JP2004105844A - Medium-agitating double-shaft grinding-machine and grinding method - Google Patents

Medium-agitating double-shaft grinding-machine and grinding method Download PDF

Info

Publication number
JP2004105844A
JP2004105844A JP2002271330A JP2002271330A JP2004105844A JP 2004105844 A JP2004105844 A JP 2004105844A JP 2002271330 A JP2002271330 A JP 2002271330A JP 2002271330 A JP2002271330 A JP 2002271330A JP 2004105844 A JP2004105844 A JP 2004105844A
Authority
JP
Japan
Prior art keywords
stirring
vessel
shafts
slurry
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002271330A
Other languages
Japanese (ja)
Other versions
JP4263447B2 (en
Inventor
Toyohiko Gondo
権藤 豊彦
Michiharu Fuji
藤 道治
Toshihiro Ishii
石井 利博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASHIZAWA KK
Original Assignee
ASHIZAWA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASHIZAWA KK filed Critical ASHIZAWA KK
Priority to JP2002271330A priority Critical patent/JP4263447B2/en
Publication of JP2004105844A publication Critical patent/JP2004105844A/en
Application granted granted Critical
Publication of JP4263447B2 publication Critical patent/JP4263447B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crushing And Grinding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a medium-agitating grinding-machine and grinding method adaptable to needs for minimization of solid-particles. <P>SOLUTION: The double shafts grinding-machine is provided with a vessel, two agitation shafts, a plurality of agitation members, a driving means, and a slurry feeding/discharging port. The vessel is of a double-cylinder shape, wherein two cylinders are engaged to have an 8-shaped cross section. The two agitation shafts are placed axially to each of the two cylinders forming the 8-shaped cross section. The agitation members are mounted to the respective shafts at intervals between them in the axial direction. The driving means drives the two agitation shafts in opposition directions at the same rotational speed. The slurry feeding/discharging port is provided at least either side of lid plates of the vessel in order to feed or discharge the slurry to-be-treated. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】本発明は、攪拌部材が取り付けられた攪拌軸を備えるベッセル内に粉砕用固形媒体を充填し、被処理物である固形粒子を含むスラリーを該ベッセル内に導入して攪拌軸を回転させながら固形粒子の粉砕を行う媒体攪拌型粉砕装置及び該装置を使用する粉砕方法に関する。特に本発明は、限定する意味ではないが、鉱物、顔料、染料、化成品、フェライト、セラミック、金属などを微細に粉砕し、或いは、これら材料の微粒子を分散して、塗料、印刷インク、顔料、磁性塗料、ゴム、接着剤、化粧品、塗り薬のような医薬品などを調整する目的に使用される媒体攪拌型粉砕装置及び該装置を使用する粉砕方法に関する。
【0002】
【従来の技術】従来のこの種の媒体攪拌型粉砕装置は、図6(a)(b)に示すように、両端が蓋板101、102により閉じられたシリンダー状のベッセル103に同軸に、ピン又は円板104等の攪拌部材を有する攪拌軸107を設け、ベッセル103内にジルコニアビーズ、ガラスビーズ等の粉砕用固形媒体105を充填し、該ベッセル103内に、一方の蓋板102に設けたスラリー導入口106から被処理物である固形粒子を含むスラリーを導入し、攪拌軸107を回転駆動することによって、粉砕用固形媒体に運動を与え、媒体間を通過するスラリーに媒体間の摩擦によるせん断力を作用させて、固形粒子の粉砕を行うように構成されている。ベッセル103の他方の蓋板101の近傍には、粉砕用媒体分離機構112、113により出口スリットが形成され、ベッセル103を通過したスラリーは、このスリットを通り、蓋板101に設けたスラリー出口108から排出される。この装置は、通常は、スラリー導入口106から連続的に未処理スラリーを導入し、スラリー出口108から連続的に処理済みスラリーを排出するという連続処理に使用される。この連続処理では、スラリーは、必要に応じて何回でも、ベッセル103内に循環させることが可能である。この媒体攪拌型粉砕装置は、スラリーに含まれる固形粒子を非常に微細な粒子サイズまで粉砕することができる。ベッセル103の外側には冷却剤循環用ジャケット109が形成され、冷却剤入口110から冷却水等の冷却剤を導入し、冷却剤出口111から排出することにより、冷却剤の循環流を生じさせて、ベッセル103内部のスラリーの冷却を行うことができる。
【0003】
ところで、近年では、固形粒子の微細粒子化に対する要求は極めて高くなっており、ナノメーターサイズまでの微細化が求められるようになっている。このような要求に対処するためには、粉砕用固形媒体の大きさを一層小径化することが必要になる。しかし、媒体の径を小さくすると、媒体から被処理物である固形粒子に作用させる粉砕力は、媒体径に逆比例して高めなければならなくなる。そのため、要求される運転動力はその分だけ大きくなり、同時に運転速度も高めなければならなくなる。また、要求される粉砕粒子径を達成するためには、処理時間すなわちベッセル内におけるスラリーの滞留時間も長くなる。これらの条件が重なって、粉砕用固形媒体や攪拌部材が磨耗し易くなり、スラリーのコンタミネーションが増加し、スラリーの温度上昇の問題も生じてくる。
【0004】
【発明が解決しようとする課題】本発明は、固形粒子の微細化に対する要求に伴って生じるコンタミネーションの増加、運転動力の増大、及び、スラリー温度の上昇という問題を軽減ないしは解消して、近年特に著しい、一層の固形粒子微細化に対する要求に応え得る媒体攪拌型粉砕装置及び粉砕方法を提供することを解決すべき課題とする。
【0005】
【課題を解決するための手段】上記課題を解決するため、本発明は、媒体攪拌型2軸粉砕装置を提供する。本発明の一態様によれば、2軸粉砕装置は、2つのシリンダーが組み合わされて断面形状が8字形に形成されたダブルシリンダー形状のベッセルと、前記ベッセルの長さ方向両端部にそれぞれ設けられた蓋板と、該ベッセルの8字形を形成する2つのシリンダーのそれぞれの軸心に各1本ずつ配置された2本の攪拌軸と、攪拌軸の各々に軸方向に相互に間隔をもって取り付けられた複数個の攪拌部材と、2本の攪拌軸を互いに反対方向に同一の回転速度で回転するように駆動する駆動手段と、ベッセル内に対し被処理物であるスラリーを導入及び排出するために前記蓋板の少なくとも一方に設けられたスラリー導入口及び排出口と、を備える。ベッセル内には粉砕用固形媒体を充填して攪拌軸を回転駆動しながらスラリーに含まれる固形粒子の粉砕を行う。2本の攪拌軸に取り付けられる複数の攪拌部材は、該攪拌軸の軸方向投影において互いに重なる長さを有し、隣り合った攪拌軸に取り付けられる攪拌部材は回転中に互いに干渉を生じないように配置される。この粉砕装置においては、攪拌部材は、2本の攪拌軸が互いに反対方向に回転駆動されたとき、隣り合った攪拌軸上の攪拌部材が重なり合う領域においてベッセル内の粉砕用固形媒体が密な状態となり、攪拌軸の軸方向にほぼ沿って一方向に動くように強制され、攪拌部材が重なり合う領域とは反対側の領域において疎な状態となり、上記の一方向とは反対方向に動く循環運動を生じさせる形状に構成される。
【0006】
本発明の別の態様では、攪拌部材の各々は、中心が攪拌軸と同軸で該攪拌軸から放射状に延びるように該攪拌軸に固定された板状部材であり、該板状部材は回転方向前縁部に傾斜面が形成される。この傾斜面により、ベッセル内の粉砕用固形媒体に、上述した一方向の動きが誘起される。本発明のさらに別の態様では、攪拌部材の各々は、中心が攪拌軸と同軸で該攪拌軸から放射状に延びるように該攪拌軸に固定されたほぼ矩形形状の板状部材であり、該矩形形状の板状部材は回転方向前縁部が先端に向かって斜めに切り欠かれた形状であり、この斜めに切り欠かれた部分の縁部には傾斜面が形成される。本発明のこれらの態様において、攪拌部材を構成する板状部材は、各々の攪拌軸の軸方向に離れた複数の位置の各々において、2つのほぼ同一形状の板状部材が、対をなして、かつ、角度方向にずらされて配置されるようにすることが好ましい。この場合、対をなす板状部材の角度方向のずれは、60度から80度の範囲とすることが好ましい。
【0007】
さらに、本発明の粉砕装置においては、ベッセルの外周部に熱媒体のためのジャケットを形成することができる。また、攪拌軸の各々には、上述の一方向とは反対側の端部付近に、円板の外周に放射状に突出する複数個のピンを配置したピン型攪拌部材が取り付けることもできる。
【0008】
本発明の他の態様による粉砕方法は、2つのシリンダーが組み合わされて断面形状が8字形に形成されたダブルシリンダー形状のベッセルと、該ベッセルの8字形を形成する2つのシリンダーのそれぞれの軸心に各1本ずつ配置された2本の攪拌軸と、攪拌軸の各々に軸方向に相互に間隔をもって取り付けられた複数個の攪拌部材とを備え、ベッセル内には粉砕用固形媒体と被処理物である固形粒子を含むスラリーを充填して攪拌軸を回転駆動しながら該スラリーに含まれる固形粒子の粉砕を行うようになった媒体攪拌型粉砕装置を使用して、スラリー内の固形粒子の粉砕を行う。この方法は、2本の攪拌軸を互いに反対方向に同一回転速度で回転駆動し、2本の攪拌軸に取り付けられた攪拌部材が互いに重なり合う領域において粉砕用固形媒体が蜜になる状態を生成させ、該粉砕用固形媒体が攪拌軸の軸方向に沿った一方向に動き、該攪拌部材が互いに重なり合う領域とは反対側の領域において該粉砕用固形媒体が疎になる状態を生成させ、該粉砕用固形媒体が上記一方向とは反対方向に動くようにして、粉砕用固形媒体の循環運動を該粉砕用固形媒体に生じさせることを特徴とする。
【0009】
このように、本発明による媒体攪拌型粉砕装置においては、攪拌部材を有する2本の攪拌軸が並置され、2本の攪拌軸に取り付けられた攪拌部材が軸方向にみて互いに重なり合う状態で互いに反対方向に回転駆動される。したがって、粉砕用固形媒体は、攪拌部材が軸方向にみて互いに重なり合う領域に密集する傾向を生じる。そして、2本の隣り合う攪拌軸上の攪拌部材は、粉砕用固形媒体を同じ軸方向に推進する作用を生じるように構成されているので、攪拌部材が軸方向にみて互いに重なり合う領域においては、2本の攪拌軸上に設けられた攪拌部材の推進作用が重畳され、この領域では、媒体が攪拌部材の推進作用方向に動かされる。その結果として、この領域以外の領域では、粉砕用固形媒体は疎になり、攪拌部材の推進方向とは反対方向に動かされ、全体としてベッセル内において、媒体の活発な循環運動を生じる。この粉砕用固形媒体の活発な循環運動により、スラリーに含まれる固形粒子に対する粉砕作用が活発になり、媒体の粒径を小さくしなくても、満足な粉砕効果を得ることができる。この媒体の循環運動は、攪拌部材として板状の部材を使用し、該板状の部材を対にして、角度方向にずらして配置することにより、高めることができる。特に、角度方向のすれを60度から80度の範囲としたとき、媒体の循環運動は顕著に活発化される。最も好ましいすれ角は69度±1度である。
【0010】
また、攪拌軸の各々一端部付近に、円板の外周に放射状に突出する複数個のピンを配置したピン型攪拌部材が取り付けた構成では、板状攪拌部材により生じる粉砕用固形媒体の循環運動により、ピン型攪拌部材の領域における媒体の充填量を制御でき、この部分での粉砕作用を向上させることができる。この構成は、ピン型攪拌部材の領域を粉砕ゾーンと考え、板状攪拌部材の領域を媒体流動領域と考えることもできる。
【0011】
媒体攪拌型粉砕装置において、多軸構成を採用することは、例えば、特開平8−318145号公報、特開平9−103665号公報、実公平6−18577号公報、特公平4−43692号公報、特開平3−38904号公報などにより公知である。しかし、これら公知の2軸又は3軸の粉砕装置は、いずれも、多軸の採用により粉砕用固形媒体の軸方向の流動性を高めようとするものではない。本発明は、これら公知の多軸装置において、攪拌部材の構成を工夫することによって粉砕用固形媒体の軸方向の流動性を高め、媒体に軸方向の循環運動を生じさせて、粉砕効果を著しく高めることができるものである。
【0012】
【発明の実施の形態】以下、本発明の実施形態を図について説明する。
図1及び図2は、本発明の一実施形態による2軸媒体攪拌型粉砕装置1を示す縦方向断面図及び横断面図である。ベッセル2は、2つのシリンダーが組み合わされて横断面形状が8字形に形成されたダブルシリンダー形状であり、該ベッセル内には、その8字形を形成する2つのシリンダーのそれぞれの軸心に各1本の攪拌軸5a、5bがベッセルに対して回転自在に配置されている。
【0013】
ベッセル2の外周には冷却用又は加熱用の熱媒体を通すジャケット3が形成されている。ベッセルの軸方向一端は蓋部材4により、また他端は蓋部材9により閉じられている。攪拌軸5aには、軸方向に間隔をもった複数個所、本実施形態では3箇所に攪拌部材6aが取り付けられている。同様に、攪拌軸5bには、軸方向に間隔をもった複数個所、本実施形態では3箇所に攪拌部材6bが取り付けられている。撹拌軸5a、5bは、後述する駆動機構により、図2に矢印A、Bで示すように、互いに反対方向に回転駆動される。
【0014】
図2に示すように、撹拌軸5a上の攪拌部材6aの各々は、上下に密接して配置された対の板状部材7aから構成されている。板状部材7aは、中心が撹拌軸5aと同軸に該撹拌軸5aに取り付けられた部材であり、矩形形状から回転方向前縁8aが斜めに切り欠かれた形状である。板状部材7aの切り欠かれた前縁8aには、回転方向に傾斜する傾斜面が形成されている。同様に、撹拌軸5b上の撹拌部材6bの各々は、上下に密接して配置された対の板状部材7bから構成されている。板状部材7bは、回転方向前縁8bに傾斜面を有する。対をなす板状部材7a又は7bは、それらの長さ方向中心線が互いに角度αをなすように組み合わされる。この角度αは、60度から80度の範囲であることが好ましく、最も良い結果が得られる角度αは、69度である。
【0015】
図2に示すように、撹拌軸5a、5b上の撹拌部材6a、6bは、撹拌軸の軸方向にみて互いに重なり合う長さを有する。図1から分かるように、2本の撹拌軸5a、5bにおいて、対の板状部材7aからなる撹拌部材6aと、対の板状部材7bからなる撹拌部材6bとは、軸方向に互い違いに配置されており、撹拌軸5a上の撹拌部材6aと撹拌軸5b上の撹拌部材6bとが互いに干渉することはない。
【0016】
蓋部材9には被処理物である固形粒子を含むスラリーをベッセル2内に導入するスラリー給排口10が形成されており、このスラリー給排口10は、粉砕装置1の作動中は閉じられる。ベッセル2内には、ガラスビーズ又は鉄球などのような粉砕用固形媒体11が充填される。
【0017】
図3は、撹拌軸5a、5bの支持及び駆動機構の一例を具体的に示すものである。撹拌軸5a、5bの各々は、両端部が軸受け12により蓋部材4及び蓋部材9に支持されており、撹拌軸5a、5bの一端は、蓋部材4からベッセル2の外側に突出し、その突出端に傘歯車13a、13bが取り付けられている。ベッセル2の蓋部材4にほぼ平行に駆動軸14が配置され、該駆動軸14に設けられた傘歯車15a、15bが傘歯車13a、13bに噛み合っている。この駆動軸14は、ベルト・プーリー機構16のような適当な動力伝達機構を介して、図示しない動力源により駆動される。
【0018】
図1及び図2に示す粉砕装置1の作動においては、ベッセル2内に粉砕用固形媒体11が充填され、スラリー給排口10からスラリーが導入されて、給排口10が閉じられる。次いで、攪拌軸5a、5bが図2に矢印A、Bで示す方向に回転駆動される。この攪拌軸5a、5bの回転により該攪拌軸5a、5b上の攪拌部材6a、6bも回転し、ベッセル2内の媒体11を攪拌する。媒体11は、攪拌部材6a、6bから与えられる回転運動により、各攪拌軸5a、5bに関して放射方向外向きに遠心力を生じ、この遠心力の作用により、放射方向外向きに押される。攪拌部材6a、6bが軸方向に重なる領域、すなわち、ベッセル2内において2つのシリンダーがつながる領域では、2つの攪拌軸5a、5b上の攪拌部材6a、6bから媒体11に加わる遠心力の作用が重畳されるため、媒体11はこの領域において密の状態になり、逆に、この領域に対して直径方向反対側の領域では、媒体11は疎になる。さらに、攪拌部材6a、6bの板状部材7a、7bは、回転方向前縁8a、8bに傾斜面を有するため、媒体11には、図1において上向きの上昇力が作用する。この上昇力は、攪拌部材6a、6bが軸方向に重なる領域において2つの攪拌部材6a、6bの作用が重畳されるため、この領域において媒体11には上昇運動が与えられる。その結果、他の領域では、媒体11は下降運動を生じ、ベッセル2内では、全体として、攪拌軸5a、5bの間の領域で媒体11が上昇し、ベッセル2の長軸方向両端部及びその付近の領域では媒体11が下降する、という媒体の縦方向循環運動を生じる。
【0019】
このような媒体11の縦方向循環運動により、媒体11の動きが活発化され、その間を通るスラリーは、媒体11の間で激しい摩擦作用を受け、スラリーに含まれる固形粒子が細かく粉砕ないしは分散される。このように、この実施形態による媒体攪拌型粉砕装置は、媒体11に、回転による円周方向運動だけでなく、縦方向の循環運動も生じさせるので、媒体11の運動が活発化され、スラリー内の固形粒子の粉砕ないしは分散が促進される。したがって、粉砕用固形媒体11の粒径を極端に小さくすることなく、スラリー内の固形粒子をナノメーターサイズまで粉砕ないしは分散させることが可能になる。この粉砕ないしは分散作用の結果、スラリーの温度上昇が懸念される場合には、ベッセル2の外周に設けたジャケット3に冷却媒体を通す。また、何らかの理由でベッセル2内を加熱する必要がある場合には、このジャケット3に加熱用媒体を通す。本発明を実施した上述の粉砕装置1によれば、比較的短い時間で所期の粉砕効果を達成でき、粉砕用固形媒体11及び攪拌部材6a、6bの摩耗が大幅に軽減される。その結果、スラリーに対するコンタミネーションが著しく減少されることになる。
【0020】
図1及び図2についての上述の作動説明は、ベッセル2内に給排口10からスラリーを導入し、該給排口10を閉じて装置1を運転する、いわゆるバッチ式の作動に関するものである。図3は、基本的な構成は図1及び図2に示すものと同一であるが、粉砕装置1を連続運転できる構成を備える。すなわち、図3に示す粉砕装置1においては、ベッセル2の長軸側両端部近傍において、攪拌軸駆動機構が設けられる側の蓋部材4に、スラリー排出口17a、17bが設けられる。図1において給排口として説明された口10は、スラリー導入口として使用される。スラリーは、このスラリー導入口から連続的にベッセル2内に圧送され、スラリー排出口17a、17bから排出される。その他の点では、図3の粉砕装置1の作動は、図1及び図2に示すものと同じである。
【0021】
図4は、本発明のさらに別の実施形態を示す。この実施形態においては、攪拌軸5a、5bに板状部材7a、7bからなる板状の攪拌部材6a、6bが設けられる点は、先に述べた実施形態におけると同様である。図4の実施形態では、さらに、攪拌軸5a、5bの蓋部材9に近接した方の端部近傍に、ピン型攪拌部材18a、18bが取り付けられる。このピン型攪拌部材18a、18bは、攪拌軸5a、5bに固定された円盤部材19a、19bと、この円盤部材19a、19bから周方向外向きに延びる複数本のピン部材20a、20bとから構成される。
【0022】
図4に示す実施形態では、板状の攪拌部材6a、6bにより、媒体11に、周方向の運動に加えて、縦方向の循環運動が与えられることは、先に述べた実施形態におけると同様である。この媒体11に与えられる縦方向の循環運動の結果、ピン型攪拌部材18a、18bの領域における媒体11の充填量が適切に制御できる。ピン型攪拌部材18a、18bは、その近傍にある媒体11に攪拌作用を与え、この領域でスラリーに粉砕作用を与える。すなわち、このピン型攪拌部材18a、18bが位置する領域は、スラリーに含まれる固形粒子に対する粉砕ゾーンとなる。これに対して、板状攪拌部材6a、6bのまわりの領域は、既に述べたように媒体の運動を活発化して粉砕作用を高めるものであるが、図4の実施形態では、さらに、この板状攪拌部材6a、6bのまわりの領域は、ピン型攪拌部材18a、18bのまわりの領域における媒体の充填量を制御するように働く流動ゾーンと考えることができる。
【0023】
【実施例】図4に示す構造の粉砕装置1を使用し、粉砕用固形媒体11として、直径3mmのアルミナビーズをベッセル2の容積の70%となるまで充填した。スラリーとして、水に炭酸カルシウムを20%濃度になるように調整したものを用い、バッチ式で攪拌部材の先端速度2.9m/secで運転した。ベッセル外周のジャケット3には冷却剤として冷却水を循環させて冷却を行った。
【0024】
【比較例】図6に示す形式の円盤型攪拌部材を有する従来の1軸粉砕装置に直径1mmのジルコニアビーズをベッセルの容積の80%となるまで充填した。スラリーとして、実施例で使用したものと同じ組成のものを使用し、連続処理方式で、円盤型攪拌部材の周速度が12m/secとなる条件で運転した。ベッセル外周のジャケット109には冷却剤として冷却水を循環させて冷却を行った。
【0025】
【結果】実験の結果を図5に示す。図5に示すように、実施例では、作動時間すなわち滞留時間20分の後、スラリー内の固形粒子の平均粒径が0.18μmとなり、スラリー1kgあたりの運転動力は0.27kWh/kgであった。これに対して比較例では、滞留時間20分では、固形粒子の平均粒径は0.52μmで、運転動力は0.61kWh/kgであった。このように、本発明の実施例では、粉砕用固形媒体の粒径を比較例よりも大きくしたにも拘わらず、比較例よりも優れた粉砕効果が達成されることが確認された。また、実施例では、20分間の滞留時間におけるスラリーの温度上昇が約3℃であったのに対し、比較例では、装置の出口と入口との温度差が約15℃であった。このように、本発明の実施例では、温度上昇が比較例より低いことが確認できた。また、コンタミネーションに関し、20分間処理後におけるスラリーのCr(クロム)の混入量を測定した。Crは、ベッセル内壁や撹拌部材の材料であり、この量を測定することにより、ベッセル内壁や撹拌部材の磨耗量を知ることができる。測定の結果、実施例ではCrの混入量は2.07mg/lであり、比較例では6.20mg/lであった。この測定により、本発明は、粉砕装置の構成材料の磨耗を減少させるのに有効であることが確認できた。
【図面の簡単な説明】
【図1】本発明の一実施形態による媒体攪拌型粉砕装置の概要を示す縦断面図である。
【図2】図1のI−I線における横断面図である。
【図3】本発明の他の実施形態による媒体攪拌型粉砕装置の概要を示す縦断面図である。
【図4】本発明のさらに別の実施形態による媒体攪拌型粉砕装置の概要を示す縦断面図である。
【図5】本発明の具体的実施例と従来の装置による比較例による実験結果を示す図表である。
【図6】従来の1軸型粉砕装置の一例を示すものであって、(a)は水平断面図、(b)は垂直断面図である。
【符号の説明】
1・・・粉砕装置、2・・・ベッセル、3・・・ジャケット、
4、9・・・蓋部材、5a、5b・・・攪拌軸、6a、6b・・・攪拌部材、
7a、7b・・・板状部材、11・・・粉砕用固形媒体、
18a、18b・・・ピン型攪拌部材
[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for filling a solid medium for pulverization into a vessel having a stirring shaft to which a stirring member is attached, and introducing a slurry containing solid particles to be processed into the vessel. The present invention relates to a medium stirring type pulverizing apparatus for pulverizing solid particles while rotating a stirring shaft, and a pulverizing method using the apparatus. In particular, the present invention is not limited, minerals, pigments, dyes, chemicals, ferrites, ceramics, finely pulverized metals, or dispersed fine particles of these materials, paints, printing inks, pigments The present invention relates to a medium stirring type pulverizer used for adjusting pharmaceuticals such as magnetic paints, rubbers, adhesives, cosmetics, and paints, and a pulverization method using the apparatus.
[0002]
2. Description of the Related Art As shown in FIGS. 6 (a) and 6 (b), a conventional medium stirring type pulverizer of this type is coaxial with a cylindrical vessel 103 having both ends closed by lid plates 101 and 102. A stirrer shaft 107 having a stirrer such as a pin or a disk 104 is provided, a crushing solid medium 105 such as zirconia beads or glass beads is filled in the vessel 103, and the vessel 103 is provided on one lid plate 102. The slurry containing the solid particles to be processed is introduced from the slurry introduction port 106, and the stirring shaft 107 is rotationally driven to give motion to the solid medium for pulverization. Is applied so as to pulverize the solid particles. In the vicinity of the other lid plate 101 of the vessel 103, an exit slit is formed by the pulverizing medium separating mechanisms 112 and 113, and the slurry that has passed through the vessel 103 passes through the slit and passes through a slurry outlet 108 provided in the lid plate 101. Is discharged from This apparatus is usually used for continuous processing in which untreated slurry is continuously introduced from a slurry introduction port 106 and treated slurry is continuously discharged from a slurry outlet 108. In this continuous process, the slurry can be circulated in the vessel 103 as many times as necessary. This medium stirring type pulverizer can pulverize solid particles contained in a slurry to a very fine particle size. A coolant circulation jacket 109 is formed outside the vessel 103, and a coolant such as cooling water is introduced from a coolant inlet 110 and discharged from a coolant outlet 111 to generate a coolant circulation flow. Thus, the slurry inside the vessel 103 can be cooled.
[0003]
By the way, in recent years, the demand for finer solid particles has become extremely high, and finer processing to a nanometer size has been demanded. In order to meet such demands, it is necessary to further reduce the size of the solid medium for grinding. However, when the diameter of the medium is reduced, the pulverizing force applied from the medium to the solid particles to be processed must be increased in inverse proportion to the medium diameter. Therefore, the required driving power is correspondingly increased, and at the same time, the driving speed must be increased. Further, in order to achieve the required pulverized particle diameter, the processing time, that is, the residence time of the slurry in the vessel is also increased. When these conditions are overlapped, the solid medium for pulverization and the stirring member are easily worn, the contamination of the slurry increases, and the problem of the temperature rise of the slurry also arises.
[0004]
SUMMARY OF THE INVENTION The present invention reduces or eliminates the problems of increased contamination, increased operating power, and increased slurry temperature, which are caused by the demand for finer solid particles. It is an object of the present invention to provide a medium agitation type pulverizer and a pulverization method which can meet a particularly remarkable demand for further finer solid particles.
[0005]
In order to solve the above-mentioned problems, the present invention provides a medium stirring type twin-screw crusher. According to one aspect of the present invention, the twin-screw crusher is provided at a double-cylinder-shaped vessel formed by combining two cylinders and having an eight-shaped cross-section, and at both ends in the longitudinal direction of the vessel. A lid plate, two agitating shafts, one at each axis of each of the two cylinders forming the V-shape of the vessel, and attached to each of the agitating shafts at an axial distance from each other. A plurality of stirring members, driving means for driving the two stirring shafts to rotate at the same rotational speed in opposite directions to each other, and for introducing and discharging the slurry as the object to be processed into the vessel. A slurry introduction port and a discharge port provided on at least one of the lid plates. The solid medium for pulverization is filled in the vessel, and the solid particles contained in the slurry are pulverized while rotating the stirring shaft. The plurality of stirring members attached to the two stirring shafts have a length overlapping each other in the axial projection of the stirring shaft, and the stirring members attached to the adjacent stirring shafts do not interfere with each other during rotation. Placed in In this pulverizing apparatus, when the two stirring shafts are driven to rotate in opposite directions, the solid medium for pulverization in the vessel is dense in a region where the stirring members on adjacent stirring shafts overlap. Is forced to move in one direction substantially along the axial direction of the stirring shaft, becomes a sparse state in a region opposite to the region where the stirring member overlaps, and circulates in a direction opposite to the one direction. It is configured in a shape to produce.
[0006]
In another aspect of the present invention, each of the stirring members is a plate-like member fixed to the stirring shaft so that the center is coaxial with the stirring shaft and extends radially from the stirring shaft, and the plate-like member is rotated in the rotation direction. An inclined surface is formed at the front edge. The inclined surface induces the above-described one-way movement in the solid medium for grinding in the vessel. In still another aspect of the present invention, each of the stirring members is a substantially rectangular plate-shaped member fixed to the stirring shaft such that the center is coaxial with the stirring shaft and extends radially from the stirring shaft, and The plate-shaped member has a shape in which the front edge in the rotation direction is cut obliquely toward the tip, and an inclined surface is formed at the edge of the obliquely cut portion. In these embodiments of the present invention, the plate-like member constituting the stirring member is such that two substantially identical plate-like members form a pair at each of a plurality of positions separated in the axial direction of each stirring shaft. In addition, it is preferable that they are arranged so as to be shifted in the angular direction. In this case, it is preferable that the deviation of the pair of plate members in the angular direction be in the range of 60 degrees to 80 degrees.
[0007]
Further, in the crushing apparatus of the present invention, a jacket for a heat medium can be formed on the outer peripheral portion of the vessel. Further, a pin-type stirring member in which a plurality of pins projecting radially on the outer periphery of the disk may be attached to each of the stirring shafts near the end opposite to the one direction described above.
[0008]
According to another aspect of the present invention, there is provided a pulverizing method comprising: a double-cylinder-shaped vessel in which two cylinders are combined to form an eight-shaped cross-section; and respective axes of the two cylinders forming the eight-shaped vessel. And two agitating shafts arranged one by one, and a plurality of agitating members attached to each of the agitating shafts at intervals in the axial direction. Using a medium-stirring-type pulverizer that is designed to pulverize the solid particles contained in the slurry while filling the slurry containing the solid particles as the material and rotating the stirring shaft, the solid particles in the slurry are removed. Pulverize. In this method, two stirring shafts are driven to rotate in opposite directions at the same rotation speed, and a state in which the solid medium for pulverization becomes nectar in a region where the stirring members attached to the two stirring shafts overlap each other is generated. The crushing solid medium moves in one direction along the axial direction of the stirring shaft, and a state in which the crushing solid medium becomes sparse in a region opposite to a region where the stirring members overlap each other is generated. The crushing solid medium is caused to move in the direction opposite to the one direction so as to cause the crushing solid medium to circulate in the crushing solid medium.
[0009]
As described above, in the medium stirring type pulverizer according to the present invention, two stirring shafts having stirring members are juxtaposed, and the stirring members attached to the two stirring shafts are opposed to each other in a state where they are overlapped with each other as viewed in the axial direction. It is driven to rotate in the direction. Therefore, the solid medium for pulverization tends to be concentrated in a region where the stirring members overlap each other when viewed in the axial direction. And, since the stirring members on the two adjacent stirring shafts are configured to generate the action of pushing the solid medium for grinding in the same axial direction, in the region where the stirring members overlap each other when viewed in the axial direction, The propulsion action of the stirring member provided on the two stirring shafts overlaps, and in this region, the medium is moved in the direction of the propulsion action of the stirring member. As a result, in regions other than this region, the solid medium for grinding becomes sparse, and is moved in a direction opposite to the direction of the propulsion of the stirring member, resulting in an active circulation movement of the medium as a whole in the vessel. Due to the active circulation of the solid medium for pulverization, the pulverizing action on the solid particles contained in the slurry becomes active, and a satisfactory pulverizing effect can be obtained without reducing the particle diameter of the medium. The circulating motion of the medium can be enhanced by using a plate-shaped member as the stirring member and disposing the plate-shaped members as a pair and displacing them in the angular direction. In particular, when the angular deviation is in the range of 60 degrees to 80 degrees, the circulation movement of the medium is significantly activated. The most preferred angle of inclination is 69 degrees ± 1 degree.
[0010]
Further, in a configuration in which a pin-type stirring member having a plurality of pins radially protruding from the outer periphery of the disk is attached near one end of each stirring shaft, the circulating motion of the solid medium for grinding generated by the plate-like stirring member is provided. Thereby, the filling amount of the medium in the area of the pin type stirring member can be controlled, and the pulverizing action in this area can be improved. In this configuration, the area of the pin-type stirring member can be considered as a pulverizing zone, and the area of the plate-like stirring member can be considered as a medium flowing area.
[0011]
In the medium stirring type pulverizer, adopting a multi-shaft configuration is disclosed in, for example, JP-A-8-318145, JP-A-9-103665, JP-B-6-18577, JP-B-4-43692, It is publicly known, for example, from JP-A-3-38904. However, none of these known two-shaft or three-shaft pulverizers attempt to increase the axial fluidity of the solid medium for pulverization by employing multi-shafts. The present invention enhances the fluidity of the solid medium for grinding in the axial direction by devising the structure of the stirring member in these known multi-shaft devices, causing the medium to circulate in the axial direction, and significantly improving the grinding effect. It can be enhanced.
[0012]
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.
1 and 2 are a longitudinal sectional view and a transverse sectional view showing a two-shaft medium stirring type pulverizing apparatus 1 according to an embodiment of the present invention. The vessel 2 has a double-cylinder shape in which two cylinders are combined to form an eight-shape cross-sectional shape. In the vessel, each of the two cylinders forming the eight-shape is provided with one axis at each axis. The stirring shafts 5a and 5b are arranged rotatably with respect to the vessel.
[0013]
A jacket 3 for passing a cooling or heating heat medium is formed on the outer periphery of the vessel 2. One end in the axial direction of the vessel is closed by a lid member 4 and the other end is closed by a lid member 9. Stirring members 6a are attached to the stirring shaft 5a at a plurality of locations spaced apart in the axial direction, in this embodiment at three locations. Similarly, the stirring member 5b is attached to the stirring shaft 5b at a plurality of positions spaced apart in the axial direction, in this embodiment, three positions. The stirring shafts 5a and 5b are rotationally driven in directions opposite to each other by a drive mechanism described later, as shown by arrows A and B in FIG.
[0014]
As shown in FIG. 2, each of the stirring members 6a on the stirring shaft 5a is composed of a pair of plate-like members 7a closely arranged in the vertical direction. The plate-shaped member 7a is a member whose center is attached to the stirring shaft 5a so as to be coaxial with the stirring shaft 5a, and has a rectangular shape in which the front edge 8a in the rotation direction is obliquely cut away. The notched front edge 8a of the plate-shaped member 7a has an inclined surface that is inclined in the rotation direction. Similarly, each of the stirring members 6b on the stirring shaft 5b is composed of a pair of plate-like members 7b which are closely arranged vertically. The plate-shaped member 7b has an inclined surface at the front edge 8b in the rotation direction. The paired plate-shaped members 7a or 7b are combined so that their longitudinal center lines form an angle α with each other. This angle α is preferably in the range of 60 degrees to 80 degrees, and the angle α at which the best result is obtained is 69 degrees.
[0015]
As shown in FIG. 2, the stirring members 6a and 6b on the stirring shafts 5a and 5b have a length overlapping each other when viewed in the axial direction of the stirring shaft. As can be seen from FIG. 1, in the two stirring shafts 5a and 5b, the stirring member 6a including the pair of plate members 7a and the stirring member 6b including the pair of plate members 7b are alternately arranged in the axial direction. The stirring member 6a on the stirring shaft 5a and the stirring member 6b on the stirring shaft 5b do not interfere with each other.
[0016]
The lid member 9 is provided with a slurry supply / discharge port 10 for introducing a slurry containing solid particles to be processed into the vessel 2, and the slurry supply / discharge port 10 is closed during the operation of the crusher 1. . The vessel 2 is filled with a solid medium 11 for grinding such as glass beads or iron balls.
[0017]
FIG. 3 specifically shows an example of a mechanism for supporting and driving the stirring shafts 5a and 5b. Both ends of the stirring shafts 5a and 5b are supported by the lid member 4 and the lid member 9 by the bearings 12, and one end of the stirring shafts 5a and 5b protrudes from the lid member 4 to the outside of the vessel 2, and the protrusions Bevel gears 13a and 13b are attached to the ends. A drive shaft 14 is disposed substantially parallel to the lid member 4 of the vessel 2, and bevel gears 15a and 15b provided on the drive shaft 14 mesh with bevel gears 13a and 13b. The drive shaft 14 is driven by a power source (not shown) via a suitable power transmission mechanism such as a belt pulley mechanism 16.
[0018]
In the operation of the crushing apparatus 1 shown in FIGS. 1 and 2, the vessel 2 is filled with the crushing solid medium 11, the slurry is introduced from the slurry supply / discharge port 10, and the supply / discharge port 10 is closed. Next, the stirring shafts 5a and 5b are rotationally driven in directions indicated by arrows A and B in FIG. The rotation of the stirring shafts 5a and 5b also rotates the stirring members 6a and 6b on the stirring shafts 5a and 5b, and stirs the medium 11 in the vessel 2. The medium 11 generates a centrifugal force radially outward with respect to each of the stirring shafts 5a and 5b due to the rotational motion given by the stirring members 6a and 6b, and is pushed radially outward by the action of the centrifugal force. In a region where the stirring members 6a and 6b overlap in the axial direction, that is, in a region where two cylinders are connected in the vessel 2, the action of the centrifugal force applied to the medium 11 from the stirring members 6a and 6b on the two stirring shafts 5a and 5b. Due to the superposition, the medium 11 becomes dense in this region, and conversely, the medium 11 becomes sparse in the region diametrically opposite to this region. Further, since the plate-like members 7a and 7b of the stirring members 6a and 6b have inclined surfaces at the front edges 8a and 8b in the rotation direction, an upward lifting force acts on the medium 11 in FIG. Since the action of the two stirring members 6a and 6b is superimposed in a region where the stirring members 6a and 6b overlap in the axial direction, the rising force is given to the medium 11 in this region. As a result, in the other region, the medium 11 causes a downward motion, and in the vessel 2, the medium 11 as a whole rises in the region between the stirring shafts 5a and 5b, and both ends of the vessel 2 in the longitudinal direction and the both ends thereof. In the vicinity area, the medium 11 descends, causing a longitudinal circulation motion of the medium.
[0019]
Due to such a longitudinal circulation motion of the medium 11, the movement of the medium 11 is activated, and the slurry passing therethrough is subjected to a vigorous frictional action between the mediums 11, so that the solid particles contained in the slurry are finely crushed or dispersed. You. As described above, the medium stirring type pulverizing device according to this embodiment causes not only the circumferential movement due to the rotation but also the vertical circulation movement, so that the movement of the medium 11 is activated and the Of the solid particles is promoted. Therefore, the solid particles in the slurry can be crushed or dispersed to a nanometer size without extremely reducing the particle size of the crushing solid medium 11. If there is a concern that the temperature of the slurry may increase as a result of this pulverization or dispersion, a cooling medium is passed through a jacket 3 provided on the outer periphery of the vessel 2. When it is necessary to heat the inside of the vessel 2 for some reason, a heating medium is passed through the jacket 3. According to the above-described pulverizing apparatus 1 embodying the present invention, the desired pulverizing effect can be achieved in a relatively short time, and the abrasion of the pulverizing solid medium 11 and the stirring members 6a and 6b is greatly reduced. As a result, contamination of the slurry is significantly reduced.
[0020]
The above description of the operation with reference to FIGS. 1 and 2 relates to a so-called batch type operation in which the slurry is introduced into the vessel 2 from the supply / discharge port 10 and the apparatus 1 is operated with the supply / discharge port 10 closed. . FIG. 3 has the same basic configuration as that shown in FIGS. 1 and 2, but has a configuration in which the crusher 1 can be operated continuously. That is, in the pulverizing apparatus 1 shown in FIG. 3, the slurry discharge ports 17a and 17b are provided in the cover member 4 on the side where the stirring shaft drive mechanism is provided in the vicinity of both ends of the vessel 2 on the long axis side. The port 10 described as a supply / discharge port in FIG. 1 is used as a slurry introduction port. The slurry is continuously fed into the vessel 2 from the slurry inlet and discharged from the slurry outlets 17a and 17b. Otherwise, the operation of the crushing device 1 of FIG. 3 is the same as that shown in FIGS.
[0021]
FIG. 4 shows yet another embodiment of the present invention. In this embodiment, the point that plate-shaped stirring members 6a and 6b composed of plate-shaped members 7a and 7b are provided on the stirring shafts 5a and 5b is the same as in the above-described embodiment. In the embodiment of FIG. 4, pin-type stirring members 18a and 18b are further attached near the ends of the stirring shafts 5a and 5b closer to the lid member 9. The pin-type stirring members 18a and 18b include disk members 19a and 19b fixed to the stirring shafts 5a and 5b, and a plurality of pin members 20a and 20b extending outward from the disk members 19a and 19b in the circumferential direction. Is done.
[0022]
In the embodiment shown in FIG. 4, the plate-shaped stirring members 6a and 6b impart a longitudinal circulating motion to the medium 11 in addition to the circumferential motion as in the above-described embodiment. It is. As a result of the vertical circulating motion applied to the medium 11, the filling amount of the medium 11 in the area of the pin type stirring members 18a and 18b can be appropriately controlled. The pin-type stirring members 18a and 18b give a stirring action to the medium 11 in the vicinity thereof, and give a pulverizing action to the slurry in this region. That is, the region where the pin-type stirring members 18a and 18b are located is a pulverizing zone for solid particles contained in the slurry. On the other hand, the area around the plate-shaped stirring members 6a and 6b activates the movement of the medium and enhances the pulverizing action as described above. However, in the embodiment of FIG. The area around the stirrer members 6a, 6b can be considered as a flow zone that serves to control the media loading in the area around the pin-type stirrer members 18a, 18b.
[0023]
EXAMPLE Using a crushing apparatus 1 having the structure shown in FIG. 4, alumina beads having a diameter of 3 mm were filled as a crushing solid medium 11 until the volume of the vessel 2 reached 70%. A slurry prepared by adjusting the concentration of calcium carbonate to 20% in water was used as the slurry, and the slurry was operated at a tip speed of the stirring member of 2.9 m / sec in a batch system. Cooling was performed by circulating cooling water as a coolant in the jacket 3 on the outer periphery of the vessel.
[0024]
Comparative Example A zirconia bead having a diameter of 1 mm was filled in a conventional single-shaft crusher having a disk-type stirring member of the type shown in FIG. 6 until the volume of the zirconia beads reached 80% of the volume of the vessel. A slurry having the same composition as that used in the example was used as the slurry, and the slurry was operated in a continuous processing method under the condition that the peripheral speed of the disk-type stirring member was 12 m / sec. Cooling was performed by circulating cooling water as a cooling agent in the jacket 109 on the outer periphery of the vessel.
[0025]
[Results] The results of the experiment are shown in FIG. As shown in FIG. 5, in the example, after the operation time, that is, the residence time, was 20 minutes, the average particle size of the solid particles in the slurry was 0.18 μm, and the driving power per 1 kg of the slurry was 0.27 kWh / kg. Was. On the other hand, in the comparative example, when the residence time was 20 minutes, the average particle size of the solid particles was 0.52 μm, and the operation power was 0.61 kWh / kg. Thus, in the examples of the present invention, it was confirmed that, even though the particle size of the solid medium for pulverization was larger than that of the comparative example, a pulverizing effect superior to that of the comparative example was achieved. Further, in the example, the temperature rise of the slurry during the residence time of 20 minutes was about 3 ° C., whereas in the comparative example, the temperature difference between the outlet and the inlet of the apparatus was about 15 ° C. Thus, in the example of the present invention, it was confirmed that the temperature rise was lower than that of the comparative example. Regarding the contamination, the amount of Cr (chromium) mixed in the slurry after the treatment for 20 minutes was measured. Cr is a material of the inner wall of the vessel and the stirring member. By measuring this amount, the wear amount of the inner wall of the vessel and the stirring member can be known. As a result of the measurement, the mixing amount of Cr was 2.07 mg / l in the example, and 6.20 mg / l in the comparative example. From this measurement, it was confirmed that the present invention was effective in reducing abrasion of the constituent materials of the crusher.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an outline of a medium stirring type pulverizer according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view taken along line II of FIG.
FIG. 3 is a longitudinal sectional view showing an outline of a medium stirring type pulverizer according to another embodiment of the present invention.
FIG. 4 is a longitudinal sectional view showing an outline of a medium stirring type pulverizer according to still another embodiment of the present invention.
FIG. 5 is a table showing experimental results of a specific example of the present invention and a comparative example using a conventional apparatus.
FIGS. 6A and 6B show an example of a conventional single-shaft pulverizer, wherein FIG. 6A is a horizontal sectional view and FIG. 6B is a vertical sectional view.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Crusher, 2 ... Vessel, 3 ... Jacket,
4, 9 ... lid member, 5a, 5b ... stirring shaft, 6a, 6b ... stirring member,
7a, 7b: plate-like member, 11: solid medium for grinding,
18a, 18b ... pin type stirring member

Claims (8)

2つのシリンダーが組み合わされて断面形状が8字形に形成されたダブルシリンダー形状のベッセルと、
前記ベッセルの長さ方向両端部にそれぞれ設けられた蓋板と、
前記ベッセルの8字形を形成する2つのシリンダーのそれぞれの軸心に各1本ずつ配置された2本の攪拌軸と、
前記攪拌軸の各々に軸方向に相互に間隔をもって取り付けられた複数個の攪拌部材と、
前記2本の攪拌軸を互いに反対方向に同一の回転速度で回転するように駆動する駆動手段と、
前記ベッセル内に対し被処理物であるスラリーを導入及び排出するために前記蓋板の少なくとも一方に設けられたスラリー導入口及び排出口と、
を備え、
前記ベッセル内には粉砕用固形媒体を充填して前記攪拌軸を回転駆動しながらスラリーに含まれる固形粒子の粉砕を行うようになっており、
前記攪拌部材の各々は、中心が攪拌軸と同軸で該攪拌軸から放射状に延びるように該攪拌軸に固定されたほぼ矩形形状の板状部材であり、該矩形形状の板状部材は回転方向前縁部が先端に向かって斜めに切り欠かれた形状であり、この斜めに切り欠かれた部分の縁部には傾斜面が形成され、
2本の前記攪拌軸に取り付けられる複数の攪拌部材は、該攪拌軸の軸方向投影において互いに重なる長さを有し、隣り合った攪拌軸に取り付けられる攪拌部材は回転中に互いに干渉を生じないように配置され、
2本の攪拌軸が互いに反対方向に回転駆動されたとき、前記ベッセル内の粉砕用固形媒体は、隣り合った攪拌軸上の攪拌部材が重なり合う領域において密な状態となり、前記攪拌部材の形状により攪拌軸の軸方向にほぼ沿って一方向に動くように強制され、前記攪拌部材が重なり合う領域とは反対側の領域において疎な状態となり、前記一方向とは反対方向に動く循環運動を生じるようになった、
ことを特徴とする粉砕装置。
A double cylinder-shaped vessel in which two cylinders are combined to form an eight-shaped cross section,
Lid plates provided at both ends of the vessel in the longitudinal direction,
Two stirrers arranged one at each axis of each of the two cylinders forming the V-shaped vessel;
A plurality of stirring members attached to each of the stirring shafts at intervals in the axial direction,
Driving means for driving the two stirring shafts to rotate at the same rotational speed in opposite directions to each other;
A slurry introduction port and a discharge port provided on at least one of the lid plates for introducing and discharging a slurry that is an object to be processed into the vessel,
With
The vessel is filled with a solid medium for grinding, and the solid particles contained in the slurry are ground while rotating the stirring shaft.
Each of the stirring members is a substantially rectangular plate-shaped member fixed to the stirring shaft so that the center thereof is coaxial with the stirring shaft and extends radially from the stirring shaft, and the rectangular plate-shaped member is rotated in the rotation direction. The front edge has a shape that is notched obliquely toward the tip, and an inclined surface is formed at the edge of the portion that is notched obliquely,
The plurality of stirring members attached to the two stirring shafts have a length overlapping each other in the axial projection of the stirring shafts, and the stirring members attached to adjacent stirring shafts do not interfere with each other during rotation. Are arranged as
When the two stirring shafts are driven to rotate in opposite directions, the solid medium for pulverization in the vessel becomes dense in a region where the stirring members on adjacent stirring shafts overlap, and depending on the shape of the stirring members. Forced to move in one direction substantially along the axial direction of the stirring shaft, the stirring member becomes sparse in a region opposite to the region where the stirring member overlaps, and generates a circulating motion moving in the direction opposite to the one direction. Became,
A crushing device characterized by the above-mentioned.
2つのシリンダーが組み合わされて断面形状が8字形に形成されたダブルシリンダー形状のベッセルと、
前記ベッセルの長さ方向両端部にそれぞれ設けられた蓋板と、
前記ベッセルの8字形を形成する2つのシリンダーのそれぞれの軸心に各1本ずつ配置された2本の攪拌軸と、
前記攪拌軸の各々に軸方向に相互に間隔をもって取り付けられた複数個の攪拌部材と、
前記2本の攪拌軸を互いに反対方向に同一の回転速度で回転するように駆動する駆動手段と、
前記ベッセル内に対し被処理物であるスラリーを導入及び排出するために前記蓋板の少なくとも一方に設けられたスラリー導入口及び排出口と、
を備え、
前記ベッセル内には粉砕用固形媒体を充填して前記攪拌軸を回転駆動しながらスラリーに含まれる固形粒子の粉砕を行うようになっており、
前記攪拌部材の各々は、中心が攪拌軸と同軸で該攪拌軸から放射状に延びるように該攪拌軸に固定された板状部材であり、該板状部材は回転方向前縁部に傾斜面が形成され、
2本の前記攪拌軸に取り付けられる複数の攪拌部材は、該攪拌軸の軸方向投影において互いに重なる長さを有し、隣り合った攪拌軸に取り付けられる攪拌部材は回転中に互いに干渉を生じないように配置され、
2本の攪拌軸が互いに反対方向に回転駆動されたとき、前記ベッセル内の粉砕用固形媒体は、隣り合った攪拌軸上の攪拌部材が重なり合う領域において密な状態となり、前記攪拌部材の形状により攪拌軸の軸方向にほぼ沿って一方向に動くように強制され、前記攪拌部材が重なり合う領域とは反対側の領域において疎な状態となり、前記一方向とは反対方向に動く循環運動を生じるようになった、
ことを特徴とする粉砕装置。
A double cylinder-shaped vessel in which two cylinders are combined to form an eight-shaped cross section,
Lid plates provided at both ends of the vessel in the longitudinal direction,
Two stirrers arranged one at each axis of each of the two cylinders forming the V-shaped vessel;
A plurality of stirring members attached to each of the stirring shafts at intervals in the axial direction,
Driving means for driving the two stirring shafts to rotate at the same rotational speed in opposite directions to each other;
A slurry introduction port and a discharge port provided on at least one of the lid plates for introducing and discharging a slurry that is an object to be processed into the vessel,
With
The vessel is filled with a solid medium for grinding, and the solid particles contained in the slurry are ground while rotating the stirring shaft.
Each of the stirring members is a plate-like member fixed to the stirring shaft so that the center is coaxial with the stirring shaft and radially extends from the stirring shaft, and the plate-like member has an inclined surface at a front edge in the rotation direction. Formed,
The plurality of stirring members attached to the two stirring shafts have a length overlapping each other in the axial projection of the stirring shafts, and the stirring members attached to adjacent stirring shafts do not interfere with each other during rotation. Are arranged as
When the two stirring shafts are driven to rotate in opposite directions, the solid medium for pulverization in the vessel becomes dense in a region where the stirring members on adjacent stirring shafts overlap, and depending on the shape of the stirring members. Forced to move in one direction substantially along the axial direction of the stirring shaft, the stirring member becomes sparse in a region opposite to the region where the stirring member overlaps, and generates a circulating motion moving in the direction opposite to the one direction. Became,
A crushing device characterized by the above-mentioned.
請求項1又は請求項2に記載した粉砕装置であって、前記攪拌軸の各々には、軸方向に離れた複数の位置の各々において、2個のほぼ同一形状の前記板状部材が対をなして、かつ、角度方向に互いにずらされて取り付けられたことを特徴とする粉砕装置。The crushing device according to claim 1 or 2, wherein each of the stirring shafts has a pair of two plate members having substantially the same shape at each of a plurality of axially separated positions. A pulverizing apparatus characterized in that the pulverizing apparatuses are mounted so as to be shifted from each other in an angular direction. 請求項3に記載した粉砕装置であって、対をなす前記板状部材の角度方向のずれは、60度から80度の範囲であることを特徴とする粉砕装置。The crushing device according to claim 3, wherein a deviation of the pair of plate members in an angular direction is in a range of 60 degrees to 80 degrees. 2つのシリンダーが組み合わされて断面形状が8字形に形成されたダブルシリンダー形状のベッセルと、
前記ベッセルの長さ方向両端部にそれぞれ設けられた蓋板と、
前記ベッセルの8字形を形成する2つのシリンダーのそれぞれの軸心に各1本ずつ配置された2本の攪拌軸と、
前記攪拌軸の各々に軸方向に相互に間隔をもって取り付けられた複数個の攪拌部材と、
前記2本の攪拌軸を互いに反対方向に同一の回転速度で回転するように駆動する駆動手段と、
前記ベッセル内に対し被処理物であるスラリーを導入及び排出するために前記蓋板の少なくとも一方に設けられたスラリー導入口及び排出口と、
を備え、
前記ベッセル内には粉砕用固形媒体を充填して前記攪拌軸を回転駆動しながらスラリーに含まれる固形粒子の粉砕を行うようになっており、
2本の前記攪拌軸に取り付けられる複数の攪拌部材は、該攪拌軸の軸方向投影において互いに重なる長さを有し、隣り合った攪拌軸に取り付けられる攪拌部材は回転中に互いに干渉を生じないように配置され、
前記攪拌部材は、2本の前記攪拌軸が互いに反対方向に回転駆動されたとき、隣り合った攪拌軸上の攪拌部材が重なり合う領域において前記ベッセル内の粉砕用固形媒体が密な状態となり、攪拌軸の軸方向にほぼ沿って一方向に動くように強制され、前記攪拌部材が重なり合う領域とは反対側の領域において疎な状態となり、前記一方向とは反対方向に動く循環運動を生じさせる形状に構成された、ことを特徴とする粉砕装置。
A double cylinder-shaped vessel in which two cylinders are combined to form an eight-shaped cross section,
Lid plates provided at both ends of the vessel in the longitudinal direction,
Two stirrers arranged one at each axis of each of the two cylinders forming the V-shaped vessel;
A plurality of stirring members attached to each of the stirring shafts at intervals in the axial direction,
Driving means for driving the two stirring shafts to rotate at the same rotational speed in opposite directions to each other;
A slurry introduction port and a discharge port provided on at least one of the lid plates for introducing and discharging a slurry that is an object to be processed into the vessel,
With
The vessel is filled with a solid medium for grinding, and the solid particles contained in the slurry are ground while rotating the stirring shaft.
The plurality of stirring members attached to the two stirring shafts have a length overlapping each other in the axial projection of the stirring shafts, and the stirring members attached to adjacent stirring shafts do not interfere with each other during rotation. Are arranged as
When the two stirring shafts are rotationally driven in opposite directions, the solid medium for pulverization in the vessel is in a dense state in a region where the stirring members on adjacent stirring shafts overlap with each other. A shape that is forced to move in one direction substantially along the axial direction of the shaft, becomes sparse in a region opposite to the region where the stirring member overlaps, and generates a circulating motion that moves in the opposite direction to the one direction. A crushing device, characterized in that:
請求項1から請求項5までのいずれか1項に記載した粉砕装置であって、前記ベッセルの外周部に熱媒体のためのジャケットが形成されたことを特徴とする粉砕装置。The crushing device according to any one of claims 1 to 5, wherein a jacket for a heat medium is formed on an outer peripheral portion of the vessel. 請求項1から請求項6までのいずれか1項に記載した粉砕装置であって、前記攪拌軸の各々には、前記一方向とは反対側の端部付近に、円板の外周に放射状に突出する複数個のピンを配置したピン型攪拌部材が取り付けられたことを特徴とする粉砕装置。The crushing device according to any one of claims 1 to 6, wherein each of the stirring shafts has a radially outer periphery of a disk near an end opposite to the one direction. A pulverizing device comprising a pin-type stirring member having a plurality of protruding pins arranged thereon. 2つのシリンダーが組み合わされて断面形状が8字形に形成されたダブルシリンダー形状のベッセルと、前記ベッセルの8字形を形成する2つのシリンダーのそれぞれの軸心に各1本ずつ配置された2本の攪拌軸と、前記攪拌軸の各々に軸方向に相互に間隔をもって取り付けられた複数個の攪拌部材とを備え、前記ベッセル内には粉砕用固形媒体と被処理物である固形粒子を含むスラリーを充填して前記攪拌軸を回転駆動しながら該スラリーに含まれる固形粒子の粉砕を行うようになった媒体攪拌型粉砕装置を使用して、スラリー内の固形粒子を粉砕する粉砕方法であって、
前記2本の攪拌軸を互いに反対方向に同一回転速度で回転駆動し、前記2本の攪拌軸に取り付けられた攪拌部材が互いに重なり合う領域において粉砕用固形媒体が蜜になる状態を生成させ、該粉砕用固形媒体が前記攪拌軸の軸方向に沿った一方向に動き、該攪拌部材が互いに重なり合う領域とは反対側の領域において該粉砕用固形媒体が疎になる状態を生成させ、該粉砕用固形媒体が前記一方向とは反対方向に動くようにして、粉砕用固形媒体の循環運動を該粉砕用固形媒体に生じさせる、
ことを特徴とする粉砕方法。
A double-cylinder-shaped vessel in which two cylinders are combined to form an eight-shape in cross section, and two cylinders each of which is arranged on the axis of each of the two cylinders forming the eight-shape of the vessel. A stirring shaft, comprising a plurality of stirring members attached to each of the stirring shafts at an interval in the axial direction, a slurry containing a solid medium for grinding and solid particles to be processed in the vessel. A pulverization method for pulverizing the solid particles in the slurry using a medium stirring type pulverizer that is designed to pulverize the solid particles contained in the slurry while rotating and driving the stirring shaft.
The two stirring shafts are rotationally driven in the opposite directions at the same rotation speed to generate a state in which the solid medium for grinding becomes nectar in a region where the stirring members attached to the two stirring shafts overlap each other, The solid medium for pulverization moves in one direction along the axial direction of the stirring shaft to generate a state in which the solid medium for pulverization becomes sparse in a region opposite to the region where the stirring members overlap each other. Causing the solid medium to move in a direction opposite to the one direction, causing a circulating motion of the solid medium for grinding in the solid medium for grinding,
A crushing method characterized by the above-mentioned.
JP2002271330A 2002-09-18 2002-09-18 Medium stirring type crusher Expired - Fee Related JP4263447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002271330A JP4263447B2 (en) 2002-09-18 2002-09-18 Medium stirring type crusher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002271330A JP4263447B2 (en) 2002-09-18 2002-09-18 Medium stirring type crusher

Publications (2)

Publication Number Publication Date
JP2004105844A true JP2004105844A (en) 2004-04-08
JP4263447B2 JP4263447B2 (en) 2009-05-13

Family

ID=32268678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002271330A Expired - Fee Related JP4263447B2 (en) 2002-09-18 2002-09-18 Medium stirring type crusher

Country Status (1)

Country Link
JP (1) JP4263447B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101071079B1 (en) * 2011-01-28 2011-10-10 주식회사 피엔에프 Manufacturing apparatus for recycled resin using resin scrap
CN107321449A (en) * 2017-08-02 2017-11-07 浙江艾领创矿业科技有限公司 A kind of multi-shaft stirring grinding machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101071079B1 (en) * 2011-01-28 2011-10-10 주식회사 피엔에프 Manufacturing apparatus for recycled resin using resin scrap
CN107321449A (en) * 2017-08-02 2017-11-07 浙江艾领创矿业科技有限公司 A kind of multi-shaft stirring grinding machine

Also Published As

Publication number Publication date
JP4263447B2 (en) 2009-05-13

Similar Documents

Publication Publication Date Title
JP4205620B2 (en) Ball mill with agitator
KR101233574B1 (en) Circular type media stirred mill
KR101575027B1 (en) Stirring ball mill
JP5261002B2 (en) Media mixing mill
US4919347A (en) Dispersing and grinding apparatus
JP6011155B2 (en) Circulation type media stirring mill
US6585180B2 (en) Pipeline beads mill and dispersing system having the pipeline beads mill
KR101743381B1 (en) Medium stirring type pulverizer
JP2006212489A (en) Grinding method using medium stirring type grinder
JP4684000B2 (en) Medium stirring type crusher
US20040251337A1 (en) Compound dispersing method and apparatus
JP2007125518A (en) Apparatus and method for processing liquid material
JP2006255519A (en) Medium circulation type crusher
KR100872540B1 (en) Continuous mixer
JP2944996B1 (en) Crushing and crushing granulator
JP3400087B2 (en) Stirring mill for fine powder grinding
JP2004105844A (en) Medium-agitating double-shaft grinding-machine and grinding method
JPH09164342A (en) Pulverizer
CN207385620U (en) Pharmaceutical stirring ball mill
JP2017074546A (en) Circulation type dry crushing apparatus
US20220410170A1 (en) Stirred ball mill, stirred ball mill stirring unit, and method for comminuting milling material
US3672580A (en) System for feeding grinding media to continuous attrition mill
WO2006112164A1 (en) Material slurry processing device
JP5406431B2 (en) Media agitation type wet crusher
JP2006035167A (en) Wet medium agitation mill and separation mechanism of minute pulverized medium from slurry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees