JP2004105782A - High speed filtration method and apparatus - Google Patents

High speed filtration method and apparatus Download PDF

Info

Publication number
JP2004105782A
JP2004105782A JP2002267782A JP2002267782A JP2004105782A JP 2004105782 A JP2004105782 A JP 2004105782A JP 2002267782 A JP2002267782 A JP 2002267782A JP 2002267782 A JP2002267782 A JP 2002267782A JP 2004105782 A JP2004105782 A JP 2004105782A
Authority
JP
Japan
Prior art keywords
raw water
turbidity
fine particles
polymer flocculant
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002267782A
Other languages
Japanese (ja)
Inventor
Teruhiro Kitazawa
北沢 照啓
Tetsuya Otsubo
大坪 徹也
Shigeki Terui
照井 茂樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2002267782A priority Critical patent/JP2004105782A/en
Publication of JP2004105782A publication Critical patent/JP2004105782A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent rapid rising of filtration resistance and deterioration of quality of filtered water. <P>SOLUTION: The high speed filtration unit 28 is provided with a turbidity sensor 30 for detecting turbidity of raw water after precipitation treatment by a coagulation/precipitation treatment facility 10; a coagulant addition means 32 for adding a polymer coagulant to the raw water; a controller 34; and a granular filter medium layer 38 passing the raw water added with the polymer coagulant. The controller 34 controls an amount of polymer coagulant added by the coagulant addition means 32 according to the detection value of the turbidity sensor 30. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は高速濾過方法及び装置に係り、特に沈殿処理後の原水を粒状濾材の充填層に通水し、原水中に含まれる微粒子を濾過分離する高速濾過方法及び装置に関する。
【0002】
【従来の技術】
高速濾過法は急速濾過法とも称され、原水を通常100m/日以上の濾過速度で粒状濾材層に通水し、原水中の微粒子を濾過分離する方法であり、濾過速度が10m/日以下の緩速濾過法と区別される。この高速濾過法は粒状濾材層を形成する濾材間の空隙部に微粒子を抑留させることを主眼としている。このため、微粒子を濾材層全体に分散させて、濾過抵抗の上昇を抑えつつ微粒子の捕捉量を可能な限り多くすることが重要である。濾過性能には濾過分離する微粒子の粒径分布が大きく影響する。微粒子の粒径分布が過大であると粒径が大きい微粒子の多くが濾材層の上流側の表層に留まる。この表層に留まった微粒子が濾材と類似の作用をなすことによって微細な微粒子を捕捉して表層濾過の現象を呈し、濾過抵抗の急激な上昇による運転の不安定を招く。また、微粒子の粒径分布が過小であると微粒子が濾材の間隙を縫って処理水(濾過水)に残存し易くなり、水質の悪化を招く。
このため、この種の高速濾過法では被処理水を沈澱処理して、予め粒径の大きい粒子を沈殿除去することが一般に行われている。また、凝集沈殿処理を施して粒径の大きい粒子のみならず、粒径が比較的小さい粒子をも凝集沈殿によって除去し、濾過装置の負荷を低減させることも行われている。さらに、このような沈澱処理を経た原水に凝集剤を添加し原水に含まれる微粒子を凝集させることによって微細なフロックを形成させ、高速濾過装置に通水することが行われている。(以上、例えば非特許文献1参照)
【0003】
【非特許文献1】
井出哲夫著、「水処理工学」、第1版4刷、技報堂出版(株)、1980年4月、p95〜97,102〜105,127〜130
【0004】
【発明が解決しようとする課題】
しかしながら、従来の高速濾過装置は上述のように濾過分離する微粒子の粒径分布が濾過性能に大きく影響するにもかかわらず、十分な運転管理が行われていなかった。例えば河川水を高速濾過して浄水を得る場合に、降雨によって濁った河川水を凝集沈殿処理すると、凝集沈殿処理水中の微粒子量が晴天時に比べて著しく多くなるとともに、濾材の間を摺り抜ける微粒子の数が多くなる傾向がある。このため、降雨時の凝集沈殿処理水をそのまま高速濾過のための原水とすると、高速濾過装置での運転が不安定となり、濾過水の水質悪化などを招く欠点があった。
【0005】
本発明の目的は上記従来技術の問題点を改善し、原水中の微粒子量や微粒子の粒径分布が変動する場合においても、濾過抵抗の急激な上昇や濾過水の水質悪化などを招き難く、安定な運転を維持することができる高速濾過方法及び装置を提供することにある。
【0006】
【課題を解決するための手段】
本発明に係る高速濾過方法は、沈殿処理後の原水を粒状濾材層に通水し、原水中に含まれる微粒子を濾過分離する高速濾過方法において、前記原水の濁度を濁度センサによって検出し、その検出結果に応じて前記原水に所定量の高分子凝集剤を添加することを特徴とする。
【0007】
また、本発明に係る高速濾過装置は、沈殿処理後の原水の濁度を検出可能な濁度センサと、前記原水に高分子凝集剤を添加する凝集剤添加手段と、前記濁度センサの検出値に応じて前記凝集剤添加手段で添加する高分子凝集剤の量を制御する制御手段と、前記高分子凝集剤が添加された原水が通水される粒状濾材層とを具備したことを特徴とする。この場合、前記制御手段は原水の水温に応じて前記凝集剤添加手段で添加する高分子凝集剤の量を補正する機能を具備していることが好ましい。
【0008】
【発明の実施の形態】
図1は本発明の実施形態を示す装置系統図である。凝集沈殿処理設備10は混和槽12と、フロック形成槽14と、沈殿槽15とを具備している。混和槽12では流入する被処理水16に対して凝集剤18が添加され、被処理水16と凝集剤18とが急速撹拌機20によって混合される。フロック形成槽14では混和槽12からの被処理水が緩速撹拌機22によってゆっくりと混和され、被処理水中の微粒子が前記添加された凝集剤の作用によって凝集し、フロックを形成する。沈殿槽15ではフロック形成槽14で形成されたフロックが槽底部に沈殿し、沈殿汚泥24として抜き出される。沈殿槽15の上澄水である原水は管路26を介し高速濾過器28に供給される。なお、管路26の途中には濁度計30が配置され、濁度計30は原水の濁度を連続的又は間欠的に検出する。
【0009】
管路26には凝集剤添加手段32が接続している。すなわち、濁度計30で検出された原水の濁度がコントローラ34に送信され、コントローラ34では原水の濁度に応じて原水に注入する高分子凝集剤の量を演算する。凝集剤添加手段32ではコントローラ34からの信号により、所定量の高分子凝集剤を管路26内の原水に注入する。また、管路26にはラインミキサ36が配設されており、ラインミキサ36で高分子凝集剤と原水が均一に混合された後に、原水は高速濾過器28に流入する。
【0010】
この高分子凝集剤の注入には、主に二つの作用が期待される。第1の作用は原水中に含まれる微粒子を凝集させる。この微粒子の凝集作用は、原水が微粒子を高速濾過器28の粒状濾材層38に流入するまでに完了している必要はない。むしろ、原水が高速濾過器28の粒状濾材層38を通過する過程で徐々に進行することが好ましい。すなわち、高速濾過器28に流入直後の原水中の微粒子は粒状濾材層38を形成する濾材間の空隙部を通過しやすい微小粒径であることが好ましく、濾材間の空隙部を通過する過程で微粒子相互が凝集することによって適度な大きさのフロックとして濾材間の空隙部に抑留させることができる。このような、微粒子の凝集作用が粒状濾材層38の全域で徐々に進行することによって、濾過抵抗の上昇を抑えつつ微粒子の捕捉量を可能な限り多くすることが可能となる。
【0011】
また、高分子凝集剤注入の第2の作用は、微粒子の付着作用である。高速濾過器28に流入した微粒子は注入された高分子凝集剤の作用によって、粒状濾材層38を通過する過程で濾材に付着し、さらに濾材に付着した微粒子に対して新たな微粒子が次々に連鎖的に付着する。また、濾材間の空隙部に捕捉されたフロックに対しても新たな微粒子が付着してフロックが徐々に大きくなる。このような、濾材間の空隙部内部での微粒子同士の凝集と、濾材またはフロックへの微粒子の付着によって、濾材間の空隙部が微粒子でほぼ埋まると当該空隙部での通水抵抗が増大する。すると、原水は通水抵抗が小さい他の空隙部へ流れ方向を変えることになり、粒状濾材層38ではこの凝集作用と付着作用とが複合的に進行して自律的な全層濾過が実現することになる。
粒状濾材層38を通過する過程で微粒子が濾過された処理水は管路40から系外に排出される。
【0012】
高分子凝集剤の添加量は、前記したように濁度計30で検出された原水の濁度に応じてコントローラ34によって演算されるが、この際の演算式は通常は経験則に基づいて設定される。図2は演算式を設定する場合の根拠となる原水の濁度と高分子凝集剤の好ましい添加量との相関関係を例示したグラフである。実線Aは常温時の場合であり、所定の濁度Tまでは高分子凝集剤の添加量を一定量aとし、以降濁度が増加するに従って、高分子凝集剤の添加量を所定の比例定数cで増加させる。また、点線Bは冬期など原水の温度が低い場合である。すなわち、水温が下がると高分子凝集剤の拡散性が悪くなり凝集効果が低下するので、添加量を相対的に引き上げるように補正する。なお、図2における定数T,a,b,cなどは高速濾過器28を構成する粒状濾材の種類や平均粒径,粒状濾材層の層高,原水の通水速度,高分子凝集剤の種類,ラインミキサ36の性能や取り付け位置などによって適正な値が経験的に求められる。高分子凝集剤の添加量のオーダとしては本発明者の実験結果によれば原水に対して数十ppbの高分子凝集剤の添加で十分な効果が得られている。したがって、上記コントローラ34による高分子凝集剤の添加量の制御は、通常はこの数十ppbレベルの範囲内での制御となる。
【0013】
なお、原水の濁度とは無関係に高分子凝集剤を定量添加した場合には、添加量の過不足により、主に下記の弊害が発生する。すなわち、添加量が過少であると原水中の微粒子の凝集作用及び付着作用が不足し、管路40から排出される処理水に微粒子が漏れ易くなり、水質の悪化を招く。また、添加量が過多であると原水が高速濾過器28に流入する以前に原水中の微粒子の大半が凝集する。この凝集によって粗大化したフロックが高速濾過器28の粒状濾材層38の表層で捕捉されるため、いわゆる表層濾過の現象を呈し、高速濾過器28の本来の目的である全層濾過の継続が困難となる。このため、粒状濾材層38の通水抵抗の増大を招き、濾材層の逆洗頻度が多くなるなどの不安定運転を招く。
【0014】
また、高分子凝集剤の添加量制御は、前記したように原水の濁度に基づくフィードフォワード制御が有効である。管路40に処理水の濁度を検出する濁度計を設置し、この濁度計で検出した処理水の濁度に基づいて、高速濾過器28に流入する原水への高分子凝集剤の添加量をフィードバック制御することも考え得る。しかしながら、この方法は高分子凝集剤の添加量が過少なために水質が悪化を招く事態を防止するためには有効であるが、添加量が過多である場合の不安定運転を防止するには有効に機能しない。また、濾材層での原水の通過時間によるタイムラグで制御の応答性が低下することも考えられる。一方、本発明に係る原水の濁度に基づくフィードフォワード制御によれば、原水の濁度に応じてタイムラグを生じることなく、高分子凝集剤の添加量を適量に制御できるので、添加量の過少による水質の悪化と、過多による不安定運転の両方を回避できる。なお、上記のフィードフォワード制御に加え、処理水の濁度に基づく高分子凝集剤の添加量のフィードバック制御を補助的に組合せると、より一層きめの細かい制御が可能となり、高速濾過器の信頼性が向上する。
【0015】
前記実施形態の説明では、凝集剤添加手段32からの高分子凝集剤を管路26内の原水に注入し、ラインミキサ36で高分子凝集剤と原水を混合した後に、原水を高速濾過器28に流入させる場合を示した。しかしながら、本発明に係る高分子凝集剤と原水との混合手段はこれに限らず、管路26の途中に混和槽を配置し、この混和槽に流入した原水に高分子凝集剤を注入して、混合撹拌する構成としてもよい。また、原水の濁度計は管路26の途中に設ける必要はなく、例えば沈殿槽15の上澄水の濁度を検出し、この検出結果を原水の濁度としてコントローラ34に入力するようにしてもよい。
【0016】
【発明の効果】
本発明によれば、沈殿処理後の原水の濁度を濁度センサによって検出し、その検出結果に応じて、原水に所定量の高分子凝集剤を添加するようにしたので、原水中の微粒子量や微粒子の粒径分布が変動する場合においても、高速濾過器での濾過抵抗の急激な上昇や濾過水の水質悪化などを招き難く、安定な運転を維持することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す装置系統図である。
【図2】原水濁度と凝集剤添加量との関係を示すグラフである。
【符号の説明】
10……凝集沈殿処理設備
26……(原水の供給)管路
28……高速濾過器
30……濁度計
32……高分子添加手段
34……コントローラ
36……ラインミキサ
38……粒状濾材層
40……(処理水の排出)管路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-speed filtration method and apparatus, and more particularly to a high-speed filtration method and apparatus for passing raw water after settling treatment through a packed bed of granular filter media and filtering and separating fine particles contained in the raw water.
[0002]
[Prior art]
The high-speed filtration method is also called a rapid filtration method, and is a method of passing raw water through a granular filter medium layer at a filtration speed of usually 100 m / day or more to filter and separate fine particles in the raw water. The filtration speed is 10 m / day or less. It is distinguished from the slow filtration method. The main purpose of this high-speed filtration method is to restrain fine particles in gaps between filter media forming a granular filter media layer. For this reason, it is important to disperse the fine particles throughout the filter medium layer and to increase the amount of the captured fine particles as much as possible while suppressing an increase in the filtration resistance. The filtration performance is greatly affected by the particle size distribution of the fine particles to be separated by filtration. If the particle size distribution of the fine particles is excessive, most of the fine particles having a large particle size remain in the surface layer on the upstream side of the filter medium layer. The fine particles remaining on the surface layer act similarly to the filter medium to capture the fine particles, exhibiting a phenomenon of surface filtration, leading to instability in operation due to a rapid increase in filtration resistance. Further, if the particle size distribution of the fine particles is too small, the fine particles are liable to remain in the treated water (filtered water) by sewing through the gap between the filter media, resulting in deterioration of the water quality.
For this reason, in this type of high-speed filtration method, it is common practice to subject the water to be treated to a precipitation treatment to remove particles having a large particle diameter in advance. In addition, by performing coagulation and sedimentation treatment, not only particles having a large particle size but also particles having a relatively small particle size are removed by coagulation and sedimentation, thereby reducing the load on a filtration device. Further, a flocculant is added to raw water that has undergone such a precipitation treatment, and fine particles contained in the raw water are aggregated to form fine flocs, which are then passed through a high-speed filtration device. (For example, see Non-Patent Document 1)
[0003]
[Non-patent document 1]
Ide Tetsuo, "Water Treatment Engineering", 4th edition, 1st edition, Gihodo Shuppan Co., Ltd., April 1980, pp. 95-97, 102-105, 127-130
[0004]
[Problems to be solved by the invention]
However, in the conventional high-speed filtration device, sufficient operation management has not been performed even though the particle size distribution of the fine particles to be filtered and separated greatly affects the filtration performance as described above. For example, when purifying river water by high-speed filtration to obtain purified water, if the river water that is turbid due to rainfall is subjected to coagulation sedimentation, the amount of fine particles in the coagulated sedimentation water will be significantly greater than in fine weather, and the fine particles that slide through the filter media Tend to increase. For this reason, if the coagulated sedimentation treated water during rainfall is used as raw water for high-speed filtration, the operation of the high-speed filtration device becomes unstable, and the quality of filtered water deteriorates.
[0005]
The object of the present invention is to improve the above-described problems of the prior art, and even when the amount of fine particles in the raw water and the particle size distribution of the fine particles fluctuate, it is difficult to cause a sudden increase in filtration resistance or deterioration of the quality of the filtered water, An object of the present invention is to provide a high-speed filtration method and apparatus capable of maintaining stable operation.
[0006]
[Means for Solving the Problems]
The high-speed filtration method according to the present invention is a high-speed filtration method in which raw water after the precipitation treatment is passed through a granular filter medium layer to filter and separate fine particles contained in the raw water, wherein the turbidity of the raw water is detected by a turbidity sensor. And adding a predetermined amount of a polymer coagulant to the raw water according to the detection result.
[0007]
Further, the high-speed filtration device according to the present invention includes a turbidity sensor capable of detecting the turbidity of the raw water after the precipitation treatment, a flocculant adding means for adding a polymer flocculant to the raw water, and detection of the turbidity sensor. Control means for controlling the amount of the polymer flocculant added by the flocculant adding means according to the value, and a granular filter medium layer through which raw water to which the polymer flocculant is added is passed. And In this case, it is preferable that the control means has a function of correcting the amount of the polymer flocculant added by the flocculant adding means according to the temperature of the raw water.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is an apparatus system diagram showing an embodiment of the present invention. The coagulation and sedimentation treatment equipment 10 includes a mixing tank 12, a floc forming tank 14, and a sedimentation tank 15. In the mixing tank 12, the coagulant 18 is added to the inflowing water 16 to be treated, and the water 16 to be treated and the coagulant 18 are mixed by the rapid stirrer 20. In the floc forming tank 14, the water to be treated from the mixing tank 12 is slowly mixed by the slow stirrer 22, and the fine particles in the water to be treated are aggregated by the action of the added coagulant to form flocs. In the sedimentation tank 15, the flocs formed in the floc formation tank 14 settle at the bottom of the tank and are extracted as settled sludge 24. Raw water, which is the supernatant water of the sedimentation tank 15, is supplied to a high-speed filter 28 via a pipe 26. A turbidity meter 30 is disposed in the middle of the pipe 26, and the turbidity meter 30 detects the turbidity of raw water continuously or intermittently.
[0009]
A coagulant adding means 32 is connected to the pipe 26. That is, the turbidity of the raw water detected by the turbidity meter 30 is transmitted to the controller 34, and the controller 34 calculates the amount of the polymer flocculant to be injected into the raw water according to the turbidity of the raw water. The coagulant adding means 32 injects a predetermined amount of the polymer coagulant into the raw water in the pipe 26 according to a signal from the controller 34. Further, a line mixer 36 is provided in the pipe 26, and after the polymer flocculant and the raw water are uniformly mixed in the line mixer 36, the raw water flows into the high-speed filter 28.
[0010]
The injection of the polymer flocculant is expected to have two main effects. The first effect is to aggregate fine particles contained in raw water. The aggregating action of the fine particles need not be completed before the raw water flows the fine particles into the granular filter medium layer 38 of the high-speed filter 28. Rather, it is preferable that the raw water gradually progresses in the process of passing through the granular filter medium layer 38 of the high-speed filter 28. That is, it is preferable that the fine particles in the raw water immediately after flowing into the high-speed filter 28 have a fine particle diameter that easily passes through the gap between the filter media forming the granular filter media layer 38, and in the process of passing through the gap between the filter media. By agglomeration of the fine particles, the fine particles can be restrained in the space between the filter media as flocs of an appropriate size. Such an aggregating action of the fine particles gradually progresses in the entire area of the granular filter medium layer 38, so that the amount of the captured fine particles can be increased as much as possible while suppressing an increase in filtration resistance.
[0011]
The second function of the injection of the polymer flocculant is the action of adhering fine particles. The fine particles flowing into the high-speed filter 28 adhere to the filter medium while passing through the granular filter medium layer 38 by the action of the injected polymer flocculant, and new fine particles are successively linked to the fine particles adhered to the filter medium. Attached. Further, new fine particles adhere to the flocs trapped in the gaps between the filter media, and the flocs gradually increase. Due to such agglomeration of the fine particles inside the gap between the filter media and the adhesion of the fine particles to the filter medium or the floc, when the gap between the filter media is almost completely filled with the fine particles, the water flow resistance in the gap increases. . Then, the raw water changes its flow direction to another void portion having a small water flow resistance, and in the particulate filter medium layer 38, this coagulation action and adhesion action proceed in a complex manner to realize autonomous all-layer filtration. Will be.
The treated water from which the fine particles have been filtered in the process of passing through the granular filter medium layer 38 is discharged out of the system through a pipe 40.
[0012]
The amount of the polymer flocculant to be added is calculated by the controller 34 in accordance with the turbidity of the raw water detected by the turbidimeter 30 as described above, and the calculation formula at this time is usually set based on empirical rules. Is done. FIG. 2 is a graph illustrating a correlation between the turbidity of raw water and a preferable addition amount of a polymer flocculant, which is a basis for setting an arithmetic expression. The solid line A is the case at normal temperature, and the addition amount of the polymer flocculant is a constant amount a until the predetermined turbidity T, and thereafter, as the turbidity increases, the addition amount of the polymer flocculant is increased by a predetermined proportional constant. Increase with c. The dotted line B indicates a case where the temperature of the raw water is low, such as in winter. That is, when the water temperature decreases, the diffusibility of the polymer flocculant deteriorates, and the flocculant effect decreases. Therefore, the addition amount is corrected so as to be relatively increased. The constants T, a, b, c and the like in FIG. 2 are the type and average particle size of the granular filter medium constituting the high-speed filter 28, the layer height of the granular filter medium layer, the flow rate of raw water, and the type of polymer flocculant. An appropriate value is empirically determined according to the performance and the mounting position of the line mixer 36. According to the experimental results of the inventor of the present invention, a sufficient effect is obtained by adding several tens of ppb of the polymer flocculant to the raw water. Therefore, the control of the amount of the polymer flocculant to be added by the controller 34 is usually controlled within the range of this several tens of ppb level.
[0013]
When the polymer coagulant is quantitatively added irrespective of the turbidity of the raw water, the following adverse effects mainly occur due to excess or deficiency of the added amount. That is, if the addition amount is too small, the aggregating action and the adhering action of the fine particles in the raw water will be insufficient, and the fine particles will easily leak into the treated water discharged from the pipe 40, and the water quality will be deteriorated. If the amount of addition is excessive, most of the fine particles in the raw water aggregate before the raw water flows into the high-speed filter 28. The floc coarsened by the aggregation is captured by the surface layer of the granular filter medium layer 38 of the high-speed filter 28, so that a so-called surface filtration phenomenon is exhibited, and it is difficult to continue full-layer filtration, which is the original purpose of the high-speed filter 28. It becomes. For this reason, the flow resistance of the granular filter medium layer 38 is increased, and unstable operation such as the frequency of backwashing of the filter medium layer is increased.
[0014]
As described above, feedforward control based on the turbidity of raw water is effective for controlling the amount of the polymer flocculant to be added. A turbidity meter for detecting the turbidity of the treated water is installed in the pipe line 40, and based on the turbidity of the treated water detected by the turbidity meter, the polymer flocculant is added to the raw water flowing into the high-speed filter 28. It is also conceivable to feedback control the amount of addition. However, this method is effective for preventing a situation in which the water quality is deteriorated due to an insufficient amount of the polymer flocculant, but for preventing unstable operation when the amount of the polymer coagulant is excessive. Does not work effectively. It is also conceivable that the control responsiveness is reduced by a time lag due to the passage time of the raw water in the filter medium layer. On the other hand, according to the feedforward control based on the turbidity of the raw water according to the present invention, the amount of the polymer flocculant added can be controlled to an appropriate amount without causing a time lag according to the turbidity of the raw water. This can avoid both deterioration of water quality due to turbidity and unstable operation due to excess. If the feedback control of the amount of the polymer flocculant added based on the turbidity of the treated water is supplementarily combined with the feedforward control described above, finer control becomes possible, and the reliability of the high-speed filter is improved. The performance is improved.
[0015]
In the description of the above embodiment, the polymer flocculant from the flocculant adding means 32 is injected into the raw water in the pipe 26, and the polymer flocculant and the raw water are mixed by the line mixer 36. The case where it is made to flow into was shown. However, the mixing means of the polymer flocculant and the raw water according to the present invention is not limited to this, and a mixing tank is disposed in the middle of the pipe 26, and the polymer flocculant is injected into the raw water flowing into the mixing tank. It may be configured to mix and stir. Further, the turbidity meter of the raw water need not be provided in the middle of the pipe 26. For example, the turbidity of the supernatant water in the settling tank 15 is detected, and the detection result is input to the controller 34 as the turbidity of the raw water. Is also good.
[0016]
【The invention's effect】
According to the present invention, the turbidity of the raw water after the precipitation treatment is detected by a turbidity sensor, and a predetermined amount of a polymer flocculant is added to the raw water according to the detection result. Even when the amount or the particle size distribution of the fine particles fluctuates, a rapid increase in filtration resistance in a high-speed filter or deterioration of the quality of filtered water is hardly caused, and stable operation can be maintained.
[Brief description of the drawings]
FIG. 1 is an apparatus system diagram showing an embodiment of the present invention.
FIG. 2 is a graph showing the relationship between raw water turbidity and the amount of coagulant added.
[Explanation of symbols]
10 Coagulation / sedimentation treatment equipment 26 (supply of raw water) Pipe 28 High-speed filter 30 Turbidity meter 32 Polymer addition means 34 Controller 36 Line mixer 38 Granular filter medium Layer 40 ... (Discharge of treated water) Pipe line

Claims (3)

沈殿処理後の原水を粒状濾材層に通水し、原水中に含まれる微粒子を濾過分離する高速濾過方法において、前記原水の濁度を濁度センサによって検出し、その検出結果に応じて前記原水に所定量の高分子凝集剤を添加することを特徴とする高速濾過方法。In a high-speed filtration method of passing raw water after the precipitation treatment through a granular filter medium layer and filtering and separating fine particles contained in the raw water, the turbidity of the raw water is detected by a turbidity sensor, and the raw water is filtered in accordance with the detection result. A high-speed filtration method, comprising adding a predetermined amount of a polymer flocculant to the mixture. 沈殿処理後の原水の濁度を検出可能な濁度センサと、前記原水に高分子凝集剤を添加する凝集剤添加手段と、前記濁度センサの検出値に応じて前記凝集剤添加手段で添加する高分子凝集剤の量を制御する制御手段と、前記高分子凝集剤が添加された原水が通水される粒状濾材層とを具備したことを特徴とする高速濾過装置。A turbidity sensor capable of detecting the turbidity of the raw water after the precipitation treatment, a flocculant adding means for adding a polymer flocculant to the raw water, and a flocculant adding means in accordance with the detection value of the turbidity sensor A high-speed filtration device comprising: a control unit for controlling the amount of the polymer flocculant to be mixed; and a granular filter medium layer through which raw water to which the polymer flocculant is added passes. 前記制御手段は前記原水の水温に応じて前記凝集剤添加手段で添加する高分子凝集剤の量を補正する機能を具備したことを特徴とする請求項2に記載の高速濾過装置。The high-speed filtration device according to claim 2, wherein the control means has a function of correcting the amount of the polymer flocculant added by the flocculant adding means according to the temperature of the raw water.
JP2002267782A 2002-09-13 2002-09-13 High speed filtration method and apparatus Pending JP2004105782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002267782A JP2004105782A (en) 2002-09-13 2002-09-13 High speed filtration method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002267782A JP2004105782A (en) 2002-09-13 2002-09-13 High speed filtration method and apparatus

Publications (1)

Publication Number Publication Date
JP2004105782A true JP2004105782A (en) 2004-04-08

Family

ID=32266190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002267782A Pending JP2004105782A (en) 2002-09-13 2002-09-13 High speed filtration method and apparatus

Country Status (1)

Country Link
JP (1) JP2004105782A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100742262B1 (en) 2006-08-09 2007-07-25 삼보과학 주식회사 A Automatic Manless Throwing Control Unit of Condensation Material
JP2008229437A (en) * 2007-03-19 2008-10-02 Okumura Corp Muddy water treatment apparatus
CN101805050A (en) * 2010-03-17 2010-08-18 上海大学 Method and system for controlling coagulant dosing through on-line prediction of turbidity after flocculation water sedimentation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100742262B1 (en) 2006-08-09 2007-07-25 삼보과학 주식회사 A Automatic Manless Throwing Control Unit of Condensation Material
JP2008229437A (en) * 2007-03-19 2008-10-02 Okumura Corp Muddy water treatment apparatus
CN101805050A (en) * 2010-03-17 2010-08-18 上海大学 Method and system for controlling coagulant dosing through on-line prediction of turbidity after flocculation water sedimentation

Similar Documents

Publication Publication Date Title
AU2008290085B2 (en) Method of flocculating sedimentation treatment
JP2014237122A (en) Coagulation sedimentation equipment and method
JP4202207B2 (en) Coagulation separation device
JP5401087B2 (en) Flocculant injection control method
JP4505772B2 (en) Coagulant injection control method for water purification plant
JP3199897B2 (en) Coagulant injection control device for water purification plant
JP4516152B1 (en) Coagulation precipitation treatment method
JP2006075750A (en) Flocculation separation treatment device and flocculation separation treatment method
JP4933473B2 (en) Slurry circulation type coagulation sedimentation treatment apparatus and operation method thereof
JP2004105782A (en) High speed filtration method and apparatus
JP2007222814A (en) Flocculant injection volume control method and control controller
JP2002035503A (en) Turbid water treatment apparatus
JP2003200007A (en) Water treatment apparatus
JPH06226011A (en) Flocculant injection control method in water treating flocculation process and flocculant injection control device
JP3559822B2 (en) Water treatment method and apparatus
JP5210948B2 (en) Chemical injection control method for water purification plant
JPH05146608A (en) Method and apparatus for controlling injection of flocculant
KR20140059557A (en) Water treating apparatus with means for adjusting injection amount of coagulant and method for adjusting injection amount of coagulant
JP3958990B2 (en) Processed liquid supply amount adjustment method and coagulation sedimentation equipment
JPH08309109A (en) Controlling device for pouring chemical in water purification plant
JP3905663B2 (en) Solid-liquid separator and flocculation condition determination method
JP2004141782A (en) Water quality control method
JP2020142188A (en) Flocculant injection control device, flocculant injection control method and computer program
JP2003047805A (en) Water treatment apparatus and apparatus for adjusting quantity of flocculant to be added
KR101663198B1 (en) Membrane filtration apparatus and membrane filtration method using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070130