JP2004101002A - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP2004101002A
JP2004101002A JP2002260907A JP2002260907A JP2004101002A JP 2004101002 A JP2004101002 A JP 2004101002A JP 2002260907 A JP2002260907 A JP 2002260907A JP 2002260907 A JP2002260907 A JP 2002260907A JP 2004101002 A JP2004101002 A JP 2004101002A
Authority
JP
Japan
Prior art keywords
heat
heat storage
storage material
circuit
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002260907A
Other languages
Japanese (ja)
Other versions
JP3912232B2 (en
Inventor
Takayuki Setoguchi
瀬戸口 隆之
Takayuki Sugimoto
杉本 孝之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2002260907A priority Critical patent/JP3912232B2/en
Publication of JP2004101002A publication Critical patent/JP2004101002A/en
Application granted granted Critical
Publication of JP3912232B2 publication Critical patent/JP3912232B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve COP of a heat pump while improving heating capacity of the heat pump in a water heater having the heat pump. <P>SOLUTION: A heat pump water heater 1 has an heat accumulator 7, first and second heat accumulating circuits 9 and 11 and a hot water supply circuit 13. The heat accumulator 7 has first and second heat accumulating units 37 and 39. The first heat accumulating unit 37 is filled with a first heat accumulating material being a high melting point heat accumulating material, and is provided with a first heat accumulating heat transfer pipe 41a and a first hot water appearing heat transfer pipe 43. The second heat accumulating unit 39 is filled with a second heat accumulating material being a low melting point heat accumulating material, and is provided with a first heat accumulating heat transfer pipe 41b, a second heat accumulating heat transfer pipe 47 and a second hot water appearing heat transfer pipe 49. The second heat accumulating circuit 11 is provided with a heat exchanger 51 for exchanging heat between a second refrigerant flowing out of the second heat accumulating heat transfer pipe 47 and tap water before flowing in the second hot water appearing heat transfer pipe 49. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、給湯装置に関する。
【0002】
【従来の技術】
従来の給湯装置は、圧縮機、放熱器、膨張弁及び蒸発器等によって構成されたヒートポンプを有する冷媒回路と、水回路と、湯を貯える貯湯タンクとを備えている(例えば、特許文献1参照)。そして、ヒートポンプの放熱器において、放熱された冷媒が、水回路を流通する水に放熱する。それにより、水は加熱され、加熱された水が貯湯タンクに導入される。
【0003】
ところで、水を効率良く加熱するには、放熱器において放出させる熱量を増大させること、すなわち、ヒートポンプの加熱能力を向上させることが好ましい。また、ヒートポンプの加熱能力を向上させるには、冷媒の凝縮温度と水の温度との差が大きいこと、あるいは、冷媒の循環量が大きいことが望ましい。したがって、水を効率良く加熱するには、冷媒の凝縮温度を高くすること、あるいは、冷媒の循環量を増加させることが好ましい。
【0004】
【特許文献1】
特開平10−111018号公報
【0005】
【発明が解決しようとする課題】
しかしながら、冷媒の凝縮温度を高くすると、ヒートポンプの圧縮機が行う仕事量が大きくなるため、ヒートポンプのCOPが低下する。また、冷媒の循環量を増加させた場合においても、ヒートポンプのCOPが低下する。
【0006】
本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、ヒートポンプを有する給湯装置において、ヒートポンプの加熱能力を向上させながら、ヒートポンプのCOPの向上を図る技術を提供することにある。
【0007】
【課題を解決するための手段】
請求項1の発明は、潜熱蓄熱材が封入された第1の蓄熱手段と、該第1蓄熱手段の潜熱蓄熱材より融点が低い潜熱蓄熱材が封入された第2の蓄熱手段と、熱媒体を圧縮する圧縮手段と、該圧縮手段により圧縮された熱媒体を上記第1蓄熱手段の潜熱蓄熱材と熱交換させて放熱させる放熱手段と、該放熱手段により放熱された熱媒体を上記第2蓄熱手段の潜熱蓄熱材と熱交換させて過冷却させる過冷却放熱手段と、該過冷却放熱手段により過冷却された熱媒体を減圧させる減圧手段と、該減圧手段により減圧した熱媒体を蒸発させる蒸発手段とを有する第1の熱媒体回路と、熱媒体を圧縮する圧縮手段と、該圧縮手段により圧縮された熱媒体を上記第2蓄熱手段の潜熱蓄熱材と熱交換させて放熱させる放熱手段と、該放熱手段により放熱された熱媒体を減圧させる減圧手段と、該減圧手段により減圧した熱媒体を蒸発させる蒸発手段とを有する第2の熱媒体回路と、水を上記第1及び第2蓄熱手段の潜熱蓄熱材と熱交換させて加熱する熱交換手段を有する水回路と、を備えている給湯装置である。
【0008】
これにより、過冷却放熱手段が、第1蓄熱手段の潜熱蓄熱材と熱交換して放熱された熱媒体を、第2蓄熱手段の潜熱蓄熱材と熱交換させるため、上記熱媒体は第2蓄熱手段の潜熱蓄熱材により熱を奪われ過冷却される。よって、第1熱媒体回路から放出される熱量が大きくなる。また、このとき、第1熱媒体回路の圧縮手段の仕事量は増加しない。したがって、本発明によれば、第1熱媒体回路の加熱能力を向上させながら、第1熱媒体回路のCOPの向上を図ることができる。
【0009】
請求項2の発明は、潜熱蓄熱材が封入された第1の蓄熱手段と、該第1蓄熱手段の潜熱蓄熱材より融点が低い潜熱蓄熱材が封入された第2の蓄熱手段と、水を上記第1及び第2蓄熱手段の潜熱蓄熱材と熱交換させて加熱する熱交換手段を有する水回路と、熱媒体を圧縮する圧縮手段と、該圧縮手段により圧縮された熱媒体を上記第1蓄熱手段の潜熱蓄熱材と熱交換させて放熱させる放熱手段と、該放熱手段により放熱された熱媒体を減圧させる減圧手段と、該減圧手段により減圧した熱媒体を蒸発させる蒸発手段とを有する第1の熱媒体回路と、熱媒体を圧縮する圧縮手段と、該圧縮手段により圧縮された熱媒体を上記第2蓄熱手段の潜熱蓄熱材と熱交換させて放熱させる放熱手段と、該放熱手段により放熱された熱媒体を上記水回路の熱交換手段に流入する前の水と熱交換させて過冷却させる過冷却熱交換手段と、該過冷却熱交換手段により過冷却された熱媒体を減圧させる減圧手段と、該減圧手段により減圧した熱媒体を蒸発させる蒸発手段とを有する第2の熱媒体回路と、を備える給湯装置である。
【0010】
これにより、蓄熱運転及び利用運転が同時に行われる場合、過冷却熱交換手段が、第2熱媒体回路の放熱手段により第2蓄熱手段の潜熱蓄熱材と熱交換して放熱された熱媒体を、水回路の熱交換手段に流入する前の水と熱交換させるため、上記熱媒体は上記水により熱を奪われ過冷却される。よって、第2熱媒体回路から放出される熱量が大きくなる。また、このとき、第2熱媒体回路の圧縮手段の仕事量は増加しない。したがって、本発明によれば、第2熱媒体回路の加熱能力を向上させながら、第2熱媒体回路のCOPの向上を図ることができる。
【0011】
請求項3の発明は、潜熱蓄熱材が封入された第1の蓄熱手段と、該第1蓄熱手段の潜熱蓄熱材より融点が低い潜熱蓄熱材が封入された第2の蓄熱手段と、水を上記第1及び第2蓄熱手段の潜熱蓄熱材と熱交換させて加熱する熱交換手段を有する水回路と、熱媒体を圧縮する圧縮手段と、該圧縮手段により圧縮された熱媒体を上記第1蓄熱手段の潜熱蓄熱材と熱交換させて放熱させる放熱手段と、該放熱手段により放熱された熱媒体を上記水回路の熱交換手段に流入する前の水と熱交換させて過冷却させる過冷却熱交換手段と、該過冷却熱交換手段により過冷却された熱媒体を減圧させる減圧手段と、該減圧手段により減圧した熱媒体を蒸発させる蒸発手段とを有する第1の熱媒体回路と、熱媒体を圧縮する圧縮手段と、該圧縮手段により圧縮された熱媒体を上記第2蓄熱手段の潜熱蓄熱材と熱交換させて放熱させる放熱手段と、該放熱手段により放熱された熱媒体を減圧させる減圧手段と、該減圧手段により減圧した熱媒体を蒸発させる蒸発手段とを有する第2の熱媒体回路と、を備える給湯装置である。
【0012】
これにより、蓄熱運転及び利用運転が同時に行われる場合、過冷却熱交換手段が、第1熱媒体回路の放熱手段により第1蓄熱手段の潜熱蓄熱材と熱交換して放熱された熱媒体を、水回路の熱交換手段に流入する前の水と熱交換させるため、上記熱媒体は上記水により熱を奪われ過冷却される。よって、第1熱媒体回路から放出される熱量が大きくなる。また、このとき、第1熱媒体回路の圧縮手段の仕事量は増加しない。したがって、本発明によれば、第1熱媒体回路の加熱能力を向上させながら、第1熱媒体回路のCOPの向上を図ることができる。
【0013】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて詳細に説明する。
【0014】
図1に示すように、本実施形態のヒートポンプ給湯機(1)は、第1及び第2熱源機(3,5)、蓄熱装置(7)、第1及び第2蓄熱用回路(9,11)、給湯用回路(13)、及び追焚き用回路(15)を備えている。なお、本発明でいうところの第1熱媒体回路は第1蓄熱用回路(9)に対応し、水回路は給湯用回路(13)に対応する。
【0015】
第1及び第2熱源機(3,5)は、蒸気圧縮冷凍サイクルを行うヒートポンプであって、冷媒回路(17)を備えている。この冷媒回路(17)には、レシーバ(19)、フィルタ(21)、キャピラリチューブ(23)、膨張弁(25)、室外熱交換器(27)、アキュムレータ(29)、圧縮機(31)、除霜用電磁弁(33)及び除霜用キャピラリチューブ(35)が設けられている。また、冷媒回路(17)には、HFC系又はHC系の冷媒が充填されている。
【0016】
レシーバ(19)は、放熱した冷媒を一時貯めておくものである。フィルタ(21)は、冷媒からその中に含まれている固形物等を除去するものである。キャピラリチューブ(23)は、主に冷媒回路(17)の冷媒の流量を調整するものである。
【0017】
膨張弁(25)は、主に冷媒回路(17)の冷媒を減圧し、体積増加させるものである。また、膨張弁(25)は、冷媒回路(17)の冷媒の流量を調整する機能も有する。なお、本発明でいうところの減圧手段は膨張弁(25)に対応する。
【0018】
室外熱交換器(27)は、いわゆるクロスフィン型のフィン・アンド・チューブ熱交換器で構成されている。この室外熱交換器(27)は、冷媒回路(17)の冷媒を室外空気と熱交換させる。なお、本発明でいうところの蒸発手段は室外熱交換器(27)に対応する。
【0019】
アキュムレータ(29)は、冷媒回路(17)の冷媒を一時貯めておくものである。
【0020】
圧縮機(31)は、冷媒回路(17)の冷媒を圧縮するものである。なお、本発明でいうところの圧縮手段は圧縮機(31)に対応する。
【0021】
また、この冷媒回路(17)では、冷媒の循環方向において、レシーバ(19)と、フィルタ(21)と、キャピラリチューブ(23)と、膨張弁(25)と、室外熱交換器(27)と、アキュムレータ(29)と、圧縮機(31)とが順に配置されている。
【0022】
蓄熱装置(7)は、第1蓄熱ユニット(37)及び第2蓄熱ユニット(39)を備えている。なお、本発明でいうところの第1蓄熱手段は第1蓄熱ユニット(37)に対応し、第2蓄熱手段は第2蓄熱ユニット(39)に対応する。
【0023】
第1蓄熱ユニット(37)には第1蓄熱材が充填されるとともに、第1蓄熱用伝熱管(41a)と第1出湯用伝熱管(43)と追焚き用伝熱管(45)とが設けられている。一方、第2蓄熱ユニット(39)には第2蓄熱材が充填されるとともに、第1蓄熱用伝熱管(41b)と第2蓄熱用伝熱管(47)と第2出湯用伝熱管(49)とが設けられている。なお、本発明でいうところの過冷却放熱手段は、第2蓄熱ユニット(39)に設けられた第1蓄熱用伝熱管(41b)に対応する。
【0024】
第1及び第2蓄熱材は潜熱蓄熱用の蓄熱物質である。具体的には、第1蓄熱材は、融点55℃の酢酸ナトリウム3水和物(CHCOONa・3HO)によって形成されている。この第1蓄熱材としては、融点が50℃以上90℃以下の物質を用いるのが望ましい。一方、第2蓄熱材は、融点31℃の硫酸ナトリウム10水和物(NaSO・10HO)によって形成されている。この第2蓄熱材としては、融点が20℃以上40℃以下の物質を用いるのが望ましい。
【0025】
第1及び第2蓄熱用伝熱管(41,47)は銅で形成されている。第1蓄熱用伝熱管(41)には第1冷媒が流通し、第2蓄熱用伝熱管(47)には第2冷媒が流通する。そして、第1蓄熱材と第1蓄熱用伝熱管(41a)を流通する第1冷媒とが熱交換を行うとともに、第2蓄熱材と第1蓄熱用伝熱管(41b)を流通する第1冷媒及び第2蓄熱用伝熱管(47)を流通する第2冷媒とが熱交換を行うように、第1及び第2蓄熱ユニット(37,39)は構成されている。
【0026】
第1及び第2出湯用伝熱管(43,49)は銅で形成され、それぞれの一端が接続されている。第1及び第2出湯用伝熱管(43,49)には水道水が流通する。そして、第1蓄熱材と第1出湯用伝熱管(43)を流通する水道水とが熱交換を行うとともに、第2蓄熱材と第2出湯用伝熱管(49)を流通する水道水とが熱交換を行うように、第1及び第2蓄熱ユニット(37,39)は構成されている。
【0027】
追焚き用伝熱管(45)は銅で形成されている。追焚き用伝熱管(45)には浴槽(65)からの温水が流通する。そして、第1蓄熱材と追焚き用伝熱管(45)を流通する温水とが熱交換を行うように、第1蓄熱ユニット(37)は構成されている。
【0028】
第1蓄熱用回路(9)は、第1熱源機(3)の冷媒回路(17)と第1蓄熱ユニット(37)の第1蓄熱用伝熱管(41a)と第2蓄熱ユニット(39)の第1蓄熱用伝熱管(41b)とを接続して構成された閉回路である。この第1蓄熱用回路(9)では第1冷媒が循環する。そして、第1蓄熱用回路(9)では、第1冷媒の循環方向において、第1熱源機(3)の冷媒回路(17)と第1蓄熱ユニット(37)の第1蓄熱用伝熱管(41a)と第2蓄熱ユニット(39)の第1蓄熱用伝熱管(41b)とが順に配置されている。
【0029】
第2蓄熱用回路(11)は、第2熱源機(5)の冷媒回路(17)と第2蓄熱ユニット(39)の第2蓄熱用伝熱管(47)とを接続して構成された閉回路である。この第2蓄熱用回路(11)では第2冷媒が循環する。
【0030】
また、第2蓄熱用回路(11)には、熱交換器(51)が設けられている。この熱交換器(51)内には、第2蓄熱用回路(11)の一部と給湯用回路(13)の一部とが並行に延びている。そして、熱交換器(51)は、第2蓄熱用伝熱管(47)を流出した第2冷媒と第2出湯用伝熱管(49)に流入する前の水道水とを熱交換させる。なお、本発明でいうところの過冷却熱交換手段は熱交換器(51)に対応する。
【0031】
第2蓄熱用回路(11)では、第2冷媒の循環方向において、第2熱源機(5)の冷媒回路(17)と第2蓄熱ユニット(39)の第2蓄熱用伝熱管(47)と熱交換器(51)とが順に配置されている。
【0032】
給湯用回路(13)は、その始端が上水道に接続され、終端が給水栓(53)に接続されている。この給湯用回路(13)では、水道水が流通する。給湯用回路(13)には、第1蓄熱ユニット(37)の第1出湯用伝熱管(43)と第2蓄熱ユニット(39)の第2出湯用伝熱管(49)とが接続されている。また、給湯用回路(13)には、前出の熱交換器(51)と出湯サーミスタ(55)と流量センサ(57)とが設けられている。そして、給湯用回路(13)では、水の流通方向において、熱交換器(51)と第2蓄熱ユニット(39)の第2出湯用伝熱管(49)と第1蓄熱ユニット(37)の第1出湯用伝熱管(43)と出湯サーミスタ(55)と流量センサ(57)とが順に配置されている。
【0033】
また、給湯用回路(13)には、バイパス管(59)が設けられている。このバイパス管(59)は、その一端が熱交換器(51)の上流に接続され、その他端が第1蓄熱ユニット(37)の第1出湯用伝熱管(43)の下流に混合弁(61)を介して接続されている。そして、この混合弁(61)を操作することにより、第1蓄熱ユニット(37)からの温水とバイパス管(59)からの水道水との混合割合が変化する。
【0034】
さらに、給湯用回路(13)には、風呂注湯管(63)が接続されている。風呂注湯管(63)は、その始端が給湯用回路(13)における出湯サーミスタ(55)と流量センサ(57)との間に接続され、その終端が追焚き用回路(15)を介して浴槽(65)に接続されている。この風呂注湯管(63)には、風呂注湯弁(67)が設けられている。
【0035】
追焚き用回路(15)は、その両端が浴槽(65)に接続されている。また、この追焚き用回路(15)には、第1蓄熱ユニット(37)の追焚き用伝熱管(45)と追焚き用ポンプ(69)と風呂サーミスタ(71)とが設けられている。そして、この追焚き用回路(15)では、浴槽(65)から送り出された温水が流通する。
【0036】
−ヒートポンプ給湯機の運転動作−
本実施形態のヒートポンプ給湯機(1)では、蓄熱装置(7)に温熱を蓄える蓄熱運転と、蓄熱装置(7)に蓄えた温熱を利用して給湯等を行う利用運転とが行われる。ここでは、ヒートポンプ給湯機(1)の運転動作について、図1及び第1蓄熱用回路のPi線図(モリエル線図)を示す図2を参照しながら説明する。
【0037】
《蓄熱運転》
蓄熱運転時には、第1及び第2熱源機(3,5)が運転され、除霜用電磁弁(33)が閉じられる。
【0038】
第1及び第2熱源機(3,5)ではそれぞれ圧縮機(31)が運転され、第1及び第2蓄熱用回路(9,11)においてそれぞれ第1及び第2冷媒が循環して冷凍サイクルが行われる。
【0039】
具体的には、第1熱源機(3)の圧縮機(31)から吐出された第1冷媒は、第1蓄熱ユニット(37)の第1蓄熱用伝熱管(41a)へ導入され、第1蓄熱ユニット(37)の第1蓄熱材に対して放熱し凝縮する。第1蓄熱材は、第1冷媒から吸熱して融解し、第1冷媒から付与された温熱を蓄える。
【0040】
第1蓄熱材へ放熱した第1冷媒は、第2蓄熱ユニット(39)の第1蓄熱用伝熱管(41b)へ導入され、第2蓄熱ユニット(39)の第2蓄熱材に対して放熱し過冷却される。第2蓄熱材は、第1冷媒から吸熱して融解し、第1冷媒から付与された温熱を蓄える。
【0041】
第2蓄熱ユニット(39)で過冷却された第1冷媒は、第1熱源機(3)のレシーバ(19)へ導入される。
【0042】
レシーバ(19)から流出した第1冷媒は、キャピラリチューブ(23)及び膨張弁(25)を通過する際に減圧され、その後に室外熱交換器(27)へ導入される。室外熱交換器(27)では、第1冷媒が室外空気から吸熱して蒸発する。室外熱交換器(27)で蒸発した第1冷媒は、その後に圧縮機(31)へ導入される。圧縮機(31)では、吸入した第1冷媒を圧縮して吐出する。
【0043】
一方、第2熱源機(5)の圧縮機(31)から吐出された第2冷媒は、第2蓄熱ユニット(39)の第2蓄熱用伝熱管(47)へ導入され、第2蓄熱ユニット(39)の第2蓄熱材に対して放熱し凝縮する。第2蓄熱材は、第2冷媒から吸熱して融解し、第2冷媒から付与された温熱を蓄える。
【0044】
第2蓄熱材に放熱した第2冷媒は、第2熱源機(5)のレシーバ(19)へ導入される。
【0045】
レシーバ(19)から流出した第2冷媒は、キャピラリチューブ(23)及び膨張弁(25)を通過する際に減圧され、その後に室外熱交換器(27)へ導入される。室外熱交換器(27)では、第2冷媒が室外空気から吸熱して蒸発する。室外熱交換器(27)で蒸発した冷媒は、その後に圧縮機(31)へ導入される。圧縮機(31)では、吸入した第2冷媒を圧縮して吐出する。
【0046】
このように、蓄熱運転時の蓄熱装置(7)において、第1熱源機(3)で加熱された第1冷媒は、先に第1蓄熱ユニット(37)の第1蓄熱用伝熱管(41a)へ導入されて第1蓄熱材へ放熱し、第2蓄熱ユニット(39)の第1蓄熱用伝熱管(41b)へ導入されて第2蓄熱材へ更に放熱する。一方、第2熱源機(5)で加熱された第2冷媒は、第2蓄熱ユニット(39)の第2蓄熱用伝熱管(47)へ導入されて第2蓄熱材へ放熱する。
【0047】
《利用運転》
利用運転時において、第1及び第2熱源機(3,5)は停止され、除霜用電磁弁(33)は引き続き閉じられている。そして、給水栓(53)や風呂注湯弁(67)を開くと、上水道から圧送された水道水が給湯用回路(13)を流通する。
【0048】
具体的には、上水道から給湯用回路(13)へ流入した水道水は、第2蓄熱ユニット(39)の第2出湯用伝熱管(49)へ導入され、第2蓄熱ユニット(39)の第2蓄熱材から吸熱する。第2蓄熱材は、第2出湯用伝熱管(49)の水道水へ放熱して凝固する。
【0049】
第2蓄熱材から吸熱した水道水は、第1蓄熱ユニット(37)の第1出湯用伝熱管(43)へ導入され、第1蓄熱ユニット(37)の第1蓄熱材から吸熱する。第1蓄熱材は、第1出湯用伝熱管(43)の水道水へ放熱して凝固する。
【0050】
そして、第1蓄熱材と第2蓄熱材の両方から吸熱した水道水は、温水として給水栓(53)や浴槽(65)へ供給される。その際、混合弁(61)を操作することにより、バイパス管(59)を通じて混入される水道水の量が変化し、給水栓(53)や浴槽(65)へ送られる温水の温度が調節される。
【0051】
このように、利用運転時の蓄熱装置(7)において、上水道からの水道水は、先に第2蓄熱ユニット(39)の第2出湯用伝熱管(49)へ導入されて第2蓄熱材から吸熱し、その温度がやや上昇した後に第1蓄熱ユニット(37)の第1出湯用伝熱管(43)へ導入されて第1蓄熱材から更に吸熱する。そして、水道水は、低融点の第2蓄熱材に蓄えられた温熱によって暖められた後、高融点の第1蓄熱材に蓄えられた温熱によって更に暖められ、比較的高温の温水となって給水栓(53)や浴槽(65)へ供給される。
【0052】
また、利用運転時において、浴槽(65)の温水を再加熱する必要が生じると、追焚き用ポンプ(69)が運転される。追焚き用ポンプ(69)を運転すると、浴槽(65)から温水が追焚き用回路(15)へ取り込まれ、この温水が第1蓄熱ユニット(37)の追焚き用伝熱管(45)へ導入される。そして、この温水は、追焚き用伝熱管(45)を流れる間に第1蓄熱材から吸熱し、その温度が上昇した後に浴槽(65)へ送り返される。
【0053】
なお、水道水は第2蓄熱材及び第1蓄熱材から吸熱し、温水となって給水栓(53)や浴槽(65)へ供給されているが、第1及び第2蓄熱材に蓄えられた温熱が切れているときには、水道水が第1及び第2蓄熱用伝熱管(41,47)から直接吸熱することが可能なように、第1及び第2蓄熱ユニット(37,39)は構成されている。
【0054】
本実施形態では、第2蓄熱ユニット(39)の第1蓄熱用伝熱管(41b)において、第1蓄熱ユニット(37)の第1蓄熱材に対して放熱し凝縮された第1冷媒が、第2蓄熱ユニット(39)の第2蓄熱材に対して放熱するため、上記第1冷媒は第2蓄熱ユニット(39)の第2蓄熱材により吸熱され過冷却される。よって、第1蓄熱用回路(9)の第1蓄熱用伝熱管(41)から放出される熱量が大きくなる。すなわち、第1蓄熱用回路(9)の第1蓄熱用伝熱管(41)の入口と出口とにおける第1冷媒のエンタルピー差が拡大する。また、このとき、第1熱源機(3)の圧縮機(31)の仕事量は増加しない。したがって、本実施形態によれば、第1蓄熱用回路(9)の加熱能力を向上させながら、第1蓄熱用回路(9)のCOPの向上を図ることができる。
【0055】
(実施形態2)
本実施形態のヒートポンプ給湯機(1)では、蓄熱装置(7)に温熱を蓄える蓄熱運転と、蓄熱装置(7)に蓄えた温熱を利用して給湯等を行う利用運転とが同時に行われる。つまり、第1蓄熱ユニット(37)の第1蓄熱材及び第2蓄熱ユニット(39)の第2蓄熱材に温熱を蓄えながら、水道水が第2蓄熱材及び第1蓄熱材から吸熱し、温水となって給水栓(53)や浴槽(65)へ供給される。ここでは、実施形態1と異なるヒートポンプ給湯機(1)の運転動作について、図1及び第2蓄熱用回路のPi線図(モリエル線図)を示す図3を参照しながら説明する。
【0056】
第2蓄熱材へ放熱した第2冷媒は、熱交換器(51)へ導入され、第2蓄熱ユニット(39)の第2出湯用伝熱管(49)に流入する前の水道水と熱交換を行い過冷却される。一方、第2出湯用伝熱管(49)に流入する前の水道水は加熱される。
【0057】
熱交換器(51)で過冷却された第2冷媒は、第2熱源機(5)のレシーバ(19)へ導入される。
【0058】
本実施形態では、蓄熱運転及び利用運転が同時に行われる場合、熱交換器(51)が、第2蓄熱材へ放熱し凝縮した第2冷媒を、第2蓄熱ユニット(39)の第2出湯用伝熱管(49)に流入する前の水道水と熱交換させるため、上記第2冷媒は水道水により熱を奪われ過冷却される。よって、第2蓄熱用回路(11)の第2蓄熱用伝熱管(47)から放出される熱量が大きくなる。すなわち、第2蓄熱用回路(11)の第2蓄熱用伝熱管(47)の入口と出口とにおける第2冷媒のエンタルピー差が拡大する。また、このとき、第2熱源機(5)の圧縮機(31)の仕事量は増加しない。したがって、本実施形態によれば、第2蓄熱用回路(11)の加熱能力を向上させながら、第2蓄熱用回路(11)のCOPの向上を図ることができる。
【0059】
なお、本実施形態では、第2蓄熱材へ放熱した第2冷媒が、熱交換器(51)で第2蓄熱ユニット(39)の第2出湯用伝熱管(49)に流入する前の水道水と熱交換を行うように構成されているが、蓄熱材へ放熱した第1冷媒が第2出湯用伝熱管(49)に流入する前の水道水と熱交換を行うように、熱交換器を構成しても良い。このとき、第1蓄熱用回路(9)の加熱能力が向上するとともに、第1蓄熱用回路(9)のCOPが向上する。
【0060】
(その他の実施形態)
上記各実施形態では、蓄熱用回路及び蓄熱ユニットがそれぞれ2つずつ設けられているが、熱源機及び蓄熱ユニットがそれぞれ3つ以上設けられても良い。
【0061】
また、上記各実施形態では、室外熱交換器(27)において、冷媒回路(17)の冷媒と室外空気とを熱交換させているが、冷媒回路(17)の冷媒を地下水や工場排水と熱交換させても良い。
【0062】
【発明の効果】
請求項1の発明によれば、過冷却放熱手段が、第1蓄熱手段の潜熱蓄熱材と熱交換して放熱された熱媒体を、第2蓄熱手段の潜熱蓄熱材と熱交換させるため、上記熱媒体は第2蓄熱手段の潜熱蓄熱材により熱を奪われ過冷却される。よって、第1熱媒体回路から放出される熱量が大きくなる。また、このとき、第1熱媒体回路の圧縮手段の仕事量は増加しない。したがって、第1熱媒体回路の加熱能力を向上させながら、第1熱媒体回路のCOPの向上を図ることができる。
【0063】
請求項2の発明によれば、蓄熱運転及び利用運転が同時に行われる場合、過冷却熱交換手段が、第2熱媒体回路の放熱手段により第2蓄熱手段の潜熱蓄熱材と熱交換して放熱された熱媒体を、水回路の熱交換手段に流入する前の水と熱交換させるため、上記熱媒体は上記水により熱を奪われ過冷却される。よって、第2熱媒体回路から放出される熱量が大きくなる。また、このとき、第2熱媒体回路の圧縮手段の仕事量は増加しない。したがって、第2熱媒体回路の加熱能力を向上させながら、第2熱媒体回路のCOPの向上を図ることができる。
【0064】
請求項3の発明によれば、蓄熱運転及び利用運転が同時に行われる場合、過冷却熱交換手段が、第1熱媒体回路の放熱手段により第1蓄熱手段の潜熱蓄熱材と熱交換して放熱された熱媒体を、水回路の熱交換手段に流入する前の水と熱交換させるため、上記熱媒体は上記水により熱を奪われ過冷却される。よって、第1熱媒体回路から放出される熱量が大きくなる。また、このとき、第1熱媒体回路の圧縮手段の仕事量は増加しない。したがって、第1熱媒体回路の加熱能力を向上させながら、第1熱媒体回路のCOPの向上を図ることができる。
【図面の簡単な説明】
【図1】実施形態に係るヒートポンプ給湯機の概略構成図である。
【図2】実施形態に係る第1蓄熱用回路のPi線図である。
【図3】実施形態に係る第2蓄熱用回路のPi線図である。
【符号の説明】
(1)   ヒートポンプ給湯機
(3)   第1熱源機
(5)   第2熱源機
(9)   第1蓄熱用回路(第1熱媒体回路)
(11)  第2蓄熱用回路(第2熱媒体回路)
(13)  給湯用回路(水回路)
(37)  第1蓄熱ユニット(第1蓄熱手段)
(39)  第2蓄熱ユニット(第2蓄熱手段)
(41a) 第1蓄熱ユニットの第1蓄熱用伝熱管
(41b) 第2蓄熱ユニットの第1蓄熱用伝熱管(過冷却放熱手段)
(43)  第1出湯用伝熱管(熱交換手段)
(47)  第2蓄熱用伝熱管
(49)  第2出湯用伝熱管(熱交換手段)
(51)  熱交換器(過冷却熱交換手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot water supply apparatus.
[0002]
[Prior art]
A conventional hot water supply apparatus includes a refrigerant circuit having a heat pump including a compressor, a radiator, an expansion valve, an evaporator, and the like, a water circuit, and a hot water storage tank for storing hot water (see, for example, Patent Document 1). ). And in the heat pump radiator, the radiated refrigerant radiates heat to the water flowing through the water circuit. Thereby, the water is heated, and the heated water is introduced into the hot water storage tank.
[0003]
By the way, in order to heat water efficiently, it is preferable to increase the amount of heat released in the radiator, that is, to improve the heating capacity of the heat pump. In order to improve the heating capacity of the heat pump, it is desirable that the difference between the refrigerant condensing temperature and the water temperature is large, or that the refrigerant circulation amount is large. Therefore, in order to heat water efficiently, it is preferable to raise the condensation temperature of the refrigerant or increase the circulation amount of the refrigerant.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-1111018
[0005]
[Problems to be solved by the invention]
However, when the condensation temperature of the refrigerant is increased, the amount of work performed by the compressor of the heat pump increases, so that the COP of the heat pump decreases. Further, even when the circulation amount of the refrigerant is increased, the COP of the heat pump is lowered.
[0006]
This invention is made | formed in view of this point, The place made into the objective is providing the technique which aims at the improvement of COP of a heat pump, improving the heating capability of a heat pump in the hot water supply apparatus which has a heat pump. It is in.
[0007]
[Means for Solving the Problems]
The invention of claim 1 includes a first heat storage means in which a latent heat storage material is enclosed, a second heat storage means in which a latent heat storage material having a melting point lower than that of the latent heat storage material of the first heat storage means, and a heat medium Compression means for compressing the heat medium, heat dissipation means for exchanging heat by heat exchange of the heat medium compressed by the compression means with the latent heat storage material of the first heat storage means, and the heat medium radiated by the heat dissipation means for the second heat Supercooling heat radiation means for supercooling by heat exchange with the latent heat storage material of the heat storage means, decompression means for decompressing the heat medium supercooled by the supercooling heat radiation means, and evaporating the heat medium decompressed by the decompression means A first heat medium circuit having an evaporation means; a compression means for compressing the heat medium; and a heat dissipation means for radiating heat by exchanging heat between the heat medium compressed by the compression means and the latent heat storage material of the second heat storage means. And the heat radiating means A second heat medium circuit having a depressurizing means for depressurizing the medium; an evaporating means for evaporating the heat medium depressurized by the depressurizing means; and water for heat exchange with the latent heat storage material of the first and second heat storage means. And a water circuit having a heat exchanging means for heating.
[0008]
Thus, the supercooling heat radiating means exchanges heat with the latent heat storage material of the second heat storage means so that the heat medium radiated by exchanging heat with the latent heat storage material of the first heat storage means is exchanged with the latent heat storage material of the second heat storage means. Heat is taken away by the latent heat storage material of the means and subcooled. Therefore, the amount of heat released from the first heat medium circuit is increased. At this time, the work amount of the compression means of the first heat medium circuit does not increase. Therefore, according to the present invention, it is possible to improve the COP of the first heat medium circuit while improving the heating capability of the first heat medium circuit.
[0009]
The invention of claim 2 includes a first heat storage means enclosing a latent heat storage material, a second heat storage means enclosing a latent heat storage material having a melting point lower than that of the latent heat storage material of the first heat storage means, and water. A water circuit having a heat exchanging means for exchanging heat with the latent heat storage materials of the first and second heat accumulating means, a compressing means for compressing the heat medium, and the heat medium compressed by the compressing means as the first heat medium. A heat dissipating unit that exchanges heat with the latent heat storage material of the heat storage unit to dissipate heat, a decompression unit that depressurizes the heat medium radiated by the heat dissipation unit, and an evaporation unit that evaporates the heat medium decompressed by the decompression unit. 1 heat medium circuit; compression means for compressing the heat medium; heat dissipating means for causing the heat medium compressed by the compression means to exchange heat with the latent heat storage material of the second heat storage means; Heat transfer from the water circuit A supercooling heat exchange means for supercooling by heat exchange with water before flowing into the means, a decompression means for decompressing the heat medium supercooled by the supercooling heat exchange means, and a heat medium decompressed by the decompression means And a second heat medium circuit having an evaporating means for evaporating the water.
[0010]
Thereby, when the heat storage operation and the use operation are performed at the same time, the supercooling heat exchanging means exchanges the heat medium radiated by exchanging heat with the latent heat storage material of the second heat storage means by the heat dissipation means of the second heat medium circuit. In order to exchange heat with the water before flowing into the heat exchanging means of the water circuit, the heat medium is deprived of heat by the water and is supercooled. Therefore, the amount of heat released from the second heat medium circuit is increased. At this time, the work amount of the compression means of the second heat medium circuit does not increase. Therefore, according to the present invention, it is possible to improve the COP of the second heat medium circuit while improving the heating capability of the second heat medium circuit.
[0011]
The invention of claim 3 includes a first heat storage means enclosing a latent heat storage material, a second heat storage means enclosing a latent heat storage material having a melting point lower than that of the latent heat storage material of the first heat storage means, and water. A water circuit having a heat exchanging means for exchanging heat with the latent heat storage materials of the first and second heat accumulating means, a compressing means for compressing the heat medium, and the heat medium compressed by the compressing means as the first heat medium. Heat-dissipating means that exchanges heat with the latent heat storage material of the heat-accumulating means and dissipates heat, and supercooling that causes the heat medium radiated by the heat-dissipating means to heat-exchange with the water before flowing into the heat exchanging means of the water circuit and to supercool A first heat medium circuit comprising: a heat exchange means; a decompression means for decompressing the heat medium subcooled by the supercooling heat exchange means; and an evaporation means for evaporating the heat medium decompressed by the decompression means; Compression means for compressing the medium, and compression by the compression means A heat radiating means for exchanging heat with the latent heat storage material of the second heat storage means to dissipate heat, a pressure reducing means for decompressing the heat medium radiated by the heat radiating means, and a heat medium decompressed by the pressure reducing means And a second heat medium circuit having evaporation means for evaporating.
[0012]
Thereby, when the heat storage operation and the use operation are performed at the same time, the supercooling heat exchange means performs heat exchange with the latent heat storage material of the first heat storage means by the heat dissipation means of the first heat medium circuit. In order to exchange heat with the water before flowing into the heat exchanging means of the water circuit, the heat medium is deprived of heat by the water and is supercooled. Therefore, the amount of heat released from the first heat medium circuit is increased. At this time, the work amount of the compression means of the first heat medium circuit does not increase. Therefore, according to the present invention, it is possible to improve the COP of the first heat medium circuit while improving the heating capability of the first heat medium circuit.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0014]
As shown in FIG. 1, the heat pump water heater (1) of the present embodiment includes first and second heat source machines (3, 5), a heat storage device (7), and first and second heat storage circuits (9, 11). ), A hot water supply circuit (13), and a chase circuit (15). In the present invention, the first heat medium circuit corresponds to the first heat storage circuit (9), and the water circuit corresponds to the hot water supply circuit (13).
[0015]
The first and second heat source units (3, 5) are heat pumps that perform a vapor compression refrigeration cycle, and include a refrigerant circuit (17). The refrigerant circuit (17) includes a receiver (19), a filter (21), a capillary tube (23), an expansion valve (25), an outdoor heat exchanger (27), an accumulator (29), a compressor (31), A defrosting solenoid valve (33) and a defrosting capillary tube (35) are provided. The refrigerant circuit (17) is filled with HFC or HC refrigerant.
[0016]
The receiver (19) temporarily stores the radiated refrigerant. The filter (21) removes solids and the like contained therein from the refrigerant. The capillary tube (23) mainly adjusts the flow rate of the refrigerant in the refrigerant circuit (17).
[0017]
The expansion valve (25) mainly decompresses the refrigerant in the refrigerant circuit (17) to increase the volume. The expansion valve (25) also has a function of adjusting the flow rate of the refrigerant in the refrigerant circuit (17). Note that the decompression means in the present invention corresponds to the expansion valve (25).
[0018]
The outdoor heat exchanger (27) is a so-called cross fin type fin-and-tube heat exchanger. The outdoor heat exchanger (27) exchanges heat between the refrigerant in the refrigerant circuit (17) and outdoor air. The evaporation means in the present invention corresponds to the outdoor heat exchanger (27).
[0019]
The accumulator (29) temporarily stores the refrigerant in the refrigerant circuit (17).
[0020]
The compressor (31) compresses the refrigerant in the refrigerant circuit (17). The compression means in the present invention corresponds to the compressor (31).
[0021]
In the refrigerant circuit (17), the receiver (19), the filter (21), the capillary tube (23), the expansion valve (25), and the outdoor heat exchanger (27) are arranged in the refrigerant circulation direction. The accumulator (29) and the compressor (31) are arranged in this order.
[0022]
The heat storage device (7) includes a first heat storage unit (37) and a second heat storage unit (39). In the present invention, the first heat storage means corresponds to the first heat storage unit (37), and the second heat storage means corresponds to the second heat storage unit (39).
[0023]
The first heat storage unit (37) is filled with the first heat storage material, and is provided with a first heat storage heat transfer pipe (41a), a first hot water heat transfer pipe (43), and a reheating heat transfer pipe (45). It has been. On the other hand, the second heat storage unit (39) is filled with the second heat storage material, and the first heat storage heat transfer pipe (41b), the second heat storage heat transfer pipe (47), and the second hot water heat transfer pipe (49). And are provided. In addition, the supercooling heat radiation means in the present invention corresponds to the first heat storage heat transfer tube (41b) provided in the second heat storage unit (39).
[0024]
The first and second heat storage materials are heat storage materials for latent heat storage. Specifically, the first heat storage material is sodium acetate trihydrate (CH 3 COONa 3H 2 O). As the first heat storage material, it is desirable to use a substance having a melting point of 50 ° C. or higher and 90 ° C. or lower. On the other hand, the second heat storage material is sodium sulfate decahydrate (Na 2 SO 4 ・ 10H 2 O). As the second heat storage material, it is desirable to use a substance having a melting point of 20 ° C. or higher and 40 ° C. or lower.
[0025]
The first and second heat storage tubes (41, 47) are made of copper. The first refrigerant flows through the first heat storage heat transfer pipe (41), and the second refrigerant flows through the second heat storage heat transfer pipe (47). And while the 1st heat storage material and the 1st refrigerant | coolant which distribute | circulates the 1st heat storage heat exchanger tube (41a) perform heat exchange, the 1st refrigerant | coolant which distribute | circulates a 2nd heat storage material and the 1st heat storage heat exchanger tube (41b). And the 1st and 2nd heat storage unit (37, 39) is comprised so that the 2nd refrigerant | coolant which distribute | circulates the 2nd heat storage heat exchanger tube (47) may perform heat exchange.
[0026]
The first and second hot water heat transfer tubes (43, 49) are made of copper, and one end of each is connected. Tap water circulates through the first and second hot water transfer tubes (43, 49). And while the tap water which distribute | circulates the 1st heat storage material and the 1st heat exchanger tube for hot water (43) performs heat exchange, the 2nd heat storage material and the tap water which distribute | circulates the 2nd heat exchanger tube for hot water (49) The first and second heat storage units (37, 39) are configured to perform heat exchange.
[0027]
The reheating heat transfer tube (45) is made of copper. Hot water from the bathtub (65) circulates in the reheating heat transfer tube (45). And the 1st heat storage unit (37) is comprised so that the 1st heat storage material and the warm water which distribute | circulates the heat exchanger tube for heating (45) may perform heat exchange.
[0028]
The first heat storage circuit (9) includes the refrigerant circuit (17) of the first heat source machine (3), the first heat storage heat transfer pipe (41a) of the first heat storage unit (37), and the second heat storage unit (39). It is a closed circuit comprised by connecting the 1st heat storage heat exchanger tube (41b). In the first heat storage circuit (9), the first refrigerant circulates. In the first heat storage circuit (9), in the circulation direction of the first refrigerant, the refrigerant circuit (17) of the first heat source unit (3) and the first heat storage heat transfer tube (41a of the first heat storage unit (37)). ) And the first heat storage heat transfer pipe (41b) of the second heat storage unit (39).
[0029]
The second heat storage circuit (11) is a closed circuit configured by connecting the refrigerant circuit (17) of the second heat source machine (5) and the second heat storage heat transfer tube (47) of the second heat storage unit (39). Circuit. In the second heat storage circuit (11), the second refrigerant circulates.
[0030]
The second heat storage circuit (11) is provided with a heat exchanger (51). In the heat exchanger (51), a part of the second heat storage circuit (11) and a part of the hot water supply circuit (13) extend in parallel. And a heat exchanger (51) heat-exchanges the 2nd refrigerant | coolant which flowed out the 2nd heat storage heat exchanger tube (47), and the tap water before flowing in into the 2nd hot water heat exchanger tube (49). The supercooling heat exchanging means in the present invention corresponds to the heat exchanger (51).
[0031]
In the second heat storage circuit (11), in the circulation direction of the second refrigerant, the refrigerant circuit (17) of the second heat source unit (5) and the second heat storage heat transfer pipe (47) of the second heat storage unit (39) A heat exchanger (51) is arranged in order.
[0032]
The hot water supply circuit (13) has its start end connected to the water supply and its end connected to the water tap (53). In this hot water supply circuit (13), tap water circulates. The hot water supply circuit (13) is connected to the first hot water transfer pipe (43) of the first heat storage unit (37) and the second hot water transfer pipe (49) of the second heat storage unit (39). . The hot water supply circuit (13) is provided with the heat exchanger (51), the hot water thermistor (55), and the flow rate sensor (57). And in the hot water supply circuit (13), the heat exchanger (51), the second heat storage pipe (49) of the second heat storage unit (39), and the first heat storage unit (37) of the first heat storage unit (37) in the direction of water flow. One hot water transfer pipe (43), a hot water thermistor (55), and a flow rate sensor (57) are arranged in this order.
[0033]
The hot water supply circuit (13) is provided with a bypass pipe (59). The bypass pipe (59) has one end connected upstream of the heat exchanger (51) and the other end downstream of the first hot water transfer pipe (43) of the first heat storage unit (37). ) Is connected through. And the mixing ratio of the hot water from a 1st heat storage unit (37) and the tap water from a bypass pipe (59) changes by operating this mixing valve (61).
[0034]
Furthermore, a bath pouring pipe (63) is connected to the hot water supply circuit (13). The bath pouring pipe (63) has its starting end connected between the hot water thermistor (55) and the flow rate sensor (57) in the hot water supply circuit (13), and its terminal end via the reheating circuit (15). It is connected to the bathtub (65). The bath pouring pipe (63) is provided with a bath pouring valve (67).
[0035]
The chasing circuit (15) has both ends connected to the bathtub (65). The reheating circuit (15) is provided with a reheating heat transfer tube (45), a reheating pump (69), and a bath thermistor (71) of the first heat storage unit (37). And in this chase circuit (15), the hot water sent out from the bathtub (65) distribute | circulates.
[0036]
-Operation of heat pump water heater-
In the heat pump water heater (1) of the present embodiment, a heat storage operation for storing warm heat in the heat storage device (7) and a use operation for supplying hot water using the heat stored in the heat storage device (7) are performed. Here, the operation of the heat pump water heater (1) will be described with reference to FIG. 1 and FIG. 2 showing the Pi diagram (Mollier diagram) of the first heat storage circuit.
[0037]
《Heat storage operation》
During the heat storage operation, the first and second heat source units (3, 5) are operated, and the defrosting solenoid valve (33) is closed.
[0038]
The compressor (31) is operated in each of the first and second heat source units (3, 5), and the first and second refrigerants are circulated in the first and second heat storage circuits (9, 11), respectively, thereby refrigeration cycle. Is done.
[0039]
Specifically, the first refrigerant discharged from the compressor (31) of the first heat source unit (3) is introduced into the first heat storage heat transfer tube (41a) of the first heat storage unit (37), and the first It radiates and condenses with respect to the 1st thermal storage material of a thermal storage unit (37). The first heat storage material absorbs heat from the first refrigerant and melts, and stores the warm heat imparted from the first refrigerant.
[0040]
The first refrigerant that has radiated heat to the first heat storage material is introduced into the first heat storage heat transfer pipe (41b) of the second heat storage unit (39), and radiates heat to the second heat storage material of the second heat storage unit (39). Undercooled. The second heat storage material absorbs heat from the first refrigerant and melts, and stores the warm heat imparted from the first refrigerant.
[0041]
The first refrigerant supercooled by the second heat storage unit (39) is introduced into the receiver (19) of the first heat source machine (3).
[0042]
The first refrigerant flowing out of the receiver (19) is decompressed when passing through the capillary tube (23) and the expansion valve (25), and then introduced into the outdoor heat exchanger (27). In the outdoor heat exchanger (27), the first refrigerant absorbs heat from the outdoor air and evaporates. The first refrigerant evaporated in the outdoor heat exchanger (27) is then introduced into the compressor (31). In the compressor (31), the sucked first refrigerant is compressed and discharged.
[0043]
On the other hand, the second refrigerant discharged from the compressor (31) of the second heat source unit (5) is introduced into the second heat storage heat transfer pipe (47) of the second heat storage unit (39), and the second heat storage unit ( 39) heat is dissipated and condensed with respect to the second heat storage material. The second heat storage material absorbs heat from the second refrigerant and melts, and stores the warm heat imparted from the second refrigerant.
[0044]
The second refrigerant that has radiated heat to the second heat storage material is introduced into the receiver (19) of the second heat source machine (5).
[0045]
The second refrigerant flowing out of the receiver (19) is decompressed when passing through the capillary tube (23) and the expansion valve (25), and then introduced into the outdoor heat exchanger (27). In the outdoor heat exchanger (27), the second refrigerant absorbs heat from the outdoor air and evaporates. The refrigerant evaporated in the outdoor heat exchanger (27) is then introduced into the compressor (31). In the compressor (31), the sucked second refrigerant is compressed and discharged.
[0046]
Thus, in the heat storage device (7) during the heat storage operation, the first refrigerant heated by the first heat source unit (3) is the first heat storage tube (41a) for the first heat storage of the first heat storage unit (37). Is introduced into the first heat storage material, and is then radiated to the first heat storage material, and is then introduced into the first heat storage heat transfer tube (41b) of the second heat storage unit (39) to further radiate the heat to the second heat storage material. On the other hand, the second refrigerant heated by the second heat source device (5) is introduced into the second heat storage heat transfer tube (47) of the second heat storage unit (39) and radiates heat to the second heat storage material.
[0047]
《Used operation》
During the use operation, the first and second heat source machines (3, 5) are stopped, and the defrosting solenoid valve (33) is continuously closed. And if a water tap (53) and a bath pouring valve (67) are opened, the tap water pumped from the water supply will distribute | circulate the hot water supply circuit (13).
[0048]
Specifically, the tap water flowing into the hot water supply circuit (13) from the water supply is introduced into the second hot water transfer pipe (49) of the second heat storage unit (39), and the second heat storage unit (39) of the second heat storage unit (39). 2 Absorbs heat from the heat storage material. The second heat storage material dissipates heat to the tap water of the second hot water transfer pipe (49) and solidifies.
[0049]
The tap water absorbed from the second heat storage material is introduced into the first heat transfer pipe (43) of the first heat storage unit (37) and absorbs heat from the first heat storage material of the first heat storage unit (37). The first heat storage material dissipates heat to the tap water of the first heat transfer pipe for hot water (43) and solidifies.
[0050]
And the tap water which absorbed heat from both the 1st heat storage material and the 2nd heat storage material is supplied to a water tap (53) or a bathtub (65) as warm water. At that time, by operating the mixing valve (61), the amount of tap water mixed through the bypass pipe (59) changes, and the temperature of the hot water sent to the faucet (53) and the bathtub (65) is adjusted. The
[0051]
Thus, in the heat storage device (7) at the time of use operation, the tap water from the water supply is first introduced into the second hot water transfer pipe (49) of the second heat storage unit (39) and from the second heat storage material. After the heat is absorbed and the temperature rises slightly, it is introduced into the first heat transfer pipe (43) for the first hot water storage unit (37) to further absorb heat from the first heat storage material. Then, the tap water is warmed by the heat stored in the low-melting-point second heat storage material, and then further warmed by the heat stored in the high-melting-point first heat storage material. It is supplied to the stopper (53) and the bathtub (65).
[0052]
Further, when it becomes necessary to reheat the hot water in the bathtub (65) during the use operation, the reheating pump (69) is operated. When the reheating pump (69) is operated, warm water is taken from the bathtub (65) into the reheating circuit (15), and this warm water is introduced into the reheating heat transfer tube (45) of the first heat storage unit (37). Is done. This hot water absorbs heat from the first heat storage material while flowing through the reheating heat transfer tube (45), and is sent back to the bathtub (65) after the temperature rises.
[0053]
The tap water absorbs heat from the second heat storage material and the first heat storage material and is supplied as hot water to the faucet (53) and the bathtub (65), but is stored in the first and second heat storage materials. The first and second heat storage units (37, 39) are configured so that the tap water can directly absorb heat from the first and second heat storage tubes (41, 47) when the heat is cut off. ing.
[0054]
In the present embodiment, in the first heat storage heat transfer tube (41b) of the second heat storage unit (39), the first refrigerant radiated and condensed with respect to the first heat storage material of the first heat storage unit (37) is the first refrigerant. In order to dissipate heat to the second heat storage material of the two heat storage units (39), the first refrigerant is absorbed by the second heat storage material of the second heat storage unit (39) and is supercooled. Therefore, the amount of heat released from the first heat storage heat transfer tube (41) of the first heat storage circuit (9) increases. That is, the enthalpy difference of the first refrigerant at the inlet and the outlet of the first heat storage heat transfer pipe (41) of the first heat storage circuit (9) is increased. At this time, the work of the compressor (31) of the first heat source machine (3) does not increase. Therefore, according to this embodiment, it is possible to improve the COP of the first heat storage circuit (9) while improving the heating capacity of the first heat storage circuit (9).
[0055]
(Embodiment 2)
In the heat pump water heater (1) of the present embodiment, a heat storage operation that stores warm heat in the heat storage device (7) and a use operation that performs hot water supply using the heat stored in the heat storage device (7) are performed simultaneously. That is, tap water absorbs heat from the second heat storage material and the first heat storage material while storing heat in the first heat storage material of the first heat storage unit (37) and the second heat storage material of the second heat storage unit (39), And supplied to the faucet (53) and the bathtub (65). Here, the operation of the heat pump water heater (1) different from the first embodiment will be described with reference to FIG. 1 and FIG. 3 showing the Pi diagram (Mollier diagram) of the second heat storage circuit.
[0056]
The second refrigerant radiated to the second heat storage material is introduced into the heat exchanger (51) and exchanges heat with the tap water before flowing into the second heat transfer pipe (49) of the second heat storage unit (39). Done and supercooled. On the other hand, the tap water before flowing into the second hot water transfer pipe (49) is heated.
[0057]
The second refrigerant supercooled by the heat exchanger (51) is introduced into the receiver (19) of the second heat source machine (5).
[0058]
In the present embodiment, when the heat storage operation and the use operation are performed at the same time, the heat exchanger (51) uses the second refrigerant that has radiated and condensed heat to the second heat storage material for the second hot water of the second heat storage unit (39). In order to exchange heat with tap water before flowing into the heat transfer pipe (49), the second refrigerant is deprived of heat by the tap water and is supercooled. Therefore, the amount of heat released from the second heat storage heat transfer tube (47) of the second heat storage circuit (11) increases. That is, the enthalpy difference of the second refrigerant at the inlet and the outlet of the second heat storage heat transfer tube (47) of the second heat storage circuit (11) increases. At this time, the work of the compressor (31) of the second heat source machine (5) does not increase. Therefore, according to the present embodiment, it is possible to improve the COP of the second heat storage circuit (11) while improving the heating capacity of the second heat storage circuit (11).
[0059]
In the present embodiment, the tap water before the second refrigerant radiated to the second heat storage material flows into the second hot water transfer pipe (49) of the second heat storage unit (39) by the heat exchanger (51). The heat exchanger is configured to exchange heat with tap water before the first refrigerant radiated to the heat storage material flows into the second hot water transfer pipe (49). It may be configured. At this time, the heating capacity of the first heat storage circuit (9) is improved, and the COP of the first heat storage circuit (9) is improved.
[0060]
(Other embodiments)
In each of the above embodiments, two heat storage circuits and two heat storage units are provided, but three or more heat source units and three heat storage units may be provided.
[0061]
Moreover, in each said embodiment, in the outdoor heat exchanger (27), the refrigerant | coolant of a refrigerant circuit (17) and outdoor air are heat-exchanged, However, A refrigerant | coolant of a refrigerant circuit (17) is made into heat with groundwater or factory waste water. It may be exchanged.
[0062]
【The invention's effect】
According to the first aspect of the present invention, the supercooling heat radiating means exchanges heat with the latent heat storage material of the second heat storage means for heat exchange with the latent heat storage material of the second heat storage means. The heat medium is deprived of heat by the latent heat storage material of the second heat storage means and is supercooled. Therefore, the amount of heat released from the first heat medium circuit is increased. At this time, the work amount of the compression means of the first heat medium circuit does not increase. Therefore, the COP of the first heat medium circuit can be improved while improving the heating capacity of the first heat medium circuit.
[0063]
According to the invention of claim 2, when the heat storage operation and the use operation are performed simultaneously, the supercooling heat exchanging means exchanges heat with the latent heat storage material of the second heat storage means by the heat dissipation means of the second heat medium circuit to dissipate heat. In order to exchange heat with the water before flowing into the heat exchange means of the water circuit, the heat medium is deprived of heat by the water and is supercooled. Therefore, the amount of heat released from the second heat medium circuit is increased. At this time, the work amount of the compression means of the second heat medium circuit does not increase. Therefore, the COP of the second heat medium circuit can be improved while improving the heating capability of the second heat medium circuit.
[0064]
According to the invention of claim 3, when the heat storage operation and the use operation are performed at the same time, the supercooling heat exchange means exchanges heat with the latent heat storage material of the first heat storage means by the heat dissipation means of the first heat medium circuit to dissipate heat. In order to exchange heat with the water before flowing into the heat exchange means of the water circuit, the heat medium is deprived of heat by the water and is supercooled. Therefore, the amount of heat released from the first heat medium circuit is increased. At this time, the work amount of the compression means of the first heat medium circuit does not increase. Therefore, the COP of the first heat medium circuit can be improved while improving the heating capacity of the first heat medium circuit.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a heat pump water heater according to an embodiment.
FIG. 2 is a Pi diagram of a first heat storage circuit according to the embodiment.
FIG. 3 is a Pi diagram of a second heat storage circuit according to the embodiment.
[Explanation of symbols]
(1) Heat pump water heater
(3) First heat source machine
(5) Second heat source machine
(9) First heat storage circuit (first heat medium circuit)
(11) Second heat storage circuit (second heat medium circuit)
(13) Hot water supply circuit (water circuit)
(37) First heat storage unit (first heat storage means)
(39) Second heat storage unit (second heat storage means)
(41a) The first heat storage heat transfer tube of the first heat storage unit
(41b) First heat storage heat transfer tube (supercooling heat radiating means) of the second heat storage unit
(43) Heat transfer pipe for first hot water (heat exchange means)
(47) Second heat storage heat transfer tube
(49) Second heat transfer pipe for hot water (heat exchange means)
(51) Heat exchanger (supercooling heat exchange means)

Claims (3)

潜熱蓄熱材が封入された第1の蓄熱手段(37)と、
該第1蓄熱手段(37)の潜熱蓄熱材より融点が低い潜熱蓄熱材が封入された第2の蓄熱手段(39)と、
熱媒体を圧縮する圧縮手段(31)と、該圧縮手段(31)により圧縮された熱媒体を上記第1蓄熱手段(37)の潜熱蓄熱材と熱交換させて放熱させる放熱手段(41a)と、該放熱手段(41a)により放熱された熱媒体を上記第2蓄熱手段(39)の潜熱蓄熱材と熱交換させて過冷却させる過冷却放熱手段(41b)と、該過冷却放熱手段(41b)により過冷却された熱媒体を減圧させる減圧手段(25)と、該減圧手段(25)により減圧した熱媒体を蒸発させる蒸発手段(27)とを有する第1の熱媒体回路(9)と、
熱媒体を圧縮する圧縮手段(31)と、該圧縮手段(31)により圧縮された熱媒体を上記第2蓄熱手段(39)の潜熱蓄熱材と熱交換させて放熱させる放熱手段(47)と、該放熱手段(47)により放熱された熱媒体を減圧させる減圧手段(25)と、該減圧手段(25)により減圧した熱媒体を蒸発させる蒸発手段(27)とを有する第2の熱媒体回路(11)と、
水を上記第1及び第2蓄熱手段(37,39)の潜熱蓄熱材と熱交換させて加熱する熱交換手段(43,49)を有する水回路(13)と、
を備えている給湯装置。
First heat storage means (37) in which a latent heat storage material is enclosed;
A second heat storage means (39) in which a latent heat storage material having a melting point lower than that of the latent heat storage material of the first heat storage means (37) is enclosed;
A compressing means (31) for compressing the heat medium; and a heat dissipating means (41a) for causing the heat medium compressed by the compressing means (31) to exchange heat with the latent heat storage material of the first heat storage means (37) to dissipate heat. A supercooling heat dissipation means (41b) for supercooling the heat medium radiated by the heat dissipation means (41a) by exchanging heat with the latent heat storage material of the second heat storage means (39), and the supercooling heat dissipation means (41b). A first heat medium circuit (9) having a pressure reducing means (25) for reducing the pressure of the heat medium supercooled by the pressure reducing means (25) and an evaporation means (27) for evaporating the heat medium reduced in pressure by the pressure reducing means (25); ,
A compressing means (31) for compressing the heat medium; and a heat dissipating means (47) for exchanging heat with the latent heat storage material of the second heat storage means (39) to dissipate the heat medium compressed by the compression means (31). A second heat medium having a pressure reducing means (25) for depressurizing the heat medium radiated by the heat radiating means (47) and an evaporation means (27) for evaporating the heat medium depressurized by the pressure reducing means (25). A circuit (11);
A water circuit (13) having heat exchanging means (43, 49) for heating water by exchanging heat with the latent heat storage material of the first and second heat storage means (37, 39);
A water heater equipped with.
潜熱蓄熱材が封入された第1の蓄熱手段(37)と、
該第1蓄熱手段(37)の潜熱蓄熱材より融点が低い潜熱蓄熱材が封入された第2の蓄熱手段(39)と、
水を上記第1及び第2蓄熱手段(37,39)の潜熱蓄熱材と熱交換させて加熱する熱交換手段(49)を有する水回路(13)と、
熱媒体を圧縮する圧縮手段(31)と、該圧縮手段(31)により圧縮された熱媒体を上記第1蓄熱手段(37)の潜熱蓄熱材と熱交換させて放熱させる放熱手段(41)と、該放熱手段(41)により放熱された熱媒体を減圧させる減圧手段(25)と、該減圧手段(25)により減圧した熱媒体を蒸発させる蒸発手段(27)とを有する第1の熱媒体回路(9)と、
熱媒体を圧縮する圧縮手段(31)と、該圧縮手段(31)により圧縮された熱媒体を上記第2蓄熱手段(39)の潜熱蓄熱材と熱交換させて放熱させる放熱手段(47)と、該放熱手段(47)により放熱された熱媒体を上記水回路(13)の熱交換手段(49)に流入する前の水と熱交換させて過冷却させる過冷却熱交換手段(51)と、該過冷却熱交換手段(51)により過冷却された熱媒体を減圧させる減圧手段(25)と、該減圧手段(25)により減圧した熱媒体を蒸発させる蒸発手段(27)とを有する第2の熱媒体回路(11)と、
を備える給湯装置。
First heat storage means (37) in which a latent heat storage material is enclosed;
A second heat storage means (39) in which a latent heat storage material having a melting point lower than that of the latent heat storage material of the first heat storage means (37) is enclosed;
A water circuit (13) having heat exchanging means (49) for heating water by exchanging heat with the latent heat storage material of the first and second heat storage means (37, 39);
A compressing means (31) for compressing the heat medium; and a heat dissipating means (41) for causing the heat medium compressed by the compressing means (31) to radiate heat by exchanging heat with the latent heat storage material of the first heat storage means (37). A first heat medium having a pressure reducing means (25) for depressurizing the heat medium radiated by the heat radiating means (41) and an evaporation means (27) for evaporating the heat medium depressurized by the pressure reducing means (25). Circuit (9);
A compressing means (31) for compressing the heat medium; and a heat dissipating means (47) for exchanging heat with the latent heat storage material of the second heat storage means (39) to dissipate the heat medium compressed by the compression means (31). And a supercooling heat exchanging means (51) for exchanging heat with the water before flowing into the heat exchanging means (49) of the water circuit (13) to supercool the heat medium radiated by the heat radiating means (47). A pressure reducing means (25) for depressurizing the heat medium supercooled by the supercooling heat exchange means (51), and an evaporating means (27) for evaporating the heat medium depressurized by the pressure reducing means (25). Two heat carrier circuits (11);
A hot water supply device comprising:
潜熱蓄熱材が封入された第1の蓄熱手段(37)と、
該第1蓄熱手段(37)の潜熱蓄熱材より融点が低い潜熱蓄熱材が封入された第2の蓄熱手段(39)と、
水を上記第1及び第2蓄熱手段(37,39)の潜熱蓄熱材と熱交換させて加熱する熱交換手段(49)を有する水回路(13)と、
熱媒体を圧縮する圧縮手段(31)と、該圧縮手段(31)により圧縮された熱媒体を上記第1蓄熱手段(37)の潜熱蓄熱材と熱交換させて放熱させる放熱手段(41)と、該放熱手段(41)により放熱された熱媒体を上記水回路(13)の熱交換手段(49)に流入する前の水と熱交換させて過冷却させる過冷却熱交換手段と、該過冷却熱交換手段により過冷却された熱媒体を減圧させる減圧手段(25)と、該減圧手段(25)により減圧した熱媒体を蒸発させる蒸発手段(27)とを有する第1の熱媒体回路(9)と、
熱媒体を圧縮する圧縮手段(31)と、該圧縮手段(31)により圧縮された熱媒体を上記第2蓄熱手段(39)の潜熱蓄熱材と熱交換させて放熱させる放熱手段(47)と、該放熱手段(47)により放熱された熱媒体を減圧させる減圧手段(25)と、該減圧手段(25)により減圧した熱媒体を蒸発させる蒸発手段(27)とを有する第2の熱媒体回路(11)と、
を備える給湯装置。
First heat storage means (37) in which a latent heat storage material is enclosed;
A second heat storage means (39) in which a latent heat storage material having a melting point lower than that of the latent heat storage material of the first heat storage means (37) is enclosed;
A water circuit (13) having heat exchanging means (49) for heating water by exchanging heat with the latent heat storage material of the first and second heat storage means (37, 39);
A compressing means (31) for compressing the heat medium; and a heat dissipating means (41) for causing the heat medium compressed by the compressing means (31) to radiate heat by exchanging heat with the latent heat storage material of the first heat storage means (37). A supercooling heat exchanging means for exchanging heat with the water before flowing into the heat exchanging means (49) of the water circuit (13) to supercool the heat medium radiated by the heat dissipating means (41); A first heat medium circuit having a pressure reducing means (25) for depressurizing the heat medium supercooled by the cooling heat exchange means, and an evaporation means (27) for evaporating the heat medium depressurized by the pressure reducing means (25) ( 9)
A compressing means (31) for compressing the heat medium; and a heat dissipating means (47) for exchanging heat with the latent heat storage material of the second heat storage means (39) to dissipate the heat medium compressed by the compression means (31). A second heat medium having a pressure reducing means (25) for depressurizing the heat medium radiated by the heat radiating means (47) and an evaporation means (27) for evaporating the heat medium depressurized by the pressure reducing means (25). A circuit (11);
A hot water supply device comprising:
JP2002260907A 2002-09-06 2002-09-06 Water heater Expired - Fee Related JP3912232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002260907A JP3912232B2 (en) 2002-09-06 2002-09-06 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002260907A JP3912232B2 (en) 2002-09-06 2002-09-06 Water heater

Publications (2)

Publication Number Publication Date
JP2004101002A true JP2004101002A (en) 2004-04-02
JP3912232B2 JP3912232B2 (en) 2007-05-09

Family

ID=32261420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002260907A Expired - Fee Related JP3912232B2 (en) 2002-09-06 2002-09-06 Water heater

Country Status (1)

Country Link
JP (1) JP3912232B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006084090A (en) * 2004-09-15 2006-03-30 Matsushita Electric Ind Co Ltd Heat pump heat accumulator
JP2010043864A (en) * 2009-11-27 2010-02-25 Panasonic Corp Heat pump heat storage device
JPWO2020202487A1 (en) * 2019-04-03 2021-04-30 三菱電機株式会社 Heat storage device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006084090A (en) * 2004-09-15 2006-03-30 Matsushita Electric Ind Co Ltd Heat pump heat accumulator
JP4626239B2 (en) * 2004-09-15 2011-02-02 パナソニック株式会社 Heat pump heat storage device
JP2010043864A (en) * 2009-11-27 2010-02-25 Panasonic Corp Heat pump heat storage device
JPWO2020202487A1 (en) * 2019-04-03 2021-04-30 三菱電機株式会社 Heat storage device

Also Published As

Publication number Publication date
JP3912232B2 (en) 2007-05-09

Similar Documents

Publication Publication Date Title
JP5327308B2 (en) Hot water supply air conditioning system
CN106068427A (en) Refrigerating circulatory device
JP5904628B2 (en) Refrigeration cycle with refrigerant pipe for defrost operation
JP2004003801A (en) Refrigeration equipment using carbon dioxide as refrigerant
JP3140333B2 (en) Heat pump equipment
JP5636871B2 (en) Refrigeration equipment
JP2006220351A (en) Freezer
WO2010098005A1 (en) Binary heat pump and refrigerator
JP5685886B2 (en) Water heater
JP2013083439A (en) Hot water supply air conditioning system
JP2013083439A5 (en)
JP3912232B2 (en) Water heater
JP2007263482A (en) Composite heat pump system
US20230056774A1 (en) Sub-cooling a refrigerant in an air conditioning system
JP4075633B2 (en) Heat pump water heater
TW200936965A (en) Ice making and air conditioning system utilizing supercooled water
JP2005241092A (en) Heat pump water heater
JP2006010253A (en) Water-cooled exhaust heat recovering heat pump
JP2004251557A (en) Refrigeration device using carbon dioxide as refrigerant
JP3987990B2 (en) Heat pump water heater
JP3750287B2 (en) Heat storage device
JP4767207B2 (en) Water heater
JP2007155203A (en) Air conditioner
JP7208577B2 (en) refrigeration cycle equipment
JP3857955B2 (en) Absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050726

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

R151 Written notification of patent or utility model registration

Ref document number: 3912232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees