JP2004100734A - Liquid-filled vibration control device - Google Patents

Liquid-filled vibration control device Download PDF

Info

Publication number
JP2004100734A
JP2004100734A JP2002260114A JP2002260114A JP2004100734A JP 2004100734 A JP2004100734 A JP 2004100734A JP 2002260114 A JP2002260114 A JP 2002260114A JP 2002260114 A JP2002260114 A JP 2002260114A JP 2004100734 A JP2004100734 A JP 2004100734A
Authority
JP
Japan
Prior art keywords
liquid
projection
elastic
vibration damping
damping device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002260114A
Other languages
Japanese (ja)
Other versions
JP4243464B2 (en
Inventor
Sumio Uchida
内田 純生
Kazuo Miyake
三宅 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurashiki Kako Co Ltd
Original Assignee
Kurashiki Kako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurashiki Kako Co Ltd filed Critical Kurashiki Kako Co Ltd
Priority to JP2002260114A priority Critical patent/JP4243464B2/en
Publication of JP2004100734A publication Critical patent/JP2004100734A/en
Application granted granted Critical
Publication of JP4243464B2 publication Critical patent/JP4243464B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve efficiency in damping high frequency vibration. <P>SOLUTION: This liquid-filled vibration control device is provided with a first mounting member 11 connected to an engine; a second mounting member 12 connected to a vehicle body; an elastic support member 13 connecting both mounting members 11, 12 and relatively displacing both mounting members 11, 12 in the direction of a cylinder axis X by elastic deformation; a liquid chamber 36 filled with liquid and variable in volume with the elastic support member 13 as a part of the internal wall; and projecting parts 47 provided at the elastic support member 13 facing the liquid chamber 36, and projecting in an inclined direction with respect to the direction of the cylinder axis X and flexurally deformable in the direction of the cylinder axis X. The projecting part 47 is formed in annular shape over the whole circumferential direction of the liquid chamber 36. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、液体封入型防振装置に関し、特に、高周波振動の減衰特性を向上させる対策に係るものである。
【0002】
【従来の技術】
従来より、液体封入型防振装置として、エンジン等の振動源側に連結される上部の第1取付部と、車体フレーム等の固定体側に連結される下部の第2取付部とを両者間に液室が区画形成されるように弾性部によって連結し、この弾性部の弾性変形により上記振動源側からの振動を減衰させるようにしたものが知られている(例えば、特許文献1〜4参照)。この特許文献1に開示された液体封入型防振装置では、両取付部をアンブレラ状の弾性部によって連結し、この弾性部の下部に略円錐状の液室を設けるようにしている。そして、この液室に臨む弾性部には、下方に向かって延びる突起を形成することにより弾性部自体の共振を抑制して高周波振動の伝達を低減するようにしている。
【0003】
一方、防振装置として、ゴム等の緩衝材料によって形成した中空体の中空部内壁に起伏面を形成するとともに、この中空部内に粘弾性物質を充填してなるものが公知となっている(例えば、特許文献2参照)。
【0004】
【特許文献1】
特開昭59−219537号公報
【特許文献2】
特開昭53−11482号公報
【特許文献3】
特開昭60−104824号公報
【特許文献4】
特開2001−336567号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記特許文献1に示された従来のものでは、突起が弾性部自体の共振を抑制する効果は認められるものの、それのみでは高周波振動の低減に対して十分ではない場合があった。上記特許文献2に示された従来のものでも緩衝材料の共振を抑制する効果が認められるに過ぎない。したがって、従来のものでは、高周波振動を低減させるのに十分であるとは言い難かった。
【0006】
そこで、本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、高周波振動の減衰効率を向上させることにある。
【0007】
【課題を解決するための手段】
上記の目的を達成するため、本発明は、弾性部を壁部の一部として容積可変とされる液室に臨む弾性部の内面に、両取付部を結ぶ軸方向に傾斜した方向に突出し、且つ少なくとも上記軸方向に撓み変形可能な突起部を設けるようにしたものである。
【0008】
具体的に、請求項1の発明は、振動源側に連結される第1取付部と、固定体側に連結される第2取付部と、上記両取付部を連結し、弾性変形により両取付部を少なくとも上記両取付部を結ぶ軸方向に相対変位させる弾性部と、上記弾性部を壁部の一部として容積可変とされ、液体が充填される液室とを備えた液体封入型防振装置を前提として、上記液室に臨む弾性部の内面に、上記軸方向に対し傾斜した方向に突出し且つ少なくとも上記軸方向に撓み変形可能な突起部が設けられている。
【0009】
また、請求項2の発明は、請求項1の発明において、液室を、弾性部の弾性変形により液圧が変動する受圧室と、該受圧室に連通し、該受圧室の液圧変動を吸収する平衡室とに仕切る仕切体が設けられており、突起部は、上記受圧室に臨む弾性部に設けられている。
【0010】
また、請求項3の発明は、請求項1又は2の発明において、突起部は舌片状に形成されて複数設けられている。
【0011】
また、請求項4の発明は、請求項3の発明において、複数の突起部は、周方向に所定の間隔をおいて設けられており、先端部が、互いに周方向に隣接する上記突起部同士の間隙部に挿入される挿入部が設けられている。
【0012】
また、請求項5の発明は、請求項3の発明において、突起部の一部の先端部の位置が、他の突起部の先端部に対して径方向に異なっている。
【0013】
また、請求項6の発明は、請求項5の発明において、先端部が、略軸方向に隣接する突起部同士の間隙部に挿入され、突起部との間に狭小の間隙部を形成する挿入部が設けられている。
【0014】
また、請求項7の発明は、請求項1又は2の発明において、突起部は、弾性部内面の周方向全体に亘る環状に形成されている。
【0015】
また、請求項8の発明は、請求項7の発明において、突起部の先端内周縁部には切欠きが設けられている。
【0016】
また、請求項9の発明は、請求項7又は8の発明において、突起部は、軸方向に複数設けられていて、先端部が、軸方向に互いに隣接する突起部同士の間隙部に挿入される挿入部が設けられている。
【0017】
また、請求項10の発明は、請求項1から9の何れか1項の発明において、突起部はマス部を備えている。
【0018】
すなわち、請求項1の発明では、振動源側に連結される第1取付部と、固定体側に連結される第2取付部とが弾性部によって連結され、振動源側からの振動が伝達されると、両取付部は、弾性部が弾性変形することによって少なくとも上記両取付部を結ぶ軸方向に相対変位する。このとき、上記弾性部を壁部の一部とし、液体が充填される液室が拡縮して容積が変動し、この液室に臨む弾性部の内面に上記軸方向に対して傾斜した方向に突出する突起部が、少なくとも軸方向に撓んで振動する。すなわち、両取付部の軸方向の相対変位によって液室が拡縮すると、突起部に対する液体の相対流れが生じ、これにより上記突起部が撓み振動する。したがって、突起部の共振を起こさせることができ、弾性部の振動、特に高周波振動を効率よく減衰させることができる。
【0019】
また、請求項2の発明では、液室を、弾性部の弾性変形により液圧が変動する受圧室と、該受圧室の液圧変動を吸収する平衡室とに仕切るとともに、両室を連通させるようにしたので、振動源側から低周波振動が伝達すると、液体を受圧室と平衡室との間で流動させることにより上記低周波振動を効率よく減衰させることができる。また、突起部を受圧室に臨む弾性部に設けるようにしたので高周波振動を効率よく減衰させることができる。
【0020】
また、請求項3の発明では、突起部を舌片状に形成すると共に複数設けるようにしたので、この突起部の配置位置、大きさを任意に設定することにより減衰効果が得られる周波数領域を容易に調整することができる。
【0021】
また、請求項4の発明では、突起部を周方向に所定の間隔をおいて複数設けるとともに、互いに周方向に隣接する突起部同士の間隙部に挿入部の先端部を挿入するようにしたので、弾性部の振動により流動する液体の流動抵抗を増大させることができ、入力された振動を効率よく減衰させることができる。
【0022】
また、請求項5の発明では、突起部は複数設けられ、少なくとも一部の突起部の先端部の位置が、他の突起部の先端部に対して径方向に異なるように配置したので、突起部の見かけ上の長さを大きくすることができ、減衰効果が得られる周波数領域を低周波数側に拡大させることができる。また、突起部の長さを大きくすることなく、突起部の長さを大きくするのと同等の効果を得ることができる。
【0023】
また、請求項6の発明では、略軸方向に隣接する突起部同士の間隙部に挿入部の先端部を挿入するようにしたので、挿入部の先端部と突起部との間隙部を流動する液体の流動抵抗を増大させることができるために、入力された振動を効率よく減衰させることができる。
【0024】
また、請求項7の発明では、突起部を弾性部内面の周方向全体に亘る環状に形成したので、高周波振動の減衰効果を安定して得ることができる。
【0025】
また、請求項8の発明では、環状に形成される突起部の先端内周縁部に切欠きを設けるようにしたので、突起部が軸方向に対して傾斜して突出するように成形する場合においても、成形型を上記軸方向に型抜きする際に弾性部が損傷するのを防止することができる。
【0026】
また、請求項9の発明では、突起部を軸方向に複数設け、この軸方向に互いに隣接する突起部同士の間隙部に挿入部の先端部を挿入するようにしたので、液室内を流動する液体が突起部と挿入部の先端部との間隙部を流れる。これにより突起部と挿入部の先端部との間隙部を流動する液体の流路抵抗を増大させることができ、入力された振動を効率よく減衰させることができる。
【0027】
また、請求項10の発明では、突起部がマス部を備えるようにしたので、突起部の固有振動数を異ならしめるとともに、振動減衰効果をより向上させることができる。
【0028】
【発明の実施の形態1】
以下、本発明の実施形態を図面に基づいて詳細に説明する。
【0029】
図1に示すように、本実施形態1に係る液体封入型防振装置10は、エンジンなどの振動源側(図示省略)に連結される第1取付部としての第1取付部材11と、車体などの固定体側(図示省略)に連結される第2取付部としての第2取付部材12と、両取付部材11,12を互いに連結する環状の弾性部としての弾性支承部材13と、弾性膜部材であるゴム薄膜製のダイヤフラム15とを備えている。
【0030】
上記第1取付部材11は、円柱状に形成される円柱部21と、該円柱部21の下側に配置され、先細テーパ状に形成されるテーパ部22と、円柱部21及びテーパ部22間に配置されるフランジ部23とからなる。上記第1取付部材11には上端面から中央を上記テーパ部22まで凹陥するようにネジ穴25が設けられていて、上記第1取付部材11は、このネジ穴25にボルト(図示省略)が螺合されて振動源側に連結されるようになっている。上記フランジ部23は円柱部21及びテーパ部22よりも外方へ突出する太径の円盤状に形成されている。
【0031】
上記第2取付部材12は、円盤状の底壁27と、該底壁27の周縁に立設され、筒軸Xが上記第1取付部材11の中央線に一致して主振動入力方向(図1の上下方向)に延びる側壁28とを有していて有底筒状に形成されている。この側壁28の上端部には内周側に折り曲げられる折曲部29が設けられている。この折曲部29により形成される上端開口30には、上記第1取付部材11が挿入されていて、上記第1取付部材11のフランジ部23の上面と第2取付部材12の折曲部29内面(下面)とが当接するようになっている。
【0032】
上記弾性支承部材13は、上記第1取付部材11に連結され、下側に向かって拡大する略円錐台状の拡大部33と、該拡大部33の外縁における下端部から第2取付部材12の底壁27近傍まで延びる筒状部34とからなり、これらはゴムの一体加硫成形によって形成されている。上記筒状部34の外周面は、上記第2取付部材12の側壁28内周面に加硫接着されている。そして、上記拡大部33の中央部が上記第1取付部材11のテーパ部22及びフランジ部23に接着されることにより、上記第1取付部材11の振動によって上記拡大部33が主として筒軸X方向に撓むようになっている。つまり、弾性支承部材13は、両取付部11,12を筒軸X方向に相対変位させるように構成されている。
【0033】
上記筒状部34の下端面を橋渡すように上記ダイヤフラム15が配設されており、このダイヤフラム15と、上記第1取付部材11のテーパ部22における下端部と、上記弾性支承部材13の筒状部34及び拡大部33とにより、液体が充填される液室36が形成されている。つまり、上記液室36は弾性支承部材13を壁部の一部として容積可変に構成されている。
【0034】
なお、上記弾性支承部材13の外周部には、芯材としての補強筒部材38が埋め込まれるように加硫接着されている。この補強筒部材38は、上端が開口する有底筒状に形成されていて、その側部が上記弾性支承部材13に埋め込まれる一方、その底部は上記第2取付部材12の底壁27に接合されている。
【0035】
上記液室36には、室内を上下に区画する仕切体14が配設されていて、この仕切体14の上側が弾性支承部材13の弾性変形により液圧が変動する受圧室41とされ、下側が受圧室41の液圧変動を吸収する平衡室42とされる。上記仕切体14は、外周縁が上記弾性支承部材13の筒状部34内周面に固着される基板44と、該基板44の外周部と上記筒状部34内周面とにより画成された環状の連通路45とを備えている。上記連通路45の一端は上記受圧室41に、他端は平衡室42にそれぞれ開口されており、上記受圧室41及び平衡室42がこの連通路45を介して連通されている。この連通路45は、液柱の共振によって入力振動を減衰させるようになっている。
【0036】
上記受圧室41に臨む拡大部33内面には、複数の環状の突起部47が周方向の全体に亘って設けられている。上記突起部47は、拡大部33内壁から内側に向かい且つ上記筒軸Xに対して傾斜して突出するように弾性支承部材13に一体に形成されている。上記突起部47は、筒軸X方向に所定の間隔をおいて2つ設けられている。これら突起部47の内壁からの突出長さはほぼ同じに形成されている。そして、第1取付部材11の相対変位により、上記突起部47の内側開口を液体が相対流動するようになっている。また、上記突起部47はマス部48を備えている。このマス部48は、突起部47の他の部位よりも厚肉することで突起部47の先端部に一体に形成されている。また、図2に示すように、上記突起部47の先端内周縁部には、周方向に等間隔に切欠き49が設けられている。この切欠き49は、弾性支承部材13の成形時において型抜きをする際に突起部47が損傷するのを防止するためのものである。すなわち、突起部47の突出方向と型抜き方向とが異なっているために、突起部47に切欠き49を設けることで型を無理抜きしても突起部47が損傷しないようになっている。
【0037】
したがって、本実施形態1では、振動源側からの振動が第1取付部材11に伝達されると、両取付部11,12は、弾性支承部材13が弾性変形することによって少なくとも筒軸X方向に相対変位する。このとき、液体が充填される液室36が拡縮して容積が変動し、受圧室41内面の突起部47が筒軸X方向に撓んで振動する。すなわち、両取付部11,12の筒軸X方向の相対変位によって液室36が拡縮すると、突起部47に対する液体の相対流れが生じ、これにより上記突起部47が撓み振動する。したがって、突起部47の共振を起こさせることができ、弾性支承部材13の振動、特に高周波振動を効率よく減衰させることができる。
【0038】
また、液室36を、弾性支承部材13の弾性変形により液圧が変動する受圧室41と、該受圧室41の液圧変動を吸収する平衡室42とに仕切るとともに、両室41,42を連通させるようにしたので、振動源側から低周波振動が伝達すると、液体を受圧室41と平衡室42との間で流動させることにより上記低周波振動を効率よく減衰させることができる。
【0039】
また、突起部47にマス部48を一体に形成するようにしたので、突起部47の固有振動数を異ならしめるとともに、振動減衰効果を向上させることができる。さらにマス部48を突起部47の先端部に設けるようにしたので、突起部47をより撓ませることができ、振動減衰効果をより向上させることができる。
【0040】
また、突起部47を液室36の周方向全周に亘る環状に形成したので、高周波振動の減衰効果を安定して得ることができる。また、突起部47を環状に形成すると突起部47の剛性が向上されるために、より柔らかな材料により突起部47を形成することができる。
【0041】
さらに、突起部47の内周縁に切欠き49を設けるようにしたので、突起部47が筒軸X方向に対して傾斜して突出するように成形する場合においても、成形型を上記筒軸X方向に型抜きする際に弾性支承部材13が損傷するのを防止することができる。
【0042】
また、突起部47を弾性支承部材13に一体形成するようにしたので、安価且つ容易に突起部47を設けることができる。
【0043】
【発明の実施の形態2】
本実施形態2では、図3に示すように、受圧室41の上部に挿入部としての傘状部材55が配設されている。図3では、第1取付部材11に荷重がかかっていない無負荷状態(図3における左側)と、第1取付部材11に例えばエンジン等が載置されて上側から荷重がかかっている負荷状態(図3における右側)とを示している。尚、ここでは、実施形態1と同じ構成要素には同じ符号を付し、その説明を省略する。
【0044】
弾性支承部材13の突起部47は、液室36の周方向全周に亘る環状に形成されており、筒軸X方向に所定の間隔を有して2つ設けられている。そして、各突起部47は、筒軸Xに略直交する平面に沿う方向に延びるように形成されている。この両突起部47の内側開口は、それぞれ第1取付部材11のテーパ部22における下端部の外径よりも大きな径で、ほぼ同じ内径に形成されている。
【0045】
上記傘状部材55は、例えば金属製の薄円板からなり、外側に向かうと共に下側に向かうように形成されている。そして、上記傘状部材55は、中央に位置する上端部において第1取付部材11のテーパ部22における下端部(液室36の壁部)に固定されている。この傘状部材55は、上記無負荷状態では、先端部55aが弾性支承部材13の突起部47よりも上側、即ち、突起部47と液室36内面との間に位置する一方、上記負荷状態では、第1取付部材11の変位に伴い、先端部55aが両突起部47同士の間隙部に移動するようになっている。この負荷状態時には、傘状部材55の先端部55aが、突起部47の内側開口よりも外周側まで延び、両突起部47同士の間隙部に挿入される。つまり、傘状部材55は、突起部47との間に狭小の間隙部を形成し、両突起部47間を流動する液体の流路長さを増大させるように構成されている。これにより、第1取付部材11の振動によって液室36を流動する液体は、一方の突起部47の内側開口を通過した後、傘状部材55の先端部55aによって迂回するように流動して他方の突起部47の内側開口を通過するようになっている。
【0046】
したがって、本実施形態2では、突起部47を筒軸X方向に2つ設け、この互いに隣接する突起部47同士の間隙部に傘状部材55の先端部55aを挿入するようにしたので、液室36内を流動する液体が突起部47と傘状部材55の先端部55aとの間隙部を流れる。これにより突起部47と傘状部材55の先端部55aとの間隙部を流動する液体の流路抵抗を増大させることができ、入力された振動を効率よく減衰させることができる。
【0047】
その他の構成、作用及び効果は実施形態1と同様である。
【0048】
【発明の実施の形態3】
本実施形態3では、図4及び図5に示すように、実施形態1と異なり、突起部47は舌片状に形成されていて複数設けられている。尚、ここでは、実施形態1と同じ構成要素には同じ符号を付し、その説明を省略する。
【0049】
上記突起部47は、受圧室41に臨む弾性支承部材13の内面から筒軸X方向に対して傾斜する方向に向かって突出するように形成されている。そして、上記突起部47の一部の先端部の位置が、他の突起部47の先端位置と径方向に異なるように周方向に間隔を有して配置されている。具体的に、上記突起部47は、筒軸X方向の上側、即ち径方向の内周側に位置する内側突起61と、筒軸X方向の下側、即ち径方向の外周側に位置する外側突起62とからなる。そして、内側突起61の先端部は、外側突起62の先端部よりも径方向内側に位置するように配設されていて、これら内側突起61及び外側突起62は、それぞれ周方向に間隔をおいて配置されている。
【0050】
したがって、本実施形態3では、複数の舌片状の突起部47としたので、突起部47の配置位置、大きさを任意に設定することにより、減衰効果が得られる周波数領域を容易に調整することができる。
【0051】
また、突起部47を内側突起61及び外側突起62により構成し、両突起61,62の先端部の径方向位置を異ならしめるようにしたので、突起部47の見かけ上の長さを大きくすることができ、減衰効果が得られる周波数領域を低周波数側に拡大させることができる。即ち、突起部47の長さを大きくすることなく、突起部47の長さを大きくするのと同等の効果を得ることができる。
【0052】
また、突起部47が下向きに突出するようにしたので、型抜き時において損傷しにくくなっている。
【0053】
尚、突起部47は、上記内側突起61及び外側突起62からなるものに限られず、例えば図6に示すように、径方向の位置が異ならないように、周方向に間隔を有して配置されるものであってもよい。
【0054】
その他の構成、作用及び効果は実施形態1と同様である。
【0055】
【発明の実施の形態4】
本実施形態4は、図7に示すように、実施形態3と異なり、挿入部としての傘状部材55が設けられている。尚、ここでは、実施形態3と同じ構成要素には同じ符号を付し、その説明を省略する。
【0056】
上記傘状部材55は、例えば金属製の薄板からなり、複数の歯状の先端部55aが周方向に間隔を置いて、外周側に向かうと共に下側に向かって突出するように形成されている。そして、上記傘状部材55は、中央に位置する上端部において第1取付部材11のテーパ部22における下端部(液室36の壁部)に固定されている。この傘状部材55は、先端部55aが弾性支承部材13の外側突起62よりも筒軸X方向上側に配置されると共に、互いに隣接する内側突起61同士の間隙部に挿入されるように配設されている。これにより、第1取付部材11の振動によって液室36を流動する液体は、内側突起61と傘状部材55の先端部55aとの狭小の間隙部を通過するようになっている。
【0057】
したがって、本実施形態4では、舌片状の突起部47を周方向に所定の間隔をおいて複数設けるとともに、互いに周方向に隣接する突起部47同士の間隙部に傘状部材55の先端部55aを挿入するようにしたので、弾性支承部材13の振動により流動する液体を上記間隙部を流動させることにより液体の流動抵抗(粘性抵抗)を増大させることができ、入力された振動を効率よく減衰させることができる。
【0058】
尚、上記傘状部材55は、図8に示すように、先端部55aが内側突起61の筒軸X方向上側に位置するように配設してもよい。つまり、傘状部材55の先端部55aと突起部47(内側突起61)との重なりを設けることで、内側突起61及び傘状部材55の先端部55a間を流動する液体の流路長さを増大させることができ、これにより突起部47の径方向内側を流動する液体の流動抵抗を増大させることができる。この結果、入力された振動を効率よく減衰させることができる。
【0059】
その他の構成、作用及び効果は実施形態3と同様である。
【0060】
【発明のその他の実施の形態】
上記各実施形態について、液室36は、受圧室41と平衡室42とに仕切られる構成には限られない。
【0061】
また、上記実施形態1について、突起部47はマス部48を省略する構成、例えば均一の厚みを有する構成としてもよい。また、マス部48は厚肉とする構成に限られるものではない。
【0062】
また、上記実施形態1について、突起部47の切欠き49を省略する構成としてもよい。また、上記実施形態2について、突起部47に切欠きを設ける構成としてもよい。
【0063】
また、上記実施形態3及び4について、突起部47はマス部を設ける構成としてもよい。このマス部は、突起部47の先端部に設けるとより効果的である。
【0064】
【発明の効果】
以上説明したように、請求項1の発明によれば、両取付部の軸方向の相対変位によって液室の容積が変動すると、突起部に対する液体の相対流れを生じさせることができ、これにより上記突起部を撓み変形させて振動させることができる。したがって、突起部の共振を起こさせることができ、弾性部の振動、特に高周波振動を効率よく減衰させることができる。
【0065】
また、請求項2の発明によれば、液室を、受圧室と平衡室とに仕切り、両室を連通させるようにしたので、液体を受圧室と平衡室との間で流動させることにより上記低周波振動を効率よく減衰させることができる。また、突起部を受圧室に臨む弾性部に設けるようにしたので高周波振動を効率よく減衰させることができる。
【0066】
また、請求項3の発明によれば、突起部を舌片状に形成すると共に複数設けるようにしたので、この突起部の配置位置、大きさを任意に設定することにより減衰効果が得られる周波数領域を容易に調整することができる。
【0067】
また、請求項4の発明によれば、突起部を周方向に所定の間隔をおいて複数設けるとともに、互いに周方向に隣接する突起部同士の間隙部に挿入部の先端部を挿入するようにしたので、弾性部の振動により流動する液体の流動抵抗を増大させることができ、入力された振動を効率よく減衰させることができる。
【0068】
また、請求項5の発明によれば、少なくとも一部の突起部の先端部の位置が、他の突起部の先端部に対して径方向に異なるように配置したので、突起部の見かけ上の長さを大きくすることができ、減衰効果が得られる周波数領域を低周波数側に拡大させることができる。また、突起部の長さを大きくすることなく、突起部の長さを大きくするのと同等の効果を得ることができる。
【0069】
また、請求項6の発明によれば、略軸方向に隣接する突起部同士の間隙部に挿入部の先端部を挿入するようにしたので、挿入部と突起部との間隙部を流動する液体の流動抵抗を増大させることができるために、入力された振動を効率よく減衰させることができる。
【0070】
また、請求項7の発明によれば、突起部を弾性部内面の周方向全体に亘る環状に形成したので、高周波振動の減衰効果を安定して得ることができる。
【0071】
また、請求項8の発明によれば、環状に形成される突起部の先端内周縁部に切欠きを設けるようにしたので、突起部が軸方向に対して傾斜して突出するように成形する場合においても、成形型を上記軸方向に型抜きする際に弾性部が損傷するのを防止することができる。
【0072】
また、請求項9の発明によれば、軸方向に互いに隣接する突起部同士の間隙部に挿入部の先端部を挿入するようにしたので、液室内を流動する液体が突起部と挿入部の先端部との間隙部を流れる。これにより突起部と挿入部の先端部との間隙部を流動する液体の流路抵抗を増大させることができ、入力された振動を効率よく減衰させることができる。
【0073】
また、請求項10の発明によれば、突起部がマス部を備えるようにしたので、突起部の固有振動数を異ならしめるとともに、振動減衰効果をより向上させることができる。
【図面の簡単な説明】
【図1】本発明の実施形態1に係る液体封入型防振装置の全体構成を示す断面図である。
【図2】実施形態1における弾性支承部材及び突起部を示す部分平面図である。
【図3】本発明の実施形態2に係る液体封入型防振装置の全体構成を示す断面図である。
【図4】本発明の実施形態3に係る液体封入型防振装置の全体構成を示す断面図である。
【図5】図4のV−V線における断面図である。
【図6】実施形態3の変形例を示す図5相当図である。
【図7】実施形態4における図5相当図である。
【図8】実施形態4の変形例における図5相当図である。
【符号の説明】
11  第1取付部材(第1取付部)
12  第2取付部材(第2取付部)
13  弾性支承部材(弾性部)
14  仕切体
36  液室
41  受圧室
42  平衡室
47  突起部
48  マス部
49  切欠き
55  傘状部材(挿入部)
55a 先端部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a liquid-sealed type vibration damping device, and more particularly to a measure for improving a damping characteristic of high-frequency vibration.
[0002]
[Prior art]
Conventionally, as a liquid-filled type vibration damping device, an upper first mounting portion connected to a vibration source side such as an engine and a lower second mounting portion connected to a fixed body side such as a vehicle body frame are interposed therebetween. A liquid chamber is known in which liquid chambers are connected by an elastic portion so as to be defined, and vibration from the vibration source side is attenuated by elastic deformation of the elastic portion (for example, see Patent Documents 1 to 4). ). In the liquid-filled type vibration damping device disclosed in Patent Document 1, both mounting portions are connected by an umbrella-shaped elastic portion, and a substantially conical liquid chamber is provided below the elastic portion. The elastic portion facing the liquid chamber is formed with a projection extending downward, thereby suppressing resonance of the elastic portion itself and reducing transmission of high-frequency vibration.
[0003]
On the other hand, as an anti-vibration device, a device in which an undulating surface is formed on an inner wall of a hollow portion of a hollow body formed of a buffer material such as rubber and a viscoelastic substance is filled in the hollow portion is known (for example, , Patent Document 2).
[0004]
[Patent Document 1]
JP-A-59-21937
[Patent Document 2]
JP-A-53-11482
[Patent Document 3]
JP-A-60-104824
[Patent Document 4]
JP 2001-336567 A
[0005]
[Problems to be solved by the invention]
However, in the conventional device disclosed in Patent Document 1, although the effect of suppressing the resonance of the elastic portion itself by the protrusion is recognized, there is a case where the protrusion alone is not enough to reduce the high-frequency vibration. The effect of suppressing the resonance of the cushioning material is only recognized in the conventional device disclosed in Patent Document 2 described above. Therefore, it was difficult to say that the conventional device was sufficient to reduce high-frequency vibration.
[0006]
Therefore, the present invention has been made in view of such a point, and a purpose thereof is to improve the attenuation efficiency of high-frequency vibration.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention projects the elastic portion on the inner surface of the elastic portion facing the liquid chamber whose volume is variable as a part of the wall portion, in a direction inclined in the axial direction connecting the mounting portions, In addition, at least a projection that can be bent and deformed in the axial direction is provided.
[0008]
More specifically, the first aspect of the present invention connects the first mounting portion connected to the vibration source side, the second mounting portion connected to the fixed body side, and the mounting portions, and forms the two mounting portions by elastic deformation. A liquid-filled type vibration damping device comprising: an elastic part that relatively displaces at least the two mounting parts in the axial direction; and a liquid chamber that is variable in volume with the elastic part being a part of a wall and is filled with liquid. On the premise, a projection is provided on the inner surface of the elastic portion facing the liquid chamber, the projection projecting in a direction inclined with respect to the axial direction and capable of bending and deforming at least in the axial direction.
[0009]
According to a second aspect of the present invention, in the first aspect of the present invention, the liquid chamber communicates with the pressure receiving chamber in which the fluid pressure fluctuates due to the elastic deformation of the elastic portion, and the fluid pressure in the pressure receiving chamber is reduced. A partition is provided for partitioning the chamber into the absorbing chamber, and the projection is provided on an elastic portion facing the pressure receiving chamber.
[0010]
According to a third aspect of the present invention, in the first or second aspect, a plurality of protrusions are formed in a tongue shape.
[0011]
According to a fourth aspect of the present invention, in the third aspect of the present invention, the plurality of protrusions are provided at predetermined intervals in a circumferential direction, and the tip portions are adjacent to each other in the circumferential direction. Is provided in the gap portion.
[0012]
According to a fifth aspect of the present invention, in the third aspect of the present invention, the position of a part of the tip of the projection is radially different from the tip of the other projection.
[0013]
According to a sixth aspect of the present invention, in the fifth aspect of the present invention, the distal end is inserted into a gap between the projections adjacent to each other substantially in the axial direction to form a narrow gap between the projections. Part is provided.
[0014]
According to a seventh aspect of the present invention, in the first or second aspect, the protrusion is formed in an annular shape over the entire circumferential surface of the inner surface of the elastic portion.
[0015]
According to an eighth aspect of the present invention, in the invention of the seventh aspect, a notch is provided at an inner peripheral edge of the tip of the projection.
[0016]
According to a ninth aspect of the present invention, in the invention of the seventh or eighth aspect, a plurality of projections are provided in the axial direction, and the tip is inserted into a gap between the projections adjacent to each other in the axial direction. Insertion section is provided.
[0017]
According to a tenth aspect of the present invention, in the first aspect of the present invention, the protrusion has a mass.
[0018]
That is, in the first aspect of the present invention, the first mounting portion connected to the vibration source side and the second mounting portion connected to the fixed body side are connected by the elastic portion, and the vibration from the vibration source side is transmitted. The two mounting portions are relatively displaced at least in the axial direction connecting the two mounting portions by the elastic deformation of the elastic portion. At this time, the elastic part is a part of the wall, and the liquid chamber filled with the liquid expands and contracts to change the volume, and the inner surface of the elastic part facing the liquid chamber is inclined in the direction inclined with respect to the axial direction. The protruding protrusions vibrate at least in the axial direction. That is, when the liquid chamber expands and contracts due to the relative displacement of the mounting portions in the axial direction, a relative flow of the liquid to the projections occurs, and the projections flex and vibrate. Therefore, resonance of the projection can be caused, and vibration of the elastic portion, particularly, high-frequency vibration can be efficiently attenuated.
[0019]
According to the second aspect of the present invention, the liquid chamber is partitioned into a pressure receiving chamber in which the liquid pressure fluctuates due to the elastic deformation of the elastic portion and an equilibrium chamber for absorbing the liquid pressure fluctuation in the pressure receiving chamber, and both chambers are communicated. Thus, when the low-frequency vibration is transmitted from the vibration source side, the low-frequency vibration can be efficiently attenuated by flowing the liquid between the pressure receiving chamber and the equilibrium chamber. Further, since the projection is provided on the elastic portion facing the pressure receiving chamber, high-frequency vibration can be efficiently attenuated.
[0020]
According to the third aspect of the present invention, the projections are formed in a tongue-like shape and a plurality of projections are provided. Therefore, by arbitrarily setting the arrangement position and size of the projections, the frequency region in which the attenuation effect can be obtained is obtained. It can be easily adjusted.
[0021]
In the invention according to claim 4, a plurality of protrusions are provided at predetermined intervals in the circumferential direction, and the distal end of the insertion portion is inserted into a gap between the protrusions adjacent to each other in the circumferential direction. The flow resistance of the liquid flowing due to the vibration of the elastic portion can be increased, and the inputted vibration can be efficiently attenuated.
[0022]
According to the fifth aspect of the present invention, a plurality of projections are provided, and the positions of the tips of at least some of the projections are arranged so as to be radially different from the tips of the other projections. The apparent length of the portion can be increased, and the frequency region in which the attenuation effect can be obtained can be expanded to the lower frequency side. Further, an effect equivalent to increasing the length of the projection can be obtained without increasing the length of the projection.
[0023]
Further, in the invention according to claim 6, the distal end of the insertion portion is inserted into the gap between the substantially adjacent protrusions, so that the gap flows between the distal end of the insertion portion and the protrusion. Since the flow resistance of the liquid can be increased, the input vibration can be efficiently attenuated.
[0024]
According to the seventh aspect of the present invention, since the protrusion is formed in an annular shape over the entire inner surface of the elastic portion in the circumferential direction, the high frequency vibration damping effect can be stably obtained.
[0025]
In the invention according to claim 8, the notch is provided at the inner peripheral edge of the tip of the annularly formed projection. Therefore, when the projection is formed so as to project inclining with respect to the axial direction. In addition, it is possible to prevent the elastic portion from being damaged when the molding die is removed in the axial direction.
[0026]
According to the ninth aspect of the present invention, a plurality of projections are provided in the axial direction, and the tip of the insertion portion is inserted into a gap between the projections adjacent to each other in the axial direction. The liquid flows through the gap between the protrusion and the tip of the insertion section. Thus, the flow resistance of the liquid flowing in the gap between the protrusion and the distal end of the insertion portion can be increased, and the input vibration can be efficiently attenuated.
[0027]
According to the tenth aspect of the present invention, since the protrusion has the mass, the natural frequency of the protrusion can be varied, and the vibration damping effect can be further improved.
[0028]
Embodiment 1 of the present invention
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0029]
As shown in FIG. 1, a liquid-filled type vibration damping device 10 according to the first embodiment includes a first mounting member 11 as a first mounting portion connected to a vibration source side (not shown) such as an engine, and a vehicle body. And the like, a second mounting member 12 as a second mounting portion connected to a fixed body side (not shown), an elastic bearing member 13 as an annular elastic portion connecting the two mounting members 11 and 12 to each other, and an elastic film member. And a diaphragm 15 made of a rubber thin film.
[0030]
The first mounting member 11 has a columnar portion 21 formed in a columnar shape, a tapered portion 22 disposed below the columnar portion 21 and formed in a tapered shape, and a portion between the columnar portion 21 and the tapered portion 22. And a flange portion 23 arranged at the center. The first mounting member 11 is provided with a screw hole 25 so that the center is recessed from the upper end surface to the tapered portion 22. The first mounting member 11 has a bolt (not shown) in the screw hole 25. It is screwed and connected to the vibration source side. The flange portion 23 is formed in a large-diameter disk shape protruding outward from the cylindrical portion 21 and the tapered portion 22.
[0031]
The second mounting member 12 is provided upright on a disc-shaped bottom wall 27 and a peripheral edge of the bottom wall 27, and the cylinder axis X coincides with the center line of the first mounting member 11 so that the main vibration input direction (FIG. 1 in the vertical direction) and has a bottomed cylindrical shape. A bent portion 29 is provided at the upper end of the side wall 28 so as to be bent inward. The first mounting member 11 is inserted into the upper end opening 30 formed by the bent portion 29, and the upper surface of the flange portion 23 of the first mounting member 11 and the bent portion 29 of the second mounting member 12 are formed. The inner surface (lower surface) comes into contact with the inner surface.
[0032]
The elastic support member 13 is connected to the first mounting member 11, and has a substantially truncated cone-shaped enlarged portion 33 expanding toward the lower side, and a lower end portion of the outer edge of the enlarged portion 33 extending from the lower end of the second mounting member 12. It comprises a cylindrical portion 34 extending to the vicinity of the bottom wall 27, and these are formed by integral vulcanization molding of rubber. The outer peripheral surface of the cylindrical portion 34 is vulcanized and bonded to the inner peripheral surface of the side wall 28 of the second mounting member 12. The central portion of the enlarged portion 33 is bonded to the tapered portion 22 and the flange portion 23 of the first mounting member 11, so that the vibration of the first mounting member 11 causes the enlarged portion 33 to mainly move in the cylinder axis X direction. To bend. That is, the elastic bearing member 13 is configured to relatively displace the mounting portions 11 and 12 in the cylinder axis X direction.
[0033]
The diaphragm 15 is disposed so as to bridge the lower end surface of the cylindrical portion 34, and the diaphragm 15, the lower end portion of the tapered portion 22 of the first mounting member 11, and the cylinder of the elastic support member 13 are provided. A liquid chamber 36 filled with liquid is formed by the shape portion 34 and the enlarged portion 33. That is, the liquid chamber 36 is configured to be variable in volume with the elastic bearing member 13 as a part of the wall.
[0034]
In addition, a reinforcing cylindrical member 38 as a core material is vulcanized and bonded to an outer peripheral portion of the elastic bearing member 13 so as to be embedded. The reinforcing tubular member 38 is formed in a bottomed tubular shape whose upper end is open, and its side is embedded in the elastic support member 13, while its bottom is joined to the bottom wall 27 of the second mounting member 12. Have been.
[0035]
The liquid chamber 36 is provided with a partitioning body 14 for partitioning the chamber into upper and lower portions. The upper side of the partitioning body 14 is a pressure receiving chamber 41 in which the liquid pressure fluctuates due to the elastic deformation of the elastic bearing member 13. The side is an equilibrium chamber 42 that absorbs the fluid pressure fluctuation of the pressure receiving chamber 41. The partition body 14 is defined by a substrate 44 whose outer peripheral edge is fixed to the inner peripheral surface of the tubular portion 34 of the elastic support member 13, and an outer peripheral portion of the substrate 44 and the inner peripheral surface of the tubular portion 34. And an annular communication path 45. One end of the communication passage 45 is opened to the pressure receiving chamber 41, and the other end is opened to the balancing chamber 42, and the pressure receiving chamber 41 and the balancing chamber 42 are communicated through the communication passage 45. The communication passage 45 attenuates input vibration by resonance of the liquid column.
[0036]
On the inner surface of the enlarged portion 33 facing the pressure receiving chamber 41, a plurality of annular projections 47 are provided over the entire circumferential direction. The protrusion 47 is formed integrally with the elastic support member 13 so as to extend inward from the inner wall of the enlarged portion 33 and project obliquely with respect to the cylinder axis X. The two protrusions 47 are provided at predetermined intervals in the cylinder axis X direction. The protruding lengths of these projections 47 from the inner wall are formed substantially the same. Then, due to the relative displacement of the first mounting member 11, the liquid relatively flows through the inner opening of the projection 47. The protrusion 47 has a mass 48. The mass portion 48 is formed integrally with the tip of the projection 47 by being thicker than other portions of the projection 47. Further, as shown in FIG. 2, notches 49 are provided at equal intervals in the circumferential direction at the inner peripheral edge of the tip of the projection 47. The notch 49 is for preventing the projection 47 from being damaged when the die is removed during the molding of the elastic bearing member 13. That is, since the projecting direction of the projection 47 is different from the die removing direction, the notch 49 is provided in the projection 47 so that the projection 47 is not damaged even if the mold is forcibly removed.
[0037]
Therefore, in the first embodiment, when the vibration from the vibration source side is transmitted to the first mounting member 11, the mounting portions 11 and 12 are moved at least in the cylinder axis X direction by the elastic deformation of the elastic support member 13. Relative displacement. At this time, the liquid chamber 36 filled with the liquid expands and contracts and the volume fluctuates, and the protrusion 47 on the inner surface of the pressure receiving chamber 41 deflects and vibrates in the cylinder axis X direction. That is, when the liquid chamber 36 expands and contracts due to the relative displacement of the mounting portions 11 and 12 in the direction of the cylinder axis X, a relative flow of the liquid to the protrusion 47 occurs, and the protrusion 47 flexes and vibrates. Therefore, the resonance of the projection 47 can be caused, and the vibration of the elastic support member 13, particularly the high frequency vibration, can be efficiently attenuated.
[0038]
In addition, the liquid chamber 36 is partitioned into a pressure receiving chamber 41 in which the liquid pressure fluctuates due to the elastic deformation of the elastic bearing member 13 and an equilibrium chamber 42 in which the liquid pressure fluctuation in the pressure receiving chamber 41 is absorbed. When the low-frequency vibration is transmitted from the vibration source side, the liquid is caused to flow between the pressure receiving chamber 41 and the equilibrium chamber 42 so that the low-frequency vibration can be efficiently attenuated.
[0039]
In addition, since the mass portion 48 is formed integrally with the projection 47, the natural frequency of the projection 47 can be made different, and the vibration damping effect can be improved. Further, since the mass 48 is provided at the tip of the projection 47, the projection 47 can be further bent, and the vibration damping effect can be further improved.
[0040]
Further, since the projecting portion 47 is formed in an annular shape over the entire circumference in the circumferential direction of the liquid chamber 36, the effect of attenuating high frequency vibration can be stably obtained. Further, since the rigidity of the projection 47 is improved by forming the projection 47 in an annular shape, the projection 47 can be formed of a softer material.
[0041]
Furthermore, since the notch 49 is provided on the inner peripheral edge of the projection 47, even when the projection 47 is formed so as to be inclined and protruded with respect to the direction of the cylinder axis X, the molding die can be used as the cylinder axis X. It is possible to prevent the elastic bearing member 13 from being damaged when the die is removed in the direction.
[0042]
Further, since the projection 47 is formed integrally with the elastic support member 13, the projection 47 can be provided at low cost and easily.
[0043]
Embodiment 2 of the present invention
In the second embodiment, as shown in FIG. 3, an umbrella-shaped member 55 as an insertion portion is disposed above the pressure receiving chamber 41. In FIG. 3, a non-load state where no load is applied to the first mounting member 11 (left side in FIG. 3) and a load state where an engine or the like is placed on the first mounting member 11 and a load is applied from above (FIG. 3). 3 (right side in FIG. 3). Here, the same reference numerals are given to the same components as those in the first embodiment, and the description thereof will be omitted.
[0044]
The protrusions 47 of the elastic support member 13 are formed in an annular shape over the entire circumference of the liquid chamber 36 in the circumferential direction, and two protrusions 47 are provided at predetermined intervals in the cylinder axis X direction. Each projection 47 is formed to extend in a direction along a plane substantially perpendicular to the cylinder axis X. The inner opening of each of the projections 47 has a diameter larger than the outer diameter of the lower end of the tapered portion 22 of the first mounting member 11 and is formed to have substantially the same inner diameter.
[0045]
The umbrella-shaped member 55 is made of, for example, a metal thin disk, and is formed so as to extend outward and downward. The umbrella-shaped member 55 is fixed to the lower end (the wall of the liquid chamber 36) of the tapered portion 22 of the first mounting member 11 at the upper end located at the center. In the no-load state, the umbrella-shaped member 55 has the distal end 55 a located above the protrusion 47 of the elastic support member 13, that is, between the protrusion 47 and the inner surface of the liquid chamber 36. In this configuration, with the displacement of the first mounting member 11, the distal end 55 a moves to the gap between the two projections 47. In this load state, the distal end 55a of the umbrella-shaped member 55 extends to the outer peripheral side from the inner opening of the projection 47 and is inserted into the gap between the projections 47. In other words, the umbrella-shaped member 55 is configured to form a narrow gap between the umbrella member 47 and the protrusion 47 to increase the flow path length of the liquid flowing between the protrusions 47. As a result, the liquid flowing in the liquid chamber 36 due to the vibration of the first mounting member 11 passes through the inner opening of one of the protrusions 47, and then flows around the tip 55 a of the umbrella-shaped member 55 so as to bypass the other. Pass through the inner opening of the projection 47 of the second member.
[0046]
Therefore, in the second embodiment, two protrusions 47 are provided in the cylinder axis X direction, and the tip 55a of the umbrella-shaped member 55 is inserted into the gap between the adjacent protrusions 47. The liquid flowing in the chamber 36 flows through the gap between the projection 47 and the tip 55 a of the umbrella 55. Thus, the flow resistance of the liquid flowing in the gap between the protrusion 47 and the tip 55a of the umbrella-shaped member 55 can be increased, and the input vibration can be efficiently attenuated.
[0047]
Other configurations, operations, and effects are the same as those of the first embodiment.
[0048]
Third Embodiment of the Invention
In the third embodiment, as shown in FIGS. 4 and 5, unlike the first embodiment, a plurality of protrusions 47 are formed in a tongue shape and provided in plurality. Here, the same reference numerals are given to the same components as those in the first embodiment, and the description thereof will be omitted.
[0049]
The protrusion 47 is formed so as to protrude from the inner surface of the elastic bearing member 13 facing the pressure receiving chamber 41 in a direction inclined with respect to the cylinder axis X direction. The protrusions 47 are arranged at intervals in the circumferential direction such that the positions of the ends of some of the protrusions 47 are radially different from the positions of the ends of the other protrusions 47. Specifically, the protrusion 47 has an inner protrusion 61 located on the upper side in the cylinder axis X direction, that is, an inner peripheral side in the radial direction, and an outer side located on the lower side in the cylinder axis X direction, that is, an outer peripheral side in the radial direction. And a projection 62. The tip of the inner projection 61 is disposed so as to be located radially inward from the tip of the outer projection 62, and the inner projection 61 and the outer projection 62 are spaced apart in the circumferential direction. Are located.
[0050]
Therefore, in the third embodiment, since the plurality of tongue-shaped protrusions 47 are provided, the arrangement position and size of the protrusions 47 are arbitrarily set to easily adjust the frequency region in which the attenuation effect is obtained. be able to.
[0051]
In addition, since the protrusion 47 is formed by the inner protrusion 61 and the outer protrusion 62, and the radial positions of the tips of the protrusions 61 and 62 are made different, the apparent length of the protrusion 47 can be increased. Thus, the frequency region in which the attenuation effect can be obtained can be expanded to the lower frequency side. That is, the same effect as increasing the length of the projection 47 can be obtained without increasing the length of the projection 47.
[0052]
Further, since the projecting portion 47 projects downward, it is hard to be damaged when the mold is removed.
[0053]
The projections 47 are not limited to the projections 61 and 62. For example, as shown in FIG. 6, the projections 47 are arranged at intervals in the circumferential direction so that the positions in the radial direction do not differ. May be used.
[0054]
Other configurations, operations, and effects are the same as those of the first embodiment.
[0055]
Embodiment 4 of the present invention
In the fourth embodiment, as shown in FIG. 7, unlike the third embodiment, an umbrella-shaped member 55 as an insertion portion is provided. Here, the same components as those in the third embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[0056]
The umbrella-shaped member 55 is made of, for example, a thin metal plate, and is formed so that a plurality of tooth-shaped tip portions 55a are spaced apart in the circumferential direction so as to project toward the outer peripheral side and downward. . The umbrella-shaped member 55 is fixed to the lower end (the wall of the liquid chamber 36) of the tapered portion 22 of the first mounting member 11 at the upper end located at the center. The umbrella-shaped member 55 is disposed such that the distal end portion 55a is disposed above the outer protrusion 62 of the elastic support member 13 in the cylinder axis X direction, and is inserted into a gap between the adjacent inner protrusions 61. Have been. Thus, the liquid flowing in the liquid chamber 36 due to the vibration of the first attachment member 11 passes through a narrow gap between the inner protrusion 61 and the tip 55 a of the umbrella-shaped member 55.
[0057]
Therefore, in the fourth embodiment, a plurality of tongue-shaped protrusions 47 are provided at predetermined intervals in the circumferential direction, and the tip of the umbrella-shaped member 55 is provided in the gap between the circumferentially adjacent protrusions 47. Since the 55a is inserted, the flow resistance (viscous resistance) of the liquid can be increased by flowing the liquid flowing by the vibration of the elastic bearing member 13 through the gap, and the input vibration can be efficiently reduced. Can be attenuated.
[0058]
The umbrella-shaped member 55 may be disposed such that the tip end 55a is located above the inner protrusion 61 in the cylinder axis X direction, as shown in FIG. That is, by providing an overlap between the distal end 55a of the umbrella-shaped member 55 and the projection 47 (the inner projection 61), the flow path length of the liquid flowing between the inner projection 61 and the distal end 55a of the umbrella-shaped member 55 is reduced. The flow resistance of the liquid flowing on the radially inner side of the protrusion 47 can be increased. As a result, the input vibration can be efficiently attenuated.
[0059]
Other configurations, operations, and effects are the same as those of the third embodiment.
[0060]
Other Embodiments of the Invention
In each of the above embodiments, the liquid chamber 36 is not limited to the configuration in which the liquid chamber 36 is partitioned into the pressure receiving chamber 41 and the equilibrium chamber 42.
[0061]
In the first embodiment, the protrusion 47 may have a configuration in which the mass portion 48 is omitted, for example, a configuration having a uniform thickness. Further, the mass portion 48 is not limited to the configuration having the thick wall.
[0062]
In the first embodiment, the notch 49 of the protrusion 47 may be omitted. In the second embodiment, the protrusion 47 may be provided with a notch.
[0063]
In the third and fourth embodiments, the protrusion 47 may be provided with a mass. This mass is more effective if provided at the tip of the projection 47.
[0064]
【The invention's effect】
As described above, according to the first aspect of the present invention, when the volume of the liquid chamber fluctuates due to the relative displacement of the two mounting portions in the axial direction, the relative flow of the liquid with respect to the protrusion can be generated. The projection can be vibrated by bending and deforming. Therefore, resonance of the projection can be caused, and vibration of the elastic portion, particularly, high-frequency vibration can be efficiently attenuated.
[0065]
According to the second aspect of the present invention, the liquid chamber is partitioned into the pressure receiving chamber and the equilibrium chamber, and the two chambers are communicated with each other. Therefore, the liquid is caused to flow between the pressure receiving chamber and the equilibrium chamber. Low frequency vibration can be attenuated efficiently. Further, since the projection is provided on the elastic portion facing the pressure receiving chamber, high-frequency vibration can be efficiently attenuated.
[0066]
According to the third aspect of the present invention, since the projections are formed in a tongue shape and provided in a plurality, the arrangement position and the size of the projections are arbitrarily set so that the frequency at which the damping effect can be obtained is obtained. The area can be easily adjusted.
[0067]
According to the invention of claim 4, a plurality of protrusions are provided at predetermined intervals in the circumferential direction, and the tip of the insertion portion is inserted into a gap between the protrusions adjacent to each other in the circumferential direction. Therefore, the flow resistance of the liquid flowing due to the vibration of the elastic portion can be increased, and the input vibration can be efficiently attenuated.
[0068]
According to the fifth aspect of the present invention, at least a part of the protruding portion is disposed so that the position of the front end portion is different from the other protruding portion in the radial direction. The length can be increased, and the frequency region in which the attenuation effect can be obtained can be expanded to a lower frequency side. Further, an effect equivalent to increasing the length of the projection can be obtained without increasing the length of the projection.
[0069]
According to the sixth aspect of the present invention, since the tip of the insertion portion is inserted into the gap between the substantially adjacent protrusions, the liquid flowing in the gap between the insertion portion and the protrusion is provided. , The input vibration can be efficiently attenuated.
[0070]
According to the seventh aspect of the present invention, since the protrusion is formed in an annular shape over the entire circumferential surface of the inner surface of the elastic portion, a high frequency vibration damping effect can be stably obtained.
[0071]
According to the eighth aspect of the present invention, since the notch is provided at the inner peripheral edge of the tip of the annularly formed projection, the projection is formed so as to be inclined and project with respect to the axial direction. Also in this case, it is possible to prevent the elastic portion from being damaged when the mold is removed in the axial direction.
[0072]
According to the ninth aspect of the present invention, the distal end of the insertion section is inserted into the gap between the projections adjacent to each other in the axial direction, so that the liquid flowing in the liquid chamber is formed between the projection and the insertion section. It flows through the gap with the tip. Thus, the flow resistance of the liquid flowing in the gap between the protrusion and the distal end of the insertion portion can be increased, and the input vibration can be efficiently attenuated.
[0073]
According to the tenth aspect of the present invention, since the projection has the mass, the natural frequency of the projection can be made different and the vibration damping effect can be further improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an overall configuration of a liquid-filled type vibration damping device according to Embodiment 1 of the present invention.
FIG. 2 is a partial plan view showing an elastic bearing member and a protrusion according to the first embodiment.
FIG. 3 is a cross-sectional view illustrating an overall configuration of a liquid-filled type vibration damping device according to Embodiment 2 of the present invention.
FIG. 4 is a cross-sectional view illustrating the overall configuration of a liquid-filled type vibration damping device according to Embodiment 3 of the present invention.
FIG. 5 is a sectional view taken along line VV of FIG. 4;
FIG. 6 is a diagram corresponding to FIG. 5, showing a modification of the third embodiment.
FIG. 7 is a diagram corresponding to FIG. 5 in the fourth embodiment.
FIG. 8 is a diagram corresponding to FIG. 5 in a modification of the fourth embodiment.
[Explanation of symbols]
11 1st attachment member (1st attachment part)
12 Second mounting member (second mounting portion)
13 Elastic bearing member (elastic part)
14 Divider
36 liquid chamber
41 Pressure receiving chamber
42 Equilibrium chamber
47 Projection
48 trout
49 Notch
55 Umbrella-shaped member (insertion part)
55a Tip

Claims (10)

振動源側に連結される第1取付部と、
固定体側に連結される第2取付部と、
上記両取付部を連結し、弾性変形により両取付部を少なくとも上記両取付部を結ぶ軸方向に相対変位させる弾性部と、
上記弾性部を壁部の一部として容積可変とされ、液体が充填される液室とを備えた液体封入型防振装置において、
上記液室に臨む弾性部の内面に、上記軸方向に対し傾斜した方向に突出し且つ少なくとも上記軸方向に撓み変形可能な突起部が設けられている
ことを特徴とする液体封入型防振装置。
A first mounting portion connected to the vibration source side;
A second mounting portion connected to the fixed body side;
An elastic part that connects the two mounting parts and relatively displaces the two mounting parts in an axial direction connecting at least the two mounting parts by elastic deformation.
In the liquid-enclosed type vibration damping device, the elastic portion has a variable volume as a part of a wall portion and includes a liquid chamber filled with liquid.
A liquid-enclosed type vibration damping device, characterized in that a protrusion protruding in a direction inclined with respect to the axial direction and capable of bending and deforming at least in the axial direction is provided on an inner surface of the elastic portion facing the liquid chamber.
請求項1において、
液室を、弾性部の弾性変形により液圧が変動する受圧室と、該受圧室に連通し、該受圧室の液圧変動を吸収する平衡室とに仕切る仕切体が設けられており、
突起部は、上記受圧室に臨む弾性部に設けられている
ことを特徴とする液体封入型防振装置。
In claim 1,
A partition body is provided for partitioning the liquid chamber into a pressure receiving chamber in which the liquid pressure fluctuates due to the elastic deformation of the elastic portion, and a balancing chamber communicating with the pressure receiving chamber and absorbing the liquid pressure fluctuation in the pressure receiving chamber.
The liquid filled type vibration damping device, wherein the protrusion is provided on an elastic portion facing the pressure receiving chamber.
請求項1又は2において、
突起部は舌片状に形成されて複数設けられている
ことを特徴とする液体封入型防振装置。
In claim 1 or 2,
A liquid-enclosed type vibration damping device, wherein a plurality of protrusions are provided in a tongue shape.
請求項3において、
複数の突起部は、周方向に所定の間隔をおいて設けられており、
先端部が、互いに周方向に隣接する上記突起部同士の間隙部に挿入される挿入部が設けられている
ことを特徴とする液体封入型防振装置。
In claim 3,
The plurality of protrusions are provided at predetermined intervals in the circumferential direction,
A liquid-sealed type vibration damping device, characterized in that an insertion part is provided, the tip part of which is inserted into a gap between the protrusions adjacent to each other in the circumferential direction.
請求項3において、
突起部の一部の先端部の位置が、他の突起部の先端部に対して径方向に異なっている
ことを特徴とする液体封入型防振装置。
In claim 3,
A liquid-filled type vibration damping device characterized in that the position of a part of the projection is different from the tip of the other projection in the radial direction.
請求項5において、
先端部が、略軸方向に隣接する突起部同士の間隙部に挿入され、突起部との間に狭小の間隙部を形成する挿入部が設けられている
ことを特徴とする液体封入型防振装置。
In claim 5,
A liquid-enclosed type vibration damping device, wherein a tip portion is inserted into a gap between substantially adjacent protrusions, and an insertion portion forming a narrow gap between the protrusions is provided. apparatus.
請求項1又は2において、
突起部は、弾性部内面の周方向全体に亘る環状に形成されている
ことを特徴とする液体封入型防振装置。
In claim 1 or 2,
The protrusion is formed in an annular shape over the entire inner surface of the elastic portion in the circumferential direction.
請求項7において、
突起部の先端内周縁部には切欠きが設けられている
ことを特徴とする液体封入型防振装置。
In claim 7,
A liquid-sealed vibration isolator, wherein a notch is provided at the inner peripheral edge of the tip of the projection.
請求項7又は8において、
突起部は、軸方向に複数設けられていて、
先端部が、軸方向に互いに隣接する突起部同士の間隙部に挿入される挿入部が設けられている
ことを特徴とする液体封入型防振装置。
In claim 7 or 8,
A plurality of protrusions are provided in the axial direction,
A liquid-sealed type vibration damping device, characterized in that an insertion portion is provided in which a tip portion is inserted into a gap between projections adjacent to each other in an axial direction.
請求項1から9の何れか1項において、
突起部はマス部を備えている
ことを特徴とする液体封入型防振装置。
In any one of claims 1 to 9,
A liquid filled type vibration damping device characterized in that the projection has a mass.
JP2002260114A 2002-09-05 2002-09-05 Liquid-filled vibration isolator Expired - Fee Related JP4243464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002260114A JP4243464B2 (en) 2002-09-05 2002-09-05 Liquid-filled vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002260114A JP4243464B2 (en) 2002-09-05 2002-09-05 Liquid-filled vibration isolator

Publications (2)

Publication Number Publication Date
JP2004100734A true JP2004100734A (en) 2004-04-02
JP4243464B2 JP4243464B2 (en) 2009-03-25

Family

ID=32260923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002260114A Expired - Fee Related JP4243464B2 (en) 2002-09-05 2002-09-05 Liquid-filled vibration isolator

Country Status (1)

Country Link
JP (1) JP4243464B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098149A1 (en) * 2012-12-21 2014-06-26 山下ゴム株式会社 Inverted hydraulic mount
KR101499208B1 (en) * 2009-11-09 2015-03-05 현대자동차주식회사 Hydro mount having multiple fluid chamber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101499208B1 (en) * 2009-11-09 2015-03-05 현대자동차주식회사 Hydro mount having multiple fluid chamber
WO2014098149A1 (en) * 2012-12-21 2014-06-26 山下ゴム株式会社 Inverted hydraulic mount
JP2014122686A (en) * 2012-12-21 2014-07-03 Yamashita Rubber Co Ltd Inverted type liquid seal mount
CN104870857A (en) * 2012-12-21 2015-08-26 山下橡胶株式会社 Inverted hydraulic sealing mount
US9475376B2 (en) 2012-12-21 2016-10-25 Yamashita Rubber Kabushiki Kaisha Inverted type liquid sealed mount

Also Published As

Publication number Publication date
JP4243464B2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
JP5014329B2 (en) Vibration isolator
JP6538870B2 (en) Hydraulic mount, in particular for mounting an engine of a motor vehicle
JP5557837B2 (en) Vibration isolator
US5839720A (en) Vibration isolating apparatus
JP5185548B2 (en) Vibration isolator
JP3915531B2 (en) Fluid filled anti-vibration mount
JP2007278399A (en) Vibration control device
JPH1047419A (en) Liquid-encapsulating vibration control device
JP4976056B2 (en) Vibration isolator
CN103477115B (en) Enclosed-fluid vibration-control device
JP2004100734A (en) Liquid-filled vibration control device
JP7132961B2 (en) Anti-vibration device
JP2002310222A (en) Liquid sealed vibration isolator
JPH10132016A (en) Liquid filling type vibration control mount
JP4039827B2 (en) Liquid seal mount
JPH05272574A (en) Liquid-sealed vibration-proof device
JP2004251431A (en) Liquid seal type vibration damper
JP2014202327A (en) Liquid sealed type vibration control device
JP4001230B2 (en) Liquid-filled vibration isolator
JPH0716129Y2 (en) Liquid-filled mount
JP2008075670A (en) Liquid-sealed vibration-proof device
JP4231980B2 (en) Liquid filled mount
JPH09317812A (en) Vibration isolator
KR101857032B1 (en) Hydro-mount for vehicle
JP2010169233A (en) Vibration control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees