JP2004101078A - Gas flow control device - Google Patents

Gas flow control device Download PDF

Info

Publication number
JP2004101078A
JP2004101078A JP2002264007A JP2002264007A JP2004101078A JP 2004101078 A JP2004101078 A JP 2004101078A JP 2002264007 A JP2002264007 A JP 2002264007A JP 2002264007 A JP2002264007 A JP 2002264007A JP 2004101078 A JP2004101078 A JP 2004101078A
Authority
JP
Japan
Prior art keywords
gas
pressure
resistance value
output voltage
gas passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002264007A
Other languages
Japanese (ja)
Other versions
JP3750062B2 (en
Inventor
Keiichi Mizutani
水谷 圭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2002264007A priority Critical patent/JP3750062B2/en
Publication of JP2004101078A publication Critical patent/JP2004101078A/en
Application granted granted Critical
Publication of JP3750062B2 publication Critical patent/JP3750062B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Regulation And Control Of Combustion (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem of complicating circuit constitution due to the necessity of separate power sources for amplifying positive and negative voltage respectively to amplify voltage variable in polarity in the case the output voltage is changed to the positive side or negative side by the characteristic dispersion of individual pressure sensors, a temperature change around the pressure sensor, or the like in a secondary pressure detecting means in a conventional gas flow control device. <P>SOLUTION: A resistance value changing means R3 is provided for changing the resistance value of at least one resistance out of resistances R1, R2, R3 constituting a bridge circuit 8 including the pressure sensor 7. In the case of correcting the output voltage in the atmospheric pressure state of pressure in a gas passage by the resistance value changing means, the output voltage is corrected offset to the polarity side increased with the increase of pressure in the gas passage, to prevent the reversal of polarity of the voltage outputted to an amplifying means. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ガスコンロ等のガス調理器具に使用されるガス流量制御装置に関する。
【0002】
【従来の技術】
この種のガス流量制御装置は、ガスバーナーの混合管に接続されたガス噴射ノズルに連なるガス通路を有し、ガス通路には、例えばギアドモータで駆動されてガス通路の開度を変更する流量調節手段が設けられている。
【0003】
流量調節手段の上流側であってガス噴射ノズルの下流側のガス通路には、燃料ガスの二次圧を検出する二次圧検出手段である圧力センサが設けられている。このガス流量制御装置を、例えばガスコンロに設けてガスバーナーの設定火力を調節する場合、ガスコンロに設けたマイコンによって、圧力センサで検出した二次圧が予めマイコンに記憶させた目標二次圧に一致するようにモータをフィードバック制御して流量調節手段の開度を調節する(特許文献1参照)。
【0004】
圧力センサは、例えばガス通路内の燃料ガスの圧力に応じて抵抗値が変化するものであり、圧力センサの抵抗値の変化はブリッジ回路を介して電圧として取出される。また、ブリッジ回路からの出力電圧を増幅するために、例えばOPアンプなどの増幅手段がブリッジ回路に接続されている。尚、ガス通路内の圧力が大気圧である場合に所定の電圧を入力しても出力電圧が0Vとなるように圧力センサ及び各抵抗が設定されている。
【0005】
【特許文献1】
特開2001−56118号公報(例えば、請求項1の記載)
【0006】
【発明が解決しようとする課題】
しかしながら、このような圧力センサを各ガス流量制御装置に設け、ガス通路内の圧力が大気圧である場合に圧力センサの出力電圧を検出すると、個々の圧力センサの特性のばらつきや圧力センサの周辺の温度変化等によって出力電圧がプラス側またはマイナス側にそれぞれ変化するものがある。
【0007】
例えばマイナス側に変化したものではガス通路内の圧力変化に伴って出力電圧の極性はプラス側へと変化する。このような極性が変化するものを増幅するには、プラスまたはマイナスの電圧をそれぞれ増幅する別個の電源が必要になり、回路構成が複雑になると共にコスト高を招くという問題があった。
【0008】
そこで、本発明は、上記問題点に鑑み、回路構成が簡単でかつ低コストの圧力検出手段を備えたガス流量制御装置を提供することを課題とするものである。
【0009】
【課題を解決するための手段】
上記課題を解決するため、本発明のガス流量制御装置は、ガス噴射ノズルに通じるガス通路内に設けられ該ガス通路内の燃料ガスの圧力に応じて抵抗値が変化する圧力センサと、該圧力センサの抵抗値の変化を電圧に変換するブリッジ回路とを備え、ブリッジ回路からの出力電圧を増幅する増幅手段を設け、増幅手段によって増幅された出力電圧に基いて、ガス通路内に設けられ、ガス通路の通路面積を変更してガス流量を調節するガス流量調節手段を制御するガス流量制御装置において、前記ブリッジ回路を構成する抵抗のうち少なくとも1個の抵抗の抵抗値を変更する抵抗値変更手段を設け、該抵抗値変更手段によってガス通路内の圧力が大気圧の状態で前記出力電圧を補正する場合に、ガス通路内の圧力が増加するに伴って増加する極性側に前記出力電圧をオフセットして補正し、前記増幅手段に出力される電圧の極性が反転しないようにしたことを特徴とする。
【0010】
本発明によれば、圧力センサを設けたガス通路内の圧力が大気圧の状態で出力電圧を補正する。この場合、例えば圧力センサを設けたガス通路の温度変化等によって変化し得る出力電圧の変化量を見越して、ガス通路内の圧力が増加するに伴って増加する極性側に前記出力電圧をオフセットして補正する。これにより、増幅手段に出力される電圧の極性は反転せず、プラスまたはマイナスの電圧をそれぞれ増幅する別個の電源を設ける必要はない。
【0011】
尚、前記抵抗値変更手段は、例えば可変抵抗とすればよい。
【0012】
【発明の実施の形態】
図1及び図2を参照して、1は、例えばガスコンロに設けられる本発明のガス流量制御装置である。ガス流量制御装置1は、ガスコンロに設けたガスバーナーの混合管に接続されたガス噴射ノズル(図示せず)に連なるガス通路11を備えた装置本体12を有する。装置本体12の一端の下面には、ガス噴射ノズルへの燃料ガスのガス流量を調節する流量調節手段であるガスバルブ2が設けられている。
【0013】
ガスバルブ2は、ガス通路11に連通する内部通路21を設けたバルブケーシング22を有し、バルブケーシング22の上面には、内部通路21に連通するガス流入口23が開設されている。
【0014】
バルブケーシング22の下面には、回転角検出手段31を有するステッピングモータ3が連結され、モータ3の回転軸32の一端はシール材33を介して内部通路21に突出している。
【0015】
内部通路21には、ガス流出口23の上流側に位置して回転軸32の一端に連結された回転ディスク4と、該回転ディスク4の上方に位置してバルブケーシング22に嵌着された固定ディスク5とが設けられている。回転ディスク4と固定ディスク5とによって内部通路21の通路面積の開度を変更してガス流量が調節される。
【0016】
図2に示すように、固定ディスク5には、第1連通孔である4個の孔51、52、53、54が、相互に開口面積を相違させて同一円周上に形成され、後述の最小ガス流量を定める第1孔51以外の他の孔52、53、54は連続して形成されている。
【0017】
回転ディスク4には、回転軸32が所定の角度回転すると第1連通孔の各孔51、52、53、54に一致して内部通路21とガス通路11との連通を許容する1個の楕円形第2連通孔41が開設されている。
【0018】
ここで、ガスバーナーの火炎が消えない程度の最小ガス流量は、使用する燃料ガスの種類やガスバーナーの能力に応じて相違する。このため、使用する燃料ガスの種類等の異なるガス器具ごとに最小ガス流量を設定できるようにするのがよい。
【0019】
本実施の形態では、第1連通孔の第1孔51とガス通路11とを連通するバイパス通路13を装置本体12に設けると共に、バイパス通路13に最小ガス流量を設定するオリフィス14を挿設した。このため、オリフィス14を交換することで燃料ガスの種類やガスバーナーの能力に対応した最小ガス流量を設定できる。
【0020】
そして、第2連通孔41が第1連通孔のいずれの孔51、52、53、54にも一致しないと内部通路21が閉止され、ガス通路11への燃料ガスの供給が停止される(図2(a)参照)。
【0021】
他方で、モータ3を駆動して回転ディスク4を回転させ、第2連通孔41を、第1連通孔51、52、53、53、54のいずれかに一致させることで開度を変更してガスバーナーへのガス流量が調節される。尚、安全性等を考慮して、ガス流入口23の上流側に、開閉弁である電磁安全弁6を設けている(図1参照)。
【0022】
また、ガス通路11には、該ガス通路11内の二次圧を検出する圧力センサ7が設けられている。圧力センサ7は、ガス通路11から垂直方向に設けた分岐路11aにシール材71を介して挿設した導入筒72を有し、該導入筒72内を介して連通する密閉状の空室73内には樹脂製の薄板(図示せず)が組込まれている。
【0023】
ガス通路11に燃料ガスを流すと導入筒72を通って空室73内に導入された燃料ガスの二次圧で薄板が変形し、その時の薄板11の歪量を検出する。この場合、歪量を抵抗値とし、この抵抗値の変化を電圧に変換するため、図3に示すように、圧力センサ7を含む圧力検出手段であるブリッジ回路8が設けられている(図3参照)。
【0024】
このブリッジ回路8から出力された電圧をOPアンプ81で増幅して、ガスコンロの作動を制御するマイコンに入力し、この電圧からガス通路11内の二次圧を算出する。尚、ガス通路11内の圧力が大気圧である場合に所定の電圧Eを入力しても出力電圧Voが0Vとなり、ガス通路11に燃料ガスを流して薄板が変形することで抵抗値が変化すると出力電圧Voが増加するように圧力センサ7及び各抵抗R1、R2、R3を設定した。
【0025】
本実施の形態では、例えばガスコンロの操作パネルに設けたライトタッチスイッチによってガスバルブ2がガスバーナーの火力を火力1から火力4までの4段階に設定できるように制御される。
【0026】
ここで、初期状態では、火力1、火力2、火力3及び火力4にそれぞれ一致する二次圧が次のように設定されている。即ち、図2(b)に示すように、モータを回転させ第2連通孔41を第1連通孔の第1孔51に一致させて、圧力センサ7でその時の二次圧を検出する。次いで、第2連通孔41を第1連通孔の第3孔53及び第4孔54(図2(e)参照)に一致させて、圧力センサ7でその時の二次圧を検出する。
【0027】
次いで、これらの二次圧の平行根を3等分して2乗することで火力2及び火力3に対応する二次圧を算出し、火力1から火力4までの各火力の二次圧を初期値として設定し、マイコンに記憶させている。そして、ライトタッチスイッチを押して火力を変更する場合、圧力センサ7で二次圧を検出し、検出した二次圧が初期値として設定した設定二次圧に一致するようにモータ3を制御する。
【0028】
この場合、火力1では、第2連通孔41と第1連通孔の第1孔51とが一致し、ガスバーナーの火炎が消えない程度の最小ガス流量が流れる(図2(b)参照)。火力2では、第2連通孔41と第1連通孔の第1孔51及び第2孔52とが一致し(図2(c)参照)、ガスバーナーの火力を小にする流量の燃料ガスがガス通路11へと流れる。火力3では、第2連通孔41と第1連通孔の第2孔52及び第3孔53とが一致し(図2(d)参照)、火力4では第2連通孔41と第1連通孔の第3孔53及び第4孔54とが一致し(図2(e)参照)、ガスバーナーの火力をそれぞれ中及び強にする流量の燃料ガスがガス通路11へと流れる。
【0029】
図4を参照して、ガス通路11の圧力が大気圧の状態でマイコンへの出力電圧Voを0Vに設定しても、個々の圧力センサ7の特性のばらつきや圧力センサ7の周辺の温度変化等によってプラス側(線a)またはマイナス側(線b)にそれぞれ変化する場合がある。
【0030】
ここで、例えば、図4の線bで示すようにマイナス側に変化したものではガス通路11内の圧力変化に伴って出力される電圧Voの極性はプラス側へと変化する。このような極性が変化するものを増幅するには、プラスまたはマイナスの電圧をそれぞれ増幅する別個の電源が必要になり、回路構成が複雑になると共にコスト高を招く。
【0031】
図3及び図5を参照して、本実施の形態では、ブリッジ回路8を構成する抵抗のうち1個の抵抗R3を可変抵抗とすると共に可変抵抗R3の抵抗値を変更するボリュームスイッチ(図示せず)を設けた。
【0032】
そして、ガス流量制御装置1をガスコンロに組込んだ後、ボリュームスイッチを介して、ガス通路11内の圧力が大気圧の状態で、マイコンへの出力電圧Voがガス通路11内の圧力の増加に伴って増加するプラス側になるように(線cから線d)、可変抵抗R3の抵抗値をオフセットして補正し、OPアンプ81への出力電圧Viの極性が反転しないようした。尚、プラス側にオフセットさせる抵抗値の量は、例えば使用する圧力センサ7の特性のばらつきを考慮して設定すればよい。
【0033】
これにより、圧力センサ7の個々の特性や周辺温度等の影響によってブリッジ回路8からの出力電圧Voがマイナス方向に変化しても、ガスバーナーの火力を調節する場合にはその出力電圧Voは常時プラス側になるので(線e)、出力電圧Viを増幅する電源は1個あればよく、回路構成を簡単にできる。また、特性により出力電圧がプラス、マイナス側に大きくばらつく圧力センサ7であっても使用できる。
【0034】
【発明の効果】
以上説明したように、本発明のガス流量制御装置では、圧力検出手段を回路構成が簡単でかつ低コストにできるという効果を奏する。
【図面の簡単な説明】
【図1】本発明のガス流量制御装置を説明する断面図
【図2】(a)乃至(e)は、ガスバルブによる流量調節を説明する図
【図3】圧力検出回路を説明する図
【図4】特性や周辺温度変化に伴う圧力センサの特性の変化を説明するグラフ
【図5】出力電圧の補正を説明するグラフ
【符号の説明】
1 ガス流量制御装置
11 ガス通路
7 圧力センサ
8 ブリッジ回路
R1、R2、R3 抵抗
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a gas flow control device used for a gas cooking appliance such as a gas stove.
[0002]
[Prior art]
This type of gas flow control device has a gas passage connected to a gas injection nozzle connected to a mixing pipe of a gas burner, and the gas passage is driven by, for example, a geared motor to change the opening degree of the gas passage. Means are provided.
[0003]
A pressure sensor, which is secondary pressure detecting means for detecting a secondary pressure of the fuel gas, is provided in a gas passage upstream of the flow rate adjusting means and downstream of the gas injection nozzle. When this gas flow control device is provided on a gas stove, for example, to adjust the set heating power of a gas burner, the secondary pressure detected by the pressure sensor by the microcomputer provided on the gas stove matches the target secondary pressure stored in the microcomputer in advance. The opening degree of the flow rate adjusting means is adjusted by feedback-controlling the motor in such a manner (see Patent Document 1).
[0004]
The pressure sensor changes its resistance value according to, for example, the pressure of the fuel gas in the gas passage, and the change in the resistance value of the pressure sensor is taken out as a voltage via a bridge circuit. Further, in order to amplify the output voltage from the bridge circuit, for example, an amplifying means such as an OP amplifier is connected to the bridge circuit. The pressure sensor and each resistor are set so that the output voltage is 0 V even when a predetermined voltage is input when the pressure in the gas passage is atmospheric pressure.
[0005]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2001-56118 (for example, Claim 1)
[0006]
[Problems to be solved by the invention]
However, when such a pressure sensor is provided in each gas flow control device and the output voltage of the pressure sensor is detected when the pressure in the gas passage is the atmospheric pressure, variations in the characteristics of the individual pressure sensors and the peripheral In some cases, the output voltage changes to the plus side or the minus side, respectively, due to a temperature change or the like.
[0007]
For example, when the output voltage changes to the minus side, the polarity of the output voltage changes to the plus side with the change in the pressure in the gas passage. In order to amplify such a change in polarity, separate power supplies for amplifying the positive or negative voltages are required, and there has been a problem that the circuit configuration becomes complicated and the cost increases.
[0008]
In view of the above problems, an object of the present invention is to provide a gas flow control device having a simple circuit configuration and low-cost pressure detecting means.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a gas flow control device according to the present invention includes a pressure sensor provided in a gas passage communicating with a gas injection nozzle and having a resistance value that changes according to a pressure of fuel gas in the gas passage. A bridge circuit that converts a change in the resistance value of the sensor into a voltage, and amplifying means for amplifying an output voltage from the bridge circuit, provided in the gas passage based on the output voltage amplified by the amplifying means, In a gas flow rate control device for controlling a gas flow rate adjusting means for adjusting a gas flow rate by changing a passage area of a gas passage, a resistance value changer for changing a resistance value of at least one of resistors constituting the bridge circuit. Means for correcting the output voltage in a state in which the pressure in the gas passage is at atmospheric pressure by the resistance changing means, and increasing the pole as the pressure in the gas passage increases. The output voltage on the side corrected by the offset, the polarity of the voltage to be output to the amplifying means is characterized in that so as not inverted.
[0010]
According to the present invention, the output voltage is corrected when the pressure in the gas passage provided with the pressure sensor is at the atmospheric pressure. In this case, for example, in anticipation of the amount of change in the output voltage that can change due to a temperature change in the gas passage provided with the pressure sensor, the output voltage is offset to the polarity side that increases as the pressure in the gas passage increases. To correct. Thus, the polarity of the voltage output to the amplifying means is not inverted, and there is no need to provide a separate power supply for amplifying the positive or negative voltage.
[0011]
The resistance changing means may be, for example, a variable resistor.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Referring to FIGS. 1 and 2, reference numeral 1 denotes a gas flow control device of the present invention provided in, for example, a gas stove. The gas flow control device 1 has a device main body 12 having a gas passage 11 connected to a gas injection nozzle (not shown) connected to a mixing pipe of a gas burner provided on a gas stove. A gas valve 2 which is a flow rate adjusting means for adjusting a gas flow rate of a fuel gas to a gas injection nozzle is provided on a lower surface of one end of the apparatus main body 12.
[0013]
The gas valve 2 has a valve casing 22 provided with an internal passage 21 communicating with the gas passage 11, and a gas inlet 23 communicating with the internal passage 21 is opened on an upper surface of the valve casing 22.
[0014]
A stepping motor 3 having a rotation angle detecting means 31 is connected to the lower surface of the valve casing 22, and one end of a rotation shaft 32 of the motor 3 projects into the internal passage 21 via a seal member 33.
[0015]
In the internal passage 21, the rotating disk 4 located upstream of the gas outlet 23 and connected to one end of the rotating shaft 32, and a fixed member located above the rotating disk 4 and fitted to the valve casing 22. A disk 5 is provided. The opening degree of the passage area of the internal passage 21 is changed by the rotating disk 4 and the fixed disk 5 to adjust the gas flow rate.
[0016]
As shown in FIG. 2, four holes 51, 52, 53, and 54, which are first communication holes, are formed on the same circumference with different opening areas from each other in the fixed disk 5. Holes 52, 53, and 54 other than the first hole 51 that determine the minimum gas flow rate are formed continuously.
[0017]
When the rotating shaft 32 rotates by a predetermined angle, the rotary disk 4 has one ellipse that matches the holes 51, 52, 53, and 54 of the first communication hole and allows communication between the internal passage 21 and the gas passage 11. A second communication hole 41 is formed.
[0018]
Here, the minimum gas flow rate at which the flame of the gas burner does not extinguish differs depending on the type of fuel gas used and the capacity of the gas burner. For this reason, it is preferable that the minimum gas flow rate can be set for each different gas appliance such as the type of fuel gas used.
[0019]
In the present embodiment, a bypass passage 13 that connects the first hole 51 of the first communication hole to the gas passage 11 is provided in the apparatus main body 12, and an orifice 14 that sets a minimum gas flow rate is inserted into the bypass passage 13. . Therefore, by replacing the orifice 14, the minimum gas flow rate corresponding to the type of the fuel gas and the capacity of the gas burner can be set.
[0020]
If the second communication hole 41 does not match any one of the first communication holes 51, 52, 53, 54, the internal passage 21 is closed and the supply of the fuel gas to the gas passage 11 is stopped (FIG. 2 (a)).
[0021]
On the other hand, the motor 3 is driven to rotate the rotating disk 4, and the opening is changed by matching the second communication hole 41 with one of the first communication holes 51, 52, 53, 53, 54. The gas flow to the gas burner is adjusted. In consideration of safety and the like, an electromagnetic safety valve 6 as an on-off valve is provided upstream of the gas inlet 23 (see FIG. 1).
[0022]
The gas passage 11 is provided with a pressure sensor 7 for detecting a secondary pressure in the gas passage 11. The pressure sensor 7 has an introduction tube 72 inserted through a sealing member 71 into a branch passage 11 a provided in a vertical direction from the gas passage 11, and a sealed empty space 73 communicated through the introduction tube 72. A resin thin plate (not shown) is incorporated therein.
[0023]
When the fuel gas flows through the gas passage 11, the thin plate is deformed by the secondary pressure of the fuel gas introduced into the empty space 73 through the introduction tube 72, and the amount of distortion of the thin plate 11 at that time is detected. In this case, in order to convert the amount of strain into a resistance value and convert the change in the resistance value into a voltage, a bridge circuit 8 as pressure detecting means including a pressure sensor 7 is provided as shown in FIG. 3 (FIG. 3). reference).
[0024]
The voltage output from the bridge circuit 8 is amplified by the OP amplifier 81 and input to a microcomputer that controls the operation of the gas stove, and the secondary pressure in the gas passage 11 is calculated from the voltage. When the pressure in the gas passage 11 is the atmospheric pressure, the output voltage Vo becomes 0 V even when the predetermined voltage E is input, and the resistance value changes by flowing the fuel gas through the gas passage 11 and deforming the thin plate. Then, the pressure sensor 7 and the resistors R1, R2, and R3 were set so that the output voltage Vo increased.
[0025]
In the present embodiment, for example, the gas valve 2 is controlled by a light touch switch provided on the operation panel of the gas stove so that the heat of the gas burner can be set in four stages from the heat 1 to the heat 4.
[0026]
Here, in the initial state, the secondary pressures respectively corresponding to the thermal power 1, the thermal power 2, the thermal power 3 and the thermal power 4 are set as follows. That is, as shown in FIG. 2B, the motor is rotated to make the second communication hole 41 coincide with the first hole 51 of the first communication hole, and the pressure sensor 7 detects the secondary pressure at that time. Next, the second communication hole 41 is matched with the third hole 53 and the fourth hole 54 of the first communication hole (see FIG. 2E), and the secondary pressure at that time is detected by the pressure sensor 7.
[0027]
Next, by dividing the parallel roots of these secondary pressures into three equal parts and squaring them, the secondary pressures corresponding to thermal power 2 and thermal power 3 are calculated, and the secondary pressures of each thermal power from thermal power 1 to thermal power 4 are calculated. It is set as an initial value and stored in the microcomputer. When the heating power is changed by pressing the light touch switch, the secondary pressure is detected by the pressure sensor 7 and the motor 3 is controlled so that the detected secondary pressure matches the set secondary pressure set as the initial value.
[0028]
In this case, with the thermal power 1, the second communication hole 41 and the first hole 51 of the first communication hole coincide with each other, and a minimum gas flow rate that does not extinguish the flame of the gas burner flows (see FIG. 2B). In the thermal power 2, the second communication hole 41 matches the first hole 51 and the second hole 52 of the first communication hole (see FIG. 2 (c)), and the flow rate of the fuel gas for reducing the thermal power of the gas burner is reduced. It flows to the gas passage 11. With the thermal power 3, the second communication hole 41 matches the second hole 52 and the third hole 53 of the first communication hole (see FIG. 2D), and with the thermal power 4, the second communication hole 41 and the first communication hole are used. The third hole 53 and the fourth hole 54 coincide with each other (see FIG. 2E), and the fuel gas flows into the gas passage 11 at a flow rate that makes the heat of the gas burner medium and high, respectively.
[0029]
Referring to FIG. 4, even if the output voltage Vo to the microcomputer is set to 0 V when the pressure in the gas passage 11 is atmospheric pressure, variations in characteristics of the individual pressure sensors 7 and changes in temperature around the pressure sensors 7 may occur. Depending on the situation, the position may change to the plus side (line a) or the minus side (line b).
[0030]
Here, for example, when the voltage Vo changes to the minus side as shown by the line b in FIG. 4, the polarity of the voltage Vo output according to the pressure change in the gas passage 11 changes to the plus side. In order to amplify such a change in polarity, a separate power supply for amplifying the positive or negative voltage is required, which complicates the circuit configuration and increases the cost.
[0031]
Referring to FIGS. 3 and 5, in the present embodiment, one of the resistors constituting bridge circuit 8 is made a variable resistor and a volume switch (not shown) for changing the resistance value of variable resistor R3. Zu) was provided.
[0032]
Then, after the gas flow control device 1 is assembled into the gas stove, the output voltage Vo to the microcomputer is increased via the volume switch while the pressure in the gas passage 11 is at the atmospheric pressure. The resistance value of the variable resistor R3 is offset and corrected so that the polarity increases along with the increase (from line c to line d) so that the polarity of the output voltage Vi to the OP amplifier 81 is not inverted. Note that the amount of the resistance value to be offset to the plus side may be set in consideration of, for example, variations in the characteristics of the pressure sensor 7 used.
[0033]
Thus, even if the output voltage Vo from the bridge circuit 8 changes in the negative direction due to the influence of the individual characteristics of the pressure sensor 7, the ambient temperature, and the like, the output voltage Vo is constantly maintained when adjusting the heating power of the gas burner. Since it is on the positive side (line e), only one power supply is required to amplify the output voltage Vi, and the circuit configuration can be simplified. Further, the pressure sensor 7 whose output voltage largely fluctuates to the plus and minus sides due to the characteristics can be used.
[0034]
【The invention's effect】
As described above, the gas flow control device of the present invention has an effect that the pressure detecting means can have a simple circuit configuration and can be manufactured at low cost.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a gas flow control device according to the present invention. FIGS. 2A to 2E are diagrams illustrating flow rate adjustment by a gas valve. FIG. 3 is a diagram illustrating a pressure detection circuit. 4) A graph for explaining a change in the characteristic of the pressure sensor due to a change in the characteristic or the ambient temperature.
DESCRIPTION OF SYMBOLS 1 Gas flow control device 11 Gas passage 7 Pressure sensor 8 Bridge circuit R1, R2, R3 Resistance

Claims (2)

ガス噴射ノズルに通じるガス通路内に設けられ該ガス通路内の燃料ガスの圧力に応じて抵抗値が変化する圧力センサと、該圧力センサの抵抗値の変化を電圧に変換するブリッジ回路とを備え、ブリッジ回路からの出力電圧を増幅する増幅手段を設け、増幅手段によって増幅された出力電圧に基いて、ガス通路内に設けられ、ガス通路の通路面積を変更してガス流量を調節する流量制御手段を制御するガス流量制御装置において、
前記ブリッジ回路を構成する抵抗のうち少なくとも1個の抵抗の抵抗値を変更する抵抗値変更手段を設け、該抵抗値変更手段によってガス通路内の圧力が大気圧の状態で前記出力電圧を補正する場合に、ガス通路内の圧力が増加するに伴って増加する極性側に前記出力電圧をオフセットして補正し、前記増幅手段に出力される電圧の極性が反転しないようにしたことを特徴とするガス流量制御装置。
A pressure sensor provided in a gas passage communicating with the gas injection nozzle and having a resistance value that changes according to the pressure of the fuel gas in the gas passage; and a bridge circuit that converts a change in the resistance value of the pressure sensor into a voltage. Amplifying means for amplifying the output voltage from the bridge circuit, and a flow control provided in the gas passage based on the output voltage amplified by the amplifying means, for changing a passage area of the gas passage and adjusting a gas flow rate. In the gas flow control device for controlling the means,
Resistance value changing means for changing a resistance value of at least one of the resistors constituting the bridge circuit, and the resistance value changing means corrects the output voltage in a state where the pressure in the gas passage is atmospheric pressure; In this case, the output voltage is offset and corrected to the polarity side that increases as the pressure in the gas passage increases, so that the polarity of the voltage output to the amplifying unit is not inverted. Gas flow control device.
前記抵抗値変更手段を可変抵抗としたことを特徴とする請求項1記載のガス流量制御装置。2. The gas flow control device according to claim 1, wherein said resistance value changing means is a variable resistance.
JP2002264007A 2002-09-10 2002-09-10 Gas flow control device Expired - Fee Related JP3750062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002264007A JP3750062B2 (en) 2002-09-10 2002-09-10 Gas flow control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002264007A JP3750062B2 (en) 2002-09-10 2002-09-10 Gas flow control device

Publications (2)

Publication Number Publication Date
JP2004101078A true JP2004101078A (en) 2004-04-02
JP3750062B2 JP3750062B2 (en) 2006-03-01

Family

ID=32263561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002264007A Expired - Fee Related JP3750062B2 (en) 2002-09-10 2002-09-10 Gas flow control device

Country Status (1)

Country Link
JP (1) JP3750062B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014142119A (en) * 2013-01-24 2014-08-07 Harman Co Ltd Gas range
CN104110704A (en) * 2014-07-21 2014-10-22 安徽科技学院 Gas leakage preventing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014142119A (en) * 2013-01-24 2014-08-07 Harman Co Ltd Gas range
CN104110704A (en) * 2014-07-21 2014-10-22 安徽科技学院 Gas leakage preventing device

Also Published As

Publication number Publication date
JP3750062B2 (en) 2006-03-01

Similar Documents

Publication Publication Date Title
KR900006243B1 (en) Burner apparatus
JP3750062B2 (en) Gas flow control device
JP3819307B2 (en) Gas flow control device
JPS62276328A (en) Combustion control device
JP2004069147A (en) Gas flow rate control device
JPS58224226A (en) Combustion control device
JP4187755B2 (en) Gas flow control device
KR940004184B1 (en) Combustion control device of how water feeder
JP2857321B2 (en) Combustion equipment
JPH11108346A (en) Combustor
JP3750061B2 (en) Gas flow control device
JPH0633903B2 (en) Bypass mixing type water heater
JPH01277113A (en) Forced air blasting type burning device
KR910002739B1 (en) Combustion device
JPS58178115A (en) Electronic gas governor device
JP3534875B2 (en) Combustion equipment
KR920008879B1 (en) Combustion device
JPH11248150A (en) Combustor
KR910002738B1 (en) Combustion device
JPH0715338B2 (en) Water heater controller
WO2012124396A1 (en) Burner combustion apparatus
JPH07253211A (en) Fan controller
JPH0271044A (en) Controller for hot water supplying apparatus
JPS6226415A (en) Proportional burner
JPS63108114A (en) Combustion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3750062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees