JP2004103930A - Manufacturing method of p-type gan system compound semiconductor - Google Patents

Manufacturing method of p-type gan system compound semiconductor Download PDF

Info

Publication number
JP2004103930A
JP2004103930A JP2002265473A JP2002265473A JP2004103930A JP 2004103930 A JP2004103930 A JP 2004103930A JP 2002265473 A JP2002265473 A JP 2002265473A JP 2002265473 A JP2002265473 A JP 2002265473A JP 2004103930 A JP2004103930 A JP 2004103930A
Authority
JP
Japan
Prior art keywords
gan
atmosphere
based semiconductor
crystal
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002265473A
Other languages
Japanese (ja)
Other versions
JP2004103930A5 (en
Inventor
Hiroaki Okagawa
岡川 広明
Kazuyuki Tadatomo
只友 一行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2002265473A priority Critical patent/JP2004103930A/en
Publication of JP2004103930A publication Critical patent/JP2004103930A/en
Publication of JP2004103930A5 publication Critical patent/JP2004103930A5/ja
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a p-type GaN semiconductor for stably activating a p-type impurities to reduce the contact resistance while hydrogen passivation is prevented. <P>SOLUTION: After a GaN semiconductor crystal containing p-type impurities is grown by a vapor-phase growing method, a process is provided in which, at the crystal growth temperature, an atmosphere is changed to a cooling atmosphere containing ammonia by 0.1-30 vol.%, and the semiconductor crystal is cooled in the cooling atmosphere. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、p型GaN系半導体の製造方法に関する。
【0002】
【従来の技術】
青色または紫色発光素子等に用いられる窒化ガリウム系化合物半導体(以下、「GaN系半導体」ともいう)の製造方法としては有機金属気相成長法(MOVPE法)や分子線エピタキシー法(MBE法)等が一般的に用いられている。
【0003】
例えば、MOVPE法を用いた成長方法について説明すると、サファイア等からなる基板を設置した反応炉に有機金属であるトリメチルガリウム(TMG)、トリメチルアルミニウム(TMA)、アンモニア等を水素ガス等を含む結晶成長用雰囲気中で供給し、600℃程度の低温でGaNやAlN等のバッファ層を積層した後、1000℃程度の高温でGaNやAlGaN等のGaN系半導体結晶を成長させる。このとき、必要に応じ、不純物をドープしてp型、i型、n型層を製造してダブルヘテロ構造等のデバイス構造を製造する。p型不純物としてはMg、Zn等が知られている。
【0004】
p型GaN系半導体を製造する場合、該GaN系半導体結晶の成長後、室温に冷却するまでの雰囲気(冷却用雰囲気)中にアンモニアが含まれていると、水素パッシベーションに起因してp型GaN系半導体が高抵抗なものになってしまう。水素パッシベーションとは、p型不純物であるMgやZnの周辺で窒素と原子状水素との結合、すなわちN−H結合が安定化される結果、上記p型不純物がアクセプターとして働かなくなる現象である。
【0005】
水素パッシベーションによるp型GaN系半導体の高抵抗化を低減するために、従来の製造方法では、p型GaN系半導体結晶の成長後、冷却時に600℃以上でアンモニアの供給を停止している(例えば、特許文献1参照)。また、p型GaN系半導体結晶の成長後、実質的に水素を含まない雰囲気下で熱アニールを施す方法もある(例えば、特許文献2参照)。さらに、3族窒化物半導体(AlGaIn1−X−YN;X=0,Y=0,X=Y=0を含む)の製造方法において、3族窒化物半導体(AlGaIn1−X−YN;X=0,Y=0,X=Y=0を含む)の気相成長後に、温度が室温まで降下する前に、雰囲気ガスをHガス、NHガス以外の不活性ガスに置換することを特徴とする方法もある。(例えば、特許文献3参照)。
【0006】
【特許文献1】
特許第3254931号公報(第1および4頁)
【特許文献2】
特許第2540791号公報(第1、3−4頁)
【特許文献3】
特開平8−125222号公報(第1頁)
【0007】
【発明が解決しようとする課題】
特許文献2記載の方法により製造されたGaN系半導体結晶のホール濃度は高く、該GaN系半導体自体はねらいどおり低抵抗化されていた。しかし、該方法は、結晶成長以外に熱処理が必要であるため、工程が多くなるという課題があった。一方、特許文献1記載の方法により製造されたGaN系半導体は、抵抗は低くはなっているが、その程度は不充分であり、ねらいどおり低抵抗化されているとはいえないことを本発明者らは確認した。また、本発明者らが更に検討を行った結果、特許文献1、3記載の方法には以下の問題もあることが分かった。
【0008】
すなわち、上記製造方法により得られたGaN系半導体を用いてLEDを製造したところ、動作電圧が非常に高くなったのである。これは、接触抵抗が高くなったためであると考え、TLM法による接触抵抗の測定を試みた。その結果、接触抵抗が高すぎて該TLM法では測定ができないことが確認され、前記考えが正しいことが判明した。さらに、上記LEDでは、漏れ電流が増加して、逆耐圧が低下するといった問題も生じることが分かった。
【0009】
本発明は、上記問題を解消する、すなわち、成長後の熱処理を行うことなく、水素パッシベーションを防ぎつつ接触抵抗を低減するために、p型不純物の活性化処理を安定的に行うことができるp型GaN系半導体の製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは、成長した結晶を、アンモニアを含まない冷却用雰囲気中で冷却するとp型GaN系半導体から窒素原子が解離してしまい、表面にn型の欠陥が導入されて、p型電極とのオーミック特性が得られ難くなったことが、動作電圧が上昇した原因であると考えた。また、前記窒素原子の解離は、p型GaN系半導体の表面近傍のみならず、pn接合界面付近にまで及んでいるために漏れ電流が増加したのだと考えた。したがって、本発明者らは、従来の発想を転換して、従来技術では否定されていたアンモニアを含む冷却用雰囲気下での冷却を行いつつ、さらに、そのようにしても従来の問題(水素パッシベーション)が起こり難い方法を新たに見出すことで本発明を完成した。
【0011】
すなわち、本発明は下記の特徴を有する。
(1)気相成長法によってp型不純物を含むGaN系半導体結晶を成長させた後、その結晶成長温度において、雰囲気を、アンモニアを0.1〜30vol%の割合で含む冷却用雰囲気に切り替え、該冷却用雰囲気中において前記半導体結晶を冷却する工程を有するp型GaN系半導体の製造方法。
(2)不活性ガスを50vol%以上の割合で含む結晶成長用雰囲気中で、上記p型不純物を含むGaN系半導体結晶を成長させることを特徴とする、上記(1)に記載の製造方法。
(3)上記p型不純物を含むGaN系半導体結晶を成長させる際に、最後に成長させるGaN系半導体結晶がInAlGa1−x−yN(0≦x≦0.2、0<y<1)であることを特徴とする、上記(1)または(2)に記載の製造方法。
【0012】
【発明の実施の形態】
本発明の製造方法は、気相成長法によってp型不純物を含むGaN系半導体結晶を成長させた後、雰囲気をアンモニアを0.1〜30vol%の割合で含む冷却用雰囲気に切り替え、該冷却用雰囲気中で前記成長させた半導体結晶を冷却する工程を有することを特徴とする。
【0013】
本発明でいうGaN系とは、InAlGa1−x−yN(0≦x≦1、0≦y≦1)で示される化合物半導体であって、例えば、AlN、GaN、AlGaN、InGaNなどが重要な化合物として挙げられる。これらの化合物半導体であれば、任意のものを用いることができるが、後述する理由から、本発明のGaN系半導体のうち、最後に成長させるGaN系半導体結晶は、InAlGa1−x−yN(0≦x≦0.2、0<y<1)であることが好ましい。
【0014】
本発明の半導体の形成に用いられる結晶基板は、GaN系半導体結晶が成長可能なものであればよい。好ましい結晶基板としては、例えば、サファイア(C面、A面、R面)、SiC(6H、4H、3C)、GaN、AlN、Si、スピネル、ZnO、GaAs、NGO(NdGaO)などが挙げられる。また、これらの結晶を表層として有する基材であってもよい。なお、基板の面方位は特に限定されなく、更にジャスト基板でもよいしオフ角を付与した基板であってもよい。
【0015】
本発明の半導体の製造に際し、ドープするp型不純物は、GaN系結晶にドープすることで正孔を生ぜしめるものであればよく、当業界で公知のものを任意に用いることができる。そのようなp型不純物としては、Mg、Zn、Be、C等が例示され、制御が容易であり、毒性の問題がないなどの理由によりMg、Zn等が好ましい。
【0016】
p型不純物を含むGaN系半導体結晶の成長方法としては、HVPE法、MOVPE法、MBE法などが挙げられる。厚膜を作製する場合はHVPE法が好ましく、薄膜を形成する場合はMOVPE法やMBE法が好ましい。
【0017】
上記、p型不純物を含むGaN系半導体結晶の成長が行われる結晶成長用雰囲気は、不活性ガスを50vol%以上の割合で有することが好ましく、不活性ガスを70vol〜90vol%の割合で有することがより好ましい。ここで、「結晶成長用雰囲気」とは、3属供給開始から、3属供給を止め結晶成長の終了に至るまでの雰囲気である。「3属供給」とは、3属元素を含む化合物を供給することをさす。「不活性ガス」とは、N、Ar、Heまたはそれらの混合物をさす。このように、不活性ガスの割合の大きい結晶成長用雰囲気中、すなわち、水素供給源となる水素ガスやアンモニアの少ない結晶成長用雰囲気中でp型不純物を含むGaN系半導体を成長させることで、当該p型GaN系半導体に水素が入り難くなる。p型GaN系半導体に含まれる水素が少なければ、低抵抗なp型GaN系半導体を得易くなる。
【0018】
上記結晶成長用雰囲気は、不活性ガスを50vol%以上含むことが好ましいが、該結晶成長用雰囲気における他の成分は特に限定されない。該他の成分としては、NH(10〜30vol%)、H(0〜20vol%)等が例示される。カッコ内の数値は、結晶成長用雰囲気における、これらの成分の好ましい割合である。
【0019】
また、上述したように、p型不純物を含むGaN系半導体結晶を成長させる工程において、最後に成長させるGaN系半導体結晶は、InAlGa1−x−yN(0≦x≦0.2、0<y<1)であることが好ましい。最後に成長させるGaN系半導体結晶の成長厚みは、好ましくは2nm以上、より好ましくは5nm〜100nmである。上記最後に成長させるGaN系半導体結晶は、結合力の強いAl−N結合を有している。上述した従来技術における窒素原子の解離は、比較的弱い結合であるGa−N結合が切れることに起因すると考えられるので、最後に成長させるGaN系半導体結晶を、結合の強いAl−N結合を有するものとすることで、窒素原子が解離し難くなり、後述する冷却用雰囲気の制御と組み合わせることで、接触抵抗の増大をより効果的に抑制することができる。しかし一方でAl組成が多すぎる(すなわちyが大きすぎる)とアクセプター準位が深くなり高いホール濃度が得にくくなる。また、In組成が多くなると(すなわちxが大きくなると)窒素原子が解離し易くなるが(In−Nの結合はGa−Nの結合よりも弱いため)、アクセプター準位が浅くなり高いホール濃度が得やすくなる。そのような観点から、上記x、yのより好ましい範囲は、0≦x≦0.1、0.05≦y≦0.3である。
【0020】
このようにp型不純物を含むGaN系半導体結晶を成長させた後に、雰囲気を上述した結晶成長用雰囲気から、後述する冷却用雰囲気に切り替える。本発明の特徴は、該冷却用雰囲気をアンモニアを0.1〜30vol%の割合で含む雰囲気とすることである。雰囲気を切り替える方法は特に限定はなく、単にガスの成分を変更するだけでもよい。
【0021】
ここで、「冷却用雰囲気」とは、p型不純物を含むGaN系半導体結晶の成長終了直後から、室温に冷却するまでの雰囲気である。p型不純物を含むGaN系半導体結晶の冷却工程のうち、冷却用雰囲気が上記所定量のアンモニアを含む必要があるのは、上記半導体結晶の成長終了直後から、400℃(好ましくは300℃)に至るまでである。これは、窒素原子の解離が400℃以上で起こりやすいことに起因する。冷却工程において、上記温度よりも低くなった後は、雰囲気中にアンモニアが含まれていても、含まれていなくてもよい。
【0022】
成長させたp型GaN系半導体結晶をアンモニアを含む冷却用雰囲気中で冷却することにより、上述した窒素原子の解離を低減することができ、オーミック特性の低下も起こり難くなる。一方、雰囲気中のアンモニアから水素が解離する可能性があり、前記結晶から水素が抜け難くなって、該水素がp型GaN系半導体結晶に入りMgの周辺で上述したパッシベーションが生じる懸念がある。そこで、本発明者らはアンモニア濃度について検討した結果、冷却用雰囲気中のアンモニアの割合を、0.2〜30vol%、好ましくは0.5〜20vol%、より好ましくは0.5〜10vol%にすれば、オーミック特性の低下防止と、GaN系半導体の低抵抗化とを両立し得ることを見出したのである。
【0023】
冷却用雰囲気は、上記の割合でアンモニアが含まれていればその他の成分は特に限定されないが、該他の成分は、上述した不活性ガスとすることが望ましい。
【0024】
本発明の製造方法における冷却工程では、所謂熱アニーリングは不要であるので、所定の温度で保持したり、一旦、温度を下げた後に再び昇温したりするなどといったことをする必要はなく、時間に対する温度プロファイルは任意である。
【0025】
本発明の製造方法は、p型GaN系半導体の製造方法としてだけでなく、p型GaN系半導体を有する全てのGaN系半導体素子(GaN系発光素子、GaN系受光素子、その他、GaN系半導体を用いた素子・電子デバイスなど)の製造方法として有用である。その場合、GaN系半導体レーザー、GaN系受光素子、GaN系半導体からなる電子デバイスなどの構造については、従来公知のものを参照してよい。また、GaN系半導体素子の製造のために適宜必要となる、GaN系低温成長バッファ層を用いる技術、GaN系結晶の転位密度低下のための技術(選択成長法、結晶基板面に凹凸加工して行うラテラル成長やファセット成長の技術など)、パターニング技術、素子電極材料と構造、分断技術などについては、公知の技術を参照してよい。
【0026】
【実施例】
以下、各実施例に基づいて、本発明についてさらに詳細に説明するが、本発明は実施例のみに限定されるものではない。
【0027】
[実施例1−5、比較例1、2]
直径2インチのサファイア基板(ウエハ)をMOVPE装置に設置し、1100℃に昇温して水素雰囲気下でサーマルエッチングを行った。次に、成長温度を375℃に下げ、キャリアガスに水素および窒素を用い、トリメチルアルミニウム(以下TMA)およびアンモニア(以下NH)を原料として、AlN低温バッファー層を形成した。その後、1000℃に昇温し、キャリアガスに水素および窒素を用いトリメチルガリウム(以下TMG)、NHを原料として、アンドープのGaN層を3μm成長させた。さらに、キャリアガスに水素および窒素を用いて、p型不純物原料としてビスシクロペンタジエニルマグネシウム(以下CP2Mg)を加えたGaN層を0.5μm成長させた。結晶成長用雰囲気のガスの比率は窒素30vol%、水素30vol%、NH40vol%であった。
【0028】
成長終了後、系の雰囲気を上記結晶成長用雰囲気から冷却用雰囲気に切り替えた。すなわち、TMG、CP2Mg、水素の供給を止め、下記表1記載の割合でアンモニアを含む冷却用雰囲気を導入した。冷却用雰囲気における、アンモニア以外の成分は全て窒素ガスである。雰囲気の切り替えと同時に加熱を停止し、該冷却用雰囲気のまま、室温まで冷却を行った。
【0029】
[実施例6]
CP2Mgを加えてGaN層を0.5μm成長させる際のガスの比率(結晶成長用雰囲気のガスの比率)を、窒素70vol%、水素5vol%、NH25vol%としたこと以外は実施例1と同様にした。
【0030】
[評価]
MOVPE装置から取り出した試料のGaN層表面に、5mm角サイズに電極を形成しホール測定によりホール濃度を測定した。また、TLM法により比接触抵抗を測定した。結果を表1に記載する。
【0031】
【表1】

Figure 2004103930
【0032】
表中、「*1」は、抵抗が高すぎるためTLM法による比接触抵抗の測定が困難であったことを示し、「*2」は、ホール測定において抵抗が高すぎて正孔濃度の測定ができなかったことを示す。
【0033】
比較例1のようにNHが全くないと、冷却中に層中に水素が混入せず、Mgの水素パッシベーションは抑制できるが、表面から窒素が解離するため、測定できないほどに接触抵抗が高くなる。また比較例2のようにNHが多すぎると、表面からの窒素解離は抑制できるが、層中への水素の混入が多すぎ、Mgの水素パッシベーションの影響で抵抗が高くなることがわかる。
【0034】
実施例1および6のサンプルの層中の水素量をSIMSにて測定した。その結果、実施例1のサンプルでは3×1019cm−3であったのに対し、実施例6のサンプルでは1×1019cm−3に低減していた。
【0035】
【発明の効果】
本発明の製造方法により、水素パッシベーションを防ぐとともに窒素原子の解離も防ぐことができ、半導体全体として低抵抗であり(すなわち、ホール濃度が高い)、かつ、接触抵抗も低いp型GaN系半導体を得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a p-type GaN-based semiconductor.
[0002]
[Prior art]
Examples of a method for producing a gallium nitride-based compound semiconductor (hereinafter, also referred to as a “GaN-based semiconductor”) used for a blue or purple light-emitting device include a metal organic chemical vapor deposition (MOVPE) method and a molecular beam epitaxy method (MBE method). Is commonly used.
[0003]
For example, a description will be given of a growth method using the MOVPE method. A crystal growth including a hydrogen gas or the like containing trimethylgallium (TMG), trimethylaluminum (TMA) or ammonia as an organic metal in a reactor in which a substrate made of sapphire or the like is installed. After supply in an atmosphere for use and laminating a buffer layer such as GaN or AlN at a low temperature of about 600 ° C., a GaN-based semiconductor crystal such as GaN or AlGaN is grown at a high temperature of about 1000 ° C. At this time, if necessary, a device structure such as a double hetero structure is manufactured by doping impurities to manufacture p-type, i-type, and n-type layers. Mg and Zn are known as p-type impurities.
[0004]
When manufacturing a p-type GaN-based semiconductor, if ammonia is contained in an atmosphere (cooling atmosphere) until the room temperature is cooled after the growth of the GaN-based semiconductor crystal, the p-type GaN is caused by hydrogen passivation. The system semiconductor has a high resistance. Hydrogen passivation is a phenomenon in which a bond between nitrogen and atomic hydrogen, that is, an NH bond is stabilized around Mg or Zn, which is a p-type impurity, so that the p-type impurity does not work as an acceptor.
[0005]
In order to reduce the increase in the resistance of the p-type GaN-based semiconductor due to hydrogen passivation, in the conventional manufacturing method, after the growth of the p-type GaN-based semiconductor crystal, the supply of ammonia is stopped at 600 ° C. or more during cooling (for example, And Patent Document 1). There is also a method in which after the growth of a p-type GaN-based semiconductor crystal, thermal annealing is performed in an atmosphere containing substantially no hydrogen (for example, see Patent Document 2). Furthermore, group III nitride semiconductor; In the production method of (Al x Ga Y In 1- X-Y N X = 0, Y = 0, X = including Y = 0), a group III nitride semiconductor (Al x Ga After the vapor phase growth of Y In 1- XYN; X = 0, Y = 0, and X = Y = 0), before the temperature drops to room temperature, the atmosphere gas is H 2 gas and NH 3 gas. There is also a method characterized by replacing with an inert gas other than the above. (For example, see Patent Document 3).
[0006]
[Patent Document 1]
Japanese Patent No. 3254931 (pages 1 and 4)
[Patent Document 2]
Japanese Patent No. 2540791 (pages 1, 3-4)
[Patent Document 3]
JP-A-8-125222 (page 1)
[0007]
[Problems to be solved by the invention]
The hole concentration of the GaN-based semiconductor crystal manufactured by the method described in Patent Document 2 is high, and the GaN-based semiconductor itself has been reduced in resistance as intended. However, this method has a problem that the number of steps is increased because heat treatment is required in addition to crystal growth. On the other hand, the GaN-based semiconductor manufactured by the method described in Patent Document 1 has a low resistance, but the degree is insufficient, and it cannot be said that the resistance is lowered as intended. They confirmed. Further, as a result of further study by the present inventors, it has been found that the methods described in Patent Documents 1 and 3 have the following problems.
[0008]
That is, when an LED was manufactured using the GaN-based semiconductor obtained by the above manufacturing method, the operating voltage became extremely high. This was thought to be due to the increased contact resistance, and an attempt was made to measure the contact resistance by the TLM method. As a result, it was confirmed that the contact resistance was too high to measure by the TLM method, and it was found that the above idea was correct. Further, it has been found that in the above-mentioned LED, a problem that a leakage current increases and a reverse withstand voltage lowers also occurs.
[0009]
The present invention solves the above problem, that is, it is possible to stably perform a p-type impurity activation treatment in order to prevent hydrogen passivation and reduce contact resistance without performing post-growth heat treatment. It is an object of the present invention to provide a method of manufacturing a GaN-based semiconductor.
[0010]
[Means for Solving the Problems]
When the grown crystal is cooled in a cooling atmosphere containing no ammonia, nitrogen atoms dissociate from the p-type GaN-based semiconductor, and n-type defects are introduced into the surface, and the p-type electrode It was considered that the difficulty in obtaining the ohmic characteristics of the above was the cause of the increase in the operating voltage. In addition, it was considered that the dissociation of the nitrogen atoms extended not only near the surface of the p-type GaN-based semiconductor but also near the pn junction interface, so that the leakage current increased. Therefore, the present inventors have changed the conventional idea and performed cooling under a cooling atmosphere containing ammonia, which has been denied in the prior art. The present invention was completed by newly finding a method in which) is unlikely to occur.
[0011]
That is, the present invention has the following features.
(1) After growing a GaN-based semiconductor crystal containing a p-type impurity by a vapor phase growth method, the atmosphere is switched to a cooling atmosphere containing ammonia at a rate of 0.1 to 30 vol% at the crystal growth temperature, A method for producing a p-type GaN-based semiconductor, comprising a step of cooling the semiconductor crystal in the cooling atmosphere.
(2) The method according to (1), wherein the GaN-based semiconductor crystal containing the p-type impurity is grown in a crystal growth atmosphere containing an inert gas at a rate of 50 vol% or more.
(3) above when that p-type impurity is grown a GaN-based semiconductor crystals containing, finally GaN-based semiconductor crystal to be grown In x Al y Ga 1-x -y N (0 ≦ x ≦ 0.2,0 < y <1). The method according to (1) or (2) above, wherein y <1).
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the manufacturing method of the present invention, after growing a GaN-based semiconductor crystal containing a p-type impurity by a vapor phase growth method, the atmosphere is switched to a cooling atmosphere containing 0.1 to 30 vol% of ammonia, A step of cooling the grown semiconductor crystal in an atmosphere.
[0013]
The GaN-based in the present invention, a compound semiconductor represented by In x Al y Ga 1-x -y N (0 ≦ x ≦ 1,0 ≦ y ≦ 1), for example, AlN, GaN, AlGaN, InGaN is an important compound. If such a compound semiconductor, can be used any of, for reasons to be described later, among the GaN-based semiconductor of the present invention, a GaN-based semiconductor crystal to last growth, In x Al y Ga 1- x is preferably -y N (0 ≦ x ≦ 0.2,0 <y <1).
[0014]
The crystal substrate used to form the semiconductor of the present invention may be any substrate on which a GaN-based semiconductor crystal can be grown. Preferred crystalline substrate, for example, sapphire (C plane, A-plane, R-plane), and the like SiC (6H, 4H, 3C) , GaN, AlN, Si, spinel, ZnO, GaAs, NGO (NdGaO 3) . Further, a substrate having these crystals as a surface layer may be used. The plane orientation of the substrate is not particularly limited, and may be a just substrate or a substrate having an off angle.
[0015]
In producing the semiconductor of the present invention, the p-type impurity to be doped may be any one that can generate holes by doping a GaN-based crystal, and any known p-type impurity in the art can be used. Examples of such p-type impurities include Mg, Zn, Be, C, and the like. Mg, Zn, and the like are preferable because they are easily controlled and have no toxicity problem.
[0016]
Examples of a method for growing a GaN-based semiconductor crystal containing a p-type impurity include an HVPE method, a MOVPE method, and an MBE method. When forming a thick film, the HVPE method is preferable, and when forming a thin film, the MOVPE method or the MBE method is preferable.
[0017]
The crystal growth atmosphere in which the GaN-based semiconductor crystal containing the p-type impurity is grown preferably has an inert gas at a rate of 50 vol% or more, and has an inert gas at a rate of 70 vol to 90 vol%. Is more preferred. Here, the “atmosphere for crystal growth” refers to an atmosphere from the start of supply of Group 3 to the end of the supply of Group 3 to the end of crystal growth. “Group 3 supply” refers to supplying a compound containing a Group 3 element. "Inert gas", N 2, Ar, refers to a He or a mixture thereof. As described above, by growing a GaN-based semiconductor containing a p-type impurity in a crystal growth atmosphere in which the proportion of an inert gas is high, that is, in a crystal growth atmosphere in which hydrogen gas or ammonia serving as a hydrogen supply source is small, Hydrogen hardly enters the p-type GaN-based semiconductor. If the amount of hydrogen contained in the p-type GaN-based semiconductor is small, it is easy to obtain a low-resistance p-type GaN-based semiconductor.
[0018]
The crystal growth atmosphere preferably contains an inert gas at 50 vol% or more, but other components in the crystal growth atmosphere are not particularly limited. Examples of the other components include NH3 (10 to 30 vol%) and H2 (0 to 20 vol%). The numerical values in parentheses are preferable ratios of these components in the atmosphere for crystal growth.
[0019]
As described above, in the step of growing the GaN-based semiconductor crystal including a p-type impurity, GaN-based semiconductor crystal to last growth, In x Al y Ga 1- x-y N (0 ≦ x ≦ 0. It is preferable that 2,0 <y <1). The growth thickness of the GaN-based semiconductor crystal finally grown is preferably 2 nm or more, and more preferably 5 nm to 100 nm. The last-grown GaN-based semiconductor crystal has an Al-N bond having a strong bonding force. Since the dissociation of the nitrogen atom in the above-described conventional technique is considered to be caused by the breakage of the Ga-N bond, which is a relatively weak bond, the GaN-based semiconductor crystal to be grown last has an Al-N bond having a strong bond. By doing so, the dissociation of the nitrogen atoms becomes difficult, and the increase in the contact resistance can be suppressed more effectively by combining with the control of the cooling atmosphere described later. However, on the other hand, if the Al composition is too large (that is, y is too large), the acceptor level becomes deep and it becomes difficult to obtain a high hole concentration. Also, as the In composition increases (ie, x increases), the nitrogen atoms are easily dissociated (since the In—N bond is weaker than the Ga—N bond), but the acceptor level becomes shallower and the high hole concentration becomes higher. It will be easier to obtain. From such a viewpoint, more preferable ranges of the above x and y are 0 ≦ x ≦ 0.1 and 0.05 ≦ y ≦ 0.3.
[0020]
After the GaN-based semiconductor crystal containing the p-type impurity is thus grown, the atmosphere is switched from the above-described crystal growth atmosphere to a cooling atmosphere described later. A feature of the present invention is that the cooling atmosphere is an atmosphere containing ammonia at a rate of 0.1 to 30 vol%. There is no particular limitation on the method of switching the atmosphere, and the gas may be simply changed.
[0021]
Here, the “cooling atmosphere” is an atmosphere from immediately after the completion of the growth of the GaN-based semiconductor crystal containing the p-type impurity until cooling to room temperature. In the cooling step of the GaN-based semiconductor crystal containing the p-type impurity, the cooling atmosphere needs to contain the above-mentioned predetermined amount of ammonia because 400 ° C. (preferably 300 ° C.) immediately after the completion of the growth of the semiconductor crystal. All the way down. This is because the dissociation of nitrogen atoms easily occurs at 400 ° C. or higher. In the cooling step, after the temperature becomes lower than the above temperature, the atmosphere may or may not contain ammonia.
[0022]
By cooling the grown p-type GaN-based semiconductor crystal in a cooling atmosphere containing ammonia, the above-described dissociation of nitrogen atoms can be reduced, and a decrease in ohmic characteristics does not easily occur. On the other hand, there is a possibility that hydrogen may be dissociated from ammonia in the atmosphere, making it difficult for hydrogen to escape from the crystal, and the hydrogen may enter the p-type GaN-based semiconductor crystal and cause the above-described passivation around Mg. Then, the present inventors examined the ammonia concentration, and found that the ratio of ammonia in the cooling atmosphere was 0.2 to 30 vol%, preferably 0.5 to 20 vol%, more preferably 0.5 to 10 vol%. By doing so, they have found that it is possible to achieve both a reduction in the ohmic characteristics and a reduction in the resistance of the GaN-based semiconductor.
[0023]
Other components of the cooling atmosphere are not particularly limited as long as ammonia is contained in the above ratio, but the other components are desirably the above-mentioned inert gas.
[0024]
In the cooling step in the manufacturing method of the present invention, so-called thermal annealing is unnecessary, so that it is not necessary to maintain the temperature at a predetermined temperature or to once lower the temperature and then raise the temperature again. Is arbitrary.
[0025]
The manufacturing method of the present invention is applicable not only to a method for manufacturing a p-type GaN-based semiconductor, but also to all GaN-based semiconductor elements having a p-type GaN-based semiconductor (GaN-based light-emitting elements, GaN-based light-receiving elements, and other GaN-based semiconductors). This is useful as a method for manufacturing the used elements and electronic devices. In this case, the structures of a GaN-based semiconductor laser, a GaN-based light receiving element, and an electronic device made of a GaN-based semiconductor may be referred to conventionally known structures. In addition, a technique using a GaN-based low-temperature growth buffer layer and a technique for lowering the dislocation density of a GaN-based crystal (selective growth method, forming a concave-convex pattern on a crystal substrate surface, which are required as appropriate for the manufacture of a GaN-based semiconductor device) Known techniques may be referred to for the lateral growth and facet growth techniques to be performed), the patterning technique, the element electrode material and structure, and the dividing technique.
[0026]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to Examples.
[0027]
[Example 1-5, Comparative Examples 1 and 2]
A sapphire substrate (wafer) having a diameter of 2 inches was set in a MOVPE apparatus, heated to 1100 ° C., and subjected to thermal etching in a hydrogen atmosphere. Next, the growth temperature was reduced to 375 ° C., and an AlN low-temperature buffer layer was formed using trimethylaluminum (hereinafter, TMA) and ammonia (hereinafter, NH 3 ) as raw materials using hydrogen and nitrogen as carrier gases. Thereafter, the temperature was raised to 1000 ° C., and an undoped GaN layer was grown to 3 μm using trimethylgallium (hereinafter, TMG) and NH 3 as raw materials using hydrogen and nitrogen as carrier gases. Further, a GaN layer to which biscyclopentadienyl magnesium (hereinafter, referred to as CP2Mg) was added as a p-type impurity material was grown to 0.5 μm using hydrogen and nitrogen as carrier gases. The gas ratio in the atmosphere for crystal growth was 30 vol% of nitrogen, 30 vol% of hydrogen, and 40 vol% of NH 3 .
[0028]
After the completion of the growth, the atmosphere of the system was switched from the atmosphere for crystal growth to the atmosphere for cooling. That is, the supply of TMG, CP2Mg, and hydrogen was stopped, and a cooling atmosphere containing ammonia at the ratio shown in Table 1 below was introduced. All components other than ammonia in the cooling atmosphere are nitrogen gas. The heating was stopped at the same time as the switching of the atmosphere, and cooling was performed to room temperature in the cooling atmosphere.
[0029]
[Example 6]
Example 1 was the same as Example 1 except that the gas ratio (the ratio of the gas in the atmosphere for crystal growth) when the GaN layer was grown to 0.5 μm by adding CP2Mg was 70 vol% of nitrogen, 5 vol% of hydrogen, and 25 vol% of NH 3. I did the same.
[0030]
[Evaluation]
An electrode having a size of 5 mm square was formed on the GaN layer surface of the sample taken out from the MOVPE apparatus, and the hole concentration was measured by hole measurement. Further, the specific contact resistance was measured by the TLM method. The results are shown in Table 1.
[0031]
[Table 1]
Figure 2004103930
[0032]
In the table, “* 1” indicates that it was difficult to measure the specific contact resistance by the TLM method because the resistance was too high, and “* 2” indicates that the resistance was too high in the hole measurement and the hole concentration was measured. Indicates that was not able to.
[0033]
When there is no NH 3 as in Comparative Example 1, no hydrogen is mixed into the layer during cooling, and hydrogen passivation of Mg can be suppressed. However, since nitrogen dissociates from the surface, the contact resistance is so high that it cannot be measured. Become. Also, as in Comparative Example 2, when the amount of NH 3 is too large, the dissociation of nitrogen from the surface can be suppressed, but the amount of hydrogen mixed in the layer is too large, and the resistance increases due to the influence of hydrogen passivation of Mg.
[0034]
The amount of hydrogen in the layers of the samples of Examples 1 and 6 was measured by SIMS. As a result, the sample of Example 1 was 3 × 10 19 cm −3 , whereas the sample of Example 6 was reduced to 1 × 10 19 cm −3 .
[0035]
【The invention's effect】
According to the manufacturing method of the present invention, it is possible to prevent the hydrogen passivation and the dissociation of nitrogen atoms, and to provide a p-type GaN-based semiconductor having low resistance (that is, high hole concentration) and low contact resistance as a whole semiconductor. Obtainable.

Claims (3)

気相成長法によってp型不純物を含むGaN系半導体結晶を成長させた後、その結晶成長温度において、雰囲気を、アンモニアを0.1〜30vol%の割合で含む冷却用雰囲気に切り替え、該冷却用雰囲気中において前記半導体結晶を冷却する工程を有するp型GaN系半導体の製造方法。After growing a GaN-based semiconductor crystal containing a p-type impurity by a vapor growth method, the atmosphere is switched to a cooling atmosphere containing ammonia at a rate of 0.1 to 30 vol% at the crystal growth temperature, and A method for manufacturing a p-type GaN-based semiconductor, comprising a step of cooling the semiconductor crystal in an atmosphere. 不活性ガスを50vol%以上の割合で含む結晶成長用雰囲気中で、上記p型不純物を含むGaN系半導体結晶を成長させることを特徴とする、請求項1に記載の製造方法。The method according to claim 1, wherein the GaN-based semiconductor crystal containing the p-type impurity is grown in a crystal growth atmosphere containing an inert gas at a rate of 50 vol% or more. 上記p型不純物を含むGaN系半導体結晶を成長させる際に、最後に成長させるGaN系半導体結晶がInAlGa1−x−yN(0≦x≦0.2、0<y<1)であることを特徴とする、請求項1または2に記載の製造方法。When growing the GaN-based semiconductor crystals containing the p-type impurity, GaN-based semiconductor crystal to last growing In x Al y Ga 1-x -y N (0 ≦ x ≦ 0.2,0 <y <1 The method according to claim 1 or 2, wherein
JP2002265473A 2002-09-11 2002-09-11 Manufacturing method of p-type gan system compound semiconductor Pending JP2004103930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002265473A JP2004103930A (en) 2002-09-11 2002-09-11 Manufacturing method of p-type gan system compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002265473A JP2004103930A (en) 2002-09-11 2002-09-11 Manufacturing method of p-type gan system compound semiconductor

Publications (2)

Publication Number Publication Date
JP2004103930A true JP2004103930A (en) 2004-04-02
JP2004103930A5 JP2004103930A5 (en) 2005-08-11

Family

ID=32264605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002265473A Pending JP2004103930A (en) 2002-09-11 2002-09-11 Manufacturing method of p-type gan system compound semiconductor

Country Status (1)

Country Link
JP (1) JP2004103930A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112167A1 (en) * 2005-04-01 2006-10-26 Sharp Kabushiki Kaisha METHOD FOR MANUFACTURING p TYPE NITRIDE SEMICONDUCTOR AND SEMICONDUCTOR DEVICE MANUFACTURED BY SUCH METHOD
JP2008235622A (en) * 2007-03-22 2008-10-02 Mitsubishi Chemicals Corp Method of fabricating p-type nitride-based compound semiconductor film
JP2010045396A (en) * 2005-04-05 2010-02-25 Toshiba Corp Method of manufacturing gallium nitride based semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112167A1 (en) * 2005-04-01 2006-10-26 Sharp Kabushiki Kaisha METHOD FOR MANUFACTURING p TYPE NITRIDE SEMICONDUCTOR AND SEMICONDUCTOR DEVICE MANUFACTURED BY SUCH METHOD
US8076165B2 (en) 2005-04-01 2011-12-13 Sharp Kabushiki Kaisha Method of manufacturing p-type nitride semiconductor and semiconductor device fabricated by the method
JP2010045396A (en) * 2005-04-05 2010-02-25 Toshiba Corp Method of manufacturing gallium nitride based semiconductor device
JP2008235622A (en) * 2007-03-22 2008-10-02 Mitsubishi Chemicals Corp Method of fabricating p-type nitride-based compound semiconductor film

Similar Documents

Publication Publication Date Title
US6440823B1 (en) Low defect density (Ga, Al, In)N and HVPE process for making same
US5432808A (en) Compound semicondutor light-emitting device
CN100530543C (en) Epitaxial growth method
CN108140563B (en) Epitaxial substrate for semiconductor element, and method for manufacturing epitaxial substrate for semiconductor element
CN101528991B (en) Sapphire substrate, nitride semiconductor luminescent element using the sapphire substrate, and method for manufacturing the nitride semiconductor luminescent element
KR101321654B1 (en) Substrate for growing group-iii nitride semiconductors, epitaxial substrate for group-iii nitride semiconductors, group-iii nitride semiconductor element, stand-alone substrate for group-iii nitride semiconductors, and methods for manufacturing the preceding
US8698168B2 (en) Semiconductor device having aluminum nitride layer with void formed therein
US7001791B2 (en) GaN growth on Si using ZnO buffer layer
TWI381072B (en) Method of producing group iii-v compound semiconductor, schottky barrier diode, light emitting diode, laser diode, and methods of fabricating the diodes
EP2267197A1 (en) Method of obtaining bulk mono-crystalline gallium-containing nitride, bulk mono-crystalline gallium-containing nitride, substrates manufactured thereof and devices manufactured on such substrates
US20060175681A1 (en) Method to grow III-nitride materials using no buffer layer
US9064685B2 (en) Semiconductor substrate and method of forming
JP2008177525A (en) Method for manufacturing group iii nitride compound semiconductor light-emitting element, the group iii nitride compound semiconductor light-emitting element and lamp
JP2011016714A6 (en) Bulk single crystal gallium-containing nitride manufacturing method, bulk single crystal gallium-containing nitride substrate obtained thereby, and device manufactured on the substrate.
CN104518062A (en) Method of manufacturing semiconductor light emitting device
JP2016145144A (en) Diamond laminated structure, substrate for forming diamond semiconductor, diamond semiconductor device, and production method of diamond laminated structure
JP2002170776A (en) Low-dislocation buffer, its method of manufacture and device provided therewith
KR20130113452A (en) Method for producing substrate for group iii nitride semiconductor element fabrication, method for producing group iii nitride semiconductor free-standing substrate or group iii nitride semiconductor element, and group iii nitride growth substrate
JPH06326416A (en) Compound semiconductor element
US20130143394A1 (en) Semiconductor substrate and method of forming
JPH10107319A (en) Nitride compound semiconductor element
JP2004146525A (en) METHOD OF MANUFACTURING P-TYPE GaN COMPOUND SEMICONDUCTOR
KR20030065367A (en) 3-5 Group compound semiconductor, process for producing the same, and compound semiconductor element using the same
JP2004103930A (en) Manufacturing method of p-type gan system compound semiconductor
JP2005210091A (en) Group iii nitride semiconductor element and light emitting element

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20050119

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Effective date: 20050120

Free format text: JAPANESE INTERMEDIATE CODE: A621

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050120

A975 Report on accelerated examination

Effective date: 20050214

Free format text: JAPANESE INTERMEDIATE CODE: A971005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050421

A131 Notification of reasons for refusal

Effective date: 20050510

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20050920

Free format text: JAPANESE INTERMEDIATE CODE: A02