JP2004104717A - Receiver, error-correction decoding device, and error-correction decoding method - Google Patents

Receiver, error-correction decoding device, and error-correction decoding method Download PDF

Info

Publication number
JP2004104717A
JP2004104717A JP2002267439A JP2002267439A JP2004104717A JP 2004104717 A JP2004104717 A JP 2004104717A JP 2002267439 A JP2002267439 A JP 2002267439A JP 2002267439 A JP2002267439 A JP 2002267439A JP 2004104717 A JP2004104717 A JP 2004104717A
Authority
JP
Japan
Prior art keywords
received signal
likelihood
power
soft decision
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002267439A
Other languages
Japanese (ja)
Inventor
Taichi Murase
村瀬 太一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002267439A priority Critical patent/JP2004104717A/en
Publication of JP2004104717A publication Critical patent/JP2004104717A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a receiver, an error-correction decoding device and an error-correction decoding method in which error-correction processing is performed by rightly calculating the likelihood value in the communication environment where a received signal power is fluctuated but an S/N is not fluctuated or in the communication environment where the received signal power and a noise power are independently fluctuated. <P>SOLUTION: Whether or not a soft decision likelihood value is to be corrected is decided based on the fluctuation quantity of a noise power component in a received signal or presence/absence of fluctuation of the S/N and based on the decided result, the soft decision likelihood value is corrected as needed, so that an error-correction capability is prevented from being lowered by the unwanted correction. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、CDMA通信システムのように、受信信号電力は変動するが、受信信号の希望波成分と雑音成分との比は変動しない通信環境等において、使用される受信装置、誤り訂正復号装置及び誤り訂正復号方法に適用するに好適である。
【0002】
【従来の技術】
従来の移動体通信システム等に用いられる受信装置においては、その受信回路に設けられたアナログディジタル変換回路の入力レンジが決まっていることにより、受信信号を一旦AGC(Automatic Gain Control)回路に入力し、ここで受信信号の電力を一定とした後に、これをアナログディジタル変換している。
【0003】
AGC回路において信号レベルが一定にされたAGC出力信号は、誤り訂正復号器に出力される。この誤り訂正復号器は、例えば送信側での畳み込み符号に対応して実行されるビタビ復号のような最尤度判定を行うものであり、算出された軟判定尤度値にS/Nの大きさが反映されるように、受信信号の信号レベル(瞬時受信振幅)に依存する重み係数を軟判定尤度値に乗算することにより、その軟判定尤度値を補正する。これにより、雑音電力は変動せず、また、受信信号電力のみがフェージングによって変動するような通信環境において、誤り訂正能力の低下を抑えるようになっていた(例えば特許文献1参照)。
【0004】
すなわち、誤り訂正復号における尤度は、誤り訂正を行う対象となる信号(受信信号)のS/Nによって変化する。従って、各時点における軟判定尤度値の比は、各時点におけるS/Nの比(希望波成分と雑音成分との比)と等しくなければならない。
【0005】
図13は、雑音電力は変動せず受信信号電力のみがフェージングによって変動するような通信環境における、雑音電力と受信信号電力の変動例を示す信号波形図である。そして、この場合の各時点におけるS/Nは、受信信号電力/雑音電力によって表すことができ、この結果は図14に示すようになる。図14に示すように、受信信号のS/Nは、時点tにおいて「2」となり、時点t+1において「11」となり、また時点t+2において「3」となる。
【0006】
一方、受信装置においては、上述した理由により、総受信電力(受信信号電力及び雑音電力の和)を一定に保つために、AGC回路を用いている。図15は、図13に示した信号波形図の条件において、AGC回路を用いて各時点における総受信電力を「12」に調整した場合の雑音電力及び受信信号電力の変動を示す信号波形図である。
【0007】
また、この場合の軟判定尤度値は、各時点における軟判定尤度値の比と、受信信号電力の比とが等しくなることにより、受信信号電力との比例定数をkとすると、図16に示すようになる。図16に示すように、受信信号の軟判定尤度値(補正なし)は、時点tにおいて「8k」となり、時点t+1において「11k」となり、また時点t+2において「9k」となる。
【0008】
この場合、図16に示した各時点における軟判定尤度値の比は、図14に示した各時点におけるS/Nの比と一致しておらず、正しい軟判定尤度値は算出されていない。
【0009】
これは、各時点におけるS/Nは変動しているにも関わらず、AGC回路が総受信電力を一定にしていることにより、軟判定尤度値にS/Nが反映されないことを原因としている。
【0010】
従って、このような通信環境では、AGC回路を用いると正しく軟判定尤度値を算出することが困難となり、誤り訂正能力が低下する。このような場合、従来、軟判定尤度値にS/Nの大きさが反映されるように、瞬時受信振幅に依存する重み係数を軟判定尤度値に乗算することによる補正を行う。
【0011】
この補正は、S/Nでの補正ではなく、瞬時受信振幅に依存する重み係数を用いた補正であるが、雑音電力が変動しない環境においては、各時点におけるS/Nの比と、瞬時受信振幅に依存する重み係数の比は等しい関係にあることにより、雑音電力が変動しない限りにおいて、正しい補正が行われる。
【0012】
図17は、軟判定尤度値に瞬時受信振幅に依存する重み係数を乗算した場合の、各時点における軟判定尤度値を示す図である。但しこの場合、瞬時受信振幅に依存する重み係数としては、瞬時受信振幅の2乗値である総受信電力値を用いている。
【0013】
この図17に示すように、各時点における軟判定尤度値の比は、図2の各時点におけるS/Nの値と一致しており、このように雑音電力が変動しない環境において用いられる限りにおいては、正しく軟判定尤度値を算出することができ、この結果、誤り訂正能力の低下を抑えることができる。
【0014】
【特許文献1】
特開平5−315977号公報(第6頁、図8)
【0015】
【発明が解決しようとする課題】
しかしながら、CDMA(Code Division Multiple Access)方式の移動体通信システム等では、他セルからの干渉は、多くの信号からなるので変動のないほぼ一定の電力となるが、受信信号が複数のパスを介して受信されるマルチパス信号は、フェージングによって電力が変動する。従って、フェージング環境において雑音電力の主成分がマルチパスによるものである場合は、その雑音電力(干渉成分)が変動する。
【0016】
また、このような場合、マルチパス信号はレイク合成受信によって信号電力にもなることにより、雑音電力の変動と、受信信号電力の変動は、ほぼ一致し、結果的には、受信信号電力が変動しても、S/N(希望波成分と雑音成分との比)は大きく変動することはない通信環境となる。
【0017】
このような通信環境が成立する他の条件としては、送信電力制御が挙げられる。この送信電力制御では、雑音電力や受信信号電力がフェージングによって変動した場合、受信側でのS/Nが常に一定となるように送信側で送信電力を制御するものである。従って、受信信号電力が変動しても、S/Nが変動しない通信環境となる。
【0018】
このような通信環境における、雑音電力及び受信信号電力の変動の例を図18に示す。そして、この図18に示す雑音電力及び受信信号電力の変動状態における、各時点でのS/Nを図19に示す。図19に示すように、受信信号のS/Nは、時点tにおいて「2」となり、時点t+1において「2」となり、また時点t+2において「2」となる。
【0019】
すなわち、図18に示す雑音電力及び受信信号電力の変動例では、総受信信号電力が変動しているにも関わらず、そのS/Nは変動していない状態となっている。
【0020】
このように総受信信号電力が変動する受信信号を、AGC回路によって利得制御することにより、その総受信信号電力を「12」に調整した状態を図20に示す。
【0021】
この図20に示すように、もともとS/Nの変動がない受信信号をAGC回路によって利得制御し、その総受信信号電力が一定となるようにした場合、その結果である総受信信号電力に含まれる雑音電力及び受信信号電力は、それぞれ同じS/Nを保つように一定値となる。
【0022】
この場合の、各時点での軟判定尤度値を図21に示す。図21に示すように、受信信号の軟判定尤度値(補正なし)は、時点tにおいて「2k」となり、時点t+1において「2k」となり、また時点t+2において「2k」となる。すなわち、総受信信号電力が変動しているにも関わらず、そのS/Nが変動していない受信信号については、AGC回路によってその総受信信号電力を一定にした状態(図21)では図18及び図19に示したS/Nと同じ結果を得ることができる。
【0023】
そして、このようにAGC回路によって利得制御された受信信号に対して、その軟判定尤度値に瞬時受信振幅に依存した重み係数(図17の場合と同様に総受信電力を用いた)を乗算して補正した場合を図22に示す。図22に示すように、受信信号の軟判定尤度値(補正あり)は、時点tにおいて「6k」となり、時点t+1において「24k」となり、また時点t+2において「12k」となる。
【0024】
この図22に示すように、総受信信号電力が変動しているにも関わらず、そのS/Nが変動していない受信信号については、AGC回路によってその総受信信号電力を一定にした状態(図21)からさらに瞬時振幅値を用い得た重み付け補正を行うと、その結果は、図19に示した各時点でのS/Nとは異なるようになる。
【0025】
すなわち、S/Nが変動しない状態を保ちながら総受信信号電力が変動する受信信号については、重み付け補正を行うことにより正しい軟判定尤度値を算出することが困難となり、その結果誤り訂正復号器における誤り訂正能力が低下する問題があった。
【0026】
これは、雑音電力が変動している場合は、各時点における瞬時受信振幅に依存する重み係数の比と、各時点におけるS/Nの比が無相関であることにより、瞬時受信振幅に依存する重み係数を軟判定尤度値に乗算しても、各時点における軟判定尤度値の比は、各時点におけるS/Nの比とは等しくならないことを原因とする。
【0027】
また、雑音電力及び受信信号電力が独立に変動する通信環境(S/Nが一定でない場合)においても、瞬時振幅値に依存する重み係数を乗算した補正を行った場合は、正しく軟判定尤度値を算出することが困難になる問題があった。
【0028】
すなわち、図23は、雑音電力及び受信信号電力が独立に変動する通信環境における、雑音電力及び受信信号電力の変動例を示す信号波形図である。そして、図24は、図23における各時点でのS/Nを示す図である。
【0029】
この図24に示すように、受信信号のS/Nは、時点tにおいて「2」となり、時点t+1において「2」となり、また時点t+2において「0.5」となる。
【0030】
図23に示した受信信号に対して、AGC回路による利得制御を施すことにより、その総受信信号電力を一定値「18」に保った場合の信号波形図を図25に示し、各時点での軟判定尤度値を図26に示す。
【0031】
図26は、AGC回路による利得制御を行った後、瞬時振幅値に依存する重み係数を乗算した補正を行った場合と、行わない場合とを示す図である。この図26に示すように、各時点での軟判定尤度値は、補正を行った場合及び補正を行わない場合のいずれにおいても、図24に示したS/Nの比と一致していない。
【0032】
すなわち、雑音電力及び受信信号電力が独立して変動している場合には、軟判定尤度値を補正すると軟判定尤度値を正しく算出することが困難となり、誤り訂正能力が低下する。また、軟判定尤度値を補正しない場合であっても、同様に、軟判定尤度値を正しく算出することが困難となり、誤り訂正能力が低下する。
【0033】
これば、雑音電力及び受信電力が独立に変動し、S/Nが一定でない場合は、各時点における瞬時受信振幅に依存する重み係数の比と、各時点におけるS/Nの比が無相関であることにより、瞬時受信振幅に依存する重み係数を軟判定尤度値に乗算するような補正を行ったとしても、各時点における軟判定尤度値の比は、各時点におけるS/Nの比と等しくならないことによる。
【0034】
また、AGC回路は、各時点における軟判定尤度値の比を、各時点におけるS/Nの比に近づけるものではなく、S/Nとは無相関に、総受信信号電力を一定にするものである。従って、補正を行わない場合であっても、正しく軟判定尤度値を算出することは困難である。
【0035】
本発明はかかる点に鑑みてなされたものであり、受信信号電力は変動するのに対して、その希望波成分と雑音成分との比は変動しない通信環境、又は受信信号電力及びその雑音成分が独立して変動する通信環境において、正しく尤度値を算出し、誤り訂正処理を行うことができる受信装置、誤り訂正復号装置及び誤り訂正復号方法を提供することを目的とする。
【0036】
【課題を解決するための手段】
本発明の受信装置は、受信信号の総信号電力を一定に保つ利得制御手段と、前記利得制御手段によって総受信信号電力が一定に保たれた信号に対して、その受信符号系列を最尤復号する際に、各受信符号についてその候補符号の尤度を多値レベルの尤度で与えるとともに、この尤度を必要に応じて補正する尤度値算出手段と、前記受信信号に含まれる雑音成分の変動を検出する雑音成分変動検出手段と、前記雑音成分変動検出手段の検出結果に基づいて、前記尤度に対する、前記受信信号の瞬時振幅に依存した前記補正を行うか否かを判断する補正制御手段と、を具備する構成を採る。
【0037】
この構成によれば、受信信号の雑音成分が一定以上変動した場合は、雑音成分の主成分がマルチパス信号と判断でき、この場合は、受信信号の希望波成分と雑音成分との比(例えばS/N)は変動しないことにより、軟判定尤度値に瞬時受信信号振幅に依存する重み係数を乗算しない。これにより、受信信号の希望波成分と雑音成分との比に従った正しい軟判定尤度値を算出することができ、誤り訂正能力の低下を抑えることができる。
【0038】
本発明の受信装置は、受信信号の総信号電力を一定に保つ利得制御手段と、前記利得制御手段によって総受信信号電力が一定に保たれた信号に対して、その受信符号系列を最尤復号する際に、各受信符号についてその候補符号の尤度を多値レベルの尤度で与えるとともに、この尤度を必要に応じて補正する尤度値算出手段と、前記受信信号に含まれる希望波成分と雑音成分との比の変動を示唆する情報に基づいて、前記尤度に対する、前記受信信号の瞬時振幅に依存した前記補正を行うか否かを判断する補正制御手段と、を具備する構成を採る。
【0039】
この構成によれば、受信信号の希望波成分と雑音成分との比の変動を示唆する情報に基づいて、前記尤度に対する、受信信号の瞬時振幅に依存した補正を行うか否かを判断することにより、受信信号に含まれる雑音成分の種類に基づいて、軟判定尤度の補正を的確に行うことができる。
【0040】
本発明の受信装置は、上記構成において、前記補正制御手段は、前記受信信号が送信電力制御の元で送信されたか否かに基づいて、前記補正の有無を判断する構成を採る。
【0041】
この構成によれば、受信信号の希望波成分と雑音成分との比の変動を示唆する情報として、送信電力制御が行われたか否かを示す情報を用いることにより、受信信号に含まれる希望波成分と雑音成分との比が一定であるか否かを容易に判断することができる。これにより、軟判定尤度の補正を行うか否かを容易に判断することができる。
【0042】
本発明の受信装置は、上記構成において、前記補正制御手段は、前記受信信号に含まれる雑音成分の主成分がマルチパスによるものであるか否かに基づいて、前記補正の有無を判断する構成を採る。
【0043】
この構成によれば、マルチパスによる雑音成分が含まれているか否かに基づいて、受信信号に含まれる希望波成分と雑音成分との比が一定であるか否かを判断することができる。
【0044】
本発明の受信装置は、受信信号の総信号電力を一定に保つ利得制御手段と、前記利得制御手段によって総受信信号電力が一定に保たれた信号に対して、その受信符号系列を最尤復号する際に、各受信符号についてその候補符号の尤度を多値レベルの尤度で与えるとともに、この尤度に対して、前記受信信号の瞬時振幅に依存した重み係数の乗算及び前記受信信号に含まれる雑音成分値による除算を行う尤度値算出手段と、を具備する構成を採る。
【0045】
この構成によれば、受信信号の希望波成分と雑音成分とが独立して変動している場合であっても、正しく軟判定尤度値を算出することができる。
【0046】
本発明の誤り訂正復号装置は、受信信号の受信符号系列を最尤復号する際に、各受信符号についてその候補符号の尤度を多値レベルの尤度で与えるとともに、この尤度に対して、前記受信信号の瞬時振幅に依存した重み係数の乗算及び前記受信信号に含まれる雑音成分値による除算を行う尤度値算出手段と、前記尤度値算出手段において算出された尤度値に基づいて誤り訂正復号を行う復号手段と、を具備する構成を採る。
【0047】
この構成によれば、受信信号の希望波成分と雑音成分とが独立して変動している場合であっても、正しく軟判定尤度値を算出することができる。
【0048】
本発明の誤り訂正復号方法は、受信信号の受信符号系列を最尤復号する際に、各受信符号についてその候補符号の尤度を多値レベルの尤度で与えるとともに、この尤度に対して、前記受信信号の瞬時振幅に依存した重み係数の乗算及び前記受信信号に含まれる雑音成分値による除算を行う尤度値算出ステップと、前記尤度値算出手段において算出された尤度値に基づいて誤り訂正復号を行う復号ステップと、を具備するようにした。
【0049】
この方法によれば、受信信号の希望波成分と雑音成分とが独立して変動している場合であっても、正しく軟判定尤度値を算出することができる。
【0050】
【発明の実施の形態】
本発明の骨子は、受信信号の雑音成分の変動量、又は、希望波成分と雑音成分との比の変動の有無に基づいて軟判定尤度値の補正の必要性を判断し、不要な補正による誤り訂正能力の低下を防止することである。なお、ここで雑音成分というのは、その要因に関わらず全ての不要な成分を意味するものである。
【0051】
以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。
【0052】
(実施の形態1)
図1は、本発明の実施の形態の受信装置の構成を示すブロック図である。
【0053】
図1において、100は全体としてCDMA方式の受信装置を示し、アンテナ101を介して受信された受信信号を、受信RF(Radio Frequency)部102に受ける。受信RF部102は、無線周波数でなる受信信号をベースバンド帯域の信号に変換した後、これをAGC回路103に出力する。
【0054】
AGC回路103は、受信信号の総受信信号電力(受信信号電力及び雑音電力の和)を一定に保つような利得制御を行う。総受信信号電力が一定に保たれた受信信号は、AGC回路103から復調部104に出力される。
【0055】
復調部104は、AGC回路103から出力された一定振幅の受信信号(総受信信号電力)に対して、逆拡散及びRAKE合成等の復調処理を施した後、その復調結果である復調信号を誤り訂正復号器106及び雑音電力変動量測定部105にそれぞれ出力する。
【0056】
また、AGC回路103は、上述したようにAGC処理後の受信信号を出力する一方、AGC処理において、変動している受信信号に対してその信号レベルを一定にするように乗算した重み係数(利得調整係数)を誤り訂正復号器106及び雑音電力変動量測定部105にそれぞれ出力する。この重み係数は、瞬時受信振幅に依存する係数である。具体的には、AGC回路103に入力された受信信号の大きさの2乗の値等、AGC回路103に入力される信号(受信信号)の大きさを用いればよい。受信信号の大きさの2乗の値を用いる意味は、誤り訂正復号器106において尤度値を求める場合、受信信号が雑音電力の比を反映した大きさになって入力されなければならないことによる。
【0057】
誤り訂正復号器106は、復調部104から出力された復調信号と、AGC回路103から出力された重み係数とを、軟判定尤度値算出部107に受ける。軟判定尤度値算出部107は、受信振幅重み乗算制御部108から出力される制御信号に基づいて、軟判定尤度値の算出処理を実行する。
【0058】
すなわち、この受信装置100においては、復調部104から出力された復調信号及び、AGC回路103から出力された重み係数を雑音電力変動量測定部105にそれぞれ供給する。図2は、雑音電力変動量測定部105の構成を示すブロック図である。この雑音電力変動量測定部105は、復調信号及び重み係数を雑音電力測定部111に受け、まず、復調信号の雑音成分である瞬時雑音電力を測定する。この場合、雑音電力測定部111は、X個の信号から雑音電力を測定する方法として、例えば、X個の信号の2乗の平均値からX個の信号の平均値の2乗を引いたものを雑音電力として求める。
【0059】
ここで、復調信号は、AGC回路103によって総受信電力が一定になるように制御されていることにより、そのままでは正しい瞬時雑音電力を測定することが困難である。従って、雑音電力測定部111では、測定した瞬時雑音電力に対して、AGC回路103から供給された重み係数を乗算する。この重み係数は、瞬時受信振幅に依存していることにより、この重み係数を瞬時雑音電力に乗算することで、AGC回路によって総受信電力が一定となるように与えられた雑音電力の変化分を取り除くことができる。
【0060】
この乗算結果は、瞬時雑音電力値として、遅延器112及び比較除算部113にそれぞれ出力される。遅延器112は、入力された瞬時雑音電力値を所定時間遅延させた後、比較除算部113に出力する。比較除算部113は、雑音電力測定部111から出力される今回の瞬時雑音電力値と、遅延器112から出力される所定時間遅延後の瞬時雑音電力値とを比較し、それら2つの瞬時雑音電力値のうち、大きい瞬時雑音電力値から小さい瞬時雑音電力値を除算する。
【0061】
このようにして除算された結果は、瞬時雑音電力値の変動量を表す測定値(以下、これを雑音電力変動量と称する)となる。雑音電力変動量測定部105において得られた雑音電力変動量は、受信振幅重み乗算制御部108(図1)に出力される。
【0062】
受信振幅重み乗算制御部108は、雑音電力変動量測定部105から出力された雑音電力変動量と、予め設定されている閾値とを比較し、雑音電力変動量が閾値よりも小さい場合は、軟判定尤度値算出部107に対して、軟判定尤度値に瞬時受信振幅に依存する重み係数を乗算させるための制御信号を出力する。
【0063】
また、これに対して、受信振幅重み乗算制御部108は、雑音電力変動量測定部105から出力された雑音電力変動量が、予め設定されている閾値よりも大きい場合は、軟判定尤度値算出部107に対して、軟判定尤度値に瞬時受信振幅に依存する重み係数を乗算させないための制御信号を出力する。
【0064】
軟判定尤度値算出部107は、受信振幅重み乗算制御部108から出力された制御信号が、重み係数を乗算させるための制御信号である場合には、このとき復調信号に基づいて算出された軟判定尤度値に対して、瞬時受信振幅に依存する重み係数を乗算する。これに対して、軟判定尤度値算出部107は、受信振幅重み乗算制御部108から出力された制御信号が、重み係数を乗算させないための制御信号である場合には、このとき復調信号に基づいて算出された軟判定尤度値に対して、瞬時受信振幅に依存する重み係数を乗算せずに、その算出された軟判定尤度値を用いる。
【0065】
図3は、軟判定尤度算出部107における、復調信号に基づく軟判定尤度値の算出方法の説明に供する略線図である。この図3は、1次元(1ビット)の符号に対する軟判定尤度を与えるもので、2次元(2ビット)の場合は、各々のビットに適用し、加算すればよい。
【0066】
復調信号レベル+Vが符号“0”に対応し、また復調信号レベル−Vが符号“1”に対応する。この図3では、符号“0”に対する尤度を表す。この尤度としては、復調信号振幅値に応じて例えば0から16までの多値が割り当てられる。すなわち、図3の復調信号振幅Aのような振幅の信号が入力されたとすると、硬判定の場合の尤度は0となる。すなわち、硬判定では復調信号は候補符号“0”に近いことは解るが、その確からしさは十分な精度では判断できない。
【0067】
一方、本実施の形態による軟判定では尤度は6と与えられる。これは8(2つの符号レベルの中間点)に近い値であることから、候補符号“0”に近いが信頼度は低い値である、と判断できる。
【0068】
軟判定尤度算出部107では、図3に示した方法によって、復調信号の軟判定尤度を算出し、さらに、この算出された軟判定尤度値に対して、瞬時受信振幅に依存する重み係数の乗算による補正の可否を、受信振幅重み乗算制御部108からの制御信号に基づいて判断する。そして、制御信号に基づき、補正の必要がある場合には、軟判定尤度値に対して重み係数の乗算による補正を行い、またこれに対して、補正の必要がない場合には、軟判定尤度値に対して重み係数の乗算を行わない。
【0069】
このようにして、軟判定尤度値算出部107において算出及び必要に応じた補正が施された軟判定尤度値は、図4に示す誤り訂正復号器106において、加算比較選択部121に出力される。
【0070】
加算比較選択部121は、軟判定尤度値算出部107から出力された軟判定尤度値を受けると、状態尤度メモリ122に記憶されている直前時点の状態尤度の値に、可能な状態遷移の軟判定尤度値を加算し、新たな状態尤度を求める。そして、加算比較選択部121は、一つの状態に至る複数の状態遷移の状態尤度を比較し、その中から最大値の状態尤度を持つ遷移を選択して、選択された遷移の状態尤度を新たな状態尤度として状態尤度メモリ122を更新する。
【0071】
また、加算比較選択部121は、同時に選択された遷移の情報j(i)(状態jから状態iに遷移したことを表す)をパスメモリ123に出力する。パスメモリ123は、この遷移情報j(i)又は遷移した状態番号を系列的に記憶しておき、最尤判定部124において、最終時点で選択されて残った状態遷移から復号結果を得る。
【0072】
以上の構成において、一般に、誤り訂正復号における尤度は、S/Nによって変化する。従って、各時点における軟判定尤度値の比は、各時点におけるS/Nの比と等しくなければならない。
【0073】
この点について、図13について上述したように、受信信号に含まれている雑音電力がほぼ一定である場合、各時点におけるS/Nの比と、瞬時受信振幅に依存する重み係数の比とは等しい関係にある。従って、受信装置100では、このような通信環境において、AGC回路の出力信号に基づいて算出された軟判定尤度値に対して重み係数を乗算することにより、S/Nの比と一致した正確な軟判定尤度値の比を求めることができる。
【0074】
これに対して、受信信号に含まれている雑音電力が変動している場合、各時点における瞬時受信振幅に依存する重み係数の比と、各時点におけるS/Nの比は無相関である。従って、受信装置100では、このような通信環境においては、雑音電力変動量測定部105の測定結果として、所定の閾値以上の雑音変動量が得られることにより、この雑音変動量の検出結果に基づいて、受信振幅重み乗算制御部108による重み係数の軟判定尤度値に対する乗算(軟判定尤度値の補正)を行わないように制御する。
【0075】
この場合、図18に示したように、AGC回路に入力される受信信号として、そのS/Nの比が保たれたまま変動しているものとすると、AGC回路から出力される復調信号は、その総受信信号電力が一定に保たれていることにより、雑音電力の成分も一定に保たれる。すなわち、この場合の復調信号は、S/Nの比が一定に保たれていることとなる。従って、この復調信号は、「各時点における軟判定尤度値の比は各時点におけるS/Nの比と等しくなければならない」という上述した条件に合致した状態となっている。
【0076】
従って、このような場合には、軟判定尤度値に対する重み係数の乗算(軟判定尤度値の補正)を行わないことにより、正確な軟判定尤度値を得ることができる。因みに、受信信号のS/Nの比が保たれたまま変動する結果となる通信環境の例を以下に述べる。
【0077】
受信信号のS/Nの比が保たれたまま変動する第1の例を説明する。CDMA通信においては、マルチパス信号等が干渉となり、このマルチパス信号が雑音電力の主成分となる場合がある。このような場合、マルチパス信号はレイク合成受信によって信号電力にもなるため、雑音電力の変動と受信信号の電力はほぼ一致し、その結果、総受信信号電力が変動しても、S/Nの比の変動は少なくなる。
【0078】
次に、第2の例を説明する。受信装置において受信された信号に対して、その送信元において送信電力制御が行われている場合がある。送信電力制御では、雑音電力や受信信号電力がフェージングによって変動しても、受信側でのS/Nが常に一定になるように送信側で送信電力を制御するものであることにより、受信信号電力が変動しても、S/Nは変動しない通信環境となる。
【0079】
従って、雑音電力がある一定量以上変動し、受信装置100の雑音電力変動量測定部105において測定された雑音電力変動量に基づいてその変動状態が検出された場合には、受信装置100では、当該検出結果に基づいて雑音電力の主成分がマルチパス信号であること、又は受信信号が送信電力制御を受けた信号であると判断することができる。
【0080】
そして、このような場合には、AGC回路103によって総受信信号電力の値が一定となるような利得制御がなされても、その結果に基づいて得られた軟判定尤度値の補正を行わないことにより、正確な軟判定尤度値を得ることができる。
【0081】
図5は、受信装置100による誤り訂正復号処理手順を示すフローチャートである。図5に示すように、受信装置100は、ステップST101において受信信号の雑音電力値を測定し、ステップST102において、雑音電力値の変動量を求める。そして、受信装置100は、続くステップST103に移って、上述のステップST102において求められた雑音電力値の変動量が閾値よりも大きいか否かを判断する。
【0082】
このステップST103において肯定結果が得られると、このことは、雑音電力値の変動量が閾値よりも大きいこと、すなわち、軟判定尤度値の補正を行うと正しい軟判定尤度値が得られず、その結果、軟判定尤度値の補正に伴って誤り訂正能力の低下を招くおそれが生じる状態であることを意味しており、このとき、受信装置100は、ステップST104に移って、軟判定尤度値に対する補正を行わずに誤り訂正処理を行う。
【0083】
これに対して、ステップST103において否定結果が得られると、このことは、雑音電力値の変動量が閾値よりも小さいこと、すなわち、軟判定尤度値の補正を行うことによって正しい軟判定尤度値を得ることができ、その結果、一定の誤り訂正能力を維持することができる状態であることを意味しており、このとき、受信装置100は、ステップST105に移って、軟判定尤度値に対する補正を伴う誤り訂正処理を行う。
【0084】
このように、本実施の形態の受信装置によれば、受信信号の雑音電力成分の変動量に基づいて、重み付け処理を行うか否かを制御するようにしたことにより、正確な軟判定尤度値の算出を行うことができる。
【0085】
なお、上述の実施の形態においては、雑音電力変動量の測定方法として、前回測定した瞬時雑音電力値と今回測定した雑音電力値とを比較し、その値が大きい方から小さい方を除算する場合について述べたが、本発明はこれに限らず、例えば、過去所定回数分の測定雑音電力値の平均を求め、その平均値と今回の測定雑音電力値とを比較し、その値の大きい方から小さい方を除算する等、要は、雑音電力の変化量を表す方法であれば、他の方法を用いることができる。
【0086】
また、上述の実施の形態においては、軟判定尤度値を補正する方法として、瞬時受信振幅に依存する重み係数を用いる場合について述べたが、本発明はこれに限らず、AGC回路103における利得調整係数(総受信電力を一定に保つように受信信号振幅に乗算する係数であって、仮に電力Kに保つためのAGC回路では、K=(利得調整係数・受信信号)の(Kは電力であることにより2乗する)関係が成り立つ)の2乗の逆数を用いるようにしてもよい。このように、AGC回路103の利得調整係数は、瞬時受信振幅に依存した係数の逆数になっていることにより、この利得調整係数を用いれば、新たに瞬時受信振幅に依存した係数を算出する必要がなく、その分、軟判定尤度値の補正処理を簡単に行うことができる。
【0087】
また、上述の実施の形態においては、雑音電力に着目し、受信信号の希望波成分と雑音成分との比としてS/Nを用いる場合について述べたが、このS/NにはSIR(Signal Interference Ratio)も含まれる。
【0088】
また、上述の実施の形態においては、誤り訂正復号器106として、ビタビ復号器を用いる場合について述べたが、本発明はこれに限らず、例えば送信側でターボ符号化を行い、これに併せて受信側でターボ復号を行う等、他の符号化及び復号化方法を用いるようにしてもよい。
【0089】
(実施の形態2)
図6は、本発明の実施の形態2に係る受信装置200の構成を示すブロック図である。但し、図1と同一の構成となるものについては、図1と同一番号を付し、詳しい説明を省略する。
【0090】
図6に示す受信装置200は、図1について上述した受信装置100に比べて、雑音電力値を測定することに代えて、送信電力制御が行われているか否かを判断し、その判断結果に基づいて軟判定尤度値の補正の可否を判断するようになされている点が異なる。
【0091】
すなわち、図6において受信装置200は、復調部104において復調された結果である復調信号を、誤り訂正復号器106の軟判定尤度値算出部107に出力すると共に、送信電力制御部201に出力する。
【0092】
送信電力制御部201は、復調信号に含まれる、送信電力制御が行われているか否かを示す制御情報を受信振幅重み乗算制御部208に出力する。ここで、送信電力制御とは、受信装置200が受信した受信信号が送信電力制御の元で送信元から送信されたものであることを意味する。受信振幅重み乗算制御部208は、送信電力制御部201から出力された制御情報に基づいて、送信電力制御が行われているか否かを判断し、送信電力制御が行われていない場合には、軟判定尤度値算出部107に対して、軟判定尤度値に瞬時受信振幅に依存する重み係数を乗算させるための制御信号を出力する。
【0093】
また、これに対して、送信電力制御が行われている場合には、受信振幅重み乗算制御部208は、軟判定尤度値算出部107に対して、軟判定尤度値に瞬時受信振幅に依存する重み係数を乗算させないための制御信号を出力する。
【0094】
これにより、送信電力制御が行われている場合、受信信号のS/Nは常に一定となっており、軟判定尤度値に対する瞬時受信信号振幅に依存する重み係数の乗算(軟判定尤度値の補正)が行われない。これにより、S/Nに従った、正しい軟判定尤度値の算出が行われることにより、送信電力制御が行われている信号を受信した場合においても、その誤り訂正能力の低下を抑えることができる。
【0095】
因みに、図7は、受信装置200における、誤り訂正復号処理手順を示すフローチャートである。図7に示すように、受信装置200は、ステップST201において受信信号(復調信号)から送信電力制御の有無を示す制御情報を抽出し、ステップST202において、その制御情報に基づいて、受信信号が送信電力制御の元で送信されたものであるか否かを判断する。
【0096】
このステップST202において肯定結果が得られると、このことは、送信電力制御が行われていること、すなわち、受信信号のS/Nが一定であり軟判定尤度値の補正を行うと正しい軟判定尤度値が得られず、その結果、軟判定尤度値の補正に伴って誤り訂正能力の低下を招くおそれが生じる状態であることを意味しており、このとき、受信装置200は、ステップST203に移って、軟判定尤度値に対する補正を行わずに誤り訂正処理を行う。
【0097】
これに対して、ステップST202において否定結果が得られると、このことは、送信電力制御が行われていないこと、すなわち、受信信号のS/Nが一定ではなく、軟判定尤度値の補正を行うことによって正しい軟判定尤度値を得ることができ、その結果、一定の誤り訂正能力を維持することができる状態であることを意味しており、このとき、受信装置200は、ステップST204に移って、軟判定尤度値に対する補正を伴う誤り訂正処理を行う。
【0098】
このように、本実施の形態の受信装置によれば、受信信号の制御情報に基づいて、その受信信号が送信電力制御の元で送信されたものであるか否かを判断し、その判断結果に基づいて、重み付け処理を行うか否かを制御するようにしたことにより、正確な軟判定尤度値の算出を行うことができる。
【0099】
なお、上述の実施の形態においては、軟判定尤度値を補正する方法として、瞬時受信振幅に依存する重み係数を用いる場合について述べたが、本発明はこれに限らず、AGC回路103における利得調整係数(総受信電力を一定に保つように受信信号振幅に乗算する係数であって、仮に電力Kに保つためのAGC回路では、K=(利得調整係数・受信信号)の(Kは電力であることにより2乗する)関係が成り立つ)の2乗の逆数を用いるようにしてもよい。このように、AGC回路103の利得調整係数は、瞬時受信振幅に依存した係数の逆数になっていることにより、この利得調整係数を用いれば、新たに瞬時受信振幅に依存した係数を算出する必要がなく、その分、軟判定尤度値の補正処理を簡単に行うことができる。
【0100】
また、上述の実施の形態においては、雑音電力に着目し、受信信号の希望波成分と雑音成分との比としてS/Nを用いる場合について述べたが、このS/NにはSIRも含まれる。
【0101】
また、上述の実施の形態においては、誤り訂正復号器106として、ビタビ復号器を用いる場合について述べたが、本発明はこれに限らず、例えば送信側でターボ符号化を行い、これに併せて受信側でターボ復号を行う等、他の符号化及び復号化方法を用いるようにしてもよい。
【0102】
(実施の形態3)
図8は、本発明の実施の形態3に係る受信装置300の構成を示すブロック図である。但し、図1と同一の構成となるものについては、図1と同一番号を付し、詳しい説明を省略する。
【0103】
図8に示す受信装置300は、図1について上述した受信装置100に比べて、雑音電力値を測定することに代えて、現在通信中のセル及び他セルからの受信電力に基づいて他セル干渉量を算出し、復調部104においてデータ復調に使用したフィンガ数と他セル干渉量に基づいて、軟判定尤度値の補正の可否を判断するようになされている点が異なる。
【0104】
すなわち、図8において受信装置300は、セルサーチ部301及びフィンガ割り当て制御部302を有し、セルサーチ部301は、他セルからの受信電力を、現在通信中のセルからの受信電力で除算し、その除算結果を他セル干渉量として受信振幅重み乗算制御部308に出力する。
【0105】
また、フィンガ割り当て制御部302は、復調部104におけるデータ復調時のレイク合成受信処理に使用したフィンガ数を、受信振幅重み乗算制御部308に出力する。
【0106】
受信振幅重み乗算制御部308は、セルサーチ部301から出力された他セル干渉量と、予め設定されている閾値とを比較し、他セル干渉量が閾値より小さく、かつ、フィンガ割り当て制御部302から出力されるフィンガ数が複数である場合は、軟判定尤度値算出部107に対して、軟判定尤度値に瞬時受信振幅に依存する重み係数を乗算させないための制御信号を出力する。
【0107】
また、これに対して、他セル干渉量が閾値より小さいこと、又は、フィンガ数が複数であることの少なくともいずれか一方が成立しない場合には、受信振幅重み乗算制御部308は、軟判定尤度値算出部107に対して、軟判定尤度値に瞬時受信振幅に依存する重み係数を乗算させるための制御信号を出力する。
【0108】
このように、他セル干渉量が小さく、かつ、フィンガ数が複数である場合は、受信信号の雑音電力値の主成分がマルチパスによるものであり、この場合には、受信信号のS/Nは変動しないものと判断することができ、軟判定尤度値算出部107において軟判定尤度値に対する重み係数の乗算(軟判定尤度値の補正)を行わないようにする。従って、S/Nに従った正しい軟判定尤度値を算出することができ、誤り訂正能力の低下を抑えることができる。
【0109】
因みに、図9は、受信装置300における、誤り訂正復号処理手順を示すフローチャートである。図9に示すように、受信装置300は、ステップST301において受信信号に関する他セル干渉量及びフィンガ数を読み込み、ステップST302において、その他セル干渉量及びフィンガ数に基づいて、他セル干渉量が閾値よりも小さいこと及びフィンガ数が複数であることの両方が成立しているか否かを判断する。
【0110】
このステップST302において肯定結果が得られると、このことは、受信信号の雑音電力値の主成分がマルチパスによるものであること、すなわち、受信信号のS/Nが一定であり軟判定尤度値の補正を行うと正しい軟判定尤度値が得られず、その結果、軟判定尤度値の補正に伴って誤り訂正能力の低下を招くおそれが生じる状態であることを意味しており、このとき、受信装置300は、ステップST303に移って、軟判定尤度値に対する補正を行わずに誤り訂正処理を行う。
【0111】
これに対して、ステップST302において否定結果が得られると、このことは、受信信号の雑音電力値の主成分がマルチパスによるものではないこと、すなわち、受信信号のS/Nが一定ではなく、軟判定尤度値の補正を行うことによって正しい軟判定尤度値を得ることができ、その結果、一定の誤り訂正能力を維持することができる状態であることを意味しており、このとき、受信装置300は、ステップST304に移って、軟判定尤度値に対する補正を伴う誤り訂正処理を行う。
【0112】
このように、本実施の形態の受信装置によれば、受信信号に関する他セル干渉量及びフィンガ数に基づいて、その受信信号の雑音電力値の主成分がマルチパスによるものであるか否かを判断し、その判断結果に基づいて、重み付け処理を行うか否かを制御するようにしたことにより、正確な軟判定尤度値の算出を行うことができる。
【0113】
なお、上述の実施の形態においては、軟判定尤度値を補正する方法として、瞬時受信振幅に依存する重み係数を用いる場合について述べたが、本発明はこれに限らず、AGC回路103における利得調整係数(総受信電力を一定に保つように受信信号振幅に乗算する係数であって、仮に電力Kに保つためのAGC回路では、K=(利得調整係数・受信信号)の(Kは電力であることにより2乗する)関係が成り立つ)の2乗の逆数を用いるようにしてもよい。このように、AGC回路103の利得調整係数は、瞬時受信振幅に依存した係数の逆数になっていることにより、この利得調整係数を用いれば、新たに瞬時受信振幅に依存した係数を算出する必要がなく、その分、軟判定尤度値の補正処理を簡単に行うことができる。
【0114】
また、上述の実施の形態においては、雑音電力に着目し、受信信号の希望波成分と雑音成分との比としてS/Nを用いる場合について述べたが、このS/NにはSIRも含まれる。
【0115】
また、上述の実施の形態においては、誤り訂正復号器106として、ビタビ復号器を用いる場合について述べたが、本発明はこれに限らず、例えば送信側でターボ符号化を行い、これに併せて受信側でターボ復号を行う等、他の符号化及び復号化方法を用いるようにしてもよい。
【0116】
(実施の形態4)
図10は、本発明の実施の形態4に係る受信装置400の構成を示すブロック図である。但し、図1と同一の構成となるものについては、図1と同一番号を付し、詳しい説明を省略する。
【0117】
図10に示す受信装置400は、図1について上述した受信装置100に比べて、雑音電力変動量を測定することに代えて、瞬時雑音電力値を測定し、この測定された瞬時雑音電力値と、瞬時受信振幅に依存する重み係数とに基づいて軟判定尤度値を補正することにより、雑音電力値及び受信信号電力値が独立に変動している場合であっても、S/Nに従った正しい軟判定尤度値を算出するようにした点が異なる。
【0118】
すなわち、図10において受信装置400は、瞬時雑音電力値を測定する雑音電力変動量測定部401を有する。この雑音電力変動量測定部401は、復調部104から出力される復調信号及び、AGC回路103から出力される瞬時受信振幅に依存する重み係数を受ける。
【0119】
この復調信号は、AGC回路103によって総受信電力が一定になるように制御されていることにより、そのままでは正しい瞬時雑音電力を測定することが困難である。従って、雑音電力変動量測定部401では、測定した瞬時雑音電力に対して、AGC回路103から供給された重み係数を乗算する。この重み係数は、瞬時受信振幅に依存していることにより、この重み係数を瞬時雑音電力に乗算することで、AGC回路103によって総受信電力が一定となるように与えられた雑音電力の変化分を取り除くことができる。この乗算結果は、瞬時雑音電力値として、誤り訂正復号器106の軟判定尤度値算出部407に出力される。
【0120】
軟判定尤度値算出部407は、復調部104から出力される復調信号(AGC制御された受信信号に基づく復調信号)に基づいて軟判定尤度値を算出し、その算出された軟判定尤度値に瞬時受信振幅に依存する重み係数を乗算し、さらに、その乗算結果を、雑音電力変動量測定部401から出力される瞬時雑音電力値で除算する。
【0121】
これにより、総受信信号電力に含まれる受信信号電力値及び雑音電力値が独立して変動する場合であっても、総受信信号電力値の変動分については瞬時受信振幅に依存する重み係数の乗算によって補償し、さらに雑音電力値の変動分については、瞬時雑音電力による除算によって補償する。
【0122】
かくして、雑音電力値及び受信信号電力値が独立して変動している場合であっても、S/Nに従った正しい軟判定尤度値を算出することができ、誤り訂正能力の低下を抑えることができる。
【0123】
因みに、図11は、受信装置400の軟判定尤度値算出部407における、軟判定尤度値の補正処理手順を示すフローチャートである。図11に示すように、軟判定尤度値算出部407は、ステップST401において受信信号に関する復調信号、重み係数(瞬時受信振幅に依存する重み係数)及び瞬時雑音電力値を取得し、続くステップST402において、復調信号に基づく軟判定尤度値の算出を行う。
【0124】
そして、軟判定尤度値算出部407は、ステップST403に移って、上述のステップST402において算出された軟判定尤度値に対して、瞬時受信振幅に依存する重み係数の乗算及び瞬時雑音電力値による除算を行う。このように、軟判定尤度値に対して、瞬時受信振幅に依存する重み係数の乗算を行うことにより、AGC回路103において総受信信号電力が一定に保たれた受信信号に対して、そのAGC回路103による処理前の状態を復元し、さらにこの復元された信号を瞬時雑音電力値によって除算することにより、雑音電力値の変動がない状態での受信信号電力値に基づく軟判定尤度値、すなわち、各時点でのS/Nの比と等しい軟判定尤度値の比を得ることができる。
【0125】
因みに、図12は、受信信号電力値及び雑音電力値が独立して変動している場合において、軟判定尤度値に瞬時受信振幅に依存する重み係数を乗算し、さらに雑音電力で除算した補正を行った場合の、各時点における補正後の軟判定尤度値を示す図である。
【0126】
この図12に示すように、各時点における補正後の軟判定尤度値の比は、図19について上述した、一定のS/Nの比を保ったまま変動する受信信号電力及び雑音電力の場合と同様の結果となり、この結果からも正しく軟判定尤度値を算出できたことがわかる。
【0127】
かくして、受信信号電力値及び雑音電力値が独立して変動している場合であっても、S/Nに従った正しい軟判定尤度値を算出することができる。
【0128】
このように、本実施の形態の受信装置によれば、瞬時雑音電力値を測定し、この測定された瞬時雑音電力値と、瞬時受信振幅に依存する重み係数とに基づいて軟判定尤度値を補正することにより、雑音電力値及び受信信号電力値が独立に変動している場合であっても、S/Nに従った正しい軟判定尤度値を算出することができる。
【0129】
なお、上述の実施の形態においては、軟判定尤度値を補正する方法として、瞬時受信振幅に依存する重み係数を用いる場合について述べたが、本発明はこれに限らず、AGC回路103における利得調整係数(総受信電力を一定に保つように受信信号振幅に乗算する係数であって、仮に電力Kに保つためのAGC回路では、K=(利得調整係数・受信信号)の(Kは電力であることにより2乗する)関係が成り立つ)の2乗の逆数を用いるようにしてもよい。このように、AGC回路103の利得調整係数は、瞬時受信振幅に依存した係数の逆数になっていることにより、この利得調整係数を用いれば、新たに瞬時受信振幅に依存した係数を算出する必要がなく、その分、軟判定尤度値の補正処理を簡単に行うことができる。
【0130】
また、上述の実施の形態においては、雑音電力に着目し、受信信号の希望波成分と雑音成分との比としてS/Nを用いる場合について述べたが、このS/NにはSIRも含まれる。
【0131】
また、上述の実施の形態においては、誤り訂正復号器106として、ビタビ復号器を用いる場合について述べたが、本発明はこれに限らず、例えば送信側でターボ符号化を行い、これに併せて受信側でターボ復号を行う等、他の符号化及び復号化方法を用いるようにしてもよい。
【0132】
【発明の効果】
以上説明したように、本発明によれば、受信信号電力が変動するのに対して、受信信号の希望波成分と雑音成分との比は変動しない通信環境、又は受信信号電力及び雑音成分電力が独立して変動する通信環境において、正しく尤度値を算出し、誤り訂正処理を行うことができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る受信装置の構成を示すブロック図
【図2】実施の形態1に係る雑音電力変動量測定部の構成を示すブロック図
【図3】軟判定尤度値の算出処理の説明に供する略線図
【図4】実施の形態1に係る誤り訂正復号器の構成を示すブロック図
【図5】実施の形態1に係る誤り訂正復号処理手順を示すフローチャート
【図6】本発明の実施の形態2に係る受信装置の構成を示すブロック図
【図7】実施の形態2に係る誤り訂正復号処理手順を示すフローチャート
【図8】本発明の実施の形態3に係る受信装置の構成を示すブロック図
【図9】実施の形態3に係る誤り訂正復号処理手順を示すフローチャート
【図10】本発明の実施の形態4に係る受信装置の構成を示すブロック図
【図11】実施の形態4に係る軟判定尤度値の補正処理手順を示すフローチャート
【図12】実施の形態4に係る軟判定尤度値の補正結果を示す図
【図13】雑音電力の変動がない通信環境における受信信号波形を示す信号波形図
【図14】雑音電力の変動がない通信環境におけるS/N(受信信号電力/雑音電力)を示す図
【図15】雑音電力の変動がない通信環境における受信信号のAGC処理後の波形を示す信号波形図
【図16】雑音電力の変動がない通信環境における受信信号のAGC処理後の信号の軟判定尤度値(補正なし)を示す図
【図17】雑音電力の変動がない通信環境における受信信号のAGC処理後の信号の軟判定尤度値(補正あり)を示す図
【図18】S/Nを保ちながら受信信号電力及び雑音電力が変動する通信環境における受信信号波形を示す信号波形図
【図19】S/Nを保ちながら受信信号電力及び雑音電力が変動する通信環境におけるS/Nを示す図
【図20】S/Nを保ちながら受信信号電力及び雑音電力が変動する通信環境における受信信号波形のAGC処理後の波形を示す信号波形図
【図21】S/Nを保ちながら受信信号電力及び雑音電力が変動する通信環境における受信信号波形のAGC処理後の信号の軟判定尤度値(補正なし)を示す図
【図22】S/Nを保ちながら受信信号電力及び雑音電力が変動する通信環境における受信信号波形のAGC処理後の信号の軟判定尤度値(補正あり)を示す図
【図23】受信信号電力及び雑音電力が独立して変動する通信環境における受信信号波形を示す信号波形図
【図24】受信信号電力及び雑音電力が独立して変動する通信環境における受信信号のS/Nを示す図
【図25】受信信号電力及び雑音電力が独立して変動する通信環境における受信信号のAGC処理後の波形を示す信号波形図
【図26】受信信号電力及び雑音電力が独立して変動する通信環境における受信信号のAGC処理後の信号の軟判定尤度値(補正あり、補正なし)を示す図
【符号の説明】
100、200、300、400 受信装置
101 アンテナ
102 受信RF部
103 AGC回路
104 復調部
105 雑音電力変動量測定部
106 誤り訂正復号器
107、407 軟判定尤度値算出部
108、208、308 受信振幅重み乗算制御部
111、401 雑音電力測定部
112 遅延器
113 比較除算部
201 送信電力制御部
301 セルサーチ部
302 フィンガ割り当て制御部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a receiving apparatus, an error correction decoding apparatus, and the like used in a communication environment such as a CDMA communication system in which the received signal power fluctuates, but the ratio between a desired signal component and a noise component of the received signal does not fluctuate. It is suitable for application to an apparatus and an error correction decoding method.
[0002]
[Prior art]
In a receiving apparatus used in a conventional mobile communication system or the like, a received signal is temporarily input to an AGC (Automatic Gain Control) circuit because an input range of an analog-to-digital conversion circuit provided in the receiving circuit is determined. Here, after the power of the received signal is made constant, this is subjected to analog-to-digital conversion.
[0003]
The AGC output signal whose signal level is made constant in the AGC circuit is output to the error correction decoder. This error correction decoder performs maximum likelihood determination such as Viterbi decoding executed in response to a convolutional code on the transmission side. The calculated soft decision likelihood value has a large S / N ratio. The soft decision likelihood value is corrected by multiplying the soft decision likelihood value by a weighting factor depending on the signal level (instantaneous reception amplitude) of the received signal so that is reflected. As a result, in a communication environment in which noise power does not fluctuate and only received signal power fluctuates due to fading, a reduction in error correction capability is suppressed (for example, see Patent Document 1).
[0004]
That is, the likelihood in the error correction decoding changes depending on the S / N of a signal (received signal) to be subjected to error correction. Therefore, the ratio of the soft decision likelihood values at each time point must be equal to the S / N ratio (the ratio between the desired wave component and the noise component) at each time point.
[0005]
FIG. 13 is a signal waveform diagram showing an example of fluctuations in noise power and received signal power in a communication environment in which only received signal power fluctuates due to fading without fluctuation in noise power. Then, the S / N at each time point in this case can be represented by the received signal power / noise power, and the result is as shown in FIG. As shown in FIG. 14, the S / N of the received signal becomes “2” at time t, becomes “11” at time t + 1, and becomes “3” at time t + 2.
[0006]
On the other hand, in the receiving apparatus, an AGC circuit is used for keeping the total received power (the sum of the received signal power and the noise power) constant for the above-described reason. FIG. 15 is a signal waveform diagram showing variations in noise power and received signal power when the total received power at each time point is adjusted to “12” using the AGC circuit under the conditions of the signal waveform diagram shown in FIG. is there.
[0007]
In addition, the soft decision likelihood value in this case is given by the fact that the ratio of the soft decision likelihood value at each time point and the ratio of the received signal power are equal, and the proportional constant to the received signal power is k, as shown in FIG. It becomes as shown in. As shown in FIG. 16, the soft decision likelihood value (without correction) of the received signal becomes “8k” at time t, becomes “11k” at time t + 1, and becomes “9k” at time t + 2.
[0008]
In this case, the ratio of the soft decision likelihood values at each time point shown in FIG. 16 does not match the S / N ratio at each time point shown in FIG. 14, and the correct soft decision likelihood value is calculated. Absent.
[0009]
This is because the SGC does not reflect on the soft decision likelihood value because the AGC circuit keeps the total received power constant, although the S / N at each time varies. .
[0010]
Therefore, in such a communication environment, if an AGC circuit is used, it is difficult to correctly calculate a soft decision likelihood value, and the error correction capability is reduced. In such a case, conventionally, correction is performed by multiplying the soft decision likelihood value by a weight coefficient depending on the instantaneous reception amplitude so that the magnitude of S / N is reflected on the soft decision likelihood value.
[0011]
This correction is not a correction in S / N but a correction using a weighting factor depending on the instantaneous reception amplitude. However, in an environment where the noise power does not fluctuate, the S / N ratio at each time and the instantaneous reception Since the ratios of the weighting factors depending on the amplitude are in the same relationship, correct correction is performed as long as the noise power does not fluctuate.
[0012]
FIG. 17 is a diagram illustrating the soft decision likelihood values at each time point when the soft decision likelihood values are multiplied by a weight coefficient depending on the instantaneous reception amplitude. However, in this case, the total received power value which is the square value of the instantaneous reception amplitude is used as the weighting factor depending on the instantaneous reception amplitude.
[0013]
As shown in FIG. 17, the ratio of the soft decision likelihood value at each time point matches the value of S / N at each time point in FIG. 2, and as long as it is used in an environment where the noise power does not fluctuate as described above. In, the soft decision likelihood value can be correctly calculated, and as a result, a decrease in error correction capability can be suppressed.
[0014]
[Patent Document 1]
JP-A-5-315977 (page 6, FIG. 8)
[0015]
[Problems to be solved by the invention]
However, in a mobile communication system of the CDMA (Code Division Multiple Access) system or the like, interference from other cells is composed of many signals, and therefore has almost constant power without fluctuation. However, a received signal is transmitted through a plurality of paths. The received multipath signal fluctuates in power due to fading. Therefore, when the main component of the noise power is due to multipath in a fading environment, the noise power (interference component) fluctuates.
[0016]
In such a case, the multipath signal also becomes signal power by rake combining reception, so that the fluctuations in the noise power and the fluctuations in the received signal power substantially match, and as a result, the fluctuations in the received signal power Even so, the communication environment is such that the S / N (the ratio between the desired wave component and the noise component) does not greatly change.
[0017]
Another condition for establishing such a communication environment is transmission power control. In this transmission power control, when noise power or received signal power fluctuates due to fading, transmission power is controlled on the transmission side such that the S / N on the reception side is always constant. Accordingly, a communication environment in which the S / N does not fluctuate even when the received signal power fluctuates.
[0018]
FIG. 18 shows an example of fluctuations in noise power and received signal power in such a communication environment. FIG. 19 shows the S / N at each point in the fluctuation state of the noise power and the received signal power shown in FIG. As shown in FIG. 19, the S / N of the received signal becomes “2” at time t, becomes “2” at time t + 1, and becomes “2” at time t + 2.
[0019]
That is, in the variation example of the noise power and the received signal power shown in FIG. 18, the S / N is not changed even though the total received signal power is changed.
[0020]
FIG. 20 shows a state in which the received signal whose total received signal power fluctuates is subjected to gain control by the AGC circuit to adjust the total received signal power to “12”.
[0021]
As shown in FIG. 20, when a received signal originally having no variation in S / N is subjected to gain control by an AGC circuit so that the total received signal power becomes constant, the result is included in the total received signal power. The noise power and the received signal power have constant values so as to keep the same S / N.
[0022]
FIG. 21 shows the soft decision likelihood values at each point in this case. As shown in FIG. 21, the soft decision likelihood value (without correction) of the received signal is “2k” at time t, “2k” at time t + 1, and “2k” at time t + 2. That is, for a received signal whose S / N does not fluctuate even though the total received signal power fluctuates, in a state where the AGC circuit keeps the total received signal power constant (FIG. 21), FIG. And the same result as the S / N shown in FIG. 19 can be obtained.
[0023]
Then, the received signal subjected to gain control by the AGC circuit is multiplied by a weight coefficient (using the total received power as in the case of FIG. 17) of the soft decision likelihood value depending on the instantaneous received amplitude. FIG. 22 shows a case in which the correction is performed. As shown in FIG. 22, the soft decision likelihood value (with correction) of the received signal becomes “6k” at time t, becomes “24k” at time t + 1, and becomes “12k” at time t + 2.
[0024]
As shown in FIG. 22, for a received signal whose S / N does not fluctuate even though the total received signal power fluctuates, the AGC circuit keeps the total received signal power constant ( If weighting correction using the instantaneous amplitude value is further performed from FIG. 21), the result becomes different from the S / N at each time point shown in FIG.
[0025]
That is, it is difficult to calculate a correct soft decision likelihood value by performing weight correction on a received signal in which the total received signal power fluctuates while maintaining a state in which the S / N does not fluctuate. However, there has been a problem that the error correction capability of the device has been reduced.
[0026]
This is because when the noise power fluctuates, the ratio of the weighting factor depending on the instantaneous reception amplitude at each time point and the S / N ratio at each time point are uncorrelated, and thus depend on the instantaneous reception amplitude. This is because even when the soft decision likelihood value is multiplied by the weight coefficient, the ratio of the soft decision likelihood value at each time point is not equal to the S / N ratio at each time point.
[0027]
Further, even in a communication environment in which the noise power and the received signal power fluctuate independently (when the S / N is not constant), when the correction by multiplying by the weight coefficient depending on the instantaneous amplitude value is performed, the soft decision likelihood is correctly calculated. There was a problem that it was difficult to calculate the value.
[0028]
That is, FIG. 23 is a signal waveform diagram illustrating an example of fluctuations in noise power and received signal power in a communication environment in which noise power and received signal power vary independently. FIG. 24 is a diagram showing the S / N at each time point in FIG.
[0029]
As shown in FIG. 24, the S / N of the received signal becomes “2” at time t, becomes “2” at time t + 1, and becomes “0.5” at time t + 2.
[0030]
FIG. 25 shows a signal waveform diagram in the case where the received signal shown in FIG. 23 is subjected to gain control by the AGC circuit so that the total received signal power is kept at a constant value “18”. FIG. 26 shows the soft decision likelihood values.
[0031]
FIG. 26 is a diagram illustrating a case where the gain is controlled by the AGC circuit and then a correction is performed by multiplying by a weighting factor depending on the instantaneous amplitude value, and a case where the correction is not performed. As shown in FIG. 26, the soft decision likelihood value at each time point does not match the S / N ratio shown in FIG. 24 in both the case where the correction is performed and the case where the correction is not performed. .
[0032]
That is, when the noise power and the received signal power fluctuate independently, it is difficult to correctly calculate the soft decision likelihood value if the soft decision likelihood value is corrected, and the error correction capability is reduced. Further, even when the soft decision likelihood value is not corrected, similarly, it becomes difficult to correctly calculate the soft decision likelihood value, and the error correction capability is reduced.
[0033]
In this case, when the noise power and the received power fluctuate independently and the S / N is not constant, the ratio of the weight coefficient depending on the instantaneous reception amplitude at each time and the ratio of the S / N at each time are uncorrelated. Therefore, even if a correction is made such that the soft decision likelihood value is multiplied by a weight coefficient depending on the instantaneous reception amplitude, the ratio of the soft decision likelihood value at each time point is the S / N ratio at each time point. By not being equal to
[0034]
The AGC circuit does not make the ratio of the soft decision likelihood values at each time point close to the S / N ratio at each time point, but keeps the total received signal power constant without correlation with the S / N. It is. Therefore, it is difficult to correctly calculate the soft decision likelihood value even when the correction is not performed.
[0035]
The present invention has been made in view of such a point, and while the received signal power fluctuates, the ratio between the desired wave component and the noise component does not fluctuate, or the received signal power and the noise component are not changed. An object of the present invention is to provide a receiving apparatus, an error correction decoding apparatus, and an error correction decoding method that can correctly calculate a likelihood value and perform error correction processing in a communication environment that changes independently.
[0036]
[Means for Solving the Problems]
A receiving apparatus according to the present invention includes a gain control unit that keeps a total signal power of a received signal constant, and a maximum likelihood decoding of a reception code sequence of a signal whose total received signal power is kept constant by the gain control unit. At this time, for each received code, the likelihood of the candidate code is given as a multi-level likelihood, and the likelihood value calculating means for correcting the likelihood as necessary, and a noise component included in the received signal. Noise component fluctuation detecting means for detecting fluctuations in the likelihood, and correction for determining whether to perform the correction depending on the instantaneous amplitude of the received signal with respect to the likelihood based on the detection result of the noise component fluctuation detecting means. And control means.
[0037]
According to this configuration, when the noise component of the received signal fluctuates by a certain amount or more, the main component of the noise component can be determined to be a multipath signal. In this case, the ratio between the desired wave component and the noise component of the received signal (for example, Since S / N) does not vary, the soft decision likelihood value is not multiplied by a weighting factor that depends on the instantaneous received signal amplitude. As a result, a correct soft decision likelihood value can be calculated according to the ratio between the desired wave component and the noise component of the received signal, and a decrease in error correction capability can be suppressed.
[0038]
A receiving apparatus according to the present invention includes a gain control unit that keeps a total signal power of a received signal constant, and a maximum likelihood decoding of a reception code sequence of a signal whose total received signal power is kept constant by the gain control unit. At this time, for each received code, the likelihood of the candidate code is given as a multi-level likelihood, and the likelihood value calculating means for correcting the likelihood as necessary, and a desired wave included in the received signal. Correction control means for determining whether or not to perform the correction depending on the instantaneous amplitude of the received signal with respect to the likelihood based on information indicating a change in the ratio between the component and the noise component. Take.
[0039]
According to this configuration, it is determined whether or not to perform the correction depending on the instantaneous amplitude of the received signal on the likelihood based on the information indicating the change in the ratio between the desired wave component and the noise component of the received signal. This makes it possible to accurately correct the soft decision likelihood based on the type of the noise component included in the received signal.
[0040]
The receiving apparatus according to the present invention, in the above configuration, employs a configuration in which the correction control unit determines whether or not the correction is performed based on whether or not the received signal is transmitted under transmission power control.
[0041]
According to this configuration, the information indicating whether or not the transmission power control has been performed is used as the information indicating the change in the ratio between the desired wave component and the noise component of the received signal, so that the desired wave included in the received signal is used. It can be easily determined whether or not the ratio between the component and the noise component is constant. This makes it possible to easily determine whether or not to correct the soft decision likelihood.
[0042]
The receiving apparatus of the present invention, in the above configuration, wherein the correction control means determines the presence or absence of the correction based on whether a main component of a noise component included in the received signal is due to multipath. Take.
[0043]
According to this configuration, it is possible to determine whether or not the ratio between the desired wave component and the noise component included in the received signal is constant, based on whether or not a noise component due to multipath is included.
[0044]
A receiving apparatus according to the present invention includes a gain control unit that keeps a total signal power of a received signal constant, and a maximum likelihood decoding of a reception code sequence of a signal whose total received signal power is kept constant by the gain control unit. At the same time, for each received code, the likelihood of the candidate code is given as a multi-level likelihood, and the likelihood is multiplied by a weighting factor depending on the instantaneous amplitude of the received signal and the received signal is multiplied by the likelihood. And a likelihood value calculating means for performing division by the included noise component value.
[0045]
According to this configuration, the soft decision likelihood value can be correctly calculated even when the desired wave component and the noise component of the received signal fluctuate independently.
[0046]
The error correction decoding apparatus of the present invention, when performing the maximum likelihood decoding of the received code sequence of the received signal, gives the likelihood of the candidate code for each received code as a multi-level level likelihood. A likelihood value calculating means for multiplying by a weighting factor depending on the instantaneous amplitude of the received signal and dividing by a noise component value included in the received signal, based on the likelihood value calculated by the likelihood value calculating means. And a decoding means for performing error correction decoding by means of a decoding means.
[0047]
According to this configuration, the soft decision likelihood value can be correctly calculated even when the desired wave component and the noise component of the received signal fluctuate independently.
[0048]
The error correction decoding method of the present invention, when performing maximum likelihood decoding of a received code sequence of a received signal, gives likelihood of a candidate code for each received code as a multi-level likelihood, and A likelihood value calculating step of multiplying by a weighting factor depending on the instantaneous amplitude of the received signal and dividing by a noise component value included in the received signal, based on the likelihood value calculated by the likelihood value calculating means. And a decoding step of performing error correction decoding.
[0049]
According to this method, the soft decision likelihood value can be correctly calculated even when the desired wave component and the noise component of the received signal fluctuate independently.
[0050]
BEST MODE FOR CARRYING OUT THE INVENTION
The gist of the present invention is to judge the necessity of the soft decision likelihood value correction based on the fluctuation amount of the noise component of the received signal or the presence or absence of the fluctuation of the ratio between the desired wave component and the noise component, and to perform the unnecessary correction. The purpose of the present invention is to prevent the error correction ability from being lowered due to the error. Here, the noise component means all unnecessary components regardless of the factor.
[0051]
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0052]
(Embodiment 1)
FIG. 1 is a block diagram illustrating a configuration of a receiving device according to an embodiment of the present invention.
[0053]
In FIG. 1, reference numeral 100 denotes a CDMA receiving apparatus as a whole, and a reception signal received via an antenna 101 is received by a reception RF (Radio Frequency) unit 102. The receiving RF unit 102 converts a received signal of a radio frequency into a signal of a baseband, and outputs this to the AGC circuit 103.
[0054]
The AGC circuit 103 performs gain control to keep the total received signal power (sum of the received signal power and noise power) of the received signal constant. The received signal whose total received signal power is kept constant is output from AGC circuit 103 to demodulation section 104.
[0055]
Demodulation section 104 performs demodulation processing such as despreading and RAKE combining on the received signal (total received signal power) having a constant amplitude output from AGC circuit 103, and then demodulates the demodulated signal resulting from the demodulation as an error. The signals are output to the correction decoder 106 and the noise power fluctuation amount measurement unit 105, respectively.
[0056]
Also, the AGC circuit 103 outputs the received signal after the AGC processing as described above, and in the AGC processing, the weighting coefficient (gain) obtained by multiplying the fluctuating received signal so that the signal level is constant. The adjustment coefficient is output to the error correction decoder 106 and the noise power fluctuation amount measurement unit 105, respectively. This weight coefficient is a coefficient that depends on the instantaneous reception amplitude. Specifically, the magnitude of the signal (received signal) input to the AGC circuit 103, such as the square of the magnitude of the received signal input to the AGC circuit 103, may be used. The reason for using the value of the square of the magnitude of the received signal is that when the likelihood value is obtained in the error correction decoder 106, the received signal must be input in a size that reflects the ratio of noise power. .
[0057]
The error correction decoder 106 receives the demodulated signal output from the demodulation unit 104 and the weight coefficient output from the AGC circuit 103 in the soft decision likelihood value calculation unit 107. Soft decision likelihood value calculating section 107 performs a soft decision likelihood value calculating process based on the control signal output from reception amplitude weight multiplication control section 108.
[0058]
That is, in this receiving apparatus 100, the demodulated signal output from demodulation section 104 and the weighting factor output from AGC circuit 103 are supplied to noise power variation measurement section 105. FIG. 2 is a block diagram illustrating a configuration of the noise power fluctuation amount measurement unit 105. The noise power fluctuation measuring section 105 receives the demodulated signal and the weighting factor in the noise power measuring section 111, and first measures instantaneous noise power, which is a noise component of the demodulated signal. In this case, the noise power measuring unit 111 measures the noise power from the X signals, for example, by subtracting the square of the average of the X signals from the average of the square of the X signals. As noise power.
[0059]
Here, since the demodulated signal is controlled by the AGC circuit 103 so that the total received power becomes constant, it is difficult to measure a correct instantaneous noise power as it is. Therefore, the noise power measurement unit 111 multiplies the measured instantaneous noise power by the weight coefficient supplied from the AGC circuit 103. Since this weighting factor depends on the instantaneous reception amplitude, by multiplying the instantaneous noise power by this weighting factor, a change in the noise power given by the AGC circuit so that the total reception power becomes constant is obtained. Can be removed.
[0060]
The result of the multiplication is output to the delay unit 112 and the comparison and division unit 113 as an instantaneous noise power value. The delay unit 112 delays the input instantaneous noise power value for a predetermined time, and then outputs the delayed power value to the comparison / division unit 113. The comparison / division unit 113 compares the current instantaneous noise power value output from the noise power measuring unit 111 with the instantaneous noise power value output from the delay unit 112 after a predetermined time delay, and compares the two instantaneous noise power values. The small instantaneous noise power value is divided from the large instantaneous noise power value among the values.
[0061]
The result of the division in this manner is a measured value indicating the amount of change in the instantaneous noise power value (hereinafter, this is referred to as the amount of change in noise power). The noise power fluctuation amount obtained by the noise power fluctuation amount measuring section 105 is output to the reception amplitude weight multiplication control section 108 (FIG. 1).
[0062]
The reception amplitude weight multiplication control unit 108 compares the noise power variation output from the noise power variation measurement unit 105 with a preset threshold, and if the noise power variation is smaller than the threshold, A control signal for multiplying the soft decision likelihood value by a weight coefficient depending on the instantaneous reception amplitude is output to decision likelihood value calculating section 107.
[0063]
On the other hand, if the noise power variation output from the noise power variation measuring unit 105 is larger than a preset threshold, the reception amplitude weight multiplication control unit 108 The control unit 107 outputs a control signal to the calculation unit 107 to prevent the soft decision likelihood value from being multiplied by a weight coefficient depending on the instantaneous reception amplitude.
[0064]
If the control signal output from reception amplitude weight multiplication control section 108 is a control signal for multiplying the weight coefficient, soft decision likelihood value calculation section 107 calculates the soft signal based on the demodulated signal at this time. The soft decision likelihood value is multiplied by a weight coefficient depending on the instantaneous reception amplitude. On the other hand, if the control signal output from reception amplitude weight multiplication control section 108 is a control signal for not multiplying the weight coefficient, soft decision likelihood value calculation section 107 The calculated soft decision likelihood value is used without multiplying the soft decision likelihood value calculated based on the weight coefficient depending on the instantaneous reception amplitude.
[0065]
FIG. 3 is a schematic diagram for explaining a method of calculating a soft decision likelihood value based on a demodulated signal in soft decision likelihood calculating section 107. FIG. 3 gives the soft decision likelihood for a one-dimensional (one-bit) code. In the case of two-dimensional (two-bit) codes, it is sufficient to apply to each bit and add.
[0066]
The demodulated signal level + V corresponds to the code “0”, and the demodulated signal level −V corresponds to the code “1”. FIG. 3 shows the likelihood for the code “0”. As this likelihood, for example, multiple values from 0 to 16 are assigned according to the demodulated signal amplitude value. That is, if a signal having an amplitude such as the demodulated signal amplitude A in FIG. 3 is input, the likelihood in the case of hard decision becomes zero. In other words, it can be understood that the hard decision is that the demodulated signal is close to the candidate code "0", but its certainty cannot be determined with sufficient accuracy.
[0067]
On the other hand, the likelihood is given as 6 in the soft decision according to the present embodiment. Since this is a value close to 8 (an intermediate point between two code levels), it can be determined that the value is close to the candidate code “0” but the reliability is low.
[0068]
The soft decision likelihood calculation section 107 calculates the soft decision likelihood of the demodulated signal by the method shown in FIG. 3, and further weights the calculated soft decision likelihood value depending on the instantaneous reception amplitude. Whether or not correction by coefficient multiplication is possible is determined based on a control signal from reception amplitude weight multiplication control section 108. Then, based on the control signal, if correction is necessary, the soft decision likelihood value is corrected by multiplying by a weighting coefficient. The likelihood value is not multiplied by the weight coefficient.
[0069]
In this way, the soft decision likelihood value calculated by the soft decision likelihood value calculation section 107 and corrected as necessary is output to the addition / comparison / selection section 121 in the error correction decoder 106 shown in FIG. Is done.
[0070]
Upon receiving the soft decision likelihood value output from the soft decision likelihood value calculating section 107, the addition / comparison / selection section 121 sets the value of the state likelihood at the immediately preceding time stored in the state likelihood memory 122 to a possible value. The soft decision likelihood value of the state transition is added to obtain a new state likelihood. Then, the addition / comparison / selection unit 121 compares the state likelihoods of a plurality of state transitions leading to one state, selects a transition having the maximum state likelihood from among them, and selects the state likelihood of the selected transition. The state likelihood memory 122 is updated using the degree as a new state likelihood.
[0071]
Further, the addition / comparison / selection unit 121 outputs to the path memory 123 the information j (i) of the simultaneously selected transition (representing the transition from the state j to the state i). The path memory 123 sequentially stores the transition information j (i) or the state number of the transition, and obtains a decoding result from the state transition selected and left at the final point in the maximum likelihood determination unit 124.
[0072]
In the above configuration, the likelihood in error correction decoding generally changes depending on S / N. Therefore, the ratio of the soft decision likelihood values at each time point must be equal to the S / N ratio at each time point.
[0073]
In this regard, as described above with reference to FIG. 13, when the noise power included in the received signal is substantially constant, the ratio of the S / N at each time point and the ratio of the weighting factor depending on the instantaneous reception amplitude are as follows. They are in equal relation. Therefore, in such a communication environment, the receiving apparatus 100 multiplies the soft decision likelihood value calculated based on the output signal of the AGC circuit by the weighting coefficient, thereby obtaining an accurate signal matching the S / N ratio. The soft ratio of likelihood values can be determined.
[0074]
On the other hand, when the noise power included in the received signal fluctuates, the ratio of the weight coefficient depending on the instantaneous reception amplitude at each time point and the S / N ratio at each time point are uncorrelated. Therefore, in such a communication environment, the receiving apparatus 100 obtains a noise fluctuation amount equal to or larger than a predetermined threshold value as a measurement result of the noise power fluctuation amount measuring unit 105, and based on the detection result of the noise fluctuation amount. Thus, control is performed so that the reception amplitude weight multiplication control unit 108 does not multiply the soft decision likelihood value of the weight coefficient (correction of the soft decision likelihood value).
[0075]
In this case, as shown in FIG. 18, assuming that the received signal input to the AGC circuit fluctuates while maintaining its S / N ratio, the demodulated signal output from the AGC circuit is: Since the total received signal power is kept constant, the noise power component is also kept constant. That is, the S / N ratio of the demodulated signal in this case is kept constant. Therefore, this demodulated signal meets the above-mentioned condition that the ratio of the soft decision likelihood values at each time point must be equal to the S / N ratio at each time point.
[0076]
Therefore, in such a case, an accurate soft decision likelihood value can be obtained by not multiplying the soft decision likelihood value by the weight coefficient (correction of the soft decision likelihood value). Incidentally, an example of a communication environment that results in fluctuation while maintaining the S / N ratio of the received signal will be described below.
[0077]
A first example in which the S / N ratio of a received signal fluctuates while being maintained will be described. In CDMA communication, a multipath signal or the like may cause interference, and the multipath signal may be a main component of noise power. In such a case, since the multipath signal also becomes signal power by rake combining reception, the fluctuation of the noise power and the power of the received signal are almost the same. Of the ratio is small.
[0078]
Next, a second example will be described. In some cases, transmission power control is performed on the signal received by the receiving device at the transmission source. In the transmission power control, the transmission power is controlled on the transmission side so that the S / N on the reception side is always constant even if the noise power or the received signal power fluctuates due to fading. Is changed, the communication environment does not change the S / N.
[0079]
Therefore, when the noise power fluctuates by a certain amount or more and the fluctuation state is detected based on the noise power fluctuation amount measured by the noise power fluctuation amount measuring unit 105 of the receiving device 100, the receiving device 100 Based on the detection result, it can be determined that the main component of the noise power is a multipath signal or that the received signal is a signal subjected to transmission power control.
[0080]
In such a case, even if gain control is performed by the AGC circuit 103 so that the value of the total received signal power is constant, the soft decision likelihood value obtained based on the result is not corrected. Thus, an accurate soft decision likelihood value can be obtained.
[0081]
FIG. 5 is a flowchart illustrating an error correction decoding process performed by the receiving apparatus 100. As shown in FIG. 5, receiving apparatus 100 measures a noise power value of a received signal in step ST101, and obtains a fluctuation amount of the noise power value in step ST102. Then, the receiving apparatus 100 proceeds to the subsequent step ST103, and determines whether or not the fluctuation amount of the noise power value obtained in the above-described step ST102 is larger than a threshold.
[0082]
If a positive result is obtained in step ST103, this means that the amount of change in the noise power value is larger than the threshold, that is, when the soft decision likelihood value is corrected, a correct soft decision likelihood value cannot be obtained. As a result, this means a state in which the error correction capability may be reduced due to the correction of the soft decision likelihood value. At this time, the receiving apparatus 100 proceeds to step ST104 and performs the soft decision. Error correction processing is performed without correcting the likelihood value.
[0083]
On the other hand, if a negative result is obtained in step ST103, this indicates that the variation in the noise power value is smaller than the threshold, that is, the correct soft decision likelihood is obtained by correcting the soft decision likelihood value. This means that the state can be obtained, and as a result, a certain error correction capability can be maintained. At this time, the receiving apparatus 100 proceeds to step ST105 and sets the soft decision likelihood value Error correction processing with a correction for.
[0084]
As described above, according to the receiving apparatus of the present embodiment, by controlling whether to perform the weighting process based on the variation of the noise power component of the received signal, the accurate soft decision likelihood The value can be calculated.
[0085]
In the above-described embodiment, the method for measuring the amount of noise power fluctuation is to compare the instantaneous noise power value measured last time with the noise power value measured this time and divide the smaller value from the larger value. However, the present invention is not limited to this.For example, an average of the measured noise power values for a predetermined number of times in the past is obtained, and the average value is compared with the current measured noise power value. In other words, other methods, such as dividing the smaller one, can be used as long as they represent the amount of change in noise power.
[0086]
Further, in the above-described embodiment, as a method of correcting the soft decision likelihood value, the case where a weight coefficient depending on the instantaneous reception amplitude is used has been described. However, the present invention is not limited to this. Adjustment coefficient (a coefficient for multiplying the received signal amplitude so as to keep the total received power constant. In an AGC circuit for temporarily maintaining the power K, K = (gain adjustment coefficient / received signal) 2 (Where K is the power and the square is established), the inverse of the square may be used. As described above, since the gain adjustment coefficient of the AGC circuit 103 is the reciprocal of the coefficient that depends on the instantaneous reception amplitude, it is necessary to newly calculate a coefficient that depends on the instantaneous reception amplitude by using this gain adjustment coefficient. Therefore, the soft decision likelihood value can be easily corrected.
[0087]
Further, in the above-described embodiment, the case where S / N is used as the ratio between the desired wave component and the noise component of the received signal by paying attention to the noise power has been described, but this S / N is SIR (Signal Interference). Ratio) is also included.
[0088]
Further, in the above embodiment, the case where a Viterbi decoder is used as the error correction decoder 106 has been described. However, the present invention is not limited to this. For example, turbo encoding is performed on the transmission side, and Other encoding and decoding methods may be used, such as performing turbo decoding on the receiving side.
[0089]
(Embodiment 2)
FIG. 6 is a block diagram showing the configuration of receiving apparatus 200 according to Embodiment 2 of the present invention. However, components having the same configuration as in FIG. 1 are denoted by the same reference numerals as in FIG. 1, and detailed description is omitted.
[0090]
The receiving apparatus 200 illustrated in FIG. 6 determines whether or not transmission power control is performed instead of measuring the noise power value as compared to the receiving apparatus 100 described above with reference to FIG. The difference is that it is determined whether or not correction of the soft decision likelihood value is possible based on this.
[0091]
That is, in FIG. 6, receiving apparatus 200 outputs a demodulated signal obtained as a result of demodulation in demodulation section 104 to soft decision likelihood value calculation section 107 of error correction decoder 106 and to transmission power control section 201 I do.
[0092]
Transmission power control section 201 outputs control information, which is included in the demodulated signal and indicates whether or not transmission power control is being performed, to reception amplitude weight multiplication control section 208. Here, the transmission power control means that the received signal received by the receiving device 200 is transmitted from the transmission source under the transmission power control. The reception amplitude weight multiplication control unit 208 determines whether or not transmission power control is performed based on the control information output from the transmission power control unit 201. When the transmission power control is not performed, A control signal for multiplying the soft decision likelihood value by a weight coefficient depending on the instantaneous reception amplitude is output to soft decision likelihood value calculating section 107.
[0093]
On the other hand, when the transmission power control is performed, the reception amplitude weight multiplication control unit 208 sends the soft decision likelihood value to the soft decision likelihood value A control signal for preventing multiplication by the dependent weight coefficient is output.
[0094]
With this, when the transmission power control is performed, the S / N of the received signal is always constant, and the soft decision likelihood value is multiplied by a weight coefficient depending on the instantaneous received signal amplitude (the soft decision likelihood value). Correction) is not performed. As a result, the correct soft-decision likelihood value is calculated in accordance with the S / N, so that even when a signal for which transmission power control is performed is received, a decrease in the error correction capability can be suppressed. it can.
[0095]
FIG. 7 is a flowchart illustrating an error correction decoding processing procedure in the receiving apparatus 200. As shown in FIG. 7, receiving apparatus 200 extracts control information indicating whether transmission power control is performed from a received signal (demodulated signal) in step ST201, and in step ST202, transmits the received signal based on the control information. It is determined whether the data is transmitted under the power control.
[0096]
If a positive result is obtained in step ST202, this means that transmission power control is being performed, that is, if the S / N of the received signal is constant and the soft decision likelihood value is corrected, correct soft decision is performed. This means that the likelihood value is not obtained, and as a result, there is a possibility that the error correction capability may be degraded due to the correction of the soft decision likelihood value. Moving to ST203, error correction processing is performed without correcting the soft decision likelihood value.
[0097]
On the other hand, if a negative result is obtained in step ST202, this means that the transmission power control is not performed, that is, the S / N of the received signal is not constant, and the correction of the soft decision likelihood value is performed. By doing so, it is possible to obtain a correct soft decision likelihood value, and as a result, it is in a state where a certain error correction capability can be maintained. At this time, the receiving apparatus 200 proceeds to step ST204. Then, an error correction process involving correction of the soft decision likelihood value is performed.
[0098]
As described above, according to the receiving apparatus of the present embodiment, based on the control information of a received signal, it is determined whether or not the received signal is transmitted under transmission power control, and the determination result is obtained. By controlling whether to perform the weighting process based on the above, accurate calculation of the soft decision likelihood value can be performed.
[0099]
In the above-described embodiment, the case where a weight coefficient depending on the instantaneous reception amplitude is used as a method for correcting the soft decision likelihood value has been described, but the present invention is not limited to this, and the gain in the AGC circuit 103 Adjustment coefficient (a coefficient for multiplying the received signal amplitude so as to keep the total received power constant. In an AGC circuit for temporarily maintaining the power K, K = (gain adjustment coefficient / received signal) 2 (Where K is the power and the square is established), the inverse of the square may be used. As described above, since the gain adjustment coefficient of the AGC circuit 103 is the reciprocal of the coefficient that depends on the instantaneous reception amplitude, it is necessary to newly calculate a coefficient that depends on the instantaneous reception amplitude by using this gain adjustment coefficient. Therefore, the soft decision likelihood value can be easily corrected.
[0100]
Further, in the above-described embodiment, the case where S / N is used as the ratio between the desired wave component and the noise component of the received signal by paying attention to noise power has been described, but this S / N includes SIR. .
[0101]
Further, in the above-described embodiment, the case where a Viterbi decoder is used as the error correction decoder 106 has been described. However, the present invention is not limited to this. For example, turbo encoding is performed on the transmission side, and Other encoding and decoding methods may be used, such as performing turbo decoding on the receiving side.
[0102]
(Embodiment 3)
FIG. 8 is a block diagram showing a configuration of receiving apparatus 300 according to Embodiment 3 of the present invention. However, components having the same configuration as in FIG. 1 are denoted by the same reference numerals as in FIG. 1, and detailed description is omitted.
[0103]
The receiving apparatus 300 shown in FIG. 8 is different from the receiving apparatus 100 described above with reference to FIG. 1 in that, instead of measuring the noise power value, other cell interference is performed based on the received power from the currently communicating cell and other cells. The difference is that the amount is calculated and the demodulation section 104 determines whether or not to correct the soft decision likelihood value based on the number of fingers used for data demodulation and the amount of interference from other cells.
[0104]
That is, in FIG. 8, receiving apparatus 300 includes cell search section 301 and finger assignment control section 302, and cell search section 301 divides the received power from another cell by the received power from the cell currently communicating. , And outputs the result of the division to the reception amplitude weight multiplication control section 308 as the other cell interference amount.
[0105]
In addition, finger assignment control section 302 outputs the number of fingers used in the rake combining reception processing at the time of data demodulation in demodulation section 104 to reception amplitude weight multiplication control section 308.
[0106]
Receiving amplitude weight multiplication control section 308 compares the other cell interference amount output from cell search section 301 with a preset threshold value, and determines that the other cell interference amount is smaller than the threshold value and finger allocation control section 302 If the number of fingers output from is more than one, the soft decision likelihood value calculation section 107 outputs a control signal for preventing the soft decision likelihood value from being multiplied by a weighting factor depending on the instantaneous reception amplitude.
[0107]
On the other hand, if at least one of the other cell interference amount is smaller than the threshold value or the number of fingers is not satisfied, the reception amplitude weight multiplication control unit 308 determines the soft decision likelihood. A control signal for multiplying the soft decision likelihood value by a weight coefficient depending on the instantaneous reception amplitude is output to degree value calculating section 107.
[0108]
As described above, when the other cell interference amount is small and the number of fingers is plural, the main component of the noise power value of the received signal is due to multipath. In this case, the S / N of the received signal is high. Can be determined not to vary, and the soft decision likelihood value calculation unit 107 does not multiply the soft decision likelihood value by the weighting coefficient (correction of the soft decision likelihood value). Therefore, a correct soft decision likelihood value according to S / N can be calculated, and a decrease in error correction capability can be suppressed.
[0109]
FIG. 9 is a flowchart illustrating an error correction decoding processing procedure in the receiving apparatus 300. As shown in FIG. 9, receiving apparatus 300 reads the other cell interference amount and the number of fingers related to the received signal in step ST301, and in step ST302, based on the other cell interference amount and the number of fingers, the other cell interference amount is smaller than a threshold. It is determined whether both are small and the number of fingers is plural.
[0110]
If a positive result is obtained in step ST302, this means that the main component of the noise power value of the received signal is due to multipath, that is, the S / N of the received signal is constant and the soft decision likelihood value When the correction is performed, a correct soft decision likelihood value cannot be obtained, and as a result, a state in which the error correction capability may be reduced due to the correction of the soft decision likelihood value may be caused. At this time, the receiving apparatus 300 moves to step ST303 and performs error correction processing without performing correction on the soft decision likelihood value.
[0111]
On the other hand, if a negative result is obtained in step ST302, this means that the main component of the noise power value of the received signal is not due to multipath, that is, the S / N of the received signal is not constant, By correcting the soft decision likelihood value, it is possible to obtain a correct soft decision likelihood value, and as a result, it is in a state where a certain error correction capability can be maintained. The receiving apparatus 300 proceeds to step ST304 and performs error correction processing involving correction of the soft decision likelihood value.
[0112]
As described above, according to the receiving apparatus of the present embodiment, based on the other cell interference amount and the number of fingers related to a received signal, it is determined whether or not the main component of the noise power value of the received signal is due to multipath. By judging and controlling whether or not to perform the weighting process based on the judgment result, it is possible to accurately calculate the soft decision likelihood value.
[0113]
In the above-described embodiment, the case where a weight coefficient depending on the instantaneous reception amplitude is used as a method for correcting the soft decision likelihood value has been described, but the present invention is not limited to this, and the gain in the AGC circuit 103 Adjustment coefficient (a coefficient for multiplying the received signal amplitude so as to keep the total received power constant. In an AGC circuit for temporarily maintaining the power K, K = (gain adjustment coefficient / received signal) 2 (Where K is the power and the square is established), the inverse of the square may be used. As described above, since the gain adjustment coefficient of the AGC circuit 103 is the reciprocal of the coefficient that depends on the instantaneous reception amplitude, it is necessary to newly calculate a coefficient that depends on the instantaneous reception amplitude by using this gain adjustment coefficient. Therefore, the soft decision likelihood value can be easily corrected.
[0114]
Further, in the above-described embodiment, the case where S / N is used as the ratio between the desired wave component and the noise component of the received signal by paying attention to noise power has been described, but this S / N includes SIR. .
[0115]
Further, in the above-described embodiment, the case where a Viterbi decoder is used as the error correction decoder 106 has been described. However, the present invention is not limited to this. For example, turbo encoding is performed on the transmission side, and Other encoding and decoding methods may be used, such as performing turbo decoding on the receiving side.
[0116]
(Embodiment 4)
FIG. 10 is a block diagram showing the configuration of receiving apparatus 400 according to Embodiment 4 of the present invention. However, components having the same configuration as in FIG. 1 are denoted by the same reference numerals as in FIG. 1, and detailed description is omitted.
[0117]
The receiving apparatus 400 shown in FIG. 10 measures the instantaneous noise power value instead of measuring the noise power fluctuation amount as compared with the receiving apparatus 100 described above with reference to FIG. By correcting the soft-decision likelihood value based on the weighting coefficient depending on the instantaneous reception amplitude, even if the noise power value and the received signal power value fluctuate independently, the S / N can be determined. The difference is that a correct soft decision likelihood value is calculated.
[0118]
That is, in FIG. 10, receiving apparatus 400 includes noise power fluctuation amount measuring section 401 that measures the instantaneous noise power value. The noise power fluctuation amount measuring section 401 receives the demodulated signal output from the demodulating section 104 and a weight coefficient depending on the instantaneous reception amplitude output from the AGC circuit 103.
[0119]
Since the demodulated signal is controlled by the AGC circuit 103 so that the total received power becomes constant, it is difficult to measure the correct instantaneous noise power as it is. Therefore, the noise power fluctuation measuring section 401 multiplies the measured instantaneous noise power by the weight coefficient supplied from the AGC circuit 103. Since the weighting factor depends on the instantaneous reception amplitude, the instantaneous noise power is multiplied by the weighting factor, so that the change in the noise power given by the AGC circuit 103 so that the total reception power is constant. Can be removed. The result of this multiplication is output to the soft decision likelihood value calculation section 407 of the error correction decoder 106 as the instantaneous noise power value.
[0120]
Soft decision likelihood value calculating section 407 calculates a soft decision likelihood value based on a demodulated signal (a demodulated signal based on a received signal subjected to AGC control) output from demodulating section 104, and calculates the calculated soft decision likelihood value. The degree value is multiplied by a weighting factor depending on the instantaneous reception amplitude, and the multiplication result is further divided by the instantaneous noise power value output from the noise power fluctuation amount measuring section 401.
[0121]
Accordingly, even when the received signal power value and the noise power value included in the total received signal power fluctuate independently, the variation of the total received signal power value is multiplied by the weighting factor depending on the instantaneous reception amplitude. And the fluctuation of the noise power value is compensated by division by the instantaneous noise power.
[0122]
Thus, even when the noise power value and the received signal power value fluctuate independently, it is possible to calculate a correct soft decision likelihood value according to the S / N, and suppress a decrease in error correction capability. be able to.
[0123]
Incidentally, FIG. 11 is a flowchart illustrating a procedure for correcting the soft decision likelihood value in the soft decision likelihood value calculation unit 407 of the receiving apparatus 400. As shown in FIG. 11, soft decision likelihood value calculating section 407 acquires a demodulated signal, a weight coefficient (weight coefficient depending on instantaneous reception amplitude) and an instantaneous noise power value regarding a received signal in step ST401, and then proceeds to step ST402. , A soft decision likelihood value is calculated based on the demodulated signal.
[0124]
Then, the soft decision likelihood value calculating section 407 proceeds to step ST403, where the soft decision likelihood value calculated in step ST402 is multiplied by a weighting factor depending on the instantaneous reception amplitude and the instantaneous noise power value. Division by. As described above, by multiplying the soft decision likelihood value by the weight coefficient depending on the instantaneous reception amplitude, the AGC circuit 103 applies the AGC signal to the received signal whose total received signal power is kept constant. By restoring the state before processing by the circuit 103 and further dividing the restored signal by the instantaneous noise power value, a soft decision likelihood value based on the received signal power value in a state where the noise power value does not fluctuate, That is, the ratio of the soft decision likelihood value equal to the S / N ratio at each time point can be obtained.
[0125]
Incidentally, FIG. 12 shows a correction in which the soft decision likelihood value is multiplied by a weight coefficient depending on the instantaneous reception amplitude and further divided by the noise power when the received signal power value and the noise power value fluctuate independently. FIG. 11 is a diagram showing a corrected soft decision likelihood value at each point in time when.
[0126]
As shown in FIG. 12, the ratio of the soft decision likelihood value after correction at each time point is the case of the received signal power and the noise power which fluctuate while maintaining the constant S / N ratio described above with reference to FIG. The result is similar to the above, and it can be seen from this result that the soft decision likelihood value was correctly calculated.
[0127]
Thus, even when the received signal power value and the noise power value fluctuate independently, a correct soft decision likelihood value according to S / N can be calculated.
[0128]
As described above, according to the receiving apparatus of the present embodiment, the instantaneous noise power value is measured, and the soft decision likelihood value is calculated based on the measured instantaneous noise power value and the weight coefficient depending on the instantaneous reception amplitude. , It is possible to calculate a correct soft decision likelihood value in accordance with the S / N even when the noise power value and the received signal power value fluctuate independently.
[0129]
In the above-described embodiment, the case where a weight coefficient depending on the instantaneous reception amplitude is used as a method for correcting the soft decision likelihood value has been described, but the present invention is not limited to this, and the gain in the AGC circuit 103 Adjustment coefficient (a coefficient for multiplying the received signal amplitude so as to keep the total received power constant. In an AGC circuit for temporarily maintaining the power K, K = (gain adjustment coefficient / received signal) 2 (Where K is the power and the square is established), the inverse of the square may be used. As described above, since the gain adjustment coefficient of the AGC circuit 103 is the reciprocal of the coefficient that depends on the instantaneous reception amplitude, it is necessary to newly calculate a coefficient that depends on the instantaneous reception amplitude by using this gain adjustment coefficient. Therefore, the soft decision likelihood value can be easily corrected.
[0130]
Further, in the above-described embodiment, the case where S / N is used as the ratio between the desired wave component and the noise component of the received signal by paying attention to noise power has been described, but this S / N includes SIR. .
[0131]
Further, in the above-described embodiment, the case where a Viterbi decoder is used as the error correction decoder 106 has been described. However, the present invention is not limited to this. For example, turbo encoding is performed on the transmission side, and Other encoding and decoding methods may be used, such as performing turbo decoding on the receiving side.
[0132]
【The invention's effect】
As described above, according to the present invention, while the received signal power fluctuates, the ratio of the desired signal component to the noise component of the received signal does not fluctuate, or the received signal power and the noise component power are not changed. In a communication environment that fluctuates independently, it is possible to correctly calculate a likelihood value and perform error correction processing.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a receiving apparatus according to Embodiment 1 of the present invention.
FIG. 2 is a block diagram illustrating a configuration of a noise power fluctuation amount measuring unit according to the first embodiment.
FIG. 3 is a schematic diagram for explaining a process of calculating a soft decision likelihood value;
FIG. 4 is a block diagram showing a configuration of an error correction decoder according to Embodiment 1.
FIG. 5 is a flowchart showing an error correction decoding processing procedure according to the first embodiment.
FIG. 6 is a block diagram showing a configuration of a receiving apparatus according to Embodiment 2 of the present invention.
FIG. 7 is a flowchart showing an error correction decoding processing procedure according to the second embodiment.
FIG. 8 is a block diagram showing a configuration of a receiving apparatus according to Embodiment 3 of the present invention.
FIG. 9 is a flowchart showing an error correction decoding processing procedure according to the third embodiment.
FIG. 10 is a block diagram showing a configuration of a receiving apparatus according to Embodiment 4 of the present invention.
FIG. 11 is a flowchart showing a procedure for correcting a soft decision likelihood value according to the fourth embodiment;
FIG. 12 is a diagram showing a correction result of a soft decision likelihood value according to the fourth embodiment.
FIG. 13 is a signal waveform diagram showing a received signal waveform in a communication environment in which noise power does not fluctuate.
FIG. 14 is a diagram showing S / N (received signal power / noise power) in a communication environment in which noise power does not fluctuate.
FIG. 15 is a signal waveform diagram showing a waveform of a received signal after AGC processing in a communication environment where there is no fluctuation in noise power.
FIG. 16 is a diagram illustrating a soft decision likelihood value (without correction) of a signal after AGC processing of a received signal in a communication environment in which there is no fluctuation in noise power.
FIG. 17 is a diagram showing a soft decision likelihood value (with correction) of a signal after AGC processing of a received signal in a communication environment in which there is no fluctuation in noise power.
FIG. 18 is a signal waveform diagram showing a received signal waveform in a communication environment in which received signal power and noise power fluctuate while maintaining S / N.
FIG. 19 is a diagram showing S / N in a communication environment in which received signal power and noise power fluctuate while maintaining S / N.
FIG. 20 is a signal waveform diagram showing a waveform of a received signal waveform after AGC processing in a communication environment in which received signal power and noise power fluctuate while maintaining S / N.
FIG. 21 is a diagram showing a soft decision likelihood value (without correction) of a signal after AGC processing of a received signal waveform in a communication environment in which received signal power and noise power fluctuate while maintaining S / N.
FIG. 22 is a diagram showing a soft decision likelihood value (with correction) of a signal after AGC processing of a received signal waveform in a communication environment in which received signal power and noise power fluctuate while maintaining S / N.
FIG. 23 is a signal waveform diagram showing a received signal waveform in a communication environment in which received signal power and noise power vary independently.
FIG. 24 is a diagram showing the S / N of a received signal in a communication environment in which the received signal power and the noise power vary independently.
FIG. 25 is a signal waveform diagram showing a waveform after AGC processing of a received signal in a communication environment in which the received signal power and the noise power vary independently.
FIG. 26 is a diagram illustrating a soft decision likelihood value (with and without correction) of a signal after AGC processing of the received signal in a communication environment in which the received signal power and the noise power vary independently.
[Explanation of symbols]
100, 200, 300, 400 receiving device
101 antenna
102 RF receiver
103 AGC circuit
104 demodulation unit
105 Noise power fluctuation measurement unit
106 error correction decoder
107, 407 Soft decision likelihood value calculation unit
108, 208, 308 Receive amplitude weight multiplication control unit
111, 401 Noise power measurement unit
112 delay unit
113 Comparison Division
201 transmission power control unit
301 Cell Search Unit
302 Finger Assignment Control Unit

Claims (7)

受信信号の総信号電力を一定に保つ利得制御手段と、
前記利得制御手段によって総受信信号電力が一定に保たれた信号に対して、その受信符号系列を最尤復号する際に、各受信符号についてその候補符号の尤度を多値レベルの尤度で与えるとともに、この尤度を必要に応じて補正する尤度値算出手段と、
前記受信信号に含まれる雑音成分の変動を検出する雑音成分変動検出手段と、
前記雑音成分変動検出手段の検出結果に基づいて、前記尤度に対する、前記受信信号の瞬時振幅に依存した前記補正を行うか否かを判断する補正制御手段と、
を具備することを特徴とする受信装置。
Gain control means for keeping the total signal power of the received signal constant;
When the received code sequence is subjected to maximum likelihood decoding for a signal whose total received signal power is kept constant by the gain control means, the likelihood of the candidate code for each received code is represented by a multi-level likelihood. And a likelihood value calculating means for correcting the likelihood as necessary.
Noise component fluctuation detecting means for detecting a fluctuation of a noise component included in the received signal,
Correction control means for determining whether or not to perform the correction depending on the instantaneous amplitude of the received signal, based on the detection result of the noise component fluctuation detection means,
A receiving device comprising:
受信信号の総信号電力を一定に保つ利得制御手段と、
前記利得制御手段によって総受信信号電力が一定に保たれた信号に対して、その受信符号系列を最尤復号する際に、各受信符号についてその候補符号の尤度を多値レベルの尤度で与えるとともに、この尤度を必要に応じて補正する尤度値算出手段と、
前記受信信号に含まれる希望波成分と雑音成分との比の変動を示唆する情報に基づいて、前記尤度に対する、前記受信信号の瞬時振幅に依存した前記補正を行うか否かを判断する補正制御手段と、
を具備することを特徴とする受信装置。
Gain control means for keeping the total signal power of the received signal constant;
When the received code sequence is subjected to maximum likelihood decoding for a signal whose total received signal power is kept constant by the gain control means, the likelihood of the candidate code for each received code is represented by a multi-level likelihood. And a likelihood value calculating means for correcting the likelihood as necessary.
A correction for determining whether or not to perform the correction depending on the instantaneous amplitude of the received signal on the likelihood based on information indicating a change in a ratio between a desired wave component and a noise component included in the received signal. Control means;
A receiving device comprising:
前記補正制御手段は、前記受信信号が送信電力制御の元で送信されたか否かに基づいて、前記補正の有無を判断することを特徴とする請求項2記載の受信装置。The receiving apparatus according to claim 2, wherein the correction control unit determines whether or not the correction is performed based on whether or not the received signal is transmitted under transmission power control. 前記補正制御手段は、前記受信信号に含まれる雑音成分の主成分がマルチパスによるものであるか否かに基づいて、前記補正の有無を判断することを特徴とする請求項2記載の受信装置。3. The receiving apparatus according to claim 2, wherein the correction control unit determines whether or not the correction is performed based on whether a main component of a noise component included in the received signal is due to multipath. . 受信信号の総信号電力を一定に保つ利得制御手段と、
前記利得制御手段によって総受信信号電力が一定に保たれた信号に対して、その受信符号系列を最尤復号する際に、各受信符号についてその候補符号の尤度を多値レベルの尤度で与えるとともに、この尤度に対して、前記受信信号の瞬時振幅に依存した重み係数の乗算及び前記受信信号に含まれる雑音成分値による除算を行う尤度値算出手段と、
を具備することを特徴とする受信装置。
Gain control means for keeping the total signal power of the received signal constant;
When the received code sequence is subjected to maximum likelihood decoding for a signal whose total received signal power is kept constant by the gain control means, the likelihood of the candidate code for each received code is represented by a multi-level likelihood. A likelihood value calculating means for multiplying the likelihood by a weighting factor depending on the instantaneous amplitude of the received signal and dividing by a noise component value included in the received signal,
A receiving device comprising:
受信信号の受信符号系列を最尤復号する際に、各受信符号についてその候補符号の尤度を多値レベルの尤度で与えるとともに、この尤度に対して、前記受信信号の瞬時振幅に依存した重み係数の乗算及び前記受信信号に含まれる雑音成分値による除算を行う尤度値算出手段と、
前記尤度値算出手段において算出された尤度値に基づいて誤り訂正復号を行う復号手段と、
を具備することを特徴とする誤り訂正復号装置。
When the received code sequence of the received signal is subjected to maximum likelihood decoding, the likelihood of the candidate code is given as a multilevel likelihood for each received code, and the likelihood depends on the instantaneous amplitude of the received signal. Likelihood value calculating means for multiplying the weighted coefficient and dividing by the noise component value included in the received signal,
Decoding means for performing error correction decoding based on the likelihood value calculated by the likelihood value calculation means,
An error correction decoding device comprising:
受信信号の受信符号系列を最尤復号する際に、各受信符号についてその候補符号の尤度を多値レベルの尤度で与えるとともに、この尤度に対して、前記受信信号の瞬時振幅に依存した重み係数の乗算及び前記受信信号に含まれる雑音成分値による除算を行う尤度値算出ステップと、
前記尤度値算出手段において算出された尤度値に基づいて誤り訂正復号を行う復号ステップと、
を具備することを特徴とする誤り訂正復号方法。
When the received code sequence of the received signal is subjected to maximum likelihood decoding, the likelihood of the candidate code is given as a multilevel likelihood for each received code, and the likelihood depends on the instantaneous amplitude of the received signal. A likelihood value calculating step of multiplying by the weighted coefficient and dividing by a noise component value included in the received signal,
A decoding step of performing error correction decoding based on the likelihood value calculated by the likelihood value calculation means,
An error correction decoding method comprising:
JP2002267439A 2002-09-12 2002-09-12 Receiver, error-correction decoding device, and error-correction decoding method Pending JP2004104717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002267439A JP2004104717A (en) 2002-09-12 2002-09-12 Receiver, error-correction decoding device, and error-correction decoding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002267439A JP2004104717A (en) 2002-09-12 2002-09-12 Receiver, error-correction decoding device, and error-correction decoding method

Publications (1)

Publication Number Publication Date
JP2004104717A true JP2004104717A (en) 2004-04-02

Family

ID=32265928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002267439A Pending JP2004104717A (en) 2002-09-12 2002-09-12 Receiver, error-correction decoding device, and error-correction decoding method

Country Status (1)

Country Link
JP (1) JP2004104717A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7583760B2 (en) 2002-11-22 2009-09-01 Telefonaktiebolaget L M Ericsson (Publ) Calculation of soft decision values using reliability information of the amplitude

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7583760B2 (en) 2002-11-22 2009-09-01 Telefonaktiebolaget L M Ericsson (Publ) Calculation of soft decision values using reliability information of the amplitude

Similar Documents

Publication Publication Date Title
US8670718B2 (en) Method and system for antenna selection diversity with biasing
US20050185707A1 (en) Method and system for antenna selection diversity with minimum threshold
KR100379149B1 (en) Transmission rate judging unit
US6628700B1 (en) CDMA reception method and CDMA receiver
US20010055959A1 (en) Unified antenna diversity switching system for TDMA-based telephones
US20030179813A1 (en) Frame synchronization apparatus and frame synchronization method
US7313169B2 (en) CDMA demodulation circuit, CDMA mobile communication demodulation method used therefor, and storage medium recording program thereof
US20050215214A1 (en) Method and system for antenna selection diversity with dynamic gain control
US20070047630A1 (en) Synchronous control apparatus for initial synchronization when receiving a wireless signal
JP2004357303A (en) Discontinuous transmission detecting method
JP4165238B2 (en) Path search circuit, method and program
JP2004104717A (en) Receiver, error-correction decoding device, and error-correction decoding method
US6977955B2 (en) Demodulation circuit for CDMA mobile communications and demodulation method therefor
JP4515481B2 (en) Quantization apparatus and method in digital communication system
US6775250B1 (en) Method of updating reference value in high speed closed loop based on likelihood
US20090117894A1 (en) Wireless Diversity Reception Apparatus and Reception Method
US20050201502A1 (en) Method and apparatus for synchronization of a receiver to a transmitter
JP2693488B2 (en) Diversity reception method
JP5410122B2 (en) Positioning system and data demodulation method
US20140355654A1 (en) Radio Receiver for Detecting an Additive White Gaussian Noise Channel
JP3688630B2 (en) Receiving method and apparatus for direct spread spectrum communication
JP3532531B2 (en) Initial synchronization device and method
KR100513024B1 (en) Apparatus and method for determining threshold in rake receiver
JP2013239824A (en) Diversity receiving apparatus and diversity receiving method
JP4728772B2 (en) Delay profile generation circuit and method thereof, and receiver and program