔の切り筋を縦、横に10本づつ表面に設けて100個の碁盤目を作成し、粘着テープを貼り付けて引き剥がした時に、剥がれていない碁盤目の数で示した。1次密着性が初期特性を示し、2次密着性が50℃温水7日間浸漬後の特性を示す。
【0085】
[参考例1]
<原料液(溶液A)の製造>
六塩化タングステン28重量部を窒素気流中下で乾燥トルエン80重量部に添加し、次いでt−ブタノール1.3重量部をトルエン1重量部に溶解した溶液を加え1時間撹拌し、次いでノニルフェノール18重量部およびトルエン14重量部よりなる溶液を添加し、5時間窒素パージ下撹拌した。さらにアセチルアセトン14重量部を加えた。副生する塩化水素ガスを追い出しながら窒素パージ下に一晩撹拌を継続し、重合用触媒溶液を調製した。
【0086】
次いで精製ジシクロペンタジエン(純度99.7重量%、以下同様)95重量部、精製エチリデンノルボルネン(純度99.5重量%、以下同様)5重量部よりなるモノマー混合物に対し、エチレン含有70モル%のエチレン−プロピレン−エチリデンノルボルネン共重合ゴム3重量部、酸化安定剤としてエチル社製エタノックス702の2重量部を加えた溶液に、上記重合用触媒溶液を、タングステン含量が0.01M/Lになるように加えて触媒成分を含有するモノマー液A(溶液)を調製した。
【0087】
[参考例2]
<原料液(溶液B)の製造>
精製ジシクロペンタジエン83重量部、精製エチリデンノルボルネン5重量部よりなるモノマー混合物に対し、エチレン含有70モル%のエチレン−プロピレン−エチリデンノルボルネン共重合ゴム3重量部を溶解した溶液に、トリオクチルアルミニウム85、ジオクチルアルミニウムアイオダイド15、ジグライム100のモル割合で混合調製した重合用活性化剤混合液を、アルミニウム含量が0.03M/Lになる割合で添加し、活性化剤成分を含有するモノマー液B(溶液B)を調製した。
【0088】
[実施例1]
図4に示すような断面を有する、長さ800mm、幅600mm、深さ600mmの船外機のカバー成形用の金型(キャビティ金型ニッケル電鋳、コア金型アルミニウム鋳造製)を使用した。
【0089】
図4では、成形物端部Xに図示されない成形原料注入口がある。金型は図4のように水平に設置して成形材料を注入した。その後、その底部に設けられた塗料注入口10から塗料を注入し、IMCで塗装成形物を得た。
【0090】
成形物の端部分では縦バリを10mm程度設けた後横バリが生じるような形状とした。図4では、縦バリと横バリとは図示されていない。
【0091】
キャビティ金型温度は85〜89℃、コア金型温度は40℃とし、金型を成形物の投影面積あたり約1.4MPaの圧力で型締めした。キャビティ金型の温度分布は図5にモデル的に示したように、領域Bと領域Cと領域Dとの3つの領域で個別に制御できるようになっている。図5は図4の金型のキャビティ金型を下から見たモデル図である。領域Bと領域Cとの境界線は直径100mmの円形であり、領域Cと領域Dとの境界線は長径L=800mm,短径L=600mmの楕円形である。
【0092】
なお、更に多くの区域に温度制御できるようになっていてもよい。領域Dでは89℃の表面温度が得られるようにした。領域Cでは表面温度が86℃になるようにした。領域Bでは温調の配設密度を高くして、その熱交換速度を、領域C,Dの金型表面部分に比べ大きくできるようにし、塗料注入口以外の部分で86℃〜85℃が確保できるようにした。塗料注入口は注入装置が水冷されているために84℃と低めの温度であった。なお、上記は、いずれも、成形用原料注入前の状態である。
【0093】
RIM成形機を用い、先のモノマー液Aとモノマー液Bを等量、ミキシングヘッド中で衝突混合し、得られた混合液を金型内に注入し、60秒間保持した。
【0094】
その後ウレタンアクリルオリゴマー100重量部、1,6−ヘキサンジオールジアクリレート65重量部、酸化チタン150重量部、ビス(4−t−ブチルシクロヘキシル)パーオキシカーボネート3.0重量部からなる塗料を14MPaの圧力で型内に注入した。型内で3分間保持し、その後型を開き成形物を取り出した。
【0095】
上記前処理塗装品は全面にわたって塗装が完全に行われ、未塗装部分は生じなかった。さらに塗料注入口も塗膜がカバーし、剥がれなどは生じていなかった。
【0096】
この成形物を金型から取り出した30分後、トップコート層を形成するために大橋化学(株)製ポリナール800Nの塗料(グリーン色)を塗布し80℃の乾燥機を通し焼き付けた。
【0097】
この塗装品について、塗装の耐久テストを行い、塗装の密着性を調べた。結果を表1に示す。
【0098】
[比較例1]
実施例1の船外機カバーの金型を使い、実施例1と同様にモノマー液Aとモノマー液Bとから架橋重合体を成形し、IMCで塗装をすることなしにそのまま取り出した。取り出して30分後に、脱脂の後大橋化学(株)製のポリナールプライマーを塗布し、乾燥の後ポリナール800Nを塗布し80℃の乾燥機を通し焼き付けた。
【0099】
この塗装品について、塗装の耐久テストを行い、塗装の密着性を調べた。結果を表1に示す。
【0100】
[比較例2]
比較例1と同様にIMCで塗装していない成形物を使い、金型から取り出して後、直ちに表面を#320のサンドペーパーでサンディングして、比較例1と同様にポリナールプライマーを塗布後ポリナール800Nを塗布し焼き付けた。
【0101】
この塗装品について、塗装の耐久テストを行い、塗装の密着性を調べた。結果を表1に示す。
【0102】
【表1】

Figure 2004106210
【0103】
上記の結果から、本発明によれば、成形後短時間で塗装でき、かつその塗膜が前処理塗膜を介して成形物と強固な接着力を有することが判った。
【0104】
[実施例2]
実施例1で使用した金型の温調制御を用いて、D領域の温度を89℃、C領域の温度を88℃、B領域の温度を86℃として、金型の温調能力を種々変更した以外は、実施例1と同じ成形、IMCによる塗装を行った。なお、上記温度条件は、いずれも、成形用原料注入前の状態である。
【0105】
その結果、金型の温調能力を絞りすぎると、塗料注入口近傍の金型表面の熱交換速度が落ち、塗料注入口近傍に硬化の不十分な場所が生じることがあった。
【0106】
また、金型の温調能力をあげすぎると、塗料が高粘度化しやすく、塗料の廻り具合、接着力が悪化し、成形物の端部分周辺領域、特に塗料注入口から遠く、成形用原料注入口に近い領域では塗料が廻らず、未塗装部分が発生する場合があった。また、C領域では塗料が高粘度化して流れた特長である表面にしわ模様の塗膜が観察される場合があった。すなわちC領域を通過した塗料が高粘度化し、D領域まで流れなかったために生じた現象が起こったものと考えられる。
【0107】
【発明の効果】
本発明によれば、ノルボルネン系モノマーを架橋重合せしめて成形物となし、インモールドコーティング法で塗装をおこない塗装成形物を製造する場合に、成形後短時間で、塗料を成形物の表面全域に均等に塗布でき、塗膜が成形物と強固な接着力を有するようにすることができる。また、その塗膜の上に更に塗膜をもうける場合にも、付加的な処理が不要である。
【図面の簡単な説明】
【図1】縦バリが存在していない成形物を内部に有する金型の断面図を表す。
【図2】縦バリが存在する成形物を内部に有する金型の断面図を表す。
【図3】ライナーからフィルムゲートを経て金型に流れ込んだ成形原料が硬化して生じた成形物が塗装膜で塗装された様子を示す、金型の断面図である。
【図4】船外機のカバー成形用の金型の横断面モデル図である。
【図5】図4のキャビティ金型を下から見たモデル図である。
【符号の説明】
1  金型
2  キャビティ金型
3  コア金型
4  成形物
5  塗装膜
6  横バリ
7  縦バリ
8  ライナー
9  フィルムゲート
10 塗料注入口[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to molding of a norbornene-based crosslinked polymer that is lightweight and has excellent impact resistance. More specifically, the present invention relates to a technique for effectively producing a molded article painted by an in-mold coating method.
[0002]
[Prior art]
BACKGROUND ART Norbornene-based crosslinked polymers are widely used in automobile bumpers, construction equipment covers, medical equipment exterior parts, etc. because of their light weight and high impact resistance. However, the norbornene-based crosslinked polymer has a double bond in the molecular structure, and is discolored with time because it is oxidized. Therefore, when aesthetics are required, the norbornene-based crosslinked polymer is generally used after coating the surface of the polymer.
[0003]
However, the coating does not adhere unless the norbornene-based crosslinked polymer has a double bond in the molecule and a part of it is oxidized and has a polar group. is there. However, even in such a case, the base of the crosslinked polymer is an olefin, and when used for a long time, the coating may peel off, so a primer is applied before painting, or a pretreatment such as sanding is performed. .
[0004]
In particular, sanding can partially use a robot, but most of the sanding is manually performed, and fine powder is scattered. Therefore, improvement in economics and hygiene is desired. In order to solve such a problem, in-mold coating has been proposed in which, after a resin molded product is prepared, a paint is injected into the same mold to apply the coating to the surface of the molded product (for example, see Patent Documents 1 and 2). .).
[0005]
[Patent Document 1]
JP 2001-71345 A (paragraph numbers 0017 to 0023)
[0006]
[Patent Document 2]
JP-A-11-300776 (paragraph number 0005)
[0007]
[Problems to be solved by the invention]
However, with the conventional in-mold coating, it is difficult to apply the paint evenly over the entire surface of the molded product, there is a problem that the adhesive strength between the coating film and the molded product is insufficient, In the case of further painting on top, there remains a problem that an additional treatment is required.
[0008]
The present invention solves such a problem, and forms a molded product by crosslinking and polymerizing a norbornene-based monomer. It can be applied evenly over the entire surface of the molded product, so that the coating has a strong adhesive strength with the molded product. The purpose is to provide technology that eliminates the need for processing.
[0009]
Still other objects and advantages of the present invention will become apparent from the following description.
[0010]
[Means for Solving the Problems]
The present inventor has previously proposed an in-mold coating method of a cyclic olefin resin (JP-A-2001-71345). If this in-mold coating method is applied to the pre-coating treatment, it can be painted immediately after molding, it can eliminate labor-intensive work processes such as primer treatment and sanding, and can diversify the type of coating used. The present inventors have made intensive studies on the mold for mold coating and arrived at the present invention.
[0011]
That is, according to one aspect of the present invention, a mixture containing a norbornene-based monomer is injected into a mold composed of a cavity mold and a core mold, and crosslinked and polymerized to form a molded article. In a mold for producing a coated molded product for producing a coated molded product by performing coating by a method, at least one of a cavity mold and a core mold has a paint inlet, and a side provided with the paint inlet. The present invention provides a mold for producing a coated molded product, which can control the temperature of the mold surface farther from the paint inlet to be higher.
[0012]
For the mold on the side where the paint inlet is provided, the heat exchange rate on the mold surface near the paint inlet can be made larger than that of the other mold surface parts. A burr generation structure is provided so that the burr and the lateral burr occur in this order when viewed from the molded product side, and a thin skin having a thickness of 0.5 mm or more is formed at a portion to be an opening of the molded product. It is preferable that the paint inlet is provided substantially at the bottom of the mold when the mold is installed horizontally. This is because the reliability of the coating is improved.
[0013]
According to another aspect of the present invention, a mixture containing a norbornene-based monomer is cross-linked and polymerized into a molded product using the above-described mold for producing a painted molded product, and then molded into the molded product. In the method of manufacturing a coated molded product that is applied by a coating method, at least at the time of paint injection, the mold is horizontally installed, and the mold near the paint inlet is cured with respect to the mold provided with the paint inlet. Adjust the injection paint temperature and the heat exchange rate of the mold surface so that the speed does not become slower than the curing speed of other parts, and for the mold on the side where the paint inlet is provided, the farther from the paint inlet Provided is a method for producing a coated molded product in which a paint is injected into a mold in which the temperature of the mold surface is controlled to be higher.
[0014]
In addition, further features of the present invention will be clarified in the embodiments and drawings of the invention described below.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings, tables, examples, and the like. Note that these drawings, tables, examples, and the like, and the descriptions are merely illustrative of the present invention, and do not limit the scope of the present invention. It goes without saying that other embodiments can also belong to the category of the present invention as long as they conform to the gist of the present invention.
[0016]
In the present invention, the mold on the side where the paint inlet is provided (hereinafter, the “mold on the side where the paint inlet is provided” may be abbreviated as mold A). The problem with temperature and heat exchange rate is that the mold A affects the curing of the paint, and the mold on the other side does not directly contact the paint, so the degree of influence on the curing of the paint is low. Because it is small.
[0017]
Normally, a mold having a concave shape is referred to as a cavity mold, and a mold having a convex shape is referred to as a core mold, but only the surface of a molded product in contact with the cavity mold is required to be aesthetic. , Often painted. In such a case, a paint injection port is provided in the cavity mold. On the other hand, if only the surface of the molded product in contact with the core mold is to be painted, a paint injection port will be provided in the core mold. Is provided with a paint inlet.
[0018]
For the sake of simplicity, the following description mainly focuses on a case where a paint injection port is provided in a cavity mold.
[0019]
The norbornene-based monomer of the present invention has at least one norbornene skeleton in a molecule, and is cross-linked and polymerized using a catalyst to obtain a norbornene-based cross-linked polymer. The mixture containing the norbornene-based monomer described above contains the norbornene-based monomer and a catalyst for cross-linking polymerization. The state of the mixture may exist before injection into the mold or may be realized after injection into the mold.
[0020]
Then, this mixture is simultaneously subjected to cross-linking polymerization and molding in a mold composed of a cavity mold and a core mold by reaction injection molding (abbreviated as RIM) or resin transfer molding (abbreviated as RTM). ) Can be formed with high dimensional accuracy. As a catalyst, a catalyst based on a metal such as tungsten (W), molybdenum (Mo), or ruthenium (Ru) is known.
[0021]
Since this polymer is a liquid forming material, complicated shapes can be formed relatively inexpensively and easily by the RIM or RTM molding method. The impact resistance of the polymer is further improved when a styrene-butadiene or ethylene-propylene-diene elastomer is added, or a fiber reinforcing material such as glass fiber or carbon fiber is used as a molding material. Or glass fine particles can be added for reinforcement.
[0022]
Specific examples of the norbornene-based monomer of the present invention include dicyclopentadiene, tricyclopentadiene, cyclopentadiene-methylcyclopentadiene co-dimer, 5-ethylidene norbornene, norbornene, norbornadiene, 5-cyclohexenyl norbornene, 1,4,4 5,8-Dimethano-1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 1,4-methano-1,4,4a, 5,6,7,8,8a-octahydro Naphthalene, 6-ethylidene-1,4,5,8-dimetano-1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 6-ethylidene-1,4-methano-1,4, 4a, 5,6,7,8,8a-octahydronaphthalene, 1,4,5,8-dimethano-1,4,4a, 5,8,8a-hexahydrona Array type, ethylenebis (5-norbornene) and the like can be illustrated, may also be used a mixture thereof. In particular, dicyclopentadiene or a mixture containing 50 mol% or more, preferably 70 mol% or more thereof is suitably used.
[0023]
Further, if necessary, a metathesis polymerizable cyclic olefin having a polar group containing a different element such as oxygen or nitrogen can be used as a copolymer monomer. Such a copolymer monomer preferably has a norbornene structural unit, and the polar group is preferably an ester group, an ether group, a cyano group, an N-substituted imide group, a halogen group, or the like. Specific examples of such a copolymerized monomer include 5-methoxycarbonylnorbornene, 5- (2-ethylhexyloxy) carbonyl-5-methylnorbornene, 5-phenyloxymethylnorbornene, 5-cyanonorbornene, 6-cyano-1, 4,5,8-Dimethano-1,4,4a, 5,6,7,8,8a-octahydronaphthalene, N-butylnadic imide, 5-chloronorbornene and the like can be mentioned.
[0024]
As a catalyst for obtaining the crosslinked polymer of the present invention, a catalyst well-known as a metathesis catalyst system is used, and as a catalyst component, a salt such as a halide or an ammonium salt of a metal such as tungsten, rhenium, tantalum or molybdenum and an activity thereof are used. As an agent component, there can be mentioned a composite catalyst comprising an organometallic compound mainly composed of an alkylated metal of Group I to Group III of the periodic table, in particular, a tetraalkyltin, an alkylaluminum compound, an alkylaluminum halide compound, Alternatively, a catalyst comprising a ruthenium carbene complex may be used. In the former case, polymerization is generally performed in a short time by mixing two liquids of a monomer liquid A containing a catalyst component and a monomer liquid B containing an activator component. The latter is generally polymerized by mixing the monomer liquid and the catalyst component or by heating the mixture.
[0025]
In the present invention, when two liquids are mixed and polymerized, for example, the monomer liquid A (solution A) contains a catalyst component of a metathesis polymerization catalyst system. As such a catalyst component, halides or ammonium salts of metals such as tungsten, rhenium, tantalum and molybdenum are used, and a tungsten compound is particularly preferable.
[0026]
As such a tungsten compound, tungsten hexahalide, tungsten oxyhalide and the like are preferable, and more specifically, tungsten hexachloride, tungsten oxychloride and the like are preferable.
[0027]
It has been found that such a tungsten compound immediately starts cationic polymerization when added directly to a monomer, which is not preferable. Therefore, it is preferable that the tungsten compound is used by suspending it in an inert solvent such as benzene, toluene, chlorobenzene or the like in advance and solubilizing by adding a small amount of an alcohol compound and / or a phenol compound.
[0028]
Further, as described above, it is preferable to add about 1 to 5 mol of a Lewis base or a chelating agent to 1 mol of the tungsten compound in order to prevent undesired polymerization. Examples of such additives include acetylacetone, alkyl acetoacetates, tetrahydrofuran, benzonitrile and the like. When a polar monomer is used, as described above, the polar monomer itself may be a Lewis base, and the compound may have the action even without adding the compound as described above. As described above, the monomer liquid A containing the catalyst component (solution A) has substantially sufficient stability.
[0029]
On the other hand, the monomer liquid B (solution B) in the present invention contains, for example, an activator component of a metathesis polymerization catalyst system. The activator component is preferably an organometallic compound centered on an alkylated metal of Group I to Group III of the periodic table, particularly a tetraalkyltin, alkylaluminum compound or alkylaluminum halide compound. Examples thereof include diethylaluminum, ethylaluminum dichloride, trioctylaluminum, dioctylaluminum iodide, and tetrabutyltin. A monomer liquid B (solution B) is formed by dissolving the organometallic compound as an activator component in a monomer.
[0030]
Basically, by mixing the solution A and the solution B and injecting them into a mold, a crosslinked polymer molded product can be obtained. However, if the above composition is maintained, the polymerization reaction starts very quickly. Therefore, curing may occur while not sufficiently flowing into the molding die, which may be a problem. In such a case, it is preferable to use an activity regulator.
[0031]
As such a regulator, Lewis bases are generally used, and above all, ethers, esters, nitriles and the like are used. Specific examples include ethyl benzoate, butyl ether, diglyme and the like. Such a regulator is generally used by adding it to the solution (solution B) of the component of the activator of the organometallic compound. When a monomer having a Lewis base is used as described above, it can also serve as a regulator.
[0032]
The amount of the metathesis polymerization catalyst system used is, for example, when a tungsten compound is used as a catalyst component, the ratio of the tungsten compound to the raw material monomer is about 1,000 to 1 to 15,000 to 1, preferably 2, In the case where alkyl aluminums are used as the activator component, the ratio of the aluminum compound to the raw material monomer is about 100: 1 to 10,000: 1, preferably on a molar basis. A neighborhood of 200: 1 to 1,000: 1 is used. Further, the above-mentioned chelating agent and regulator can be appropriately adjusted and used according to the amount of the catalyst system to be used by experiments.
[0033]
The molded product of the crosslinked polymer in the present invention may further contain various additives according to the purpose in order to improve or maintain its properties in practical use. Such additives include fillers, pigments, antioxidants, light stabilizers, flame retardants, polymer improvers, and the like. Such an additive cannot be added after the crosslinked polymer of the present invention has been formed, and therefore must be added to the above-described raw material solution beforehand.
[0034]
As the easiest method, a method of adding in advance to one or both of the solution A and the solution B can be mentioned. In this case, a strongly reactive catalyst component or an activator in the solution is used. It must not react to some extent with the components in practical use and must not inhibit polymerization. Inevitably, even if the reaction is unavoidable, if it does not substantially inhibit polymerization or does not inhibit polymerization in a short period of time, it is mixed with a monomer to prepare a third liquid, and immediately before polymerization, They can be mixed and used.
[0035]
Alternatively, a method may be considered in which the polymerization catalyst or the activator is used as the third liquid, and the above-described additive is added to the solution A or the solution B containing no third liquid. Further, in the case of a solid filler, both components are mixed, and immediately before the start of the polymerization reaction or while the polymerization is being performed, a material having a shape capable of sufficiently filling the voids is filled in a molding die. It is also possible to keep.
[0036]
Further, the molded article according to the present invention is preferably added with an antioxidant, and it is therefore desirable to add a phenolic or amino antioxidant to the solution in advance. Specific examples of these antioxidants include 2,6-di-t-butyl-p-cresol, N, N′-diphenyl-p-phenylenediamine, tetrakis [methylene (3,5-di-t-butyl- 4-hydroxycinnamate)] methane and the like.
[0037]
In addition, the molded article of the present invention may be obtained by adding another polymer as an additive when in a monomer solution state. As such an additive, an elastomer is effective in increasing the impact resistance of a molded product and adjusting the viscosity of a solution. Examples of the elastomer used for this purpose include a wide range of elastomers such as styrene-butadiene-styrene triblock rubber, styrene-isoprene-styrene triblock rubber, polybutadiene, polyisoprene, butyl rubber, ethylene propylene-diene terpolymer, and nitrile rubber. Can be.
[0038]
In the molding method of the present invention, for example, a mixture of a norbornene-based monomer component and a catalyst-based component (including an activator if any) is polymerized in a mold composed of a cavity mold and a core mold. Let me know. Usually, a temperature difference is provided between the two molds. This is to prevent the molded product from sticking to the high-temperature mold side so that sink marks caused by shrinkage are concentrated on the low-temperature mold side and do not appear on the high-temperature mold side. In other words, it plays a role in forming a design surface (a surface on which aesthetic appearance is required) of the molded product. The mold temperature is 25 to 120 ° C., and the temperature difference between the molds is generally 5 to 100 ° C., but the mold temperature on the side to be the design surface of the molded article is 40 to 120 ° C., while the molded article is The mold temperature on the back side of the mold is preferably 25 to 85 ° C, and the temperature difference between the molds is preferably 20 to 85 ° C.
[0039]
Examples of the material of the mold include casting or thermal spraying of steel, cast or forged aluminum or zinc alloy, electroforming of nickel or copper, and resin. Since the mold surface becomes a painted surface, the mold surface is preferably a mirror finish of # 800 or more. In addition, an integrated product having no joint in the mold is preferable.
[0040]
In the coating by the in-line coating method (hereinafter sometimes abbreviated as IMC) in the method for producing a coated molded product of the present invention, the stage at which the crosslinking of the molded product has sufficiently proceeded, that is, the surface of the molded product is subjected to the injection pressure and flow of the paint. At the stage where the pressure can be withstood, the paint is injected into the mold from the paint injection port provided in the mold by the injector. Usually, the design surface of the molded product is a mold on the high temperature side and becomes a painted surface. Therefore, the injection port is provided in a cavity mold which is usually a high temperature side mold.
[0041]
The injection pressure of the paint is 3-44 MPa, preferably 7-34 MPa. If it is less than 3 MPa, the paint does not sufficiently penetrate and flow between the mold and the surface of the molded product. Conversely, if it exceeds 44 MPa, it is necessary to strengthen the paint injection equipment and increase the strength of the mold.
[0042]
After injecting the paint, the mold may be kept in the state at the time of molding, or the mold clamping pressure may be increased, in order to allow the paint to sufficiently adhere to the molded product and cure. The curing time of the paint is 20 seconds to 10 minutes, preferably 60 seconds to 4 minutes. If it is shorter than 20 seconds, the curing of the paint is insufficient, and if it is longer than 10 minutes, the productivity is deteriorated.
[0043]
The paint used in the present invention may be any paint as long as it does not violate the purpose of the present invention, and it is possible to use (a) unsaturated polyester resin, epoxy acrylate oligomer, polyester acrylate oligomer or urethane acrylate oligomer and (b) Examples thereof include those containing a vehicle component composed of a copolymerizable ethylenically unsaturated monomer and (c) a polymerization initiator.
[0044]
Each of the unsaturated polyester resin, epoxy acrylate oligomer, polyester acrylate oligomer or urethane acrylate oligomer has an unsaturated double bond in the molecule, and is a vehicle component composed of an ethylenically unsaturated monomer and a polymerization initiator. The curing reaction is initiated by the active radicals generated by the thermal decomposition of the organic peroxide, and the activated radicals react with the unsaturated bonds remaining in the norbornene crosslinked polymer (molded product). However, it is presumed that strong adhesion of the paint is exhibited.
[0045]
Particularly preferred paints are paints based on epoxy acrylate oligomers or urethane acrylate oligomers.
[0046]
Examples of the ethylenically unsaturated monomer that is a vehicle component of the coating material include styrene, α-methylstyrene, chlorostyrene, vinyltoluene, divinylbenzene, methyl (meth) acrylate, 1,6-hexanediol diacrylate, and tripropylene glycol diacrylate. Acrylate, trimethylolpropane tri (meth) acrylate, silicon acrylate, silicon diacrylate and the like can be mentioned. The amount of the ethylenically unsaturated monomer is 20 to 200 parts by weight, preferably 40 to 160 parts by weight, based on 100 parts by weight of the unsaturated polyester resin or oligomer.
[0047]
The polymerization initiator for polymerizing the vehicle component is preferably an organic peroxide. Specific examples thereof include bis (4-t-butylcyclohexyl) peroxydicarbonate, lauroyl peroxide, t-amylperoxy-2-ethylhexanoate, benzoyl peroxide, and t-butylperoxy-2-ethyl. Hexanoate and the like can be mentioned. The compounding amount of the organic peroxide is generally 0.1 to 15 parts by weight based on 100 parts by weight of the vehicle component.
[0048]
The coating material used in the present invention contains a pigment and / or a dye component for coloring in addition to the above components, and, if necessary, a release agent, a curing accelerator, a polymerization inhibitor, an ultraviolet absorber, a light stabilizer, A modified resin, a surface conditioner and the like are blended.
[0049]
When painting by the in-mold coating method, it is necessary to completely paint the entire area of the surface to be painted.
[0050]
From the viewpoint of paint, since the molding temperature using the norbornene-based monomer according to the present invention is as low as 120 ° C. or less, it is preferable to have a feature of curing at a low temperature. However, when the low-temperature curability is enhanced, there is a problem that the pot life (usable time and storage stability) of the paint at room temperature is shortened and workability is deteriorated. Therefore, the paint according to the present invention is preferably a paint having both curability and storage stability, that is, a paint having a large temperature dependency.
[0051]
On the other hand, when such a paint is injected into the gap between the cavity mold and the molded product, curing starts at the mold temperature, and the viscosity of the paint sharply increases.
[0052]
In this case, if the viscosity of the coating material increases before the coating material has spread over the entire surface of the molded product to be coated, the coating material will not flow any more, resulting in incomplete coating. In order to suppress the increase in the viscosity of the paint, it is preferable to lower the mold temperature, but the curing is slowed down and the productivity is reduced. Further, the uncured paint may seep out from the edge of the molded product, overflow from the joint surface between the cavity mold and the core mold to the outside, and cause stains around the mold.
[0053]
In order to eliminate the above-mentioned disadvantage, it is preferable to control the cavity mold temperature. That is, it is preferable to control the temperature of the cavity mold surface farther from the paint inlet to be higher. Specifically, for example, the cavity mold is divided into a plurality of areas according to the shape of the molded product and the position of the paint inlet, and temperature control is performed. The mold may be such that the temperature can be controlled higher than other parts.
[0054]
In this way, the paint injected from the paint inlet first flows through the region where the cavity mold temperature is slightly lower, but this time before the viscosity increases and the paint easily flows. On the other hand, the coating liquid that has reached the peripheral portion of the cavity mold reacts at a higher cavity mold temperature to increase the viscosity. When the viscosity increases, the flow of the coating liquid decreases, and the coating liquid does not overflow from the joining surface between the cavity mold and the core mold.
[0055]
What is important is to make the temperature of the cavity mold surface farther from the paint inlet higher, and to determine how high the temperature of the cavity mold surface farther from the paint inlet is through experiments and the like. It can be determined as appropriate. "The mold A can be controlled so that the temperature of the mold surface farther from the paint inlet becomes higher." It is not necessary to hold for the entire surface of the mold A; In other words, it is preferable that the condition is satisfied as wide as possible. Whether or not the surface of the cavity mold is farther from the paint inlet can be determined by the linear distance from the paint inlet.
[0056]
Further, for the mold A, it is preferable that the heat exchange rate of the mold surface in the vicinity of the paint inlet can be made larger than that of other mold surface portions. The reason is as follows.
[0057]
The paint injecting device is usually cooled so that the paint is not cured by conduction heat from the mold. Therefore, in the vicinity of the paint injection port on the surface of the mold A, the temperature control of the mold A and the cooling of the injection device are opposed to each other, so that the surface temperature of the mold tends to be low, and the cured paint is insufficiently cured. There is a problem that the adhesive strength with the molded product is reduced.
[0058]
In order to prevent this, for example, it is necessary to increase the heat exchange rate of the mold A near the injection port to minimize the influence of cooling from the injection apparatus. This can be achieved by a method such as increasing the heat exchange area of the mold A near the injection port by increasing the density of the heat exchange pipe or increasing the circulation amount of the heat medium. Alternatively, a method of controlling the temperature by incorporating an auxiliary heater of a different system from that for molding may be considered. Any known method may be used.
[0059]
“Near the injection port” means the injection port and its peripheral portion. The extent to which the peripheral portion is determined can be determined as appropriate in view of the degree of curing of the injected paint. It is preferable that the heat exchange rate of the peripheral portion up to at least 10 cm in a linear distance from the injection port can be made larger than that of other mold surface portions.
[0060]
Also, from the viewpoint of the molded product, in order to uniformly inject the paint to the outermost periphery of the molded product, vertical burrs and horizontal burrs are generated in the end portion of the molded product in this order when viewed from the molded product side. It is preferable to provide such a burr generation structure.
[0061]
This will be described below with reference to the drawings. FIG. 1 is a diagram for comparison, in which no vertical burr exists. That is, FIG. 1 is a cross-sectional view of a mold 1 including a cavity mold 2 and a core mold 3 having a molded product 4 coated with a coating film 5 in the mold. In FIG. 1, only the lateral burr 6 is present at the end of the molded product.
[0062]
On the other hand, FIG. 2 shows a mold 1 having a cavity mold 2 and a core mold 3 having a molded product 4 coated with a coating film 5 in a mold, in which vertical burrs are present. FIG. In FIG. 2, at the end of the molded product, there is first a vertical burr 7 and then a horizontal burr 6. It is preferable to provide such a burr generation structure.
[0063]
In the above description, the vertical burrs and the horizontal burrs are determined by whether the burrs are generated in the vertical direction or the horizontal direction when the mold is placed horizontally as shown in FIG.
[0064]
In this case, the vertical burrs are not limited to the case where they are in the vertical direction, and may be in the oblique direction. In short, it is important that the paint be advanced from below to above.
[0065]
On the other hand, the horizontal burr may be in a substantially horizontal direction. Substantially, when the mold is placed horizontally as shown in FIG. 2, the parting line between the cavity mold and the core mold can be sufficiently tightened by the mold tightening pressure from above and below. It means there is. Therefore, there may be a case where it may be inclined to the eye. It is not preferable that the coating material proceeds downward from above.
[0066]
In this way, the horizontal burrs are not directly exposed at the end portions of the molded product, but are connected to the horizontal burrs via the vertical burrs. In this case, the coating liquid flowing along the cavity mold wets the vertical burr portion and stops at the horizontal burr portion. In this way, it has been found that a gap is easily formed between the molded product and the cavity mold, the coating material is uniformly distributed to the outer peripheral portion of the molded product, and the generation of a partially uncoated molded product has been found to be suppressed. .
[0067]
In addition, the portion near the molding material injection port also corresponds to the end portion of the molded product when the paint is injected. FIG. 3 is a cross-sectional view of the mold 1, showing a state in which the molded material 4 generated by curing the molding material flowing from the liner 8 into the mold 1 via the film gate 9 is coated with the coating film 5.
[0068]
In such a case, horizontal burrs are generated on the film gate 9. Therefore, it is preferable that vertical burrs 7 are formed as shown in FIG.
[0069]
Moldings are often provided with openings. When forming a molded product with an opening from a molding material, an O-ring or the like is used in a mold to create a portion into which the molding material does not flow, and this portion is often used as an opening of the molded product.
[0070]
However, in the in-mold coating, in many cases, the O-ring cannot sufficiently prevent the paint from entering, and when the cavity mold is the mold A, the paint goes around the core mold side via the opening. There are many. In this case, since the core mold usually has a lower mold temperature than the cavity mold, the paint does not cure in a short time, and the inner surface of the molded article and the mold are stained by the uncured paint.
[0071]
In order to solve the above problem, when it is necessary to provide an opening in the molded product, a coating thinner than the original thickness of the molded product is provided at the portion where the opening is to be formed, and the coating is applied from the cavity mold side to the core mold side. It is preferable to prevent the liquid from flowing.
[0072]
The thin skin portion is preferably 0.5 mm or more. After molding, it is necessary to cut off by post-processing. Therefore, a thickness of about 0.5 to 2 mm is more preferable in consideration of workability. More preferably, the thickness is 0.5 to 1 mm.
[0073]
The paint inlet is preferably provided substantially at the bottom of the mold when the mold is installed horizontally. This is because the paint is smoothly injected upward from below and the paint flows smoothly even in the vertical burr portion, so that the occurrence of unpainted portions can be suppressed.
[0074]
In the present invention, “installing the mold horizontally” does not need to be limited to physical horizontal installation. Similarly, "paint entry substantially at the bottom of the mold" does not necessarily mean that it is physically at the bottom of the mold. In short, it suffices that the paint smoothly flows from the lower part to the upper part, including the vertical burrs, on the surface of the molded product. Therefore, the requirement that the mold should be installed horizontally and that the paint inlet should be located substantially at the bottom of the mold are required when the mold is installed and the paint inlet is installed near the bottom of the mold. As a result, if the paint smoothly flows from below to above, including the vertical burr portion, it can be considered that the paint is satisfied.
[0075]
When a mold that satisfies the above requirements is used, the mixture containing the norbornene-based monomer is cross-linked and polymerized to form a molded product, and then, when the molded product is painted by the in-mold coating method, at least paint injection is performed. Sometimes, the mold is installed horizontally, and the mold on the side where the paint inlet is provided is injected so that the curing speed of the coating film near the paint inlet is not slower than the curing speed of the other parts. By adjusting the paint temperature and the heat exchange rate of the mold surface, the mold on the side where the paint inlet is provided should be a mold whose temperature on the mold surface farther from the paint inlet is controlled to be higher. When a paint is injected, a good painted molded product can be produced.
[0076]
Here, “at least at the time of pouring the paint” is because there is a case where it is not necessary to install the mold horizontally at the time of pouring the molding material.
[0077]
For the mold on the side where the paint inlet is provided, adjust the temperature of the injected paint and the heat exchange rate of the mold surface so that the curing speed of the coating film near the paint inlet does not become slower than the curing speed of other parts. Whether or not the adjustment can be performed can be determined based on whether or not the degree of hardening of the coating film near the paint injection port is not insufficient as compared with the other portions of the paint molding. For example, it is often determined that curing is insufficient when a finger mark is easily left by pressing with a finger. Therefore, appropriate conditions can be selected by appropriately changing the temperature of the injected paint and the heat exchange rate of the mold surface and conducting an experiment for observing the coating state of the coated molded product.
[0078]
Also, "injecting paint into a mold in which the temperature of the mold surface farther from the paint inlet is controlled to be higher for the mold on the side where the paint inlet is provided" means that the paint is injected. In this case, it does not necessarily mean that “the temperature of the mold surface farther from the paint inlet is higher in the mold provided with the paint inlet”. That is, in many cases, it is sufficient before the molding material is injected that “the temperature of the mold surface farther from the injection port of the mold on the side provided with the injection port is higher”. The above conditions include such a case. This is because, in this way, the purpose of smoothly spreading the paint on the surface of the molded product can be achieved.
[0079]
The thus obtained molded product subjected to the coating treatment (undercoating treatment) is then top-coated to obtain a norbornene-based crosslinked polymer product. Of course, it is also possible to combine the undercoating process and the top coat, and create a final coated product by one IMC.
[0080]
The type of paint for the top coat can be widely used and is not particularly limited. Urethane, acrylic urethane, alkyd resin, amino resin, epoxy resin, acrylic, vinyl resin, fatty acid ester, and silicone are used. Widely used such as resin. Of these, urethane and acrylic urethane are preferred.
[0081]
The top coat is applied depending on the application, whether it is a single-layer coating or a multilayer coating (including multilayer coatings of different types).
[0082]
The molded product after the top coat thus obtained is a lightweight, excellent in impact resistance, and a molded product rich in color, and the color is excellent in durability, such as automobile parts such as bumpers and air deflectors. Widely used, such as exterior parts such as construction machines and golf carts, bathroom components such as bathroom washing areas and bathtubs, and exterior parts for medical equipment such as MR.
[0083]
【Example】
Hereinafter, the IMC mold of the present invention will be described more specifically with reference to coating examples. The adopted evaluation method is as follows.
[0084]
(Painting durability test)
According to the method described in JIS K5400, a grid test of 1 mm square was performed. Cut lines at 1 mm intervals were provided on the surface by 10 lines in the vertical and horizontal directions to prepare 100 grids, and when the adhesive tape was peeled off, the number of grids not peeled was shown. The primary adhesion indicates the initial characteristics, and the secondary adhesion indicates the characteristics after immersion in 50 ° C. hot water for 7 days.
[0085]
[Reference Example 1]
<Production of raw material liquid (solution A)>
28 parts by weight of tungsten hexachloride were added to 80 parts by weight of dry toluene under a nitrogen stream, then a solution of 1.3 parts by weight of t-butanol dissolved in 1 part by weight of toluene was added and stirred for 1 hour, and then 18 parts by weight of nonylphenol And 14 parts by weight of toluene, and the mixture was stirred under a nitrogen purge for 5 hours. Further, 14 parts by weight of acetylacetone was added. Stirring was continued overnight under a nitrogen purge while purging out the by-produced hydrogen chloride gas to prepare a polymerization catalyst solution.
[0086]
Next, based on a monomer mixture consisting of 95 parts by weight of purified dicyclopentadiene (purity: 99.7% by weight, the same applies hereinafter) and 5 parts by weight of purified ethylidene norbornene (purity: 99.5% by weight, the same applies hereinafter), 70% by mole of ethylene was contained. The polymerization catalyst solution was added to a solution obtained by adding 3 parts by weight of ethylene-propylene-ethylidene norbornene copolymer rubber and 2 parts by weight of Ethanox 702 manufactured by Ethyl as an oxidation stabilizer so that the tungsten content was 0.01 M / L. To prepare a monomer solution A (solution) containing a catalyst component.
[0087]
[Reference Example 2]
<Production of raw material liquid (solution B)>
Trioctyl aluminum 85, a solution obtained by dissolving 3 parts by weight of an ethylene-propylene-ethylidene norbornene copolymer rubber containing 70 mol% of ethylene in a monomer mixture consisting of 83 parts by weight of purified dicyclopentadiene and 5 parts by weight of purified ethylidene norbornene, A polymerization activator mixture prepared by mixing and preparing dioctyl aluminum iodide 15 and diglyme at a molar ratio of 100 is added at a ratio where the aluminum content becomes 0.03 M / L, and a monomer liquid B containing an activator component ( Solution B) was prepared.
[0088]
[Example 1]
An outboard motor having a cross section as shown in FIG. 4 having a length of 800 mm, a width of 600 mm, and a depth of 600 mm (cavity mold nickel electrocast, core mold aluminum cast) was used.
[0089]
In FIG. 4, there is a molding material injection port (not shown) at the end X of the molded product. The mold was placed horizontally as shown in FIG. 4 and the molding material was injected. Thereafter, a paint was injected from a paint inlet 10 provided at the bottom thereof, and a painted product was obtained by IMC.
[0090]
At the end portion of the molded product, a vertical burr was provided about 10 mm, and the shape was such that a horizontal burr was generated. In FIG. 4, the vertical burrs and the horizontal burrs are not shown.
[0091]
The cavity mold temperature was 85 to 89 ° C., the core mold temperature was 40 ° C., and the mold was clamped at a pressure of about 1.4 MPa per projected area of the molded product. As shown in FIG. 5, the temperature distribution of the cavity mold can be individually controlled in three regions, that is, a region B, a region C, and a region D. FIG. 5 is a model view of the cavity mold of the mold of FIG. 4 as viewed from below. A boundary line between the region B and the region C is a circle having a diameter of 100 mm, and a boundary line between the region C and the region D is a long diameter L 1 = 800mm, short diameter L 2 = 600 mm oval.
[0092]
Note that the temperature may be controlled in more areas. In the region D, a surface temperature of 89 ° C. was obtained. In the area C, the surface temperature was set to 86 ° C. In the area B, the density of the temperature control is increased so that the heat exchange rate can be made higher than that of the surface of the mold in the areas C and D, and 86 ° C. to 85 ° C. is secured in a portion other than the paint inlet. Made it possible. The paint inlet was at a lower temperature of 84 ° C. because the injector was water cooled. Each of the above is a state before the injection of the raw material for molding.
[0093]
Using a RIM molding machine, equal amounts of the monomer liquid A and the monomer liquid B were collision-mixed in a mixing head, and the obtained mixed liquid was injected into a mold and held for 60 seconds.
[0094]
Thereafter, a paint composed of 100 parts by weight of a urethane acrylic oligomer, 65 parts by weight of 1,6-hexanediol diacrylate, 150 parts by weight of titanium oxide, and 3.0 parts by weight of bis (4-t-butylcyclohexyl) peroxycarbonate was applied at a pressure of 14 MPa. And poured into the mold. The mold was held in the mold for 3 minutes, and then the mold was opened and the molded product was taken out.
[0095]
The pre-treated coated product was completely coated over the entire surface, and no unpainted portion was generated. Further, the paint inlet was also covered by the coating film, and no peeling occurred.
[0096]
Thirty minutes after removing the molded product from the mold, a paint (green color) of POINAL 800N manufactured by Ohashi Chemical Co., Ltd. was applied to form a top coat layer and baked through a dryer at 80 ° C.
[0097]
The coated product was subjected to a coating durability test to examine the adhesion of the coating. Table 1 shows the results.
[0098]
[Comparative Example 1]
Using the mold of the outboard motor cover of Example 1, a crosslinked polymer was molded from the monomer liquid A and the monomer liquid B in the same manner as in Example 1, and was taken out without coating with IMC. Thirty minutes after taking out, after degreasing, a polynal primer manufactured by Ohashi Chemical Co., Ltd. was applied, and after drying, 800N of polynal was applied and baked through a dryer at 80 ° C.
[0099]
The coated product was subjected to a coating durability test to examine the adhesion of the coating. Table 1 shows the results.
[0100]
[Comparative Example 2]
A molded article not coated with IMC was used in the same manner as in Comparative Example 1, and after taking out from the mold, the surface was immediately sanded with sandpaper # 320. 800N was applied and baked.
[0101]
The coated product was subjected to a coating durability test to examine the adhesion of the coating. Table 1 shows the results.
[0102]
[Table 1]
Figure 2004106210
[0103]
From the above results, it was found that according to the present invention, it was possible to apply the coating in a short time after molding, and that the coating had a strong adhesive strength to the molded product via the pretreatment coating.
[0104]
[Example 2]
Using the temperature control of the mold used in Example 1, the temperature of the D region was set to 89 ° C., the temperature of the C region was set to 88 ° C., and the temperature of the B region was set to 86 ° C., and the temperature control ability of the mold was variously changed. The same molding and coating with IMC as in Example 1 were carried out except for the above. All of the above temperature conditions are in a state before the injection of the forming raw material.
[0105]
As a result, if the temperature control ability of the mold is excessively reduced, the heat exchange rate on the mold surface near the paint inlet decreases, and a place where curing is insufficient near the paint inlet sometimes occurs.
[0106]
On the other hand, if the temperature control ability of the mold is too high, the viscosity of the paint tends to be high, the degree of the circulation of the paint and the adhesive strength are deteriorated, and the area around the end portion of the molded product, particularly, far from the paint injection port, is difficult to obtain. In a region near the entrance, the paint did not turn, and an unpainted portion was sometimes generated. Further, in the region C, a wrinkle-like coating film was sometimes observed on the surface, which is a feature of the coating material having increased viscosity and flowed. That is, it is considered that a phenomenon occurred because the coating material that passed through the region C was increased in viscosity and did not flow to the region D.
[0107]
【The invention's effect】
According to the present invention, when a norbornene-based monomer is cross-linked and polymerized to form a molded article, and a painted molded article is produced by coating by an in-mold coating method, in a short time after molding, the paint is applied to the entire surface of the molded article. The coating can be applied evenly, and the coating film can have a strong adhesion to the molded product. Further, when a coating film is further formed on the coating film, no additional treatment is required.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a mold having therein a molded product having no vertical burr.
FIG. 2 is a cross-sectional view of a mold having therein a molded product having vertical burrs.
FIG. 3 is a cross-sectional view of a mold, showing a state in which a molded product produced by curing a molding material flowing from a liner into a mold via a film gate is coated with a coating film.
FIG. 4 is a cross-sectional model diagram of a mold for molding a cover of an outboard motor.
FIG. 5 is a model view of the cavity mold of FIG. 4 as viewed from below.
[Explanation of symbols]
1 Mold
2 cavity mold
3 core mold
4 moldings
5 Paint film
6 Horizontal burr
7. Vertical Burr
8 liner
9 Film gate
10 Paint inlet

Claims (6)

ノルボルネン系モノマーを含む混合物をキャビティ金型とコア金型とからなる金型内に注入し、架橋重合せしめて成形物となし、当該成形物にインモールドコーティング法で塗装をおこない塗装成形物を製造するための塗装成形物製造用金型において、
少なくともキャビティ金型とコア金型とのいずれかに塗料注入口を有し、
塗料注入口の設けられた側の金型について、塗料注入口からより遠い金型表面の温度を、より高温になるように制御できるようになした
塗装成形物製造用金型。
A mixture containing a norbornene-based monomer is injected into a mold composed of a cavity mold and a core mold, crosslinked and polymerized to form a molded article, and the molded article is painted by an in-mold coating method to produce a painted molded article. In the mold for the production of painted moldings for
At least one of the cavity mold and the core mold has a paint inlet,
A mold for producing a coated molded product, wherein the temperature of the mold surface farther from the paint inlet can be controlled to be higher in the mold provided with the paint inlet.
前記塗料注入口の設けられた側の金型について、塗料注入口近傍の金型表面の熱交換速度を、他の金型表面部分に比べ大きくできるようになした、請求項1に記載の塗装成形物製造用金型。2. The coating according to claim 1, wherein the mold on the side where the paint inlet is provided has a higher heat exchange rate on the mold surface near the paint inlet than on other mold surface portions. 3. Mold for manufacturing molded products. 成形物の端部分に、縦バリと横バリとが、成形物側から見てこの順序に生じるようなバリ生成構造を設けた、請求項1または2に記載の塗装成形物製造用金型。The mold for producing a coated molded product according to claim 1 or 2, wherein a burr generation structure is provided at an end portion of the molded product such that vertical burrs and horizontal burrs are generated in this order when viewed from the molded product side. 成形物の開口部となすべき部分に0.5mm以上の厚みの薄皮を形成するようになした、請求項1〜3のいずれかに記載の塗装成形物製造用金型。The mold for producing a coated molded product according to any one of claims 1 to 3, wherein a thin skin having a thickness of 0.5 mm or more is formed in a portion to be an opening of the molded product. 金型を水平に設置した場合に、塗料注入口を、実質的に当該金型の底部にあるように設けた請求項1〜4のいずれかに記載の塗装成形物製造用金型。The mold according to any one of claims 1 to 4, wherein the paint inlet is provided substantially at the bottom of the mold when the mold is installed horizontally. 請求項1〜5に記載の塗装成形物製造用金型を使用し、ノルボルネン系モノマーを含む混合物を架橋重合せしめて成形物となし、ついで、当該成形物にインモールドコーティング法で塗装をおこなう塗装成形物の製造方法において、
少なくとも塗料注入時には、当該金型を水平に設置し、
塗料注入口の設けられた側の金型について、塗料注入口近傍の塗膜の硬化速度が、他の部分の硬化速度に比べ遅くならないように、注入塗料温度および金型表面の熱交換速度を調節し、塗料注入口の設けられた側の金型について、塗料注入口からより遠い金型表面の温度をより高温になるように制御した金型に塗料を注入する塗装成形物の製造方法。
A coating using the mold for producing a coated molded product according to any one of claims 1 to 5, wherein a mixture containing a norbornene-based monomer is cross-linked and polymerized to form a molded product, and then the molded product is painted by an in-mold coating method. In the method for producing a molded product,
At least when injecting paint, set the mold horizontally,
For the mold on the side where the paint inlet is provided, adjust the temperature of the injected paint and the heat exchange rate of the mold surface so that the curing speed of the coating film near the paint inlet does not become slower than the curing speed of other parts. A method for producing a coated molded product, wherein the mold is adjusted and the paint is injected into a mold in which the temperature of the mold surface farther from the paint inlet is controlled to be higher with respect to the mold provided with the paint inlet.
JP2002268402A 2002-09-13 2002-09-13 Mold for production of paint molding and method for producing paint molding Expired - Fee Related JP3983144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002268402A JP3983144B2 (en) 2002-09-13 2002-09-13 Mold for production of paint molding and method for producing paint molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002268402A JP3983144B2 (en) 2002-09-13 2002-09-13 Mold for production of paint molding and method for producing paint molding

Publications (2)

Publication Number Publication Date
JP2004106210A true JP2004106210A (en) 2004-04-08
JP3983144B2 JP3983144B2 (en) 2007-09-26

Family

ID=32266621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002268402A Expired - Fee Related JP3983144B2 (en) 2002-09-13 2002-09-13 Mold for production of paint molding and method for producing paint molding

Country Status (1)

Country Link
JP (1) JP3983144B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006118206A1 (en) * 2005-04-28 2006-11-09 Rimtec Corporation In-mold coating process
WO2007125787A1 (en) * 2006-04-27 2007-11-08 Rimtec Corporation Reaction injection molded body having coating film on surface and method for producing same
JP2012200910A (en) * 2011-03-24 2012-10-22 Panasonic Corp Mold for cast molding and method for producing cast molded product

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105189573B (en) 2013-03-15 2019-01-22 马特里亚公司 The in-mould coating of ROMP polymer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006118206A1 (en) * 2005-04-28 2006-11-09 Rimtec Corporation In-mold coating process
WO2007125787A1 (en) * 2006-04-27 2007-11-08 Rimtec Corporation Reaction injection molded body having coating film on surface and method for producing same
JP4832513B2 (en) * 2006-04-27 2011-12-07 Rimtec株式会社 Reaction injection molded body having a coating film on the surface and method for producing the same
JP2012200910A (en) * 2011-03-24 2012-10-22 Panasonic Corp Mold for cast molding and method for producing cast molded product

Also Published As

Publication number Publication date
JP3983144B2 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
JP6577466B2 (en) Compound for reaction injection molding and method for producing the same
JPWO2016152623A1 (en) Resin molded body and method for producing the same
JP5681837B2 (en) Reaction injection molding liquid, reaction injection molding production method and reaction injection molding
JP3983144B2 (en) Mold for production of paint molding and method for producing paint molding
JP4101049B2 (en) Mold for production of paint molding and method for producing paint molding
JP4758911B2 (en) Mold, in-mold coating method, and molded product with coating
JP3893689B2 (en) Manhole cover and manufacturing method thereof
TW200533500A (en) In mold coating method
JP2004123898A (en) Method for manufacturing coated molded subject
JP2003094454A (en) Coating method for norbornene crossilinked polymer molded article, and coated molded article
JP2008006590A (en) Reaction injection molding method
JP4258095B2 (en) Composite molded body and method for producing the same
JP2005246880A (en) In-mold coating method
WO2006118206A1 (en) In-mold coating process
JP2001071345A (en) In-mold coating method
JP3767134B2 (en) Reaction injection molding method
JP2007313395A (en) In-mold coating method and coated molding
JP4432265B2 (en) Manufacturing method of molded body
JP2000319556A (en) Paint for resin molded product
JPH03183514A (en) Reaction injection molding method
JP2005271535A (en) Reaction injection molding method and reactive stock solution used for it
WO2015198992A1 (en) Gelling promoter
JPH02263613A (en) Reaction injection molding method
JPH03120021A (en) Manufacture of metathesis polymer moldings
JPH08269784A (en) Plating method of rim article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees