JP2004100482A - Low-pressure steam turbine - Google Patents

Low-pressure steam turbine Download PDF

Info

Publication number
JP2004100482A
JP2004100482A JP2002259935A JP2002259935A JP2004100482A JP 2004100482 A JP2004100482 A JP 2004100482A JP 2002259935 A JP2002259935 A JP 2002259935A JP 2002259935 A JP2002259935 A JP 2002259935A JP 2004100482 A JP2004100482 A JP 2004100482A
Authority
JP
Japan
Prior art keywords
steam
outer peripheral
peripheral wall
low
inner casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002259935A
Other languages
Japanese (ja)
Inventor
Takeshi Kitamura
北村 剛
Yasuyuki Uetsuki
植月 康之
Keizo Tanaka
田中 恵三
Yukihiro Otani
大谷 幸広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002259935A priority Critical patent/JP2004100482A/en
Publication of JP2004100482A publication Critical patent/JP2004100482A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent or restrain a steam inlet passage, in a low-pressure steam turbine, which extending into an inner casing and supplies steam to a cascade of blades, from being deformed by thermal stress. <P>SOLUTION: An outer-periphery wall 42 of steam extraction chambers 18a-18c for expanding a portion between a steam inlet part 26 and the steam inlet passage 28 of the low-pressure steam turbine to its outside in an axial direction of a rotor is provided, a steam intake area 44 is formed by the outer-periphery wall 42 of the steam extraction chambers, the outer-periphery wall 38 of the inner casing 16 and a side wall 40 to be filled with steam 22. The outer-periphery wall 42 is formed to be oblique for reinforcement, a connection part between the outer-periphery wall 42 and the side wall 40 is formed to be buildup welding or a large R portion, or a sleeve is provided at one part of the outer periphery walls 38, 42, and a rib to be fitted so as to remain a steam passing gap in the sleeve is provided on the other. Otherwise, a plurality of springs may be provided between the outer-periphery walls 38 and 42. A plurality of fins may be provided at a surface on the steam intake area side of the outer-periphery walls 38 and 42 to absorb heat from the steam 22. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、低圧蒸気タービンに関し、より詳細には、低圧蒸気タービンの内車室内に延在して翼列に蒸気を供給する蒸気入口通路が熱応力により変形するのを防止又は低減する技術に関する。
【0002】
【従来の技術】
まず、図9を参照して従来の低圧蒸気タービンについて説明する。
図9において、低圧蒸気タービン10は、ロータ12にその軸方向に沿って左右対称に設けられた多段の翼列14を有しており、これらの翼列14は内車室16により包囲されている。内車室16は翼列14の半径方向外側に配置された複数の抽気室18a,18b,18cを画成しており、これらの抽気室18a,18b,18cは、多段の翼列14の各段から所定圧力の蒸気を周方向に一様に抽気して外部へ導出する。そのため、複数の抽気室18a,18b,18cは、各々の圧力に応じてロータ12の軸方向に順次配設されており、図9の例では、中心軸線Oに沿って中心に配置された第1の抽気室18aが最も圧力の高い抽気のための抽気室となっており、この第1の抽気室18aに隣接して軸方向外側に配設されている第2の抽気室18bが、第1の抽気室18aよりも低圧の抽気のための抽気室となっており、またこの第2の抽気室18bに隣接してさらに軸方向外側に配設されている第3の抽気室18cが、さらに低圧の抽気のための抽気室となっている。
【0003】
さらに、ロータ12及び内車室16は、外車室20により全体が包囲されている。そして、内車室16内の翼列14に蒸気22を供給するために、蒸気供給管24、蒸気入口部26及び蒸気入口通路28が蒸気流れ方向に沿って順次設けられている。すなわち、蒸気入口部26は、蒸気供給管24の先端から蒸気流れ方向に先細りにテーパ状に延在して内車室16と外車室20との間の空間30を貫通し仕切壁32により画成されており、この仕切壁32は蒸気入口部26と空間30とを仕切り、空間30は排気室34と連通している。蒸気入口通路28は、蒸気入口部26から内車室16内に円筒状に延在して仕切壁36により画成されて、翼列14に蒸気22を供給する。この仕切壁36は蒸気入口通路28と第1の抽気室18aとを仕切っている。
【0004】
上記低圧蒸気タービン10は、上流側の中圧蒸気タービン(図示せず)からの蒸気(排気)により駆動される。すなわち、中圧蒸気タービンから蒸気供給管24及び蒸気入口部26を通して供給された蒸気22は、図1において矢印で示すように、蒸気入口通路28を通過して左右対称に翼列14へ供給される。翼列14を通過する間に、この蒸気の一部は抽気室18a,18b,18cを介して外部に抽気され、残りの大部分はその温度、圧力を低減しながら蒸気タービン10を駆動して、外車室20内に画成された排気室34へ排気される。排気室34へ排気された蒸気は、一例として、33℃の温度と0.05ataの圧力を有し、湿り度0.1の飽和蒸気となっている。
【0005】
このような従来の低圧蒸気タービン10では、蒸気入口部が過度に冷却されるのを防止するため、外車室20と内車室16との間に配置された蒸気供給管24の部分の外周面に液滴シールドを配設している(例えば、特許文献1参照)。
【0006】
【特許文献1】
特開2002−161707号公報(段落番号0013、図1)
【0007】
【発明が解決しようとする課題】
以上述べた従来の低圧蒸気タービンにおいては、内車室16と外車室20との間に位置して排気室34と連通している空間30には、低圧蒸気タービン10で仕事をし、温度を低下している蒸気が充満しているものである。したがって、この空間30に接している壁面、すなわち、蒸気入口部26を画成している仕切壁32及び複数の抽気室18a,18b,18cを画成している内車室16の外周壁38は空間30内に充満している低温の蒸気により冷却されることとなり、それらの温度が蒸気入口通路28及びそれ故仕切壁36の温度に比べて低くなる。このため、高温部である蒸気入口通路28及びそれ故仕切壁36の熱膨張を低温部である蒸気入口部26及びそれ故仕切壁32と内車室16の外周壁38とで抑制することとなり、熱応力が発生して変形することとなる。
【0008】
本発明は、以上述べた事情に鑑みなされたもので、低圧蒸気タービンにおいて、その内車室内に延在して翼列に蒸気を供給する蒸気入口通路が熱応力により変形するのを防止又は低減することを目的とする。
【0009】
【課題を解決するための手段】
上記の目的を達成するために、請求項1に記載の本発明は、ロータにその軸方向に沿って設けられた多段の翼列と、該翼列を包囲すると共に前記翼列から所定圧力の抽気を行うために前記翼列の各段の圧力に対応させて半径方向外側に配設された複数の抽気室を画成している内車室と、前記ロータ及び前記内車室を包囲する外車室と、蒸気供給管の先端から延在して前記外車室と前記内車室との間の空間を貫通する蒸気入口部と、該蒸気入口部から前記内車室内に延在して前記翼列に蒸気を供給する蒸気入口通路とを有する低圧蒸気タービンにおいて、前記蒸気入口部と前記蒸気入口通路との間の部分をロータの軸方向外側に拡張する前記抽気室の外周壁を設け、この抽気室の外周壁と前記内車室の外周壁及び側壁とにより蒸気取入れ空間を画成したことを特徴とする。
【0010】
この手段によれば、低圧蒸気タービンにおいて、蒸気入口部と蒸気入口通路との間の部分をロータの軸方向外側に拡張する抽気室の外周壁を設け、この抽気室の外周壁と内車室の外周壁及び側壁とにより蒸気取入れ空間を画成したので、この蒸気取入れ空間に高温の入口蒸気が充満し、蒸気入口部側部分の温度が蒸気入口通路側部分の温度に近づくことにより、温度勾配を小さくし、蒸気入口通路側部分の熱変形を防止又は低減することができる。
【0011】
請求項2に記載の本発明は、請求項1に記載の低圧蒸気タービンにおいて、前記抽気室の外周壁をロータの軸方向外側に向かって斜め上向きに延ばして、前記前記内車室の外周壁と側壁との間の隅部に接続したことを特徴とする。
【0012】
この手段によれば、低圧蒸気タービンにおいて、抽気室の外周壁をロータの軸方向外側に向かって斜め上向きに延ばして、内車室の外周壁と側壁との間の隅部に接続し、抽気室の外周壁を斜めにしたので、蒸気取入れ空間の強度を向上することができる。
【0013】
請求項3に記載の本発明は、請求項1に記載の低圧蒸気タービンにおいて、前記抽気室の外周壁と前記内車室の側壁とを別体に作り、その接続部を肉盛溶接したことを特徴とする。
【0014】
この手段によれば、低圧蒸気タービンにおいて、別体に作られる抽気室の外周壁と内車室の側壁との接続部を肉盛溶接したので、蒸気取入れ空間の強度を向上することができる。
【0015】
請求項4に記載の本発明は、請求項1に記載の低圧蒸気タービンにおいて、前記抽気室の外周壁と前記内車室の側壁とを一体に作り、その接続部を大きなアール部としたことを特徴とする。
【0016】
この手段によれば、低圧蒸気タービンにおいて、一体に作られる抽気室の外周壁と内車室の側壁との接続部を大きなアール部としたので、蒸気取入れ空間の強度を向上することができる。
【0017】
請求項5に記載の本発明は、請求項1に記載の低圧蒸気タービンにおいて、前記抽気室の外周壁及び前記内車室の外周壁の一方に複数のスリーブを設けると共に、他方にこれらの各スリーブ内に蒸気通過隙間を残して嵌入されるリブを設けたことを特徴とする。
【0018】
この手段によれば、低圧蒸気タービンにおいて、抽気室の外周壁及び内車室の外周壁の一方に複数のスリーブを設けると共に、他方にこれらの各スリーブ内に蒸気通過隙間を残して嵌入されるリブを設けたので、これらのスリーブとリブとが蒸気取入れ空間を補強し、かつ、それらの間の隙間が蒸気の通過を許して蒸気取入れ空間に充満させ、蒸気入口通路側部分の熱変形を抑制することができる。
【0019】
請求項6に記載の本発明は、請求項1に記載の低圧蒸気タービンにおいて、前記抽気室の外周壁と前記内車室の外周壁との間に複数のばねを設けたことを特徴とする。
【0020】
この手段によれば、低圧蒸気タービンにおいて、抽気室の外周壁と内車室の外周壁との間に複数のばねを設けたので、これらのばねが蒸気取入れ空間を補強し、これらのばねの反発力により蒸気入口通路側部分の熱変形を抑制することができる。
【0021】
請求項7に記載の本発明は、請求項1に記載の低圧蒸気タービンにおいて、前記抽気室の外周壁の蒸気取入れ空間側表面に複数のフィンを設けたことを特徴とする。
【0022】
この手段によれば、低圧蒸気タービンにおいて、抽気室の外周壁の蒸気取入れ空間側表面に複数のフィンを設けたので、これらのフィンが蒸気取入れ空間内の蒸気から熱を吸収し、抽気室の外周壁の温度を上昇させて蒸気入口通路の温度に近づけさせることにより、これら抽気室の外周壁と蒸気入口通路との部分の熱変形を防止又は低減することができる。
【0023】
請求項8に記載の本発明は、請求項1に記載の低圧蒸気タービンにおいて、前記内車室の外周壁の蒸気取入れ空間側表面に複数のフィンを設けたことを特徴とする。
【0024】
この手段によれば、低圧蒸気タービンにおいて、内車室の外周壁の蒸気取入れ空間側表面に複数のフィンを設けたので、これらのフィンが蒸気取入れ空間内の蒸気から熱を吸収し、内車室の外周壁及び蒸気入口部の温度を上昇させて蒸気入口通路及び抽気室の外周壁の温度に近づけさせることにより、内車室の外周壁と蒸気入口部との部分の熱変形を防止又は低減することができる。
【0025】
【発明の実施の形態】
以下、図面を参照して本発明の実施形態について詳述する。
【0026】
図1は本発明の第1実施形態を示す、低圧蒸気タービンの蒸気入口部分の断面図であり、図9に示した従来例と同一部分には同一の符号を付して、その詳細な説明は省略する。しかして、本実施形態によれば、低圧蒸気タービンの蒸気入口部26と蒸気入口通路28との間の部分をロータ12(図9参照)の軸方向外側に拡張する抽気室18a,18b,18cの外周壁42を設け、この抽気室の外周壁42と内車室16の外周壁38及び側壁40とにより蒸気取入れ空間44を画成したものである。換言すれば、図9に示した低圧蒸気タービンにおいて、蒸気入口部26を画成している仕切壁32と蒸気入口通路28を画成している仕切壁36とを分断し、新たに複数の抽気室18a,18b,18cの外周壁42を追加し(従来は内車室16の外周壁38が抽気室18a,18b,18cの外周壁を兼ねていた)、この抽気室の外周壁42を仕切壁36の上端とから内車室16の側壁40にまで水平に延在させて、蒸気取入れ空間44を形成したものである。
【0027】
上記の構成とした低圧蒸気タービンにおいては、蒸気入口部26と蒸気入口通路28との間の部分をロータの軸方向外側に拡張する抽気室18a,18b,18cの外周壁42を設け、この抽気室の外周壁42と内車室16の外周壁38及び側壁40とにより蒸気取入れ空間44を画成したので、この蒸気取入れ空間44に高温の入口蒸気22が充満し、蒸気入口部26側部分の温度が蒸気入口通路28側部分の温度に近づくことにより、温度勾配を小さくし、蒸気入口通路28側部分の熱変形を防止又は低減することができる。
【0028】
次に、図2は本発明の第2実施形態を示し、図1に示した第1実施形態と同一部分には同一の符号を付して、その詳細な説明は省略する。しかして、本実施形態によれば、蒸気取入れ空間44を画成する抽気室18a,18b,18cの外周壁42をロータの軸方向外側に向かって斜め上向きに延ばして、内車室16の外周壁38と側壁40との間の隅部46に接続したものである。このように、抽気室18a,18b,18cの外周壁42を斜めにすることにより、蒸気取入れ空間44の強度を向上することができる。
【0029】
次に、図3は本発明の第3実施形態を示し、図1に示した第1実施形態と同一部分には同一の符号を付して、その詳細な説明は省略する。しかして、本実施形態によれば、抽気室18a,18b,18cの外周壁42と内車室16の側壁40とを別体に作り、その接続部を符号48で示すように肉盛溶接したものである。このように、別体に作られる抽気室18a,18b,18cの外周壁42と内車室16の側壁40との接続部を肉盛溶接することにより、蒸気取入れ空間44の強度を向上することができる。
【0030】
次に、図4は本発明の第4実施形態を示し、図1に示した第1実施形態と同一部分には同一の符号を付して、その詳細な説明は省略する。しかして、本実施形態によれば、抽気室18a,18b,18cの外周壁42と内車室16の側壁40とを一体に作り、その接続部を大きなアール部50としたものである。このように、一体に作られる抽気室18a,18b,18cの外周壁42と内車室16の側壁40との接続部を大きなアール部50とすることにより、蒸気取入れ空間44の強度を向上することができる。
【0031】
次に、図5は本発明の第5実施形態を示し、図1に示した第1実施形態と同一部分には同一の符号を付して、その詳細な説明は省略する。しかして、本実施形態によれば、抽気室18a,18b,18cの外周壁42及び内車室16の外周壁38の一方(本実施形態では、内車室16の外周壁38)に複数のスリーブ60を設けると共に、他方(本実施形態では、抽気室18a,18b,18cの外周壁42)にこれらの各スリーブ60内に蒸気通過隙間62を残して嵌入されるリブ64を設けたものである。したがって、これらのスリーブ60とリブ64とが蒸気取入れ空間44を補強し、かつ、それらの間の隙間62が蒸気22の通過を許して蒸気取入れ空間44内に充満させ、蒸気入口通路28側部分の熱変形を抑制することができる。なお、好適には、これらのスリーブ60とリブ64とは、蒸気取入れ空間44内において、その中心線上でかつ周方向に等間隔を置いて配設すると良い。
【0032】
次に、図6は本発明の第6実施形態を示し、図1に示した第1実施形態と同一部分には同一の符号を付して、その詳細な説明は省略する。しかして、本実施形態によれば、抽気室18a,18b,18cの外周壁42と内車室16の外周壁38との間に複数のばね70を設け、これによりこれらのばね70が蒸気取入れ空間44を補強し、これらのばね70の反発力により蒸気入口通路28側部分の熱変形を抑制することができる。なお、好適には、これらのばね70は、空気取入れ空間44内において、その中心線上でかつ周方向に等間隔を置いて配設すると良い。
【0033】
次に、図7は本発明の第7実施形態を示し、図1に示した第1実施形態と同一部分には同一の符号を付して、その詳細な説明は省略する。しかして、本実施形態によれば、抽気室18a,18b,18cの外周壁42の蒸気取入れ空間44側表面に複数のフィン80を設け、これにより、これらのフィン80が蒸気取入れ空間44内の蒸気22から熱を吸収し、抽気室18a,18b,18cの外周壁42の温度を上昇させて蒸気入口通路28の温度に近づけさせることにより、これら抽気室の外周壁42と蒸気入口通路28との部分の熱変形を防止又は低減することができる。なお、好適には、これらのフィン80は、図示するように、蒸気取入れ空間44内において、ロータの軸方向に沿って等間隔を置いて配設すると良い。
【0034】
次に、図8は本発明の第8実施形態を示し、図1に示した第1実施形態と同一部分には同一の符号を付して、その詳細な説明は省略する。しかして、本実施形態によれば、内車室16の外周壁38の蒸気取入れ空間44側表面に複数のフィン90を設け、これにより、これらのフィン90が蒸気取入れ空間44内の蒸気22から熱を吸収し、内車室16の外周壁38及び蒸気入口部26の温度を上昇させて蒸気入口通路28及び抽気室18a,18b,18cの外周壁42の温度に近づけさせることにより、内車室16の外周壁38と蒸気入口部26との部分の熱変形を防止又は低減することができる。これらのフィン90は、図示するように、空気取入れ空間44内において、ロータの軸方向に沿って等間隔を置いて配設すると良い。
【0035】
【発明の効果】
以上述べたように、請求項1に記載の本発明によれば、低圧蒸気タービンにおいて、蒸気入口部と蒸気入口通路との間の部分をロータの軸方向外側に拡張する抽気室の外周壁を設け、この抽気室の外周壁と内車室の外周壁及び側壁とにより蒸気取入れ空間を画成したので、この蒸気取入れ空間に高温の入口蒸気が充満し、蒸気入口部側部分の温度が蒸気入口通路側部分の温度に近づくことにより、温度勾配を小さくし、蒸気入口通路側部分の熱変形を防止又は低減することができる。
【0036】
請求項2に記載の本発明は、請求項1に記載の低圧蒸気タービンにおいて、抽気室の外周壁をロータの軸方向外側に向かって斜め上向きに延ばして、内車室の外周壁と側壁との間の隅部に接続し、抽気室の外周壁を斜めにしたので、蒸気取入れ空間の強度を向上することができる。
【0037】
請求項3に記載の本発明は、請求項1に記載の低圧蒸気タービンにおいて、抽気室の外周壁と内車室の側壁とを別体に作り、その接続部を肉盛溶接したので、蒸気取入れ空間の強度を向上することができる。
【0038】
請求項4に記載の本発明は、請求項1に記載の低圧蒸気タービンにおいて、抽気室の外周壁と内車室の側壁とを一体に作り、その接続部を大きなアール部としたので、蒸気取入れ空間の強度を向上することができる。
【0039】
請求項5に記載の本発明は、請求項1に記載の低圧蒸気タービンにおいて、抽気室の外周壁及び内車室の外周壁の一方に複数のスリーブを設けると共に、他方にこれらの各スリーブ内に蒸気通過隙間を残して嵌入されるリブを設けたので、これらのスリーブとリブとが空気取入れ空間を補強し、かつ、それらの間の隙間が蒸気の通過を許して蒸気取入れ空間内に充満させ、蒸気入口通路側部分の熱変形を抑制することができる。
【0040】
請求項6に記載の本発明は、請求項1に記載の低圧蒸気タービンにおいて、抽気室の外周壁と内車室の外周壁との間に複数のばねを設けたので、これらのばねが蒸気取入れ空間を補強し、これらのばねの反発力により蒸気入口通路側部分の熱変形を防止又は低減することができる。
【0041】
請求項7に記載の本発明は、請求項1に記載の低圧蒸気タービンにおいて、抽気室の外周壁の蒸気取入れ空間側表面に複数のフィンを設けたので、これらのフィンが蒸気取入れ空間内の蒸気から熱を吸収し、抽気室の外周壁の温度を上昇させて蒸気入口通路の温度に近づけさせることにより、これら抽気室の外周壁と蒸気入口通路との部分の熱変形を防止又は低減することができる。
【0042】
請求項8に記載の本発明は、請求項1に記載の低圧蒸気タービンにおいて、内車室の外周壁の蒸気取入れ空間側表面に複数のフィンを設けたので、これらのフィンが蒸気取入れ空間内の蒸気から熱を吸収し、内車室の外周壁及び蒸気入口部の温度を上昇させて蒸気入口通路及び抽気室の外周壁の温度に近づけさせることにより、内車室の外周壁と蒸気入口部との部分の熱変形を防止又は低減することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態を示す、低圧蒸気タービンの蒸気入口部分の断面図である。
【図2】本発明の第2実施形態を示す、低圧蒸気タービンの蒸気入口部分の断面図である。
【図3】本発明の第3実施形態を示す、低圧蒸気タービンの蒸気入口部分の断面図である。
【図4】本発明の第4実施形態を示す、低圧蒸気タービンの蒸気入口部分の断面図である。
【図5】本発明の第5実施形態を示す、低圧蒸気タービンの蒸気入口部分の断面図である。
【図6】本発明の第6実施形態を示す、低圧蒸気タービンの蒸気入口部分の断面図である。
【図7】本発明の第7実施形態を示す、低圧蒸気タービンの蒸気入口部分の断面図である。
【図8】本発明の第8実施形態を示す、低圧蒸気タービンの蒸気入口部分の断面図である。
【図9】従来の低圧蒸気タービンの全体を概略的に示す断面図である。
【符号の説明】
10 低圧蒸気タービン
12 ロータ
14 翼列
16 内車室
18a,18b,18c 抽気室
20 外車室
22 蒸気
24 蒸気供給管
26 蒸気入口部
28 蒸気入口通路
30 空間
32 仕切壁
34 排気室
36 仕切壁
38 外周壁
40 側壁
42 外周壁
44 蒸気取入れ空間
46 隅部
48 肉盛溶接部
50 アール部
60 スリーブ
62 蒸気通過隙間
64 リブ
70 ばね
80,90 フィン
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a low-pressure steam turbine, and more particularly, to a technique for preventing or reducing a steam inlet passage that extends into an inner cabin of a low-pressure steam turbine and supplies steam to a cascade due to thermal stress. .
[0002]
[Prior art]
First, a conventional low-pressure steam turbine will be described with reference to FIG.
9, the low-pressure steam turbine 10 has a multi-stage cascade 14 provided on the rotor 12 symmetrically along the axial direction of the rotor 12, and these cascades 14 are surrounded by the inner casing 16. I have. The inner casing 16 defines a plurality of extraction chambers 18 a, 18 b, 18 c arranged radially outside the cascade 14, and these extraction chambers 18 a, 18 b, 18 c are provided in each of the multi-stage cascades 14. From the stage, steam at a predetermined pressure is uniformly extracted in the circumferential direction and led to the outside. Therefore, the plurality of extraction chambers 18a, 18b, and 18c are sequentially arranged in the axial direction of the rotor 12 according to the respective pressures. In the example of FIG. The first bleeding chamber 18a is a bleeding chamber for the bleeding with the highest pressure, and the second bleeding chamber 18b adjacent to the first bleeding chamber 18a and disposed axially outward is the second bleeding chamber 18b. A third bleeding chamber 18c, which is an bleeding chamber for bleeding at a pressure lower than that of the first bleeding chamber 18a and is disposed adjacent to the second bleeding chamber 18b and further outside in the axial direction, Furthermore, it is an extraction chamber for low-pressure extraction.
[0003]
Further, the rotor 12 and the inner casing 16 are entirely surrounded by the outer casing 20. In order to supply the steam 22 to the cascade 14 in the inner casing 16, a steam supply pipe 24, a steam inlet 26, and a steam inlet passage 28 are sequentially provided along the steam flow direction. That is, the steam inlet 26 extends from the tip of the steam supply pipe 24 in a tapered shape in the steam flow direction, penetrates the space 30 between the inner casing 16 and the outer casing 20, and is defined by the partition wall 32. The partition wall 32 partitions the steam inlet 26 from the space 30, and the space 30 communicates with the exhaust chamber 34. The steam inlet passage 28 extends cylindrically from the steam inlet portion 26 into the inner casing 16 and is defined by a partition wall 36, and supplies the steam 22 to the cascade 14. This partition wall 36 partitions the steam inlet passage 28 and the first bleed chamber 18a.
[0004]
The low-pressure steam turbine 10 is driven by steam (exhaust) from an upstream medium-pressure steam turbine (not shown). That is, the steam 22 supplied from the medium-pressure steam turbine through the steam supply pipe 24 and the steam inlet 26 passes through the steam inlet passage 28 and is supplied to the cascade 14 symmetrically as shown by arrows in FIG. You. While passing through the cascade 14, a part of the steam is extracted to the outside through the extraction chambers 18a, 18b, and 18c, and most of the remaining steam drives the steam turbine 10 while reducing its temperature and pressure. The exhaust gas is exhausted to an exhaust chamber 34 defined in the outer casing 20. The steam exhausted into the exhaust chamber 34 is, for example, a saturated steam having a temperature of 33 ° C. and a pressure of 0.05 ata and a wetness of 0.1.
[0005]
In such a conventional low-pressure steam turbine 10, in order to prevent the steam inlet from being excessively cooled, the outer peripheral surface of the steam supply pipe 24 disposed between the outer casing 20 and the inner casing 16 is prevented. (See, for example, Patent Document 1).
[0006]
[Patent Document 1]
JP-A-2002-161707 (paragraph number 0013, FIG. 1)
[0007]
[Problems to be solved by the invention]
In the conventional low-pressure steam turbine described above, the space 30 that is located between the inner casing 16 and the outer casing 20 and communicates with the exhaust chamber 34 is operated by the low-pressure steam turbine 10 to reduce the temperature. It is full of falling steam. Therefore, the wall surface in contact with the space 30, that is, the partition wall 32 defining the steam inlet 26 and the outer peripheral wall 38 of the inner casing 16 defining the plurality of bleed chambers 18a, 18b, 18c. Are cooled by the low-temperature steam filling the space 30, and their temperature is lower than the temperature of the steam inlet passage 28 and therefore the temperature of the partition wall 36. For this reason, the thermal expansion of the steam inlet passage 28 and the partition wall 36 which is a high temperature portion is suppressed by the steam inlet portion 26 and therefore the partition wall 32 which is a low temperature portion and the outer peripheral wall 38 of the inner casing 16. In this case, thermal stress is generated and deformed.
[0008]
The present invention has been made in view of the above-described circumstances, and in a low-pressure steam turbine, a steam inlet passage that extends into an inner casing and supplies steam to a cascade is prevented or reduced in shape due to thermal stress. The purpose is to do.
[0009]
[Means for Solving the Problems]
Means for Solving the Problems In order to achieve the above object, the present invention according to claim 1 includes a multi-stage cascade provided on a rotor along an axial direction thereof, a plurality of cascades surrounding the cascade and a predetermined pressure from the cascade. In order to perform the bleeding, the inner casing defining a plurality of bleeding chambers disposed radially outward corresponding to the pressure of each stage of the cascade, the rotor and the inner casing are surrounded. An outer casing, a steam inlet extending from a tip of a steam supply pipe, and penetrating a space between the outer casing and the inner casing, and extending from the steam inlet into the inner casing, and A low-pressure steam turbine having a steam inlet passage for supplying steam to the cascade, wherein an outer peripheral wall of the extraction chamber is provided to extend a portion between the steam inlet portion and the steam inlet passage to an axially outer side of a rotor; The outer wall of the bleed chamber and the outer wall and the side wall of the inner casing form a steam intake space. It is characterized in that form.
[0010]
According to this means, in the low-pressure steam turbine, the outer peripheral wall of the bleed chamber that extends the portion between the steam inlet portion and the steam inlet passage to the outside in the axial direction of the rotor is provided, and the outer peripheral wall of the bleed chamber and the inner casing are provided. Since the steam intake space is defined by the outer peripheral wall and the side wall of the steam intake space, the steam intake space is filled with high-temperature inlet steam, and the temperature of the steam inlet side portion approaches the temperature of the steam inlet passage side portion. The gradient can be reduced to prevent or reduce thermal deformation of the steam inlet passage side portion.
[0011]
According to a second aspect of the present invention, in the low-pressure steam turbine according to the first aspect, an outer peripheral wall of the bleed chamber extends obliquely upward toward an axially outer side of a rotor, and an outer peripheral wall of the inner casing is provided. And a side wall and a corner.
[0012]
According to this means, in the low-pressure steam turbine, the outer peripheral wall of the extraction chamber extends obliquely upward toward the outside in the axial direction of the rotor, and is connected to a corner between the outer peripheral wall and the side wall of the inner casing, thereby extracting the air. Since the outer peripheral wall of the chamber is inclined, the strength of the steam intake space can be improved.
[0013]
According to a third aspect of the present invention, in the low-pressure steam turbine according to the first aspect, an outer peripheral wall of the bleed chamber and a side wall of the inner casing are separately formed, and a connection portion thereof is overlay-welded. It is characterized by.
[0014]
According to this means, in the low-pressure steam turbine, since the connection between the outer peripheral wall of the extraction chamber and the side wall of the inner casing is formed by overlay welding, the strength of the steam intake space can be improved.
[0015]
According to a fourth aspect of the present invention, in the low-pressure steam turbine according to the first aspect, an outer peripheral wall of the bleeding chamber and a side wall of the inner casing are integrally formed, and a connection portion is formed as a large radius portion. It is characterized by.
[0016]
According to this means, in the low-pressure steam turbine, the connecting portion between the outer peripheral wall of the bleed chamber and the side wall of the inner casing is formed as a large radius part, so that the strength of the steam intake space can be improved.
[0017]
According to a fifth aspect of the present invention, in the low-pressure steam turbine according to the first aspect, a plurality of sleeves are provided on one of an outer peripheral wall of the bleeding chamber and an outer peripheral wall of the inner casing, and each of these sleeves is provided on the other. It is characterized in that a rib is provided in the sleeve so as to be inserted leaving a vapor passage gap.
[0018]
According to this means, in the low-pressure steam turbine, a plurality of sleeves are provided on one of the outer peripheral wall of the bleed chamber and the outer peripheral wall of the inner casing, and are fitted into the other sleeves while leaving a steam passage gap. Since the ribs are provided, these sleeves and ribs reinforce the steam intake space, and the gap between them allows the passage of steam to fill the steam intake space, thereby reducing the thermal deformation of the steam inlet passage side portion. Can be suppressed.
[0019]
According to a sixth aspect of the present invention, in the low-pressure steam turbine according to the first aspect, a plurality of springs are provided between an outer peripheral wall of the bleed chamber and an outer peripheral wall of the inner casing. .
[0020]
According to this means, in the low-pressure steam turbine, since a plurality of springs are provided between the outer peripheral wall of the extraction chamber and the outer peripheral wall of the inner casing, these springs reinforce the steam intake space, and The thermal deformation of the steam inlet passage side portion can be suppressed by the repulsive force.
[0021]
According to a seventh aspect of the present invention, in the low-pressure steam turbine according to the first aspect, a plurality of fins are provided on a surface of the outer peripheral wall of the extraction chamber on the side of the steam intake space.
[0022]
According to this means, in the low-pressure steam turbine, a plurality of fins are provided on the steam intake space side surface of the outer peripheral wall of the extraction chamber, so that these fins absorb heat from the steam in the steam intake space, and By increasing the temperature of the outer peripheral wall so as to approach the temperature of the steam inlet passage, it is possible to prevent or reduce the thermal deformation of the portion between the outer peripheral wall of the bleed chamber and the steam inlet passage.
[0023]
According to an eighth aspect of the present invention, in the low-pressure steam turbine according to the first aspect, a plurality of fins are provided on a surface of the outer peripheral wall of the inner casing on the side of the steam intake space.
[0024]
According to this means, in the low-pressure steam turbine, since a plurality of fins are provided on the surface of the outer peripheral wall of the inner casing on the side of the steam intake space, these fins absorb heat from the steam in the steam intake space, and By increasing the temperature of the outer peripheral wall of the chamber and the steam inlet to approximate the temperature of the outer peripheral wall of the steam inlet passage and the bleeding chamber, thermal deformation of the portion between the outer peripheral wall of the inner casing and the steam inlet is prevented or Can be reduced.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0026]
FIG. 1 is a cross-sectional view of a steam inlet portion of a low-pressure steam turbine, showing a first embodiment of the present invention. The same reference numerals are given to the same portions as those of the conventional example shown in FIG. Is omitted. Thus, according to the present embodiment, the bleed chambers 18a, 18b, and 18c that extend the portion between the steam inlet portion 26 and the steam inlet passage 28 of the low-pressure steam turbine outward in the axial direction of the rotor 12 (see FIG. 9). The steam intake space 44 is defined by the outer peripheral wall 42 of the extraction chamber and the outer peripheral wall 38 and the side wall 40 of the inner casing 16. In other words, in the low-pressure steam turbine shown in FIG. 9, the partition wall 32 that defines the steam inlet section 26 and the partition wall 36 that defines the steam inlet passage 28 are separated, and a plurality of partition walls are newly added. The outer peripheral walls 42 of the bleed chambers 18a, 18b, 18c are added (conventionally, the outer peripheral wall 38 of the inner casing 16 also serves as the outer peripheral walls of the bleed chambers 18a, 18b, 18c). The steam intake space 44 is formed so as to extend horizontally from the upper end of the partition wall 36 to the side wall 40 of the inner casing 16.
[0027]
In the low-pressure steam turbine having the above-described configuration, the outer peripheral walls 42 of the extraction chambers 18a, 18b, and 18c that extend the portion between the steam inlet portion 26 and the steam inlet passage 28 to the outside in the axial direction of the rotor are provided. Since the steam intake space 44 is defined by the outer peripheral wall 42 of the chamber and the outer peripheral wall 38 and the side wall 40 of the inner casing 16, the steam intake space 44 is filled with the high-temperature inlet steam 22, and the portion near the steam inlet 26. Is closer to the temperature of the steam inlet passage 28 side portion, the temperature gradient can be reduced, and thermal deformation of the steam inlet passage 28 side portion can be prevented or reduced.
[0028]
Next, FIG. 2 shows a second embodiment of the present invention, and the same portions as those of the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted. According to the present embodiment, the outer peripheral walls 42 of the extraction chambers 18 a, 18 b, 18 c that define the steam intake space 44 extend obliquely upward toward the outside in the axial direction of the rotor. It is connected to a corner 46 between the wall 38 and the side wall 40. Thus, by making the outer peripheral wall 42 of the bleeding chambers 18a, 18b, 18c be inclined, the strength of the steam intake space 44 can be improved.
[0029]
Next, FIG. 3 shows a third embodiment of the present invention, and the same portions as those of the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted. Thus, according to the present embodiment, the outer peripheral wall 42 of the bleed chambers 18a, 18b, 18c and the side wall 40 of the inner casing 16 are formed separately, and the connection portion is build-up welded as indicated by reference numeral 48. Things. As described above, the strength of the steam intake space 44 is improved by overlay welding the connection between the outer peripheral wall 42 of the bleed air chambers 18a, 18b, 18c and the side wall 40 of the inner casing 16. Can be.
[0030]
Next, FIG. 4 shows a fourth embodiment of the present invention, and the same portions as those of the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted. Thus, according to the present embodiment, the outer peripheral wall 42 of the bleed chambers 18a, 18b, 18c and the side wall 40 of the inner casing 16 are integrally formed, and the connection portion is a large radius portion 50. In this way, the strength of the steam intake space 44 is improved by making the connection between the outer peripheral wall 42 of the bleeding chambers 18a, 18b, 18c and the side wall 40 of the inner casing 16 large, as described above. be able to.
[0031]
Next, FIG. 5 shows a fifth embodiment of the present invention, and the same portions as those of the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted. Thus, according to the present embodiment, a plurality of outer peripheral walls 42 of the bleed chambers 18a, 18b, 18c and an outer peripheral wall 38 of the inner casing 16 (in the present embodiment, a plurality of outer peripheral walls 38 of the inner casing 16) are provided. In addition to providing the sleeve 60, the other (in the present embodiment, the outer peripheral wall 42 of the bleeding chambers 18 a, 18 b, 18 c) is provided with a rib 64 that is fitted into each of these sleeves 60 leaving a steam passage gap 62. is there. Therefore, the sleeve 60 and the rib 64 reinforce the steam intake space 44, and the gap 62 therebetween allows the steam 22 to pass therethrough to fill the steam intake space 44, and the steam inlet passage 28 side portion Can be suppressed from being thermally deformed. Preferably, the sleeve 60 and the rib 64 are disposed at equal intervals on the center line and in the circumferential direction in the steam intake space 44.
[0032]
Next, FIG. 6 shows a sixth embodiment of the present invention, and the same portions as those of the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted. Thus, according to the present embodiment, a plurality of springs 70 are provided between the outer peripheral wall 42 of the bleeding chambers 18a, 18b, 18c and the outer peripheral wall 38 of the inner casing 16, whereby these springs 70 take in steam. The space 44 is reinforced, and the repulsive force of these springs 70 can suppress the thermal deformation of the steam inlet passage 28 side portion. Preferably, these springs 70 are arranged at equal intervals on the center line and in the circumferential direction in the air intake space 44.
[0033]
Next, FIG. 7 shows a seventh embodiment of the present invention, and the same parts as those in the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted. Thus, according to the present embodiment, a plurality of fins 80 are provided on the surface of the outer peripheral wall 42 of the bleeding chambers 18a, 18b, 18c on the side of the steam intake space 44, so that these fins 80 are located inside the steam intake space 44. By absorbing heat from the steam 22 and raising the temperature of the outer peripheral wall 42 of the bleed chambers 18a, 18b, 18c to approximate the temperature of the steam inlet passage 28, the outer peripheral wall 42 of the bleed chamber and the steam inlet passage 28 Can be prevented or reduced. Preferably, these fins 80 are disposed at equal intervals in the steam intake space 44 along the axial direction of the rotor, as shown in the figure.
[0034]
Next, FIG. 8 shows an eighth embodiment of the present invention, and the same portions as those of the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted. According to the present embodiment, the plurality of fins 90 are provided on the surface of the outer peripheral wall 38 of the inner casing 16 on the side of the steam intake space 44, whereby the fins 90 are separated from the steam 22 in the steam intake space 44. By absorbing the heat and increasing the temperatures of the outer peripheral wall 38 of the inner casing 16 and the steam inlet 26 to approach the temperatures of the steam inlet passage 28 and the outer peripheral walls 42 of the bleed chambers 18a, 18b, 18c, the inner car Thermal deformation of the portion between the outer peripheral wall 38 of the chamber 16 and the steam inlet 26 can be prevented or reduced. These fins 90 are preferably arranged at equal intervals along the axial direction of the rotor in the air intake space 44 as shown.
[0035]
【The invention's effect】
As described above, according to the first aspect of the present invention, in the low-pressure steam turbine, the outer peripheral wall of the extraction chamber that extends the portion between the steam inlet and the steam inlet passage to the outside in the axial direction of the rotor is provided. Since the steam intake space is defined by the outer peripheral wall of the bleed chamber and the outer peripheral wall and side walls of the inner casing, the steam intake space is filled with high-temperature inlet steam, and the temperature of the steam inlet side portion is reduced. By approaching the temperature of the inlet passage side portion, the temperature gradient can be reduced, and thermal deformation of the steam inlet passage side portion can be prevented or reduced.
[0036]
According to a second aspect of the present invention, in the low-pressure steam turbine according to the first aspect, the outer peripheral wall of the extraction chamber extends obliquely upward toward the outside in the axial direction of the rotor, and the outer peripheral wall and the side wall of the inner casing are formed. And the outer peripheral wall of the extraction chamber is inclined, so that the strength of the steam intake space can be improved.
[0037]
According to a third aspect of the present invention, in the low-pressure steam turbine according to the first aspect, the outer peripheral wall of the bleed chamber and the side wall of the inner casing are formed separately, and the connection portion is welded by overlay welding. The strength of the intake space can be improved.
[0038]
According to a fourth aspect of the present invention, in the low-pressure steam turbine according to the first aspect, the outer peripheral wall of the bleeding chamber and the side wall of the inner casing are integrally formed, and the connection portion is formed as a large radius portion. The strength of the intake space can be improved.
[0039]
According to a fifth aspect of the present invention, in the low-pressure steam turbine according to the first aspect, a plurality of sleeves are provided on one of an outer peripheral wall of an extraction chamber and an outer peripheral wall of an inner casing, and the other is provided in each of these sleeves. The ribs that are fitted with leaving a steam passage gap in the space provide the air intake space with these sleeves and ribs, and the gap between them allows the passage of steam and fills the steam intake space. Thus, thermal deformation of the steam inlet passage side portion can be suppressed.
[0040]
According to a sixth aspect of the present invention, in the low-pressure steam turbine according to the first aspect, a plurality of springs are provided between the outer peripheral wall of the extraction chamber and the outer peripheral wall of the inner casing. It is possible to reinforce the intake space and prevent or reduce the thermal deformation of the steam inlet passage side portion by the repulsive force of these springs.
[0041]
According to a seventh aspect of the present invention, in the low-pressure steam turbine according to the first aspect, a plurality of fins are provided on a surface of the outer peripheral wall of the extraction chamber on the side of the steam intake space. By absorbing heat from the steam and raising the temperature of the outer peripheral wall of the extraction chamber to approximate the temperature of the steam inlet passage, thermal deformation of the portion between the outer peripheral wall of the extraction chamber and the steam inlet passage is prevented or reduced. be able to.
[0042]
According to an eighth aspect of the present invention, in the low-pressure steam turbine according to the first aspect, a plurality of fins are provided on a surface of the outer peripheral wall of the inner casing on the side of the steam intake space. By absorbing heat from the steam of the inner casing, the temperature of the outer peripheral wall of the inner casing and the temperature of the steam inlet are raised to be close to the temperature of the outer peripheral wall of the steam inlet passage and the bleeding chamber, so that the outer peripheral wall of the inner casing and the steam inlet are increased. It is possible to prevent or reduce thermal deformation of the part with the part.
[Brief description of the drawings]
FIG. 1 is a sectional view of a steam inlet portion of a low-pressure steam turbine, showing a first embodiment of the present invention.
FIG. 2 is a sectional view of a steam inlet portion of a low-pressure steam turbine, showing a second embodiment of the present invention.
FIG. 3 is a sectional view of a steam inlet portion of a low-pressure steam turbine, showing a third embodiment of the present invention.
FIG. 4 is a sectional view of a steam inlet portion of a low-pressure steam turbine, showing a fourth embodiment of the present invention.
FIG. 5 is a sectional view of a steam inlet portion of a low-pressure steam turbine, showing a fifth embodiment of the present invention.
FIG. 6 is a sectional view of a steam inlet portion of a low-pressure steam turbine, showing a sixth embodiment of the present invention.
FIG. 7 is a sectional view of a steam inlet portion of a low-pressure steam turbine, showing a seventh embodiment of the present invention.
FIG. 8 is a sectional view of a steam inlet portion of a low-pressure steam turbine, showing an eighth embodiment of the present invention.
FIG. 9 is a cross-sectional view schematically showing an entire conventional low-pressure steam turbine.
[Explanation of symbols]
Reference Signs List 10 low-pressure steam turbine 12 rotor 14 cascade 16 inner casing 18a, 18b, 18c extraction chamber 20 outer casing 22 steam 24 steam supply pipe 26 steam inlet 28 steam inlet passage 30 space 32 partition wall 34 exhaust chamber 36 partition wall 38 outer periphery Wall 40 Side wall 42 Outer peripheral wall 44 Steam intake space 46 Corner 48 Overlay weld 50 Round 60 Sleeve 62 Steam passage gap 64 Rib 70 Spring 80, 90 Fin

Claims (8)

ロータにその軸方向に沿って設けられた多段の翼列と、該翼列を包囲すると共に前記翼列から所定圧力の抽気を行うために前記翼列の各段の圧力に対応させて半径方向外側に配設された複数の抽気室を画成している内車室と、前記ロータ及び前記内車室を包囲する外車室と、蒸気供給管の先端から延在して前記外車室と前記内車室との間の空間を貫通する蒸気入口部と、該蒸気入口部から前記内車室内に延在して前記翼列に蒸気を供給する蒸気入口通路とを有する低圧蒸気タービンにおいて、
前記蒸気入口部と前記蒸気入口通路との間の部分をロータの軸方向外側に拡張する前記抽気室の外周壁を設け、この抽気室の外周壁と前記内車室の外周壁及び側壁とにより蒸気取入れ空間を画成したことを特徴とする低圧蒸気タービン。
A multi-stage cascade provided on the rotor along its axial direction, and a radial direction corresponding to the pressure of each stage of the cascade in order to surround the cascade and to extract a predetermined pressure from the cascade. An inner casing defining a plurality of bleeding chambers disposed outside, an outer casing surrounding the rotor and the inner casing, and an outer casing extending from a tip of a steam supply pipe and the outer casing. A low-pressure steam turbine having a steam inlet portion penetrating through a space between the inner casing and a steam inlet passage extending from the steam inlet portion into the inner casing and supplying steam to the cascade.
An outer peripheral wall of the bleed chamber that extends a portion between the steam inlet portion and the steam inlet passage outward in the axial direction of the rotor is provided, and an outer peripheral wall of the bleed chamber and an outer peripheral wall and a side wall of the inner casing are provided. A low-pressure steam turbine characterized by defining a steam intake space.
請求項1に記載の低圧蒸気タービンにおいて、前記抽気室の外周壁をロータの軸方向外側に向かって斜め上向きに延ばして、前記内車室の外周壁と側壁との間の隅部に接続したことを特徴とする低圧蒸気タービン。2. The low-pressure steam turbine according to claim 1, wherein an outer peripheral wall of the extraction chamber extends obliquely upward toward an axially outer side of the rotor and is connected to a corner between the outer peripheral wall and the side wall of the inner casing. A low-pressure steam turbine characterized by the above. 請求項1に記載の低圧蒸気タービンにおいて、前記抽気室の外周壁と前記内車室の側壁とを別体に作り、その接続部を肉盛溶接したことを特徴とする低圧蒸気タービン。2. The low-pressure steam turbine according to claim 1, wherein an outer peripheral wall of the bleed chamber and a side wall of the inner casing are formed separately, and a connection portion thereof is weld-welded. 請求項1に記載の低圧蒸気タービンにおいて、前記抽気室の外周壁と前記内車室の側壁とを一体に作り、その接続部を大きなアール部としたことを特徴とする低圧蒸気タービン。2. The low-pressure steam turbine according to claim 1, wherein an outer peripheral wall of the bleed chamber and a side wall of the inner casing are integrally formed, and a connection portion is a large radius portion. 3. 請求項1に記載の低圧蒸気タービンにおいて、前記抽気室の外周壁及び前記内車室の外周壁の一方に複数のスリーブを設けると共に、他方にこれらの各スリーブ内に蒸気通過隙間を残して嵌入されるリブを設けたことを特徴とする低圧蒸気タービン。2. The low-pressure steam turbine according to claim 1, wherein a plurality of sleeves are provided on one of an outer peripheral wall of the bleed chamber and an outer peripheral wall of the inner casing, and fitted into the other sleeves while leaving a steam passage gap in each of the sleeves. 3. A low-pressure steam turbine characterized by having ribs formed thereon. 請求項1に記載の低圧蒸気タービンにおいて、前記抽気室の外周壁と前記内車室の外周壁との間に複数のばねを設けたことを特徴とする低圧蒸気タービン。2. The low-pressure steam turbine according to claim 1, wherein a plurality of springs are provided between an outer peripheral wall of the bleed chamber and an outer peripheral wall of the inner casing. 3. 請求項1に記載の低圧蒸気タービンにおいて、前記抽気室の外周壁の蒸気取入れ空間側表面に複数のフィンを設けたことを特徴とする低圧蒸気タービン。2. The low-pressure steam turbine according to claim 1, wherein a plurality of fins are provided on a surface of the outer peripheral wall of the extraction chamber on the side of the steam intake space. 3. 請求項1に記載の低圧蒸気タービンにおいて、前記内車室の外周壁の蒸気取入れ空間側表面に複数のフィンを設けたことを特徴とする低圧蒸気タービン。2. The low-pressure steam turbine according to claim 1, wherein a plurality of fins are provided on a surface on a side of a steam intake space of an outer peripheral wall of the inner casing. 3.
JP2002259935A 2002-09-05 2002-09-05 Low-pressure steam turbine Withdrawn JP2004100482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002259935A JP2004100482A (en) 2002-09-05 2002-09-05 Low-pressure steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002259935A JP2004100482A (en) 2002-09-05 2002-09-05 Low-pressure steam turbine

Publications (1)

Publication Number Publication Date
JP2004100482A true JP2004100482A (en) 2004-04-02

Family

ID=32260793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002259935A Withdrawn JP2004100482A (en) 2002-09-05 2002-09-05 Low-pressure steam turbine

Country Status (1)

Country Link
JP (1) JP2004100482A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1630359A1 (en) * 2004-08-23 2006-03-01 Siemens Aktiengesellschaft Steam turbine with two steam chambers
JP2008240725A (en) * 2007-03-02 2008-10-09 Alstom Technology Ltd Steam turbine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1630359A1 (en) * 2004-08-23 2006-03-01 Siemens Aktiengesellschaft Steam turbine with two steam chambers
WO2006021513A1 (en) * 2004-08-23 2006-03-02 Siemens Aktiengesellschaft Steam turbine comprising two steam chambers
US8221063B2 (en) 2004-08-23 2012-07-17 Siemens Aktiengesellschaft Steam turbine with two steam chambers
JP2008240725A (en) * 2007-03-02 2008-10-09 Alstom Technology Ltd Steam turbine

Similar Documents

Publication Publication Date Title
KR100830276B1 (en) Turbine airfoil with improved cooling
JP4453826B2 (en) 3-circuit turbine blade
JP6169161B2 (en) Turbine blade
US9080447B2 (en) Transition duct with divided upstream and downstream portions
CA2830925C (en) Hot gas segment arrangement
CN204591358U (en) Rotor wheel assembly and turbogenerator
US9382810B2 (en) Closed loop cooling system for a gas turbine
JP2000297603A (en) Twin rib movable turbine blade
JP2004316654A (en) Complementary cooling type turbine nozzle
JP2017020493A (en) Turbine band anti-chording flanges
JP2011085136A (en) Turbomachine rotor cooling
JPH11270353A (en) Gas turbine and stationary blade of gas turbine
JP6496539B2 (en) Method for cooling turbine bucket and turbine bucket of gas turbine engine
JP2012072708A (en) Gas turbine and method for cooling gas turbine
US20170138265A1 (en) Heat exchangers and cooling methods for gas turbines
JP6584687B2 (en) Compressor bleed cooling system for a midframe torque disk downstream of a compressor assembly in a gas turbine engine
JP2010276022A (en) Turbomachine compressor wheel member
US20030133802A1 (en) Turbine blande/vane
JPH0814064A (en) Gas turbine and its turbine stage device
JP2004100482A (en) Low-pressure steam turbine
US10352244B2 (en) Combustor cooling structure
JP2004028096A (en) Simple support device for nozzle of gas turbine stage
JP2010261457A (en) Method and apparatus for turbine engine
US20130022444A1 (en) Low pressure turbine exhaust diffuser with turbulators
JP2007239756A (en) Gas turbine and stationary blade thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110