JP2004102556A - Positioning controller - Google Patents

Positioning controller Download PDF

Info

Publication number
JP2004102556A
JP2004102556A JP2002262189A JP2002262189A JP2004102556A JP 2004102556 A JP2004102556 A JP 2004102556A JP 2002262189 A JP2002262189 A JP 2002262189A JP 2002262189 A JP2002262189 A JP 2002262189A JP 2004102556 A JP2004102556 A JP 2004102556A
Authority
JP
Japan
Prior art keywords
command
speed
sliding mode
mode controller
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002262189A
Other languages
Japanese (ja)
Other versions
JP4078396B2 (en
Inventor
Koji Yoneda
米田 康治
Tatsuo Toyonaga
豊永 竜生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sodick Co Ltd
Original Assignee
Sodick Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sodick Co Ltd filed Critical Sodick Co Ltd
Priority to JP2002262189A priority Critical patent/JP4078396B2/en
Publication of JP2004102556A publication Critical patent/JP2004102556A/en
Application granted granted Critical
Publication of JP4078396B2 publication Critical patent/JP4078396B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Feedback Control In General (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the deviation in position and speed to command value on moving without generating vibration, and to improve the follow-up property when a sliding mode controller is used in a positioning controller which uses a motor or the like. <P>SOLUTION: The sliding mode controller inputs a speed command of a feedforward control together with a position command and a feedback signal from a state observation equipment, and adds a signal, which is obtained by multiplying a desired gain by the input speed command signal, to a calculation of a manipulated variable using a hyperplane of the sliding mode control, then creates and outputs an electric current command. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、モータなどを使用する位置決め制御装置に係り、特に前記制御装置にスライディングモード制御器を用いた場合に、振動を生じさせることなくて、移動中の指令値に対する位置偏差量が小さい、高い追従性の、または高応答性の制御装置を構成せんとするものである。
【0002】
【従来の技術】
【特許文献1】特開平11−194801号公報
【0003】
特許文献1に記載の技術内容は、本発明の技術に特に関連あるものであるが、以下従来の技術及びその状況等につき順を追って説明する。
スライディングモード制御とは、離散的なデータを出力するエンコーダを位置検出器として用い、システムの状態から実測により得られる位置、速度、偏差量などの離散的な状態量から状態観測器により当該各状態量の推定値を得てフィードバックし、この状態量の推定値を変数とする操作量の演算を、予めの設計により設定してある超平面を利用して行い、その超平面上ににシステムを常に拘束して作動させることにより、応答性が高く、しかも外乱に強いロバストな制御を可能とするものである。
【0004】
一般にスライディングモード制御方式は、制御対象のシステムの運動方程式(数1式)、
【数1】

Figure 2004102556
但し、 J:モータの慣性モーメント、 θ:モーター角度、 Iq:q軸の電流、 Kt:トルク定数、d:外乱
から、状態方程式(数2式)を求めることから始まる。
【数2】
Figure 2004102556
但し、
Figure 2004102556
【0005】
さらに、求められた状態方程式をサーボ系に拡張したものに対し、超平面Sを設計して、数3式の切換関数σを製作することによりシステムの状態を超平面に拘束する。
【数3】
Figure 2004102556
但し、
Figure 2004102556
【0006】
システム状態をこの平面に拘束するためには、線形項ulと非線形項unlに分けられる操作量u=ul+unl(Iq)、数4式が必要となる。
【数4】
Figure 2004102556
一般的に、システムに与えられた外乱を相殺をする働きをするのは非線形項unlであり、外乱入力が零の場合は非線形項はunl=0になっている。
【0007】
図8は、スライディングモード制御器1を備えた位置決め制御装置のブロック線図を示すもので、2は被制御対象の交流サーボモータや各種の同期型リニアモータ等の駆動装置、3は制御装置のフィードバック系に設けられらた状態観測器で、フィードバック信号を前記スライディングモード制御器1に帰還入力させる。
【0008】
前記状態観測器3がスライディングモード制御器1にフィードバックする信号とは、図示しない位置指令発生器から次々と離散的に出力してスライディングモード制御器1に入力する位置指令信号rと、後述する前記スライディングモード制御器1から被制御対象のモータ等2へ生成出力する操作量Iqとしての電流指令信号Iq=ul+unlと、前記被制御対象2の作動による現在位置を検出し、離散的なデータとして出力するエンコーダの状態量としての実位置信号θとを入力して出力する推定位置と推定速度及び位置偏差量または溜まりパルス数の推定信号Ζである。
【0009】
そして、前記スライディングモード制御器1は、前記位置指令の信号と、前記状態観測器3より生成帰還する推定位置、推定速度、及び位置偏差量または溜まりパルス数の信号とから、設計設定されている超平面と演算式により該超平面上に被制御対象を拘束するように操作量の電流指令Iqを演算して出力し、被制御対象2を作動させる作動を設定されたサンプリングタイムで繰り返すものである。
【0010】
前述スライディングモード制御は、従来慣用のPID制御に対してロバスト性が高く、PID制御の、各種走行モード毎に、制御ゲインを調整あるいは目標値の補正を行うことによる制御ソフトウェアの複雑化の問題、及び各種走行モード毎に、最適な制御ゲインや目標値の補正量を設定する必要があることによる制御ソフトウェア開発に時間が掛かる問題が少なく有望視されている。
【0011】
そして、特に、非線形性の制御に有効な制御方法であると考えられ、高速な入力切換えによる外乱等に対するロバスト性、適切な切換関数の設定による高速応答性が期待できるとされているものの基本的には振動を励起し易く、桟構特性を十分発揮させる切換関数をどのように決定すべきか明確でなく、精密位置決めへの適用には未だ解決すべき問題があった。
【0012】
ところで、スライディングモード制御を設計する上で最も重要な要素が超平面の設計であることは良く知られているところであり、その超平面の設計には既に色々な手法が確立されている。而してこれらの確立された色々な設計手法の何れにおいても、超平面の極が、虚軸の左半面にあれば安定であり、さらにその値が小さくなればなるほど高い応答性が得られることが知られている。
【0013】
【発明が解決しようとする課題】
しかし、実際に被制御対象のシステムにスライディングモード制御器を組み込む際には、サンプリング周波数、検出器の分解能、むだ時間などの色々な振動要素が入って来るために、超平面の設計においてもその追求できる応答性に限界があった。この場合、コンピュータによる解析を連続時間系で行えば、前述のような振動要素は全くないのでゲインを上げて行くことができ、そのため速度及び加速度のフィードフォワード制御が付加されていなくても、移動中の偏差はほぼ零に等しいものである。しかしながら、本発明の制御装置が存在して稼動する離散時間系では、ゲインを上げすぎると振動してしまうために低く設定する必要がある一方で、ゲインを低く設定したことから、図9に位置偏差特性図、図10に速度偏差特性図として示すように、移動中に位置と速度の偏差量がかなり大きく出てしまい、移動中の追従性乃至は応答性が良くないという問題があった。
【0014】
そして、この振動を生じさせずに特性を改善させる手法として、スライディングモード制御器に並列にフィードフォワード制御器を設けて、両者の演算出力の操作量を加算する方式が前掲の特許文献1に記載、提案されているものである。しかし、この方式では、2つの制御器は各々独立した特性のまま独立に操作量を演算出力して加算するので、各々の制御器の特性を相殺する恐れがある。
【0015】
そして、本発明者らが先にテストしたところによれば、スライディングモード制御器に並列に(つまり、線形項のみに)、フィードフォワード項を追加した場合、非線形項は超平面にシステムを収束させようとするために、フィードフォワード項により与えられた操作量を相殺するように作用して、線形項に追加したフィードフォワード項の作用が効いてこないことが確かめられている。
【0016】
【課題を解決する手段】
前述の本発明の目的は、
(1)被制御対象へ出力する操作量の状態量と被制御対象の位置についての検出状態量と位置指令とを入力して、推定位置と推定速度及び偏差量の信号をフィードバックする状態観測器と、前記フィーバック信号と位置指令とを入力し、設計して設定してある超平面に前記被制御対象を拘束するように操作量の電流を演算して出力するスライディングモード制御器を備えた位置決め制御装置において、前記スライディングモード制御器にフィードフォワード制御の速度指令を入力させるとともに、該入力速度指令信号に所望のゲインを掛けて得た信号を前記操作量の演算に加算して演算し前記電流指令を生成する位置決め制御装置とすることにより達成される。
【0017】
また、前述の本発明の目的は、
(2)前記速度指令が、前記位置指令の時間微分信号である前記(1)に記載の位置決め制御装置とすることにより達成される。
【0018】
また、前述の本発明の目的は、
(3)前記偏差量が溜まりパルスの数である前記(1)に記載の位置決め制御装置とすることにより達成される。
【0019】
【発明の実施の形態】
以下図面に基づき本発明の位置決め制御装置の実施の形態を説明する。図1に於て10は、本発明の位置決め制御装置において使用されるスライディングモード制御器で、位置指令rと共にフィードフォワード制御の速度指令rが入力される構成となって居り、この入力速度指令rは、後述するように入力位置指令rと共にスライディングモード制御器10内で演算処理され、速度補償された操作量の電流指令Iqを出力し、モータ等の被制御対象を駆動し作動させるものである。
【0020】
従来型のスライディングモード制御器1は、前述及び図8〜図10で詳しく説明したように、制御作動に振動を生ぜしめない限度においてゲインを大きく設定した限りにおいては、移動中の位置及び速度の追従特性に問題があり、可成りの追従偏差のため高応答での高精度位置決め制御には適用し難いものであった。しかるところ、斯種の位置決め制御において、ランプ型の位置指令のように高い追従性が要求される動作では、フィードフォワード制御が有効なことが知られている。
【0021】
そこで、本発明は、スライディングモード制御器1を追従性の高い制御器10とするために、操作量の電流指令(Iq=ul+unl)を得る制御器1の改良、即ち前述式(4)で示した操作量に、指令状態量(速度指令)の項を追加したものである。
即ち、一般的に超平面Sは数3式に示したように、
【数5】
Figure 2004102556
のように表すことができるが、この数5式に位置指令値rを含む数6式のように変更する。
【数6】
Figure 2004102556
但し、Cffはゲイン
前記数6式から
【数7】
Figure 2004102556
超平面上では、切換関数σ=σ〜・=0だから,線形項ulは数8式のようになる。また、非線形項unlは、数6式で求めたσ数9式のように求められる。
【数8】
Figure 2004102556
【数9】
Figure 2004102556
【0022】
即ち、前記図1において、スライディングモード制御器10に、フィードフォワード制御の速度指令r(通常位置指令rの時間微分値)を入力させると共に、該入力指令信号に所望のゲイン(Cff)を掛けて得た信号を、操作量の演算に加算して演算させ、速度補償された電流指令Iqを生成出力させ、被制御対象のモータ20等を駆動するものである。以上の結果状態観測器30には、位置指令rと速度補償した操作量の電流指令Iqと状態検出量の実位置θ信号とが入力して、推定位置と推定速度及び偏差量または溜まりパルスの信号をスライディングモード制御器10にフィードバックし、前記速度補償された操作量の電流指令Iqによる被制御対象システム20の位置及び速度について追従性の高い移動を実現し、高応答で、高精度の位置決め制御が行えるようになるものである。
【0023】
図2及び図3は、前述図1の本発明の速度補償されたスライディングモード制御器10を有する位置決め制御装置の位置偏差の特性図(図2)と、速度偏差の特性図(図3)であって、前述従来例の図9、及び図10に夫々対応するものである。図から明らかなように、本発明によれば位置及び速度とも指令値に近い値で追従しつつ移動して居り、溜まりパルスが図2のものは図9のものに対し5分の1程度にまで減少している。
【0024】
図4、図5、図6及び図7に前記速度指令のゲインと、Cff=−0.25に設定した本発明のスライディングモード制御器10を使用した場合、図11、図12、図13及び図14に前記ゲインをCff=0に設定した場合の指令速度と実速度の偏差量とを示したもので、図4→図7、同様に図11→図14の順に速度が大きくなって居り、さらに図4と図11、図5と図12のように順次に対応しているものである。図4〜図7のものと図11〜図14のものとでは上述以外の実験条件は全く同一で、フィードフォワード制御による速度補償が有効なことが判る。そして、何れの場合も、速度が大きくなるとともに偏差量が大きくなっていることが判る。
【0025】
【発明の効果】
以上のように本発明によれば、移動中の指令値に対する位置及び速度の偏差量が小さい高い追従性の位置決め制御をすることができるので、高応答で高精度の位置決めをすることができる効果がある。
【図面の簡単な説明】
【図1】スライディングモード制御器を有する本発明の一実施例の位置決め制御装置のブロック線図。
【図2】一実施例の位置決め制御装置の位置偏差の特性図。
【図3】同じく速度偏差の特性図。
【図4】同じく速度指令に対する速度偏差量の低速時の特性図。
【図5】同じく図4より高速度時の偏差量の特性図。
【図6】同じく図5より更に高速度時の偏差量の特性図。
【図7】同じく図6より更に高速度時の偏差量の特性図。
【図8】従来のスライディングモード制御器を備えた位置決め制御装置のブロック線図。
【図9】図2に対応する従来例の位置偏差の特性図。
【図10】図3に対応する従来例の速度偏差の特性図。
【図11】図4に対応する従来例の速度偏差量の低速時の特性図。
【図12】図5に対応する従来例の図11より高速時の特性図。
【図13】図6に対応する従来例の図12より更に高速時の特性図。
【図14】図7に対応する従来例の図13より更に高速時の特性図。
【符号の説明】
1 従来例のスライディングモード制御器
2 従来例の被制御対象のシステム
3 従来例の状態観測器
10 本発明により速度補償されたスライディングモード制御器
20 本発明により速度補償された被制御対象のシステム
30 本発明により速度補償された状態観測器[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a positioning control device using a motor or the like, particularly when a sliding mode controller is used in the control device, without causing vibration, a small positional deviation amount with respect to a command value during movement, It is intended to constitute a control device having high follow-up or high response.
[0002]
[Prior art]
[Patent Document 1] JP-A-11-194801
Although the technical content described in Patent Document 1 is particularly relevant to the technology of the present invention, the conventional technology and its status will be described in order below.
Sliding mode control uses an encoder that outputs discrete data as a position detector, and uses a state observer to calculate each state from discrete state quantities such as position, velocity, and deviation obtained by actual measurement from the system state. The estimated value of the quantity is obtained and fed back, and the calculation of the manipulated variable using the estimated value of the state quantity as a variable is performed using a hyperplane set in advance by design, and the system is placed on the hyperplane. By always restricting the operation, a highly responsive and robust control resistant to disturbances can be achieved.
[0004]
Generally, the sliding mode control method is based on the equation of motion (Equation 1) of the system to be controlled,
(Equation 1)
Figure 2004102556
Where J: the moment of inertia of the motor, θ: the motor angle, Iq: the current on the q-axis, Kt: the torque constant, and d: the disturbance, and start by obtaining the state equation (Equation 2).
(Equation 2)
Figure 2004102556
However,
Figure 2004102556
[0005]
Further, a hyperplane S is designed for a system obtained by extending the obtained state equation to a servo system, and a switching function σ of Equation 3 is manufactured to constrain the state of the system to the hyperplane.
[Equation 3]
Figure 2004102556
However,
Figure 2004102556
[0006]
In order to constrain the system state to this plane, a manipulated variable u = ul + unl (Iq), which is divided into a linear term ul and a non-linear term unl, requires Equation (4).
(Equation 4)
Figure 2004102556
In general, it is the nonlinear term unl that acts to cancel the disturbance applied to the system, and when the disturbance input is zero, the nonlinear term is unl = 0.
[0007]
FIG. 8 shows a block diagram of a positioning control device provided with a sliding mode controller 1. Reference numeral 2 denotes a driving device such as an AC servomotor to be controlled or various synchronous linear motors. A feedback signal is fed back to the sliding mode controller 1 by a state observer provided in the feedback system.
[0008]
The signal that the state observer 3 feeds back to the sliding mode controller 1 includes a position command signal r that is discretely output one after another from a position command generator (not shown) and that is input to the sliding mode controller 1, and the signal that will be described later. A current command signal Iq = ul + unl as an operation amount Iq generated and output from the sliding mode controller 1 to the controlled object motor 2 and the like, and a current position due to the operation of the controlled object 2 are detected and output as discrete data. The estimated position, estimated speed, position deviation amount or accumulated pulse number { circumflex over (パス) } that is input and output as the actual position signal θ as the state quantity of the encoder to be changed.
[0009]
The sliding mode controller 1 is designed and set from the signal of the position command and the signal of the estimated position, estimated speed, position deviation amount or accumulated pulse number generated and fed back from the state observer 3. An operation amount current command Iq is calculated and output so as to restrain the controlled object on the hyperplane by the hyperplane and the arithmetic expression, and the operation of operating the controlled object 2 is repeated at a set sampling time. is there.
[0010]
The above-described sliding mode control is more robust than the conventional PID control, and the control software is complicated by adjusting the control gain or correcting the target value for each driving mode of the PID control. Further, it is promising that there is little problem that it takes time to develop control software due to the need to set an optimal control gain and a correction amount of a target value for each of various traveling modes, and thus it is promising.
[0011]
In particular, the control method is considered to be an effective control method for non-linearity control, and robustness against disturbances or the like due to high-speed input switching, and high-speed response due to setting of an appropriate switching function can be expected. However, it is not clear how to determine a switching function that easily excites vibration and sufficiently exerts the beam characteristics, and there is still a problem to be solved in application to precise positioning.
[0012]
By the way, it is well known that the most important factor in designing the sliding mode control is the design of the hyperplane, and various methods have already been established for the design of the hyperplane. In any of these established design methods, the hyperplane pole is stable if it is located on the left half plane of the imaginary axis, and the smaller the value, the higher the response. It has been known.
[0013]
[Problems to be solved by the invention]
However, when a sliding mode controller is actually incorporated into the system to be controlled, various vibration factors such as sampling frequency, detector resolution, and dead time are involved. There was a limit to the responsiveness that could be pursued. In this case, if the analysis by the computer is performed in a continuous time system, the gain can be increased because there is no vibration element as described above, so that even if the feedforward control of the speed and the acceleration is not added, the movement can be performed. The deviation in is almost equal to zero. However, in a discrete-time system in which the control device of the present invention is operated and operates, if the gain is set too high, vibration occurs. As shown in the deviation characteristic diagram and the velocity deviation characteristic diagram in FIG. 10, there is a problem that the deviation between the position and the velocity is considerably large during the movement, and the follow-up property or the response during the movement is not good.
[0014]
As a technique for improving the characteristics without causing the vibration, a method in which a feedforward controller is provided in parallel with the sliding mode controller and the operation amounts of the arithmetic outputs of the two are added is described in Patent Document 1 mentioned above. It is a proposal. However, in this method, since the two controllers independently calculate and output the operation amounts while maintaining the independent characteristics, the characteristics of each controller may be canceled.
[0015]
And, as we have previously tested, if we add a feedforward term in parallel to the sliding mode controller (ie, only to the linear term), the nonlinear term will converge the system to a hyperplane. Therefore, it has been confirmed that the operation amount provided by the feedforward term cancels out, and the effect of the feedforward term added to the linear term does not work.
[0016]
[Means to solve the problem]
The object of the invention described above is
(1) A state observer that inputs a state amount of an operation amount to be output to a controlled object, a detected state amount of a position of the controlled object, and a position command, and feeds back signals of an estimated position, an estimated speed, and a deviation amount. And a sliding mode controller that inputs the feedback signal and the position command, calculates and outputs a current of an operation amount so as to restrain the controlled object on a designed and set hyperplane, and includes a sliding mode controller. In the positioning control device, a speed command for feedforward control is input to the sliding mode controller, and a signal obtained by multiplying the input speed command signal by a desired gain is added to the calculation of the operation amount, and the calculation is performed. This is achieved by a positioning control device that generates a current command.
[0017]
The object of the present invention described above is
(2) The position control device according to (1), wherein the speed command is a time differential signal of the position command.
[0018]
The object of the present invention described above is
(3) The positioning control device according to (1), wherein the deviation amount is the number of accumulated pulses.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the positioning control device of the present invention will be described below with reference to the drawings. 10 At a 1, a sliding mode controller for use in the positioning control apparatus of the present invention, sediment and is configured to the speed command r · feedforward control is input with the position command r, the input speed command r · is processed in the sliding mode controller 10 together with the input position command r as described later, outputs current commands I to q of the speed-compensated operation amount, and drives and operates a controlled object such as a motor. It is to let.
[0020]
As described in detail above and FIGS. 8 to 10, the conventional sliding mode controller 1 is capable of controlling the position and velocity during movement as long as the gain is set to a large value as long as no vibration is caused in the control operation. There is a problem in the tracking characteristic, and it is difficult to apply to high-accuracy positioning control with high response due to a considerable tracking deviation. However, in such positioning control, it is known that feed-forward control is effective in an operation requiring high followability, such as a ramp-type position command.
[0021]
Therefore, the present invention improves the controller 1 that obtains the current command (Iq = ul + unl) of the manipulated variable in order to make the sliding mode controller 1 a controller 10 with a high follow-up property, that is, it is expressed by the aforementioned equation (4). A command state quantity (speed command) is added to the manipulated variable.
That is, generally, the hyperplane S is expressed as
(Equation 5)
Figure 2004102556
However, the expression is changed to Expression 6 including the position command value r in Expression 5.
(Equation 6)
Figure 2004102556
However, Cff is obtained from the above equation (6).
Figure 2004102556
In the hyperplane, the switching function σ ~ = σ ~ · = 0 So, linear terms u ~ l is as equation (8). In addition, the nonlinear terms u to nl are obtained as in σ to Expression 9 obtained by Expression 6.
(Equation 8)
Figure 2004102556
(Equation 9)
Figure 2004102556
[0022]
That is, over the FIG. 1, the sliding mode controller 10, together with inputting the speed command r · feedforward control (time differential value of the normal position command r), the desired gain to the input command signal (Cff) The obtained signal is added to the operation amount calculation to be operated to generate and output speed-compensated current commands I to q to drive the motor 20 to be controlled. Above the result state observer 30 is entered and the actual position theta ~ signal current command I ~ q and state detection amount of the position command r and velocity compensation manipulated variable, the estimated position and estimated velocity and deviation or The signal of the accumulated pulse is fed back to the sliding mode controller 10 to realize movement with high tracking ability with respect to the position and speed of the controlled system 20 by the current commands I to q of the speed-compensated operation amount, and achieve high response. Thus, high-accuracy positioning control can be performed.
[0023]
2 and 3 are a characteristic diagram of the position deviation (FIG. 2) and a characteristic diagram of the speed deviation (FIG. 3) of the positioning control device having the speed-compensated sliding mode controller 10 of the present invention of FIG. This corresponds to FIGS. 9 and 10 of the above-described conventional example, respectively. As is clear from the figure, according to the present invention, both the position and the speed are moving while following the command values, and the accumulated pulse in FIG. 2 is about one fifth of that in FIG. Has decreased to
[0024]
4, 5, 6, and 7 show the case where the gain of the speed command and the sliding mode controller 10 of the present invention set to Cff = −0.25 are used. FIG. 14 shows the deviation between the command speed and the actual speed when the gain is set to Cff = 0, and the speed increases in the order of FIG. 4 → FIG. 7, and similarly FIG. 11 → FIG. 4 and FIG. 11, and FIG. 5 and FIG. The experimental conditions other than those described above are exactly the same between FIGS. 4 to 7 and FIGS. 11 to 14, and it can be seen that the speed compensation by the feedforward control is effective. In each case, it can be seen that the deviation increases as the speed increases.
[0025]
【The invention's effect】
As described above, according to the present invention, it is possible to perform positioning control with high follow-up performance with a small amount of deviation between the position and the speed with respect to the command value during movement, so that positioning with high response and high accuracy can be performed. There is.
[Brief description of the drawings]
FIG. 1 is a block diagram of a positioning control device having a sliding mode controller according to an embodiment of the present invention.
FIG. 2 is a characteristic diagram of a position deviation of the positioning control device according to the embodiment.
FIG. 3 is a characteristic diagram of a speed deviation.
FIG. 4 is a characteristic diagram of a speed deviation amount with respect to a speed command at a low speed.
FIG. 5 is a characteristic diagram of the deviation amount at the time of high speed from FIG. 4;
FIG. 6 is a characteristic diagram of a deviation amount at a higher speed than FIG.
FIG. 7 is a characteristic diagram of a deviation amount at a higher speed than FIG.
FIG. 8 is a block diagram of a positioning control device provided with a conventional sliding mode controller.
FIG. 9 is a characteristic diagram of the position deviation of the conventional example corresponding to FIG.
FIG. 10 is a characteristic diagram of the speed deviation of the conventional example corresponding to FIG.
FIG. 11 is a characteristic diagram of the conventional example at a low speed, corresponding to FIG. 4;
12 is a characteristic diagram at a higher speed than in FIG. 11 of the conventional example corresponding to FIG. 5;
FIG. 13 is a characteristic diagram at a higher speed than that of FIG. 12 of the conventional example corresponding to FIG. 6;
FIG. 14 is a characteristic diagram at a higher speed than that of FIG. 13 of the conventional example corresponding to FIG. 7;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Conventional sliding mode controller 2 Conventional controlled system 3 Conventional state observer 10 Sliding mode controller 20 speed-compensated by the present invention System 30 to be speed-compensated by the present invention State observer speed compensated by the present invention

Claims (3)

被制御対象へ出力する操作量の状態量と被制御対象の位置についての検出状態量と位置指令とを入力して、推定位置と推定速度及び偏差量の信号をフィードバックする状態観測器と、前記フィードバック信号と位置指令とを入力し、設計して設定してある超平面に前記被制御対象を拘束するように操作量の電流指令を演算して出力するスライディングモード制御器を備えた位置決め制御装置において、
前記スライディングモード制御器にフィードフォワード制御の速度指令を入力させるとともに、該入力速度指令信号に所望のゲインを掛けて得た信号を前記操作量の演算に加算して演算し前記電流指令を生成するようにしたことを特徴とする位置決め制御装置。
A state observer that inputs a state quantity of the manipulated variable to be output to the controlled object, a detected state quantity and a position command for the position of the controlled object, and feeds back signals of an estimated position, an estimated speed, and a deviation amount, Positioning control device including a sliding mode controller that inputs a feedback signal and a position command, calculates and outputs a current command of an operation amount so as to restrain the controlled object on a hyperplane designed and set. At
The sliding mode controller is made to input a speed command for feedforward control, and a signal obtained by multiplying the input speed command signal by a desired gain is added to the operation amount calculation to calculate and generate the current command. A positioning control device characterized in that:
前記速度指令が、前記位置指令の時間微分信号であることを特徴とする請求項1に記載の位置決め制御装置。The positioning control device according to claim 1, wherein the speed command is a time differential signal of the position command. 前記偏差量が溜まりパルスの数であることを特徴とする請求項1に記載の位置決め制御装置。The positioning control device according to claim 1, wherein the deviation amount is the number of accumulated pulses.
JP2002262189A 2002-09-09 2002-09-09 Positioning control device Expired - Lifetime JP4078396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002262189A JP4078396B2 (en) 2002-09-09 2002-09-09 Positioning control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002262189A JP4078396B2 (en) 2002-09-09 2002-09-09 Positioning control device

Publications (2)

Publication Number Publication Date
JP2004102556A true JP2004102556A (en) 2004-04-02
JP4078396B2 JP4078396B2 (en) 2008-04-23

Family

ID=32262306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002262189A Expired - Lifetime JP4078396B2 (en) 2002-09-09 2002-09-09 Positioning control device

Country Status (1)

Country Link
JP (1) JP4078396B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004355632A (en) * 2003-05-29 2004-12-16 Sodick Co Ltd Motion controller with sliding mode controller
KR100932622B1 (en) * 2007-08-21 2009-12-17 성균관대학교산학협력단 Optimal Control Method Based on Sliding Mode Control Applied to High Precision Positioning System
JP2014067168A (en) * 2012-09-25 2014-04-17 Keihin Corp Electronic control device
CN112198795A (en) * 2020-10-14 2021-01-08 中国科学院长春光学精密机械与物理研究所 Electromechanical servo control method, electromechanical servo control system, terminal equipment and storage medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004355632A (en) * 2003-05-29 2004-12-16 Sodick Co Ltd Motion controller with sliding mode controller
JP4665096B2 (en) * 2003-05-29 2011-04-06 株式会社ソディック Motion controller used in machine tool with sliding mode controller
KR100932622B1 (en) * 2007-08-21 2009-12-17 성균관대학교산학협력단 Optimal Control Method Based on Sliding Mode Control Applied to High Precision Positioning System
JP2014067168A (en) * 2012-09-25 2014-04-17 Keihin Corp Electronic control device
CN112198795A (en) * 2020-10-14 2021-01-08 中国科学院长春光学精密机械与物理研究所 Electromechanical servo control method, electromechanical servo control system, terminal equipment and storage medium
CN112198795B (en) * 2020-10-14 2022-02-22 中国科学院长春光学精密机械与物理研究所 Electromechanical servo control method, electromechanical servo control system, terminal equipment and storage medium

Also Published As

Publication number Publication date
JP4078396B2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
JP4581096B2 (en) Friction compensation method, friction compensator, and motor control device
US9874865B2 (en) Control method and control device
CN110467111B (en) Control of bridge cranes
JP6214948B2 (en) Friction compensation device, friction compensation method, and servo control device
CN109799701A (en) A kind of industrial robot vibration suppressing method
JPWO2008075558A1 (en) Position control device
JP2010049599A (en) Machine tool
JP2014136260A (en) Control device
JP3981773B2 (en) Robot controller
JP2006215626A (en) Position controller
JP2004102556A (en) Positioning controller
JP2012182933A (en) Motor controller
JP2009038942A (en) Load inertia identification method and servo motor controller
JP7135483B2 (en) electric motor controller
JP5660482B2 (en) Control method and control device for feed drive system of machine tool
JPH07185817A (en) Weaving control method of multi-axes robot
JP4636271B2 (en) Servo control device and adjustment method thereof
JP4038659B2 (en) Servo control device
JP2008217405A (en) Actuator control device and actuator control method
JP7443933B2 (en) motor control device
JP2009032009A (en) Linear actuator
JP2009175946A (en) Position controller
JPH117303A (en) Driving controller for servo system
JPH06274201A (en) Control method and control device
JP2002078369A (en) Adjusting method and apparatus for servo motor controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4078396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term