JP2004101204A - Method and apparatus for inspecting fertilized egg - Google Patents

Method and apparatus for inspecting fertilized egg Download PDF

Info

Publication number
JP2004101204A
JP2004101204A JP2002259297A JP2002259297A JP2004101204A JP 2004101204 A JP2004101204 A JP 2004101204A JP 2002259297 A JP2002259297 A JP 2002259297A JP 2002259297 A JP2002259297 A JP 2002259297A JP 2004101204 A JP2004101204 A JP 2004101204A
Authority
JP
Japan
Prior art keywords
egg
fertilized
color
inspection
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002259297A
Other languages
Japanese (ja)
Other versions
JP3998184B6 (en
JP2004101204A6 (en
JP3998184B2 (en
Inventor
Takaaki Ando
安藤 隆章
Yuichiro Sugimoto
杉本 有一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Instrumentation Co Ltd
Original Assignee
Shikoku Instrumentation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32260362&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2004101204(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shikoku Instrumentation Co Ltd filed Critical Shikoku Instrumentation Co Ltd
Priority to JP2002259297A priority Critical patent/JP3998184B6/en
Priority claimed from JP2002259297A external-priority patent/JP3998184B6/en
Publication of JP2004101204A publication Critical patent/JP2004101204A/en
Publication of JP2004101204A6 publication Critical patent/JP2004101204A6/en
Application granted granted Critical
Publication of JP3998184B2 publication Critical patent/JP3998184B2/en
Publication of JP3998184B6 publication Critical patent/JP3998184B6/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reliably and nondestructively determine whether a fertilized egg is alive or not and the state of its development in such a way as to be close to inspectors' criteria of judgement. <P>SOLUTION: In this inspection apparatus, the inside of the fertilized egg is irradiated with light to pick up a color image of the inside of the egg. Then blood vessel information such as the presence or absence, thickness, distributed state of blood vessels and internal color information are measured within an inspection region. Or concentration distribution information in the vicinity of the boundary of an air cell is measured by measuring concentration changes from the air cell to an embryo on the basis of concentration distribution information in the vicinity of the boundary of the air cell. On the basis of this, the determination of a normal egg etc. is performed. In addition, in the inspection apparatus, inspection is performed preferably after spot patterns are removed from an egg shell on the basis of color information of the L*a*b* color system. The direction of the image pickup of the color image of the inside of the egg is changed by 90° at image pickup. The fertilized egg is arranged in a light shielding structure, and its image is picked up by a color CCD camera. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業の属する技術分野】
本発明は、有精卵の生死、及び発育状態を判定する非破壊検査法および装置に関する。より詳細には本発明は、有精卵の内部色情報に基づき、その発育状況を検査することにより、正常卵と死卵・発育不良卵を選別することを特徴とする、有精卵の非破壊検査法および本法を実現するための非破壊検査装置に関する。
【0002】
【従来の技術】
インフルエンザワクチンの製造過程において、ウィルスの増殖に有精卵(鶏卵)が利用される。インフルエンザウィルスを有精卵に注入して数日後、発育状態の良好な卵のみからウィルスは採取される。この発育状態は、熟練した検査員が一つ一つの卵に光を当てて、内部の血管の状態や出血の有無を目視観察して検査される。この目視観察が暗室内で実施されること、1日に数万個から数十万個の卵を処理する必要があることなどから、検査員に多大な労力を強いることとなったり、検査精度に個人差が現れることとなったりの問題点が指摘されている。
【0003】
食卵(無精卵)の検査手法については、多数の特許出願がされているが、卵内部での特定波長の光の吸収度合いによって出血や異物の有無、もしくは、透過光画像の濃度分布によって卵殻のヒビを検出するものであって、有精卵の血管の分布状態や発育状態を検出することはできない。
例えば、有精卵鑑別装置(特開平9−127096)では、卵中に透過・散乱した照射光を複数個の受光素子により検出し、その検出信号より心臓の脈拍に相当する所定周波数成分を抽出し、その振幅変化の有無及び変動量に基づいた有精卵の有無、有精卵の活性状態、有精卵の生死状態を判定している。しかしながら、有精卵では、内部より出射される照射光の量による心拍情報によって、その活性状態を詳細に認識することは難しい。実際、作業現場における熟練検査員は、内部の心臓の状態のみではなく血管の状態をも目視にて確認することにより、判定作業を実施しているのが実情である。
【0004】
【発明が解決しようとする課題】
本発明は、有精卵の生死およびその発育状態を、非破壊にて、検査員の判断基準により近く、かつ、確実に判定することを目的としている。
本発明は、熟練検査員の作業により近い技術手法として、有精卵の生死、及び発育状態を詳細かつ確実に判定できる検査法および検査装置を提供することを目的としている。
【0005】
【課題を解決するための手段】
発育状況の検査において、血管の分布状況や出血の有無を確認することにより、より詳細に有精卵の発育状態を認識できる特徴があり、本発明は、認識した状態に基づいた正常卵を判定する検査法である。すなわち、本発明は、有精卵内部に光を照射して卵内部のカラー画像を撮像し、検査領域内の血管情報を計測し、それに基づいて正常卵を判定することを特徴とする有精卵の検査法を要旨としている。
【0006】
本発明は、有精卵の上部から内部に光を照射して撮像した卵内部のカラー画像において、血管の有無、太さ、分布状態などの情報を、画像処理を用いて計測し、その結果に基づいて正常卵を自動で判定する有精卵の非破壊検査手法である。すなわち、撮像した卵内部のカラー画像における血管の有無、太さ、分布状態などを把握し、それに基づいて死卵や発育不良卵を自動で検出しており、その場合、本発明は、有精卵内部に光を照射して卵内部のカラー画像を撮像し、血管の有無、太さ、分布状態などの検査領域内の血管情報を計測し、それに基づいて死卵や発育不良卵を自動で検出して正常卵と区別することで、正常卵を判定することを特徴とする有精卵の検査法を要旨としている。
【0007】
また、本発明は、有精卵内部に光を照射して卵内部のカラー画像を撮像し、検査領域内の内部色情報を計測し、それに基づいて正常卵を判定することを特徴とする有精卵の検査法を要旨としている。
【0008】
本発明は、有精卵内部に光を照射して撮像した卵内部のカラー画像において、気室境界付近の濃度分布情報に基づいて、気室から胎児にかけての濃度変化を計測することにより、正常卵を判定する、また、気室境界付近での出血の有無を自動で検出する有精卵の非破壊検査手法である。すなわち、撮像した卵内部のカラー画像における気室境界付近の濃度分布情報を把握し、それに基づいて死卵や気室境界付近の出血の有無を自動で検出しており、その場合、本発明は、有精卵内部に光を照射して卵内部のカラー画像を撮像し、気室境界付近の濃度分布情報を計測し、それに基づいて正常卵を判定することを特徴とする有精卵の検査法を要旨としている。
【0009】
本発明の上記の有精卵の検査法は、好ましくはL*a*b*表色系の色情報に基づいて、卵殻の斑点状の模様を除去した後実施する。すなわち、有精卵のL*a*b*表色系の色情報に基づいて、血管検出時にノイズとなる卵殻表面の斑点状の模様を検査前に除去する。気室から胎児にかけての漿尿膜腔付近の色情報に基づいて、漿尿膜腔内での出血の可能性を自動で検出し、出血の可能性があった場合、血管と出血した他の部位との色の差が少なく、血管状態の認識が困難な場合があるため、血管検査前に画像補正を行う有精卵の非破壊検査法である。
【0010】
また、本発明の上記の有精卵の検査法は、有精卵内部に光を照射して卵内部のカラー画像を撮像するに際し、撮像方向を変えて複数の有精卵内部のカラー画像を撮像し、それらに基づいて行うことができる。撮像方向を90度づつ変更して撮像した複数の有精卵内部のカラー画像において、位置による血管の検査もれを防止し、正常卵を自動で判定する有精卵の非破壊検査法である。
【0011】
さらにまた、本発明の上記の有精卵の検査法は、有精卵内部に光を照射して卵内部のカラー画像を撮像するに際し、遮光性を有する構造内に有精卵を配置し、カラーCCDカメラで撮像することができる。
本発明は、上記の解決手段(方法)を実現するために、遮光性を有する構造内に有精卵を配置し、カラーCCDカメラで撮像した画像に基づいて実施される上記検査法を実現する検査装置に係わる。すなわち、本発明は、上記のいずれかの有精卵の検査法を実現するための非破壊検査装置であって、有精卵を配置する検査用ホイル、有精卵内部に光を照射する手段と卵内部のカラー画像を撮像するカラーCCDカメラを具備する画像撮像部、および撮像した卵画像を用いて正常卵判定を行う非破壊検査部を備えた有精卵の検査装置、必要に応じ判定の結果によって検査対象卵を振り分ける選別コンベアを備えた有精卵の検査装置を要旨としている。
【0012】
【発明の実施の形態】
《検査用卵》
本発明で検査をする卵は、鶏等の有精卵で、卵表面の色は、白・褐色等何でも良く、特に鶏の有精卵の場合に、本発明の技術的意義が大きいものとなる。インフルエンザ等のウィルスの種類やその他薬品等の注入物の種類、それらの注入の有無は問わないが、成長とともに胎児の血管が卵内部で広く分布する有精卵において、その生死および発育状況を非破壊的に検査する場合に、本発明の技術的意義は大きいものとなる。
【0013】
《検査用卵の構造》
図1は、十数日齢の正常な有精卵の一般的な構造を説明する図である。例えば発育鶏卵の外部構造は、卵殻と呼ばれる殻に覆われている。そのすぐ内側に卵殻膜があり、卵殻と卵殻膜を使用して、内部との酸素交換が行われる。卵殻のすぐ内側には太い血管がある。
例えば発育鶏卵の内部構造は、卵先端部に空気の層である気室があり、中央部に羊水の入った羊膜に包まれた胎児がある。胎児と気室の間には、漿尿膜に包まれた漿尿膜腔がある。十数日齢の正常に成育している有精卵の場合、漿尿膜腔が一定の大きさであり、漿尿膜には広く血管が分布する。
【0014】
《正常卵》
図2は、十数日齢の正常卵の代表的な特徴を説明する撮像画像の模式図を示す。十数日齢の正常に成育している有精卵の場合、漿尿膜腔が一定の大きさであり、胎児が卵中央部付近に存在する。漿尿膜には、広く血管が分布する。気室と漿尿膜腔の色合いが明白に異なる。卵殻膜内および漿尿膜、漿尿膜腔に、出血が見られない。卵上部には一定の大きさの気室が存在する。
【0015】
《異常卵》
(1)死卵
図3は、十数日齢の死卵の代表的な特徴を説明する撮像画像の模式図を示す。十数日齢の正常に成育している有精卵の場合、漿尿膜腔が一定の大きさであり、胎児が卵中央部に存在し、漿尿膜上には、広く血管が分布するが、死卵の場合、血管の分布がない、また、血管が存在する場合、その分布が著しく狭く、少ない。分布する血管は、著しく細く、色が薄い。気室と漿尿膜腔の境界付近の色合いの差が不明瞭な場合がある。卵殻膜内および漿尿膜上、漿尿膜腔に出血が見られる場合がある。
(2)発育不良卵
図4は、十数日齢の発育不良卵の代表的な特徴を説明する撮像画像の模式図を示す。十数日齢の正常に成育している有精卵の場合、漿尿膜腔が一定の大きさであり、胎児が卵中央部に存在し、漿尿膜上に広く血管が分布するが、発育不良卵の場合、その分布が著しく狭く、少ない。分布する血管は、著しく細く、色が薄い。血管の状態が正常でない発育不良卵は、死卵として取り扱う場合がある。
(3)出血卵
図5は、十数日齢の漿尿膜腔内出血卵の代表的な特徴を説明する撮像画像の模式図を示す。漿尿膜および漿尿膜腔内部に出血が見られる卵をさす。例えば漿尿膜腔内部に出血が見られる検査卵は、胎児が正常に成育している場合、正常卵として取り扱う。漿尿膜腔内部に出血の見られる卵では、血管と漿尿液の色が同色となりやすく、漿尿膜に分布する血管を検査することが困難な場合がある。図6は、十数日齢の気室境界付近出血卵の代表的な特徴を説明する撮像画像の模式図を示す。気室と漿尿膜腔の境界付近の卵殻内側および漿尿膜、漿尿膜腔に出血が見られる場合、死卵として取り扱う。
【0016】
《卵内部の色情報》
卵内部の色情報は、卵上部(気室側)より照明光を照射し、卵殻を透過した照明光を、カラーCCDカメラを用いて撮像し、カラー画像(RGB表色系)として得る。
十数日齢の正常な有精卵の内部を撮像したカラー画像上では、気室、胎児、漿尿膜腔、血管は、色合い、明度、形状等それぞれに異なった特徴を持つ。胎児部は暗く、色合いも少ない。気室および漿尿膜腔、血管は、黄色から赤色にかけての色合いが多く、それぞれ明度が異なる。
卵内部の、気室から胎児にかけての、漿尿膜腔のある領域を検査領域として、胎児の位置(領域の大きさ)や気室境界付近の濃度情報、血管情報を取得し、正常卵判定を行う。
検査領域は、赤色から黄色にかけての色情報が多く含まれているため、RGB画像のG成分とR成分を用いて、検査領域の特定を行う。
特定した検査領域の面積を計測し、正常卵判定の判断材料として使用する。
【0017】
《卵内部のL*a*b*表色系情報》
カラー画像をRGB表色系からL*a*b*表色系に変換し、a*成分の一部を抽出し、その強弱を濃度値とするモノクロ画像を作成する。カラー画像上の血管部分は、他の部位に比べ、赤味成分が多く含まれる。L*a*b*表色系におけるa*成分は、赤〜緑の範囲を色合いとする成分であるため、a*成分を利用することは、血管情報の抽出に効果がある。
図7は、十数日齢の点斑卵の代表的な特徴を説明する撮像画像の模式図を示す。卵表面の斑点は、その他の部位と類似した色合いを持つが、輝度値は他の部位より顕著に高い場合がある。RGB画像からモノクロ画像を作成する場合、輝度値の影響を受けやすく、血管情報を抽出する際、斑点がノイズとなる。L*a*b*表色系では、色合い情報a*、b*に輝度情報L*を組み合わせて色を表現するため、a*成分をモノクロ画像化した場合、輝度値を無視でき、高輝度な斑点を抑制する利点がある。表色系の変換のみでは、斑点と他の部位の色合いの差によって、斑点の完全な除去が困難であるため、画像に平滑化等の残った斑点を除去する処理を加える。本斑点除去手法は、卵内部本来の色情報を取り扱う場合に、大きな効果がある。
図5は、十数日齢の漿尿膜腔内出血卵の代表的な特徴を説明する撮像画像の模式図を示す。
漿尿膜腔内に出血が見られる場合、漿尿膜の血管と、その他の部位の色合いが出血によって類似するため、検査領域内の色合いが一定で、a*成分画像は、低濃度かつ低コントラストになりやすく、血管抽出が困難になる。検査領域の濃度情報によって、漿尿膜腔内部の出血の可能性を判定し、出血があると判定された場合は、血管抽出処理前に画像の明るさを変更し、コントラストを強調する。
【0018】
《卵内部の気室周辺の濃度情報》
十数日齢の正常な成育をした有精卵と、発育不良卵や死卵とを比較すると、正常卵では気室から胎児にかけて急激な濃度値の減衰が見られる場合が多いが、発育不良卵や死卵では、気室からの濃度値の減衰が緩やかに変化する場合が多い。RGBカラー画像から、輝度値を濃度値としたモノクロ画像を作成し、気室と卵殻膜内部の境界付近から胎児にかけての濃度値の変化量を計測し、正常卵判定の判断材料とする。
図6は、十数日齢の気室境界付近出血卵の代表的な特徴を説明する撮像画像の模式図を示す。
RGBカラー画像から作成したモノクロ画像上で、気室境界付近に出血がある場合、気室境界付近の濃度値が、漿尿膜腔の濃度値に比べ、低い場合が多い。気室境界付近に出血有無を確認するための検査領域を設け、その領域内の濃度情報と、気室境界付近から胎児よりに一定の間隔で検査領域をシフトした他の部位における濃度情報との比率を求め、その大小により、出血の有無を判定する。(図14)
【0019】
《卵内部の血管情報》
正常卵と発育不良卵、死卵では、検査領域内の血管の状態や分布状況に差があるため、血管の状態や分布状況の把握が、正常卵判定に効果的である。前述の斑点除去処理画像を用いて、赤味の強い部分のみを血管部分として抽出する。血管抽出後は、長さ・太さ・分布範囲を計測し、正常卵判定の判断材料とする。本手法は、血管部分を精度よく抽出できる効果がある。
【0020】
《検査装置》
本発明の有精卵の非破壊検査を可能とする装置では、供給された卵を画像処理による非破壊検査により正常卵判定を行い、正常卵と死卵(発育不良卵を含む)の選別をする。非破壊検査部では、遮光性を有する構造内に有精卵を配置し、カラーCCDカメラで撮像した画像に基づいて検査が実施される。検査装置では、検査用ホイルに載せた卵を、ホイル支持台を90度づつ回転させることにより、4方向から卵内部のカラー画像を撮像する。得られた4方向からの卵画像を用いて正常卵判定を行う。正常卵判定の結果によって、選別コンベアにて振り分ける。
【0021】
【作用】
有精卵の内部色情報によって、発育不良卵、死卵、気室境界付近に出血の有る卵と、正常卵とを、色画像処理によって非破壊で確実に判定することができる。有精卵であれば、卵表面の色やウィルスの注入の有無を選ばずに非破壊にて正常卵判定の検査をすることが可能である。有精卵内部の血管情報を非破壊にて計測するため、卵の発育状況などにもあわせて判断できる。
発育状態の良好な有精卵の判定には、熟練した検査員が、内部の血管の状態や出血の有無を目視にて実施しているが、多大な労力と、検査精度の個人差が問題視されている。これに対し、上記の従来の技術では、卵の心拍情報によって、有精卵か否か、または有精卵の活性および生死状態の鑑別を行うものであるが、必ずしも最善の鑑別手法であるとはいえない。本発明は、検査員の判断基準により近い判定をするため、画像処理手法を用いた卵内部の血管分布や出血の状態を自動認識することにより、有精卵の生死およびその発育状態を非破壊にて確実に判定することができる。
また、本発明は、熟練検査員の作業により近い技術手法として、画像処理手法を取り入れ、ウィルス増殖の場である漿尿膜腔を中心とした卵内部の血管分布状態を自動認識し、その結果をもとに有精卵の生死、及び発育状態を詳細かつ確実に判定できる検査装置を提供することができる。
【0022】
【実施例】
本願発明の詳細を実施例で説明する。本願発明はこれら実施例によって何ら限定されるものではない。
【0023】
実施例1
図8〜図11は、本発明の検査手法を実現するための検査装置の一実施例の概略構成を示す模式図である。
検査装置では、専用トレイで搬送された多数の卵を検査用ホイルに1個毎に移載し、整列コンベアにて複数個並べ、ピック&プレスで複数個を一度に画像撮像部へ搬送する。
搬送された卵は、ホイル支持台を上昇させ、画像処理時の外乱を防ぐため、遮光性のある撮影用の筒に入れる。
なお、撮影用筒の上部には、照明装置の入った照明装置内蔵用の筒があり、その筒の先が卵に接するまで、ホイル支持台を上昇させ、卵を気室側より照明する。
照明内蔵用筒の先端部は、卵形状やサイズが異なってもその先端から外部に照明光が漏れないよう、柔らかい材質で構成している。
そのため、卵表面での照明光の反射が防止でき、卵内部のみを通過した照明光をカラーCCDカメラにより撮像し、卵内部の色情報を得る。
カラーCCDカメラは撮影用筒の反対側に設置し、支持台の上昇端で1枚目の卵画像を撮影する。撮影後、撮影完了信号にて、90度支持台を回転させ、停止後2枚目を撮影する。同様に、3・4枚目を撮影し、1つの検査卵に対して4方向からの画像を得、これらを用いて正常卵判定処理を行う。
4枚目の画像撮影完了信号にて、支持台を下降させ、次に卵が整列コンベアより搬送されると、撮影済み卵は、画像撮像部より押し出され、選別コンベアで受ける。
画像の撮影後から、選別コンベアに移載されるまでの間に、撮影した卵の正常卵判定処理を行い、選別コンベアに判定結果信号を出力する。
【0024】
図12は、本発明の検査手法(正常卵判定)の処理フロー図である。
本発明の検査手法では、検査装置にて4方向から撮像した検査卵のカラー画像(RGB)を用いて、気室境界付近の出血有無の確認を行う。
図13は、本発明の気室境界付近出血検査手法の処理フロー図である。
得られたカラー画像(RGB)は、輝度情報に基づきモノクロ画像化する。
図20は、気室境界付近の出血有無の検査領域の設定方法を簡単に説明する図である。
モノクロ画像は、低濃度を強調し輝度値の高いノイズを抑え、図20の条件を満たす画素を選択し、気室境界付近の出血有無の確認用検査領域として特定する。
特定した検査領域を更に一定の間隔で胎児側へシフトし、気室境界付近から胎児よりに3カ所、比較検査用の領域を設定する。
図14に出血有無の検査用領域の設定例を示す。
4つの特定検査領域それぞれについて、ノイズ抑制後の画像より平均濃度値を算出する。
気室境界付近に最も近い濃淡平均値と、胎児よりの領域3つの濃淡平均値との各濃淡比を算出し、最大の値を検査卵の気室境界と血管分布領域(漿尿膜腔)との濃淡比として特定する。
【0025】
図15は、正常卵と気室境界付近に出血のある卵の、各出血確認用検査領域での平均濃淡値について簡単な例を示す。
気室境界付近に出血がある場合、気室境界付近と血管分布領域(漿尿膜腔)との濃淡差が大きい。
濃淡比が設定した値以上の場合を、気室境界付近に出血有りとして判定結果を出力する。
検査結果、気室境界付近に出血有りと判定した場合、その時点で検査対象卵を死卵として判定する。
検査結果、気室境界付近に出血無しと判定した場合は、気室近傍濃度変化を計測する。
ノイズ抑制後の画像を用いた、X軸上の濃度情報の投影結果をもとに、気室の存在するX軸上の範囲を特定する。
【0026】
図16は、正常卵と死卵のX軸上の濃度情報投影について簡単な例を示す。
正常卵は、気室から胎児にかけて濃度が減衰するが、気室境界を境にその勾配が急になる場合が多いが、死卵は気室境界が不明瞭な場合があり、気室境界からの濃度の減衰が、緩やかな勾配になる場合がある。
X軸上の濃淡情報が、ある設定値を指定数以上連続して越えた最も左側の範囲を、気室の範囲と特定する。
気室範囲最右端を気室境界点とし、一定間隔の投影値減衰率平均を、気室境界より設定数計測し、全計測結果の減衰率平均値を正常卵判定の判断材料として、2次判定時に使用する。
次に、卵内部の色情報を用いて,血管情報の取得に必要な検査領域を特定する。
【0027】
カラー画像(RGB)中のRとGを、それぞれの成分によりモノクロ画像化し、設定しきい値にて2値化する。
R画像を、設定値以上で2値化すると、周囲の暗い部分より、気室や血管分布領域(漿尿膜腔等)を中心とした卵全体が抽出される。
G画像を、設定値以下で2値化すると、気室や死卵で生じやすい明度の高い血管分布領域を除去した画像が抽出される。
得られた2つの2値画像中、両方に存在する領域を、検査領域として特定する。
【0028】
上述の方法は、検査領域として、正常な色合いの血管分布領域のみを特定できる効果がある。
特定した検査領域の総画素数を面積として計測し、正常卵判定の判断材料として、1次判定時に使用する。
撮像画像から検査領域部分の色情報を抽出する。
血管抽出の前処理として、本発明の斑点除去手法を用いて、抽出した検査領域画像上に点在する斑点を除去する。
図17は、斑点除去手法のフローを示す。
斑点は輝度値が他の部位よりも高いため、L*a*b*表色系を使用し、その影響を抑える。
検査領域画像をL*a*b*表色系変換した後、a*成分を抽出したモノクロ画像を作成する。
a*画像を反転処理し、残存する濃度値の高い斑点を除くため、低濃度値を強調する。その後、ノイズ除去として濃淡変動を滑らかにする平滑化を行う。
斑点除去後は、検査領域内(漿尿膜腔内)での出血有無を確認する。
図18に出血確認処理のフローを示す。
斑点除去後の検査領域部分の濃淡情報を計測し、出血の有無を判定する。
正常な状態では、斑点除去後画像では、血管部分は暗めでその他の部分は血管より明るい。しかし、漿尿膜腔内部に出血が見られる場合、血管とその他の部分が同色になるため、全体的に濃度値が低く、コントラスト幅が狭い。
出血卵と判定された卵画像は、明るさを上げ、コントラスト強調を行い、血管部とその他の部位との濃淡差を明確にする。
斑点除去、検査領域内の出血確認および対策を実施した後、血管抽出を行う。
【0029】
図19は、血管抽出方法を簡単に説明する図である。
血管抽出は、図19の方法を用いて血管候補領域を抽出し、ノイズ除去、細線化を行い、幅1画素の線分として血管を抽出する。
抽出血管は、a*画像とG画像を用い、血管ごとにa*およびGの色合い平均値を計測する。
各色合い平均値と設定しきい値との比較により、極端に細い血管を判別し、除去する。
残った抽出血管は、検査卵の有する正常な血管として、血管総長(総画素数)を算出する。また、複数のブロックに分割した検査領域上における、血管の分布ブロック数を計測する。
一次判定は、4画像の総血管長と検査領域総面積との兼ね合いによって、正常卵を判定する。
二次判定は、一次判定時に死卵と判定された検査卵に対してのみ実施する。ここでは、4画像の気室近傍濃度変化量(濃度減衰率)と血管分布ブロック数を、設定したしきい値と比較し、正常卵を判定する。濃度の減衰が急激なもの、血管分布ブロック数が多いものを正常卵とする。
死卵は、気室境界付近における出血を検出した時と二次判定時に、判定結果が確定し、正常卵は、一次判定時と二次判定時に判定結果が確定する。
本発明は、気室境界付近における出血有無の検査、気室近傍濃度変化計測、検査領域特定・面積計測、斑点除去、血管検査領域内における出血確認・対策、血管抽出等の処理の後、一次、二次の二段階の正常卵判定を実施することによって、高精度な有精卵の検査に効果がある。
正常卵判定の結果は、画像処理装置より選別コンベアに出力され、結果によって振り分けられる。
正常卵判定をうけた卵は、選別ラインから、複数個同時に吸着してホイルから専用トレイに移載し、排出する。選別した死卵(発育不良卵、気室境界付近出血卵を含む)は、複数個同時に吸着して、ホイルから死卵回収設備へ移載し、回収する。
【0030】
【発明の効果】
有精卵の内部色情報に基づき、その発育状況を検査することにより、正常卵と死卵(発育不良卵、気室境界付近出血卵を含む)とを、非破壊で確実に判定することができる。
【図面の簡単な説明】
【図1】十数日齢の正常な成育をした場合の有精卵の構造を説明する模式図である。
【図2】十数日齢の正常卵の代表的な特徴を説明する撮像画像の模式図である。
【図3】十数日齢の死卵の代表的な特徴を説明する撮像画像の模式図である。
【図4】十数日齢の発育不良卵の代表的な特徴を説明する撮像画像の模式図である。
【図5】十数日齢の漿尿膜腔内出血卵の代表的な特徴を説明する撮像画像の模式図である。
【図6】十数日齢の気室境界付近出血卵の代表的な特徴を説明する撮像画像の模式図である。
【図7】十数日齢の点斑卵の代表的な特徴を説明する撮像画像の模式図である。
【図8】本発明の有精卵の非破壊検査装置の一実施例の概略構成を示す模式図である。
【図9】図8の画像撮像部の立面概略図1である。
【図10】図8の画像撮像部の立面概略図2である。
【図11】図8の画像撮像部の平面概略図である。
【図12】図8の検査装置における画像処理による有精卵の正常卵判定のフローチャート図である。
【図13】図8の検査装置における卵内部の気室周辺の濃度情報による気室境界付近出血検査手法のフローチャート図である。
【図14】図13の気室境界付近出血検査手法における出血検査用領域の設定例を示す模式図である。A〜Dは領域、a〜dは領域内濃淡平均値を表す。
【図15】図13の気室境界付近出血検査手法において、正常卵a)、気室境界付近出血卵b)の検査領域別に計測した濃淡平均値の相違例を説明するための模式図である。a1〜d1は正常卵の、a2〜d2は気室境界付近出血卵の各検査領域の領域内濃淡平均値を表す。
【図16】気室近傍濃度変化計測手法において、正常卵a)、死卵b)のX軸の最大濃度値投影例により、正常卵と死卵との濃度減衰率の相違について説明する模式図である。
【図17】図8の検査装置における卵内部のL*a*b*表色系情報による斑点除去手法のフローチャート図である。
【図18】図8の検査装置における漿尿膜腔内における出血有無の判定・対策手法のフローチャート図である。
【図19】図8の検査装置における血管抽出の条件を、簡単に説明する図である。
【図20】図8の検査装置における気室境界付近の出血確認用検査領域を抽出する条件を、簡単に説明する図である。
[0001]
[Technical field to which industry belongs]
The present invention relates to a nondestructive test method and apparatus for determining the life and death of a sperm egg and the state of development. More specifically, the present invention is characterized in that a normal egg, a dead egg, and a poorly-developed egg are selected by examining the state of development based on the internal color information of the fertilized egg. The present invention relates to a destructive inspection method and a nondestructive inspection device for realizing the present method.
[0002]
[Prior art]
In the process of producing an influenza vaccine, fertilized eggs (chicken eggs) are used to propagate the virus. A few days after the influenza virus is injected into a fertilized egg, the virus is collected only from well-developed eggs. This growth state is examined by a skilled inspector irradiating each egg with light and visually observing the state of internal blood vessels and the presence or absence of bleeding. This visual observation is performed in a dark room, and it is necessary to process tens of thousands to hundreds of thousands of eggs a day. It has been pointed out that there is a problem that individual differences may appear.
[0003]
Numerous patent applications have been filed for egg (infertile) inspection methods, but the presence or absence of bleeding or foreign matter depending on the degree of absorption of light of a specific wavelength inside the egg, or the density of the transmitted light image indicates the eggshell. It detects cracks and cannot detect the distribution or development of blood vessels in a fertilized egg.
For example, in a fertilized egg discriminating device (Japanese Patent Application Laid-Open No. 9-127096), irradiation light transmitted and scattered in an egg is detected by a plurality of light receiving elements, and a predetermined frequency component corresponding to a heart pulse is extracted from the detection signal. Then, the presence or absence of a fertilized egg, the active state of the fertilized egg, and the viable / dead state of the fertilized egg are determined based on the presence or absence of the amplitude change and the amount of fluctuation. However, it is difficult to recognize the active state of a fertilized egg in detail based on heart rate information based on the amount of irradiation light emitted from the inside. In fact, a skilled inspector at the work site actually performs the determination work by visually checking not only the state of the internal heart but also the state of the blood vessels.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to determine the life and death of a fertilized egg and its growth state in a non-destructive manner, closer to the judgment standard of the inspector, and reliably.
An object of the present invention is to provide an inspection method and an inspection apparatus capable of judging the life and death of a fertilized egg and the growth state thereof in a detailed and reliable manner as a technical method closer to the work of a skilled inspector.
[0005]
[Means for Solving the Problems]
In the inspection of the growth state, by checking the distribution state of blood vessels and the presence or absence of bleeding, there is a feature that the development state of the fertilized egg can be recognized in more detail, and the present invention determines a normal egg based on the recognized state It is an inspection method. That is, the present invention irradiates light inside the fertilized egg to capture a color image of the inside of the egg, measures blood vessel information in the examination region, and determines a normal egg based on the information. The outline of the method is egg inspection.
[0006]
The present invention, in a color image of the inside of the egg imaged by irradiating light from the top of the fertilized egg, the presence or absence of blood vessels, thickness, distribution state and other information, by using image processing, the results are measured This is a non-destructive inspection method for a fertilized egg that automatically determines a normal egg based on the method. That is, the presence / absence, thickness, distribution state, etc. of blood vessels in a captured color image of the inside of the egg are grasped, and a dead egg or a poorly-developed egg is automatically detected based on the existence of the blood vessel. By irradiating the inside of the egg with light and capturing a color image of the inside of the egg, measuring the blood vessel information in the inspection area such as the presence or absence of blood vessels, thickness, distribution state, etc. The gist of the present invention is a method for testing a fertilized egg, which is characterized in that a normal egg is determined by detecting and distinguishing the egg from a normal egg.
[0007]
Further, the present invention is characterized in that a light image is illuminated inside the fertilized egg to capture a color image of the inside of the egg, the internal color information in the test area is measured, and a normal egg is determined based on the information. The gist is a method of testing sperm eggs.
[0008]
The present invention provides a method for measuring a concentration change from an air chamber to a fetus based on concentration distribution information near an air chamber boundary in a color image of the inside of an egg obtained by irradiating light to the inside of a fertilized egg. This is a non-destructive inspection method for fertilized eggs that determines eggs and automatically detects the presence or absence of bleeding near the air chamber boundary. That is, the density distribution information near the air chamber boundary in the captured color image inside the egg is grasped, and based on the information, the presence or absence of a dead egg or the presence of bleeding near the air chamber boundary is automatically detected. Detecting a fertilized egg by irradiating light inside the fertilized egg, capturing a color image of the inside of the egg, measuring concentration distribution information near the air chamber boundary, and determining a normal egg based on the information The law is a gist.
[0009]
The above-described method for inspecting a fertilized egg of the present invention is preferably carried out after removing the spot-like pattern of the eggshell based on the color information of the L * a * b * color system. That is, based on the color information of the L * a * b * color system of the fertilized egg, a spot-like pattern on the eggshell surface that becomes a noise when detecting a blood vessel is removed before the inspection. Based on the color information near the chorioallantoic space from the air chamber to the fetus, the possibility of bleeding in the chorioallantoic space is automatically detected, and if there is a possibility of bleeding, blood vessels and other blood bleeding are detected. This method is a non-destructive inspection method for a fertilized egg in which image correction is performed before a blood vessel test because there is a case where it is difficult to recognize a blood vessel state because of a small color difference from a part.
[0010]
Further, the above-mentioned method for testing a fertilized egg of the present invention, when irradiating light inside the fertilized egg to capture a color image of the inside of the egg, changes the imaging direction to a plurality of color images inside the fertilized egg. Images can be taken and based on them. This is a non-destructive inspection method of a fertilized egg which prevents a leak of a blood vessel by a position and automatically determines a normal egg in a color image of a plurality of fertilized eggs imaged by changing an imaging direction by 90 degrees. .
[0011]
Furthermore, the method for testing a fertilized egg of the present invention, when irradiating light inside the fertilized egg to capture a color image of the inside of the egg, placing the fertilized egg in a structure having a light-shielding property, Images can be taken with a color CCD camera.
According to the present invention, in order to realize the above solution (method), a fertilized egg is arranged in a structure having a light-shielding property, and the above-described inspection method is implemented based on an image captured by a color CCD camera. It relates to an inspection device. That is, the present invention is a non-destructive inspection device for realizing any of the above-mentioned methods for inspecting a fertilized egg, wherein the inspection foil for arranging the fertilized egg, means for irradiating light inside the fertilized egg And a fertilized egg inspection apparatus having a non-destructive inspection unit for determining a normal egg using the captured egg image, and an image capturing unit including a color CCD camera for capturing a color image of the inside of the egg, determination as necessary The gist of the present invention is a fertilized egg inspection device provided with a sorting conveyor for sorting eggs to be inspected according to the results of the above.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
《Inspection egg》
Eggs to be tested in the present invention are fertilized eggs such as chickens, and the color of the egg surface may be anything such as white or brown.Especially, in the case of fertilized chicken eggs, the technical significance of the present invention is large. Become. The type of virus such as influenza and the type of injections such as other chemicals, and whether or not they are injected, are not limited. In the case of a destructive inspection, the technical significance of the present invention is great.
[0013]
《Structure of inspection egg》
FIG. 1 is a diagram for explaining the general structure of a normal fertilized egg that is about a dozen days old. For example, the outer structure of a developing chicken egg is covered with a shell called an egg shell. Immediately inside it is the eggshell membrane, and the eggshell and the eggshell membrane are used to exchange oxygen with the interior. There are thick blood vessels just inside the eggshell.
For example, the internal structure of a developing chicken egg has an air chamber, which is a layer of air, at the tip of the egg, and a fetus wrapped in amniotic membrane containing amniotic fluid at the center. Between the fetus and the air chamber is the chorioallantoic space wrapped in the chorioallantoic membrane. In the case of a fertilized egg that is about 10 days old and grows normally, the chorioallantoic space has a certain size, and blood vessels are widely distributed in the chorioallantoic membrane.
[0014]
《Normal egg》
FIG. 2 is a schematic diagram of a captured image for explaining typical characteristics of a normal egg that is about ten days old. In the case of a normal growing sperm egg which is about ten days old, the chorioallantoic space has a certain size, and the fetus exists near the center of the egg. Blood vessels are widely distributed in the chorioallantoic membrane. The shade of the air chamber and chorioallantoic space is distinctly different. No bleeding is observed in the eggshell membrane and in the chorioallantoic membrane and chorioallantoic space. Above the egg, there is an air chamber of a certain size.
[0015]
《Abnormal egg》
(1) Dead egg
FIG. 3 is a schematic view of a picked-up image for explaining typical characteristics of dead eggs aged ten and several days. Normally growing sperm eggs at a dozen days of age have a fixed size of chorioallantoic space, the fetus is located in the center of the egg, and blood vessels are widely distributed on the chorioallantoic membrane However, in the case of dead eggs, there is no distribution of blood vessels, and when blood vessels are present, the distribution is extremely narrow and small. The blood vessels that are distributed are extremely thin and pale. Color differences near the border of the air chamber and chorioallantoic space may be unclear. Bleeding may be seen in the eggshell membranes and on the chorioallantoic membrane and in the chorioallantoic space.
(2) Stunted eggs
FIG. 4 is a schematic view of a picked-up image for explaining typical characteristics of a poorly-developed egg at the age of ten and several days. In the case of a normally growing sperm egg of about a dozen days old, the chorioallantoic space is of a certain size, the fetus is located in the center of the egg, and blood vessels are widely distributed on the chorioallantoic membrane, In the case of poorly developed eggs, their distribution is extremely narrow and small. The blood vessels that are distributed are extremely thin and pale. Poorly developed eggs with abnormal blood vessel conditions may be treated as dead eggs.
(3) Bleeding egg
FIG. 5 is a schematic view of a captured image illustrating typical characteristics of an allantoic hemorrhagic egg at a dozen days of age. Eggs with bleeding inside the chorioallantoic membrane and chorioallantoic space. For example, a test egg in which hemorrhage is observed inside the chorioallantoic space is treated as a normal egg when the fetus is growing normally. In eggs with hemorrhage inside the chorioallantoic space, the color of blood vessels and chorioallantoic fluid tends to be the same color, and it may be difficult to examine the blood vessels distributed in the chorioallantoic membrane. FIG. 6 is a schematic diagram of a captured image illustrating typical characteristics of a bleeding egg near the air chamber boundary at the age of more than ten days. If there is bleeding in the inside of the eggshell, in the chorioallantoic membrane, and in the chorioallantoic space near the boundary between the air chamber and chorioallantoic space, it is treated as a dead egg.
[0016]
《Color information inside the egg》
The color information inside the egg is obtained by irradiating the illumination light from the upper part of the egg (air chamber side), capturing the illumination light transmitted through the eggshell using a color CCD camera, and obtaining a color image (RGB color system).
On a color image obtained by imaging the inside of a normal fertilized egg of about a dozen days old, the air chamber, fetus, chorioallantoic space, and blood vessels have different characteristics such as color, brightness, and shape. The fetal part is dark and has little color. The air chamber, chorioallantoic space, and blood vessels have many colors ranging from yellow to red, and have different lightness.
Using the area inside the egg from the air chamber to the fetus with the chorioallantoic space as the examination area, obtain the position of the fetus (the size of the area), concentration information near the air chamber boundary, and blood vessel information, and determine the normal egg. I do.
Since the inspection area contains a lot of color information from red to yellow, the inspection area is specified using the G component and the R component of the RGB image.
The area of the specified test area is measured and used as a reference for determining a normal egg.
[0017]
<< L * a * b * color system information inside the egg >>
The color image is converted from the RGB color system to the L * a * b * color system, a part of the a * component is extracted, and a monochrome image having its strength as a density value is created. The blood vessel part on the color image contains more reddish components than other parts. Since the a * component in the L * a * b * color system is a component whose hue ranges from red to green, using the a * component is effective in extracting blood vessel information.
FIG. 7 is a schematic view of a picked-up image for explaining typical characteristics of a spotted egg at a dozen days of age. The spots on the egg surface have a similar shade to the other areas, but the brightness values may be significantly higher than the other areas. When a monochrome image is created from an RGB image, the image is easily affected by the luminance value, and spots become noise when extracting blood vessel information. In the L * a * b * color system, since the color is expressed by combining the hue information a * and b * with the luminance information L *, when the a * component is converted to a monochrome image, the luminance value can be ignored and the luminance can be increased. There is an advantage of suppressing a speckle. Since it is difficult to completely remove the speckles due to the difference in the hue between the speckles and the other parts only by the conversion of the color system, a process for removing the remaining speckles such as smoothing from the image is added. This spot removal method has a great effect when handling original color information inside an egg.
FIG. 5 is a schematic view of a captured image illustrating typical characteristics of an allantoic hemorrhagic egg at a dozen days of age.
When bleeding is observed in the allantois cavity, since the color of the blood in the allantois membrane and other parts are similar due to the bleeding, the color in the examination area is constant, and the a * component image has low density and low density. Contrast is likely to occur, and blood vessel extraction becomes difficult. The possibility of bleeding inside the chorioallantoic space is determined based on the density information of the examination region. If it is determined that there is bleeding, the brightness of the image is changed before the blood vessel extraction processing to enhance the contrast.
[0018]
《Concentration information around the air chamber inside the egg》
Comparing a fertile egg that has grown normally over a dozen days of age with a poorly developed egg or a dead egg, the concentration of the normal egg rapidly decreases from the air chamber to the fetus. In eggs and dead eggs, the attenuation of the concentration value from the air chamber often changes gradually. From the RGB color image, a monochrome image with a brightness value as a density value is created, and the amount of change in the density value from the vicinity of the boundary between the air chamber and the inside of the eggshell membrane to the fetus is measured, and used as a judgment material for determining a normal egg.
FIG. 6 is a schematic diagram of a captured image illustrating typical characteristics of a bleeding egg near the air chamber boundary at the age of more than ten days.
When there is bleeding near the air chamber boundary on a monochrome image created from an RGB color image, the density value near the air chamber boundary is often lower than the density value of the chorioallantoic space. A test area for confirming the presence or absence of bleeding is provided near the air chamber boundary, and the density information in that area is compared with the density information in other parts where the test area is shifted at a fixed interval from the fetus near the air chamber boundary. The ratio is determined, and the presence or absence of bleeding is determined based on the magnitude. (FIG. 14)
[0019]
《Vascular information inside the egg》
Since there is a difference in the state and distribution of blood vessels in the test area between normal eggs, poorly developed eggs, and dead eggs, it is effective to grasp the state and distribution of blood vessels in determining a normal egg. Using the above-described speckle removal processing image, only a reddish portion is extracted as a blood vessel portion. After the extraction of the blood vessels, the length, thickness, and distribution range are measured, and used as judgment data for determining a normal egg. This method has an effect of extracting a blood vessel portion with high accuracy.
[0020]
《Inspection equipment》
In the apparatus for enabling nondestructive inspection of fertilized eggs according to the present invention, the supplied eggs are subjected to nondestructive inspection by image processing to determine normal eggs and to discriminate between normal eggs and dead eggs (including poorly developed eggs). I do. In the non-destructive inspection part, a fertilized egg is arranged in a structure having a light-shielding property, and an inspection is performed based on an image taken by a color CCD camera. In the inspection device, a color image of the inside of the egg is taken from four directions by rotating the foil support on the egg placed on the inspection foil by 90 degrees. Normal egg determination is performed using the obtained egg images from four directions. Sorted on a sorting conveyor according to the result of normal egg judgment.
[0021]
[Action]
Based on the internal color information of the fertilized egg, a poorly developed egg, a dead egg, an egg having bleeding near the air chamber boundary, and a normal egg can be reliably and non-destructively determined by color image processing. In the case of a fertilized egg, it is possible to perform a nondestructive test for determining a normal egg regardless of the color of the egg surface or the presence or absence of virus injection. Since the blood vessel information inside the fertilized egg is measured in a non-destructive manner, it can be determined according to the state of development of the egg.
Skilled inspectors visually check the condition of internal blood vessels and the presence or absence of bleeding to judge a fertilized egg with a good growth state. Have been watched. On the other hand, in the above-mentioned conventional technology, whether or not a fertilized egg is used, or whether the fertilized egg is active or alive or dead, is determined based on the heartbeat information of the egg. I can't say. The present invention uses an image processing method to automatically recognize the blood vessel distribution and the state of bleeding in order to make a judgment closer to the judgment criteria of the inspector, so that the life and death of the fertilized egg and its development state are not destroyed. Can be reliably determined.
In addition, the present invention adopts an image processing method as a technical method closer to the work of a skilled inspector, and automatically recognizes a blood vessel distribution state in an egg centering on the chorioallantoic space, which is a place for virus propagation, and as a result, It is possible to provide an inspection device capable of determining the life and death of a fertilized egg and the state of development of the fertilized egg in a detailed and reliable manner.
[0022]
【Example】
Examples of the present invention will be described in detail. The present invention is not limited by these examples.
[0023]
Example 1
8 to 11 are schematic diagrams showing a schematic configuration of an embodiment of an inspection apparatus for realizing the inspection method of the present invention.
In the inspection device, a large number of eggs conveyed by the dedicated tray are transferred one by one to an inspection foil, a plurality of eggs are arranged on an alignment conveyor, and a plurality of eggs are conveyed to the image pickup unit at once by picking and pressing.
The transported eggs are placed in a light-shielding shooting cylinder in order to raise the foil support and prevent disturbance during image processing.
At the top of the photographing tube, there is a tube with a built-in lighting device containing a lighting device. The foil support is raised until the tip of the tube contacts the egg, and the egg is illuminated from the air chamber side.
The distal end portion of the illumination built-in tube is made of a soft material so that the illumination light does not leak outside from the distal end even if the egg shape or size is different.
Therefore, reflection of the illumination light on the egg surface can be prevented, and the illumination light passing only inside the egg is captured by the color CCD camera to obtain color information inside the egg.
The color CCD camera is installed on the opposite side of the imaging tube, and captures the first egg image at the rising end of the support. After the photographing, the support base is rotated by 90 degrees in response to the photographing completion signal, and the second frame is photographed after stopping. Similarly, the third and fourth sheets are photographed, images of one inspection egg are obtained from four directions, and a normal egg determination process is performed using these images.
When the support table is lowered by the fourth image capturing completion signal, and the eggs are then transported from the alignment conveyor, the captured eggs are pushed out from the image capturing unit and received by the sorting conveyor.
After the image is captured and before it is transferred to the sorting conveyor, the eggs are subjected to normal egg determination processing, and a determination result signal is output to the sorting conveyor.
[0024]
FIG. 12 is a process flowchart of the inspection method (normal egg determination) of the present invention.
In the inspection method of the present invention, the presence or absence of bleeding near the air chamber boundary is confirmed using color images (RGB) of the inspection eggs captured from four directions by the inspection device.
FIG. 13 is a processing flowchart of the technique for testing for bleeding near the air chamber boundary according to the present invention.
The obtained color image (RGB) is converted into a monochrome image based on the luminance information.
FIG. 20 is a diagram for briefly explaining a method of setting a test area for the presence or absence of bleeding near the air chamber boundary.
The monochrome image emphasizes low density and suppresses noise having a high luminance value, selects a pixel that satisfies the condition shown in FIG. 20, and specifies the pixel as a test area for checking the presence or absence of bleeding near the air chamber boundary.
The specified examination region is further shifted to the fetus at a constant interval, and three comparative examination regions are set from the vicinity of the air chamber boundary to the fetus.
FIG. 14 shows an example of setting a bleeding inspection area.
For each of the four specific inspection areas, an average density value is calculated from the image after noise suppression.
Calculate each gray-scale ratio between the gray-scale average value closest to the vicinity of the air chamber boundary and the gray-scale average values of the three regions from the fetus, and determine the maximum value as the air-chamber boundary and blood vessel distribution region (chorioallantoic space) of the test egg Specified as the shading ratio of
[0025]
FIG. 15 shows a simple example of the average gray value in each bleeding confirmation test area of a normal egg and an egg having bleeding near the air chamber boundary.
When there is bleeding near the air chamber boundary, there is a large difference in shading between the vicinity of the air chamber boundary and the blood vessel distribution region (chorioallantoic space).
When the contrast ratio is equal to or more than the set value, the determination result is output as bleeding near the air chamber boundary.
As a result of the test, when it is determined that there is bleeding near the air chamber boundary, the test target egg is determined as a dead egg at that time.
As a result of the examination, when it is determined that there is no bleeding near the air chamber boundary, the change in concentration near the air chamber is measured.
Based on the projection result of the density information on the X axis using the image after noise suppression, the range on the X axis where the air chamber exists is specified.
[0026]
FIG. 16 shows a simple example of projection of density information on the X axis of a normal egg and a dead egg.
The concentration of normal eggs decreases from the air chamber to the fetus, but the gradient often steeps at the border of the air chamber. May decrease gradually in a gentle gradient.
The leftmost range in which the density information on the X axis continuously exceeds a certain set value by a specified number or more is specified as the range of the air chamber.
The rightmost end of the air chamber range is defined as the air chamber boundary point, the average of the projected value attenuation rate at regular intervals is measured from the air chamber boundary for a set number, and the average value of the attenuation rates of all the measurement results is used as a judgment material for the normal egg judgment. Used for judgment.
Next, an examination area necessary for acquiring blood vessel information is specified using the color information inside the egg.
[0027]
R and G in the color image (RGB) are converted into monochrome images by respective components, and are binarized by a set threshold value.
When the R image is binarized at a set value or more, the whole egg centering on the air chamber and the blood vessel distribution region (chorioallantoic cavity) is extracted from the surrounding dark part.
When the G image is binarized at a set value or less, an image is extracted from which a high-brightness blood vessel distribution region that is likely to occur in an air chamber or a dead egg is removed.
In the two obtained binary images, a region existing in both is specified as an inspection region.
[0028]
The above-described method has an effect that only a blood vessel distribution region having a normal hue can be specified as an inspection region.
The total number of pixels of the specified inspection region is measured as an area, and is used at the time of primary determination as a material for determining a normal egg.
The color information of the inspection area portion is extracted from the captured image.
As the pre-processing of blood vessel extraction, spots scattered on the extracted inspection area image are removed by using the spot removal technique of the present invention.
FIG. 17 shows the flow of the speckle removal method.
Since the speckles have a higher luminance value than other parts, the L * a * b * color system is used to suppress the influence.
After converting the inspection area image into the L * a * b * color system, a monochrome image is created by extracting the a * component.
The a * image is inverted to emphasize low density values in order to remove remaining high density spots. After that, smoothing for smoothing shading is performed as noise removal.
After removing the spots, the presence or absence of bleeding in the examination area (in the chorioallantoic space) is confirmed.
FIG. 18 shows a flow of the bleeding confirmation processing.
The density information of the inspection area after the removal of speckles is measured, and the presence or absence of bleeding is determined.
In a normal state, the blood vessel portion is dark and the other portions are brighter than the blood vessel in the image after the speckle removal. However, when bleeding is observed inside the chorioallantoic space, the blood vessel and other parts have the same color, so that the density value is low overall and the contrast width is narrow.
The egg image determined to be a bleeding egg is increased in brightness and enhanced in contrast to clarify the difference in shading between the blood vessel and other parts.
After removing speckles, confirming bleeding in the inspection area, and taking countermeasures, blood vessel extraction is performed.
[0029]
FIG. 19 is a diagram for briefly explaining a blood vessel extraction method.
In the blood vessel extraction, a blood vessel candidate area is extracted using the method of FIG. 19, noise removal and thinning are performed, and a blood vessel is extracted as a line segment having a width of one pixel.
For the extracted blood vessels, the average value of the hue of a * and G is measured for each blood vessel using the a * image and the G image.
An extremely thin blood vessel is determined and removed by comparing each color tone average value with a set threshold value.
The remaining extracted blood vessels are used as normal blood vessels of the test egg, and the total blood vessel length (total number of pixels) is calculated. Further, the number of distribution blocks of blood vessels on the inspection area divided into a plurality of blocks is measured.
In the primary determination, a normal egg is determined based on a balance between the total blood vessel length of the four images and the total area of the inspection region.
The secondary determination is performed only on the test egg determined to be dead at the time of the primary determination. Here, a normal egg is determined by comparing the amount of change in density near the air chamber (density decay rate) of the four images and the number of blood vessel distribution blocks with a set threshold value. Eggs with a sharp decrease in concentration and those with a large number of blood vessel distribution blocks are regarded as normal eggs.
For a dead egg, the determination result is determined when detecting bleeding near the air chamber boundary and at the time of the secondary determination, and for a normal egg, the determination result is determined at the time of the primary determination and at the time of the secondary determination.
The present invention provides a primary inspection after processing such as inspection for presence or absence of bleeding near the air chamber boundary, measurement of concentration change near the air chamber, identification of an inspection area / area measurement, removal of spots, confirmation / measures of bleeding in a blood vessel inspection area, extraction of blood vessels, and the like. By performing the secondary two-stage normal egg determination, it is effective for highly accurate inspection of fertilized eggs.
The result of the normal egg determination is output from the image processing device to the sorting conveyor, and sorted according to the result.
A plurality of eggs that have been judged as normal eggs are simultaneously adsorbed from the sorting line, transferred from the foil to a dedicated tray, and discharged. A plurality of the selected dead eggs (including poorly-grown eggs and bleeding eggs near the air chamber border) are simultaneously adsorbed, transferred from the foil to a dead egg collection facility, and collected.
[0030]
【The invention's effect】
Based on the internal color information of the fertilized egg, its development status can be inspected to determine non-destructively the normal and dead eggs (including those with poor growth and bleeding around the air chamber border). it can.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating the structure of a fertilized egg when it has grown normally for about ten days.
FIG. 2 is a schematic view of a picked-up image for explaining typical characteristics of a normal egg of about a dozen days old.
FIG. 3 is a schematic view of a picked-up image for explaining typical characteristics of dead eggs aged ten and several days.
FIG. 4 is a schematic view of a picked-up image for explaining typical characteristics of a poorly-developed egg of about a dozen days old.
FIG. 5 is a schematic view of a captured image for explaining typical characteristics of an allantoic hemorrhagic egg of a dozen days old.
FIG. 6 is a schematic view of a picked-up image for explaining typical characteristics of a bleeding egg near the air chamber boundary at the age of ten and several days.
FIG. 7 is a schematic view of a picked-up image for explaining typical characteristics of a spotted egg of about a dozen days old.
FIG. 8 is a schematic diagram showing a schematic configuration of an embodiment of a non-destructive inspection apparatus for a fertilized egg of the present invention.
FIG. 9 is a schematic elevational view 1 of the image pickup section of FIG. 8;
FIG. 10 is a schematic elevational view 2 of the image pickup section of FIG. 8;
FIG. 11 is a schematic plan view of the image pickup unit of FIG. 8;
FIG. 12 is a flowchart of a determination of a normal egg of a sperm egg by image processing in the inspection device of FIG. 8;
FIG. 13 is a flowchart of a bleeding test method near the air chamber boundary based on density information around the air chamber inside the egg in the test apparatus of FIG. 8;
14 is a schematic diagram showing an example of setting a bleeding test area in the bleeding test method near the air chamber boundary in FIG. A to D represent areas, and a to d represent average values of the gray levels in the area.
FIG. 15 is a schematic diagram for explaining an example of a difference in the average gray value measured for each test area of a normal egg a) and a bleeding egg b) near the air chamber boundary in the method for testing bleeding near the air chamber boundary in FIG. . a1 to d1 represent the average density of the normal eggs, and a2 to d2 represent the in-area average values of the test areas of the bleeding eggs near the air chamber boundary.
FIG. 16 is a schematic diagram illustrating a difference in the concentration decay rate between a normal egg and a dead egg by an example of a maximum density value projection on the X-axis of the normal egg a) and the dead egg b) in the air chamber vicinity concentration change measurement method. It is.
FIG. 17 is a flowchart of a speckle removal method based on L * a * b * color system information inside an egg in the inspection apparatus of FIG. 8;
FIG. 18 is a flowchart of a method for determining and taking measures for the presence or absence of bleeding in the chorioallantoic space in the test apparatus of FIG.
FIG. 19 is a diagram briefly describing conditions for extracting blood vessels in the inspection apparatus of FIG. 8;
FIG. 20 is a diagram briefly describing conditions for extracting a bleeding confirmation test region near the air chamber boundary in the test device of FIG. 8;

Claims (9)

有精卵内部に光を照射して卵内部のカラー画像を撮像し、検査領域内の血管情報を計測し、それに基づいて正常卵を判定することを特徴とする有精卵の検査法。A method for inspecting a fertilized egg, which comprises irradiating light inside the fertilized egg to capture a color image of the inside of the egg, measuring blood vessel information in the inspection area, and determining a normal egg based on the information. 撮像した卵内部のカラー画像における血管の有無、太さ、分布状態などを把握し、それに基づいて死卵や発育不良卵を自動で検出する請求項1の有精卵の検査法。2. The method for testing a fertilized egg according to claim 1, wherein the presence / absence, thickness, distribution state, and the like of blood vessels in the captured color image of the inside of the egg are ascertained, and a dead egg or a poorly-grown egg is automatically detected based on the information. 有精卵内部に光を照射して卵内部のカラー画像を撮像し、検査領域内の内部色情報を計測し、それに基づいて正常卵を判定することを特徴とする有精卵の検査法。A method for inspecting a fertilized egg, which comprises irradiating light inside the fertilized egg to capture a color image of the inside of the egg, measuring internal color information in the inspection area, and determining a normal egg based on the information. 撮像した卵内部のカラー画像における気室境界付近の濃度分布情報を把握し、それに基づいて死卵や気室境界付近の出血の有無を自動で検出する請求項3の有精卵の検査法。4. The method for inspecting a fertilized egg according to claim 3, wherein the density distribution information in the vicinity of the air chamber boundary in the captured color image of the inside of the egg is grasped, and the presence or absence of a dead egg or bleeding near the air chamber boundary is automatically detected based on the information. L*a*b*表色系の色情報に基づいて、卵殻の斑点状の模様を除去した後実施される1ないし4のいずれかの有精卵の検査法。Inspection method for any of the fertilized eggs according to any one of 1 to 4, which is performed after removing the spot-like pattern of the eggshell based on the color information of the L * a * b * color system. 有精卵内部に光を照射して卵内部のカラー画像を撮像するに際し、撮像方向を変えて複数の有精卵内部のカラー画像を撮像し、それらに基づいて行う請求項1ないし5のいずれかの有精卵の検査法。6. The method according to claim 1, wherein, when irradiating light inside the fertilized egg to capture a color image of the inside of the egg, a plurality of color images of the inside of the fertilized egg are captured by changing the imaging direction and performed based on the images. Inspection method of the sperm egg. 有精卵内部に光を照射して卵内部のカラー画像を撮像するに際し、遮光性を有する構造内に有精卵を配置し、カラーCCDカメラで撮像する請求項1ないし6のいずれかの有精卵の検査法。7. The method according to claim 1, further comprising arranging the fertilized egg in a light-shielding structure and irradiating the inside of the fertilized egg with light to capture a color image of the inside of the egg. Test method for sperm. 請求項1ないし7のいずれかの有精卵の検査法を実現するための非破壊検査装置であって、有精卵を配置する検査用ホイル、有精卵内部に光を照射する手段と卵内部のカラー画像を撮像するカラーCCDカメラを具備する画像撮像部、および撮像した卵画像を用いて正常卵判定を行う非破壊検査部を備えた有精卵の検査装置。A nondestructive inspection device for realizing the method for inspecting a fertilized egg according to any one of claims 1 to 7, wherein the inspection foil for arranging the fertilized egg, means for irradiating light inside the fertilized egg, and the egg An inspection apparatus for a fertilized egg, comprising: an image capturing section having a color CCD camera for capturing an internal color image; and a non-destructive inspection section for determining a normal egg using the captured egg image. 判定の結果によって、検査対象卵を振り分ける選別コンベアを備えた請求項8の有精卵の検査装置。9. The inspection apparatus for fertilized eggs according to claim 8, further comprising a sorting conveyor for sorting eggs to be inspected according to a result of the determination.
JP2002259297A 2002-09-04 Sperm egg inspection method and equipment Expired - Fee Related JP3998184B6 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002259297A JP3998184B6 (en) 2002-09-04 Sperm egg inspection method and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002259297A JP3998184B6 (en) 2002-09-04 Sperm egg inspection method and equipment

Publications (4)

Publication Number Publication Date
JP2004101204A true JP2004101204A (en) 2004-04-02
JP2004101204A6 JP2004101204A6 (en) 2004-09-09
JP3998184B2 JP3998184B2 (en) 2007-10-24
JP3998184B6 JP3998184B6 (en) 2007-12-26

Family

ID=

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127467A (en) * 2005-11-02 2007-05-24 Joichiro Tsuboi Automatic egg inspection device by image processing
WO2008096233A1 (en) * 2007-02-06 2008-08-14 Visio Nerf Egg candling facility and method with examination of the blood system of fertilised eggs
JP2008256424A (en) * 2007-04-03 2008-10-23 Joichiro Tsuboi Automatic/manual egg inspection device in fertilized egg inspection
WO2009100114A1 (en) * 2008-02-04 2009-08-13 Diamond Systems, Inc. Vision system with software control for detecting dirt and other imperfections on egg surfaces
WO2010018127A1 (en) * 2008-08-13 2010-02-18 Egg-Chick Automated Technologies Egg candling method and corresponding device
KR101032788B1 (en) * 2011-03-29 2011-05-02 중앙아이엔티 주식회사 Appartus for inspecting the degree of freshness of egg
WO2011055698A1 (en) * 2009-11-09 2011-05-12 株式会社マルハニチロ水産 Fish egg maturity assessment device and fish egg maturity assessment method
JP2011215015A (en) * 2010-03-31 2011-10-27 Naberu:Kk Egg air space position inspection method and device
ES2371901A1 (en) * 2011-07-11 2012-01-11 Ismael Royo Bieto Portable egg candler for measurement
WO2014064727A1 (en) * 2012-10-22 2014-05-01 有限会社アイピーサービス Egg candling device
CN103823077A (en) * 2014-02-28 2014-05-28 北京汇实津梁电子信息技术有限公司 Automatic detection device for vaccine hatching eggs and method thereof
CN107430109A (en) * 2014-03-24 2017-12-01 利弗艾格(2015)有限公司 For checking the method and system of egg
JP2017227471A (en) * 2016-06-20 2017-12-28 株式会社ナベル Nondestructive inspection device of hatching egg, and hatching egg inspection program used for the same
DE102016114085A1 (en) 2016-07-29 2018-02-01 Systamatec GmbH Apparatus for automated toxicity testing of substances on a population of fertilized poultry eggs and methods
KR101829544B1 (en) * 2016-08-19 2018-02-19 성균관대학교산학협력단 Apparatus for testing eggs
WO2020262557A1 (en) * 2019-06-28 2020-12-30 四国計測工業株式会社 Egg inspection device, egg inspection program, and egg inspection method
WO2022186339A1 (en) * 2021-03-04 2022-09-09 四国計測工業株式会社 Egg candling apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07209209A (en) * 1994-01-24 1995-08-11 Robotsuto Meeshiyon Kk Inspection apparatus for egg
JPH07229841A (en) * 1994-02-16 1995-08-29 Kyowa Kikai Kk Apparatus for detecting/discriminating bad liquid egg through image processing
JPH09127096A (en) * 1995-11-06 1997-05-16 Hamamatsu Photonics Kk Fertilized egg judging device
JPH11173996A (en) * 1997-12-09 1999-07-02 Mayekawa Mfg Co Ltd Nondesturctive detecting method for abnormal egg
JP2001211776A (en) * 2000-01-31 2001-08-07 Hokkaido Method for inspecting internal defect of hen's egg

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07209209A (en) * 1994-01-24 1995-08-11 Robotsuto Meeshiyon Kk Inspection apparatus for egg
JPH07229841A (en) * 1994-02-16 1995-08-29 Kyowa Kikai Kk Apparatus for detecting/discriminating bad liquid egg through image processing
JPH09127096A (en) * 1995-11-06 1997-05-16 Hamamatsu Photonics Kk Fertilized egg judging device
JPH11173996A (en) * 1997-12-09 1999-07-02 Mayekawa Mfg Co Ltd Nondesturctive detecting method for abnormal egg
JP2001211776A (en) * 2000-01-31 2001-08-07 Hokkaido Method for inspecting internal defect of hen's egg

Non-Patent Citations (31)

* Cited by examiner, † Cited by third party
Title
JPN3008000819; 拒絶理由通知(平成19年5月11日発送)
JPN3008000820; 手続補正書(平成19年7月5日提出)
JPN3008000821; 意見書(平成19年7月5日提出)
JPN3008000822; 有精卵の検卵装置に関する経過説明
JPN3008000823; 本件特許「自動検卵機」の資料
JPN3008000824; ジェームスウェイ インキュベーターの「会社の概要」
JPN3012000246; 特許調査報告(本願関連書類)
JPN3012000247; 無効2008-800209審判事件関連書類
JPN3012000248; 四国計測工業の特許出願一覧
JPN3012000249; 阪大微生物病研究会の特許出願一覧
JPN3012000250; 特許調査報告書〔坪井出願関連書類)
JPN3012000251; 取扱説明書 検卵装置 (株)熊本アイディーエム, 200301
JPN3012000252; 有精卵の検査手法
JPN3012000253; 四国計測謄本
JPN3012000254; 阪大研究会謄本
JPN3012000255; 特許庁: 新職務発明制度における手続事例集 , 200409, P5-9,177-184
JPN3012000256; '平成21年(行ヶ)第10213号 審決取消請求事件' 知財高裁判決 , 20100427
JPN3012000257; '平成22年(行ウ)第459号 行政処分無効確認請求事件' 東京地裁判決 , 20110720
JPN3012000258; '平成23年(行コ)第10003号行政処分無効確認請求控訴事件' 知財高裁判決 , 20111215
JPN3012000259; 特許法改正(抜粋)
JPN3014000982; '特許原簿' 特許第3998184号 , 20140716, 特許庁
JPN3014000983; 特許第3998184号公報 , 20071024, 特許庁
JPN3014000984; 特開第2004-101204号公報 , 20040402, 特許庁
JPN3014000985; 渋谷工業(株) 他: '特許願 他' 特願2000-352153
JPN3014000986; 特開第2002-153262号公報 , 20020528, 特許庁
JPN3014000987; 高倉信: 検卵機開発経過報告書 , 20090325
JPN3014000988; '(工場案内)及び履歴事項全部証明書' 株式会社坪井種鶏孵化場 , 20121017, Mapion Co. Ltd. 他
JPN3014000989; 林亜希子 他: '有精卵の検査手法' 自動検卵機 , 四国計測工業(株)
JPN3014000990; 特開第2004-101204号公報 , 20040402, 特許庁
JPN3014000991; 四国計測工業(株): '手続補正書' 特願2002-259297 , 20030131
JPN3014000992; 四国計測工業(株): '手続補足書' 特願2002-259297 , 20030203

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127467A (en) * 2005-11-02 2007-05-24 Joichiro Tsuboi Automatic egg inspection device by image processing
WO2008096233A1 (en) * 2007-02-06 2008-08-14 Visio Nerf Egg candling facility and method with examination of the blood system of fertilised eggs
JP2008256424A (en) * 2007-04-03 2008-10-23 Joichiro Tsuboi Automatic/manual egg inspection device in fertilized egg inspection
US8330809B2 (en) 2008-02-04 2012-12-11 Fps Food Processing Systems, B.V. Vision system with software control for detecting dirt and other imperfections on egg surfaces
WO2009100114A1 (en) * 2008-02-04 2009-08-13 Diamond Systems, Inc. Vision system with software control for detecting dirt and other imperfections on egg surfaces
WO2010018127A1 (en) * 2008-08-13 2010-02-18 Egg-Chick Automated Technologies Egg candling method and corresponding device
US8724098B2 (en) 2008-08-13 2014-05-13 Egg-Chick Automated Technologies Method for candling fertilized eggs with green or blue light and corresponding device
EP2538215A1 (en) * 2008-08-13 2012-12-26 Egg-Chick Automated Technologies Egg candling method
CN102132157A (en) * 2008-08-13 2011-07-20 蛋-鸡自动化技术公司 Egg candling method and corresponding device
EP2538214A1 (en) * 2008-08-13 2012-12-26 Egg-Chick Automated Technologies Egg candling method
WO2011055698A1 (en) * 2009-11-09 2011-05-12 株式会社マルハニチロ水産 Fish egg maturity assessment device and fish egg maturity assessment method
US9372155B2 (en) 2009-11-09 2016-06-21 Maruha Nichiro Corporation Roe maturity determination device
JP2011115045A (en) * 2009-11-09 2011-06-16 Maruha Nichiro Seafoods Inc Fish egg maturity assessment device and fish egg maturity assessment method
JP2011215015A (en) * 2010-03-31 2011-10-27 Naberu:Kk Egg air space position inspection method and device
KR101032788B1 (en) * 2011-03-29 2011-05-02 중앙아이엔티 주식회사 Appartus for inspecting the degree of freshness of egg
WO2013007843A1 (en) * 2011-07-11 2013-01-17 Ismael Royo Bieto Portable egg candler for measurement
ES2371901A1 (en) * 2011-07-11 2012-01-11 Ismael Royo Bieto Portable egg candler for measurement
WO2014064727A1 (en) * 2012-10-22 2014-05-01 有限会社アイピーサービス Egg candling device
CN103823077A (en) * 2014-02-28 2014-05-28 北京汇实津梁电子信息技术有限公司 Automatic detection device for vaccine hatching eggs and method thereof
CN107430109B (en) * 2014-03-24 2021-05-14 利弗艾格(2015)有限公司 Method and system for inspecting eggs
CN107430109A (en) * 2014-03-24 2017-12-01 利弗艾格(2015)有限公司 For checking the method and system of egg
JP2017227471A (en) * 2016-06-20 2017-12-28 株式会社ナベル Nondestructive inspection device of hatching egg, and hatching egg inspection program used for the same
DE102016114085A1 (en) 2016-07-29 2018-02-01 Systamatec GmbH Apparatus for automated toxicity testing of substances on a population of fertilized poultry eggs and methods
DE102016114085B4 (en) 2016-07-29 2023-09-07 Systamatec GmbH Device for automated toxicity testing of substances on a population of fertilized poultry eggs and method
KR101829544B1 (en) * 2016-08-19 2018-02-19 성균관대학교산학협력단 Apparatus for testing eggs
CN114096844A (en) * 2019-06-28 2022-02-25 四国计测工业株式会社 Egg inspection device, egg inspection program and egg inspection method
WO2020262557A1 (en) * 2019-06-28 2020-12-30 四国計測工業株式会社 Egg inspection device, egg inspection program, and egg inspection method
JP7407189B2 (en) 2019-06-28 2023-12-28 四国計測工業株式会社 Egg-checking equipment, egg-checking programs, and egg-checking methods
WO2022186339A1 (en) * 2021-03-04 2022-09-09 四国計測工業株式会社 Egg candling apparatus

Also Published As

Publication number Publication date
JP3998184B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
KR101415628B1 (en) Lumber inspection method, device and program
KR101298957B1 (en) Wood knot detecting method, device, and program
JP5443950B2 (en) Bacterial colony fishing device and method
JP4590553B2 (en) Nondestructive judgment method for ginger damaged grains
JP2022000641A (en) Inspection device for eggs
JP2021193383A (en) Inspection device of egg
JP2002257736A (en) Method and device for inspecting end face of honeycomb structure
Xu et al. Non-destructive detection on the fertility of injected SPF eggs in vaccine manufacture
JP3333472B2 (en) Non-destructive detection method and device of blood egg in brown chicken egg
WO2019039319A1 (en) Egg inspection device
KR20140031392A (en) Container mouth portion inspection method and device
JP2003247953A (en) Liquid crystal panel appearance inspection method and inspection device
JP7407189B2 (en) Egg-checking equipment, egg-checking programs, and egg-checking methods
JP3998184B2 (en) Sperm egg inspection method and equipment
JP3998184B6 (en) Sperm egg inspection method and equipment
JP2012013587A (en) Image processor for automatic egg testing method
JP2003135095A (en) Microorganism assay and equipment therefor
JP2004101204A6 (en) Test method and equipment for sperm eggs
CN116964430A (en) Egg checking device
JP2007212155A (en) Automatic discriminator of superior egg
KR101713001B1 (en) Metal panel detecting appratus by processing image for method same
CN115165920A (en) Three-dimensional defect detection method and detection equipment
JP2003014580A (en) Inspection device and inspection method
JP2012013586A (en) Automatic egg inspection mechanism by image processing
Mindoro et al. Automatic Visual Detection of Fresh Poultry Egg Quality Inspection using Image Processing

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20030203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20030131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070705

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070705

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070803

R150 Certificate of patent or registration of utility model

Ref document number: 3998184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees