JP2004099942A - Evaporation source for deposition system, apparatus for heating the evaporation source, and apparatus for heating and evaporating deposition material by using them - Google Patents

Evaporation source for deposition system, apparatus for heating the evaporation source, and apparatus for heating and evaporating deposition material by using them Download PDF

Info

Publication number
JP2004099942A
JP2004099942A JP2002260683A JP2002260683A JP2004099942A JP 2004099942 A JP2004099942 A JP 2004099942A JP 2002260683 A JP2002260683 A JP 2002260683A JP 2002260683 A JP2002260683 A JP 2002260683A JP 2004099942 A JP2004099942 A JP 2004099942A
Authority
JP
Japan
Prior art keywords
evaporation source
heating
film forming
forming apparatus
cylindrical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002260683A
Other languages
Japanese (ja)
Inventor
Kafu Chin
陳 華夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIKO KENJI KAGI KOFUN YUGENKOS
KIKO KENJI KAGI KOFUN YUGENKOSHI
Original Assignee
KIKO KENJI KAGI KOFUN YUGENKOS
KIKO KENJI KAGI KOFUN YUGENKOSHI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIKO KENJI KAGI KOFUN YUGENKOS, KIKO KENJI KAGI KOFUN YUGENKOSHI filed Critical KIKO KENJI KAGI KOFUN YUGENKOS
Priority to JP2002260683A priority Critical patent/JP2004099942A/en
Publication of JP2004099942A publication Critical patent/JP2004099942A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaporation source in a deposition system, which is easily workable, is low in cost and has an excellent impact resistance by devising the material of the evaporation source for storing a deposition material and that of a cylindrical member constituting a heating apparatus for heating the evaporation source, and to provide the heating apparatus therefor, and a heating and evaporation system for the deposition material. <P>SOLUTION: The evaporation source 1 which can store the deposition material and the cylindrical member 1, in which the evaporation source can be put in and out, around which a heating wire 13 for heating the evaporation source 1 is wound and which is opened at top and bottom, are made of aluminum being the material, which is obtainable unexpensively, is relatively soft, has good workability such as machining and is higher in impact resistance and heat resistance than ceramics. Powerful passive films are formed by anodic treatment on the aluminum surface. The heating wires 13 constituting the heating equipment 20 together with the cylindrical member 12 are double wires and the coils of two wire portions 13a and 13b are set in two grooves 16a and 16b formed on the outer periphery of the cylindrical member 12. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、例えば、有機EL素子の製造において有機エレクトロルミネセンス(以下、「有機EL」と略す)発光材料等の有機原料を加熱・蒸発させ、ガス状の有機原料を基板上に蒸着して発光性の薄膜層を形成するなどの成膜装置において、成膜原料を収容した成膜装置用蒸発源、その蒸発源を加熱する加熱装置、及びそれらを組み合わせて用いた成膜材料加熱蒸発装置に関する。
【0002】
【従来の技術】
薄膜表示素子や薄膜半導体素子において成膜される薄膜層としては、有機EL発光材料から成る薄膜発光層の他に、半導体層や、電極材料からなる薄膜状の電極層等が挙げられる。これらの薄膜表示素子や薄膜半導体素子を製造する基本的な技術の一つとして、真空チャンバのような真空雰囲気の中に蒸発源と成膜用基板とを適宜組み合わせて配置させ、成膜材料を加熱し、生じた蒸発ガスを基板に線状、点状及び面状のパターンで蒸着させることで成膜する真空蒸着法がある。
【0003】
従来、蒸発源を加熱する装置として、成膜材料を電気抵抗が比較的高い金属容器に収容し、その金属容器に電流を通じることによって容器自体を加熱し、成膜原料を蒸発させる抵抗加熱法がある(例えば、特許文献1参照)。抵抗加熱法では、成膜材料を収容することができる容器は、通常、タングステン、タンタル、モリブデン等の融点の比較的高い金属材料を薄板に加工し、その薄板から更に成形して製作される。抵抗加熱法は加熱装置としての構造が比較的簡単であるが、成膜材料の1回の投入量が少ないので成膜材料の補充を頻繁に繰り返す必要がある。そのため、成膜装置の稼働率が低下するので、成膜素子の製造コスト低減に限界がある。また、成膜材料の別の蒸発方法として、電子ビームやレーザービーム等のようにビームの直接照射による方法も知られている。
【0004】
一方、成膜材料の1回の投入量が多い加熱・蒸発方法として、成膜材料を収容したセル型蒸発源を間接的に加熱する方法がある(例えば、特許文献2参照)。蒸発源の間接加熱方式は、蒸発源の周囲に配設された発熱コイル等によって加熱されて高温になった加熱体からの輻射熱によって蒸発源を加熱する方式であって、蒸発源を加熱してからの成膜材料の蒸発又は加熱中止してからの成膜材料の蒸発停止までの応答性や蒸着レートの制御については直接加熱方式と比較してやや低下するものの、構造が簡単であるため、広く用いられている。特に、有機EL素子の製造の場合には、成膜材料である高価な有機材料の蒸発温度が低いので、放熱効率が悪く、熱応答性が更に低下し製造コストの低減が一層困難である。
【0005】
従来の蒸発源加熱用の加熱装置の一例が、図4に示されている。図4に示すように、蒸発源加熱用の加熱装置30は、下端部34で取付け板31によって蒸発筒45に取り付けられ且つ上下の端部が開口した筒体32と、ヒータ電源44に接続され且つ筒体32の周囲に密着巻装されたニクロム線等からなる加熱用ワイヤ33とを備えている。加熱用ワイヤ33に通電することで筒体32を加熱し、成膜材料(例えば、有機原料)とそれを収容した坩堝(例えば、ガラス製)のような容器とから成るセル型蒸発源40が高温になった筒体32からの輻射熱によって加熱される。蒸発筒45は、図示しない真空チャンバ内に配置されている。
【0006】
セル型蒸発源40は、操作棒である昇降棒41の昇降によって、開口した下端部34から筒体32の内部36に出入りされる。筒体32からの輻射熱によって加熱されて蒸発した成膜材料は、開口した上端部35から上昇して蒸発筒45の内部に放出され、蒸発筒45上部に設けられるシャッタSが開いた状態のときに、マスクMに形成されている開口を通じて基板Bに蒸着される。筒体32の温度は筒体32に備わる温度センサ42によって検出され、温度制御装置43が検出温度に基づいて加熱用ワイヤ33に流れる電流を調節し、筒体32の温度を制御する。加熱用ワイヤ33は、両端子が下端部34側に来るように二重にして筒体32の外周に巻かれ、折り返された先端側反転部33aがU字状に折り曲げられ、筒体32の上端部35に形成された係合部35aに係合されている。
【0007】
真空環境下で蒸発源を間接的に加熱するには、加熱装置が発する輻射熱によって蒸発源を加熱することになるため、加熱装置を相当の高温に加熱する必要がある。成膜装置用蒸発源及びその加熱装置の耐熱性を向上するため、蒸発源及び加熱装置の筒体をセラミックで製作することも考えられている。セラミック製のセル型蒸発源や筒体は、セラミックスパウダからセラミックス容器あるいはセラミックスパイプに焼成して製作されるが、一般に高価であり、しかも衝撃に弱いため割れやすい。寸法の変更に対しては柔軟な対応ができず、蒸発源の収容容量やセラミック製の筒体の熱容量を変更する場合には、金型から設計し直す必要がありコスト上昇要因となっている。また、セラミックの加工性は一般的に低いため、セル型蒸発源の成形や、筒体の外周に加熱用ワイヤを所定のピッチで巻き付けるための螺旋溝を形成する等の加工が難しく、加熱特性を長期に渡って維持しつつ製造コストを低減することが困難である。また、蒸発源加熱用の筒体については、螺旋溝を形成する必要を回避すると共に保温性を得るために、加熱用ワイヤにセメントを付着してセラミックスパイプの外周に巻き付けて焼成することも行われているが、製造過程が複雑化して製造コスト上昇要因となると共に、加熱用ワイヤはセメントに埋設状態となるため、焼き切れた場合の加熱用ワイヤの断線修理が事実上、不可能となり、使い捨てとなる。更に、セラミック製の蒸発セルや筒体は、1200℃という高温にも耐えられる耐熱性を示すが、成膜材料が有機原料である場合、加熱用ワイヤであるニクロム線には、通常、3〜5Aの電流を流して有機原料を400℃までの比較的低い加熱温度で加熱することで充分であり、セラミック製の蒸発セルや筒体の耐熱性は一般には過剰性能である。
【0008】
【特許文献1】
特開平10−319870号公報(第3頁〜第4頁、図3)
【特許文献2】
特開平11−229123号公報(第2頁、図7)
【0009】
【発明が解決しようとする課題】
ニクロム線のようなワイヤ状の加熱手段は、比較的安価で加工しやすい材料から製作される有用な加熱手段であって、これに代わる加熱手段は現在では見いだし難い。そこで、成膜材料を収容して成膜材料を加熱・蒸発させるための成膜装置用蒸発源、又はワイヤ状の加熱手段と共に加熱装置を構成する筒体の材料に着目して、低コストで製作可能であり且つ加工がしやすく耐衝撃性にも優れている成膜装置用蒸発源、成膜装置用蒸発源を加熱する蒸発源加熱装置、及びそれらを用いた成膜材料加熱蒸発装置を得る点で解決すべき課題がある。
【0010】
この発明の目的は、成膜素子を製造するために加熱・蒸発させた成膜材料を基板等に蒸着する成膜装置において、加熱蒸発すべき成膜材料を収容した成膜装置用蒸発源、又は成膜材料を加熱・蒸発させるため出入りする成膜装置用蒸発源を取り囲んで加熱する筒体を、加工がし易く、低コストで、且つ耐熱性と耐衝撃性を備えた材料から製作することにより、安価に製作でき、取扱いが容易であり、蒸発温度の高い成膜材料にも対応できる成膜装置用蒸発源、成膜装置用蒸発源の加熱装置及びそれらを用いた成膜材料加熱蒸発装置を提供することである。
【0011】
【課題を解決するための手段】
上記の課題を解決するため、この発明による成膜装置用蒸発源は、基板上に蒸着するために加熱される成膜材料を収容する収容部を備え、全体がアルミニウムで製作されていることから成っている。
【0012】
この成膜装置用蒸発源によれば、材料はアルミニウムであって、セラミックス材料と比較して、安価に入手可能であると共に比較的に柔らかい金属材料であるので、通常の工作機械を用いた切削や穴ぐり等の加工によって成形が良好である。また、収容部の周壁の径、厚さや長さ等の形状は、金型から製作し始めなければならないセラミックス製の場合と比較しても、金型が不要であると共に、加工の条件変更だけで済む等、仕様に基づいて容易に対応することができる。更に、セラミックス製のセル型蒸発源と比較して、衝撃に強く、たとえ落下させても破損することはない。耐熱性についても、アルミニウム製の蒸発源は、800℃の蒸発温度を有する成膜材料は勿論のこと1000℃の高温にも耐え、通常の蒸発材料については充分過ぎるほどに対応可能である。
【0013】
この成膜装置用蒸発源において、前記アルミニウムは、陽極処理されたものとすることができる。成膜装置用蒸発源を形成するアルミニウムを陽極処理することにより、成膜装置用蒸発源の表面が不動態被膜としての酸化アルミニウム層で被覆されて傷付きにくい硬化処理された状態となり、熱伝導性はもとより、長期に渡って使用されても表面が腐食や損傷を受けることがない保護性に富んだ蒸発源が得られる。
【0014】
この成膜装置用蒸発源において、前記収容部は上端が開口した筒状容器に形成されており、前記収容部の底側には、前記成膜装置用蒸発源を加熱する加熱装置に対して出入りさせるための操作棒が嵌入可能な係合部が、前記収容部と一体的に前記アルミニウムで成形されている。成膜装置用蒸発源には、成膜装置用蒸発源を加熱装置内に上昇・下降させるために操作棒が係合する係合部が設けられるが、アルミニウムの加工容易性や材料の低コスト性を考慮して、係合部についても収容部と一体的に形成することができる。また、そうして形成された成膜装置用蒸発源は、保管や運搬、あるいは装置内への装着等の取扱いが容易となる。
【0015】
また、上記の課題を解決するため、この発明による成膜装置用蒸発源の加熱装置は、成膜材料を収容した成膜装置用蒸発源が内部に出入り可能な両端開放形の筒体と、前記筒体の外周に巻装される加熱用ワイヤとを備え、前記筒体がアルミニウムで製作されていることから成っている。
【0016】
この成膜装置用蒸発源の加熱装置によれば、加熱用ワイヤに通電する等して筒体を加熱することで筒体は高温となり、筒体は成膜材料を収容する成膜装置用蒸発源を取り囲み、成膜装置用蒸発源蒸発源をその全周囲から加熱する。筒体を形成している材料はアルミニウムであって、セラミックス材料と比較して、低コストで入手可能であると共に比較的に柔らかい金属材料であるので、通常の工作機械を用いた切削や穴ぐり等の加工によって、溝、切欠き、孔、穴等の成形が良好である。また、周壁の径、厚さや長さ等の形状は、金型から製作し始めなければならないセラミックス製の場合と比較して、工作機械における加工条件の設定だけで済む等、仕様に基づいて容易に対応することができる。更に、セラミックス製の筒体と比較して、衝撃に強く、たとえ落下させても破損することはない。耐熱性についても、アルミニウム製筒体は、800℃の蒸発温度を有する成膜材料は勿論のこと1000℃の高温にも耐え、通常の蒸発材料については充分に対応可能である。
【0017】
この成膜装置用蒸発源の加熱装置において、前記筒体の外周には、前記加熱用ワイヤを巻装させるための螺旋溝を形成することができる。筒体は、上記のように金属としては硬さの柔らかいアルミニウム製であるので切削加工性に優れており、筒体を回転させながらバイトにて切削するという通常の加工法により螺旋溝を容易に形成することが可能である。そうして形成された螺旋溝に加熱用ワイヤを巻装させることで、筒体の外周が簡素になると共に、長期の使用に際しても、加熱用ワイヤの筒体への巻装位置がずれることなく定位置に巻装され、筒体の温度に偏りが生じるのを回避することができる。
【0018】
この成膜装置用蒸発源の加熱装置において、前記加熱用ワイヤは途中で折り返して形成された二重ワイヤであり、前記筒体には、一方の端部の縁部に、前記二重ワイヤの折り返し端部が係止可能な係止用切欠きを形成されており、前記螺旋溝は前記二重ワイヤ折返し前後の各ワイヤ部分が嵌め込まれる二条溝とすることができる。加熱用ワイヤは途中で折り返して二重ワイヤとして構成することにより、例えば、加熱用ワイヤに通電するときの両端子が離れることなく、両端子を揃えた状態で加熱用ワイヤを取り扱うことができる。二重ワイヤに構成された加熱用ワイヤは、例えば、筒体の基端側から巻装され、二重ワイヤの先端となる折り返し端部が筒体の先端部の縁部に形成されている係止用切欠きに係止される。螺旋溝は二条溝であって、各条ごとに二重ワイヤの各ワイヤ部分が別々に嵌め込まれるので、加熱用ワイヤが互いに接触して短絡することがない。
【0019】
この成膜装置用蒸発源の加熱装置において、前記筒体は、陽極処理されたアルミニウムで製作することができる。筒体を形成するアルミニウムを陽極処理することにより、筒体は、表面が不動態被膜としての酸化アルミニウム層で被覆されて傷付きにくい硬化処理された状態となり、被覆されていない加熱用ワイヤに対して絶縁性が確保されると共に、保護性に富んだ筒体となって長期に渡って使用されても筒体の表面が腐食や損傷を受けることがない。
【0020】
この成膜装置用蒸発源の加熱装置において、前記加熱用ワイヤが巻装された前記筒体には、アルミニウム製の保温シースを嵌着することができる。保温シースは、加熱用ワイヤが巻装された筒体に嵌着され、筒体を取り囲んだ状態で覆う状態となり、発熱する加熱用ワイヤや高温化した筒体から発する熱が加熱装置の外部に散逸するのを防止して加熱装置を保温する。保温シースによれば、蒸発筒内にて放熱して冷却されやすい筒体を保温して、成膜材料の加熱・蒸発を確保し、加熱用電力の削減等の省エネルギーを図ることができる。また、保温シースは、異物の衝突に起因した加熱用ワイヤの切断等の損傷をも防止することができる。更に、加熱用ワイヤが切断等の損傷を受けたときには、加熱用ワイヤがセラミックスで焼き固められている場合にはセラミックスを破砕して加熱用ワイヤを取り出し、更に修理後に修復する必要があるが、保温シースが用いられている場合には、保温シースを取り外すだけで筒体の外側面に巻装された加熱用ワイヤを交換したり修理等の対策を施して、筒体を再使用することが可能である。
【0021】
保温シースを嵌着した成膜装置用蒸発源の加熱装置において、前記保温シースは、陽極処理されている。保温シースを陽極処理することによって、保温シースの表面に酸化皮膜の硬化保護層が形成され、加熱用ワイヤに対する絶縁性を確保することができると共に、腐食や損傷を受けにくくして耐久性を高めることができる。
【0022】
また、この発明による成膜材料の加熱蒸発装置は、上記したいずれかの成膜装置用蒸発源と、上記したいずれかの成膜装置用蒸発源の加熱装置とを組み合わせて構成されている。成膜装置用蒸発源と、成膜装置用蒸発源が内部に出入りする加熱装置とをいずれもアルミニウム製、特に陽極処理したアルミニウムとすることで、成膜材料の加熱蒸発装置として、低コストな材料でありながら軽量であり、且つ成形において金型不要であって切削等の加工性がよく、仕様に合わせて正確な寸法を持つ組合せが容易に実現できる。更に、加熱蒸発装置として、アルミニウム製であることによって、セラミックス製のものと比較して耐衝撃性に優れており、有機材料の蒸着を得るには充分な耐熱性を備えている。
【0023】
【発明の実施の形態】
以下、添付した図面に基づいて、この発明による成膜装置用蒸発源、成膜装置用蒸発源の加熱装置、及びそれらを組み合わせて用いている成膜材料の加熱蒸発装置の実施例を説明する。図1は、この発明による成膜装置用蒸発源の一実施例を示す斜視図である。蒸発筒、及び基板やマスクを備えた成膜装置自体の構造は、例えば、図4に示す構造で良く、再度の説明を省略する。
【0024】
図1に示す成膜装置用蒸発源1(以下、簡単化のため単に「蒸発源1」という)は、基板に蒸着させるべき有機原料を収容し、周囲からの加熱によって有機原料を蒸発させるセル型蒸発源である。蒸発源1は、有機原料等の成膜材料8を収容する概略円筒状の収容部2を備えている。収容部2は、上端部3が開放した筒状容器の構造を有している。収容部2の底部4には、蒸発源1を昇降させるための操作棒としての昇降棒41(図4参照)が嵌入して係合する係合部5が一体的に形成されている。係合部5は、収容部2よりも小径で下方が開口した概略円筒状に形成されている。係合部5には、蒸発源1の装填及び取外し時において、昇降棒41の嵌入及び抜け出しを容易にするために、係合部5内部の気体が外部に対して出入り可能な通気孔6が形成されている。
【0025】
蒸発源1は、全体がアルミニウムで製作される。アルミニウムは、安価に入手可能な金属材料であり、収容部2及び係合部5を形成する筒体の半径、長さ及び壁厚を含む形状は、仕様の変更に応じて容易に対応可能であり、それによって熱容量も容易に変更することができる。アルミニウムは、金属としては比較的に柔らかく、切削や穿孔等の加工性が優れている。また、アルミニウム製の蒸発源1は、セラミックス製の場合と比較して衝撃に強く、たとえ落下させても破損することはなく、取扱い性が優れている。更に、耐熱性についても、1000℃程度の高温にも耐え、200〜300℃の蒸発温度を有する有機原料の加熱・蒸発は勿論のこと、800℃の蒸発温度を有する成膜材料についても加熱・蒸発させることができる。
【0026】
アルミニウム製の蒸発源1は、収容部2、係合部5及び通気孔6が形成された段階で陽極処理される。陽極処理では、クロム酸や硫酸のような電解質溶液中で、蒸発源1を電池の陽極として電流を通すことによって、蒸発源1の表面に強力な酸化保護膜(酸化アルミニウム層)である不動態被膜が形成される。蒸発源1を陽極処理することで、金属的光沢が失せて柔触感となり取扱いがし易くなると共に、蒸発源1の表面は硬化されて腐食や損傷を一層受けにくくすることができる。
【0027】
図2は、この発明による成膜装置用蒸発源の加熱装置の一実施例を示す斜視図である。図2に示す成膜装置用蒸発源の加熱装置10(以下、単に「加熱装置10」という)は、上下両端が開放形となっている筒体12と、筒体12の外周に巻装される加熱用ワイヤ13とを備えており、筒体12は成膜装置において上下の向きに配置されている。筒体12には、昇降棒41の操作によって、開口した下端部14を通して蒸発源1が出入り可能であり、蒸発源1に収容された成膜材料8(図1又は図3参照)は、加熱・蒸発されるときに、開口した上端部15から蒸発筒45内に拡散する。蒸発ガスの基板Bへの蒸着については、従来と同様であるので、詳細を省略する。
【0028】
筒体12は、蒸発源1と同様、アルミニウムで製作されている。アルミニウムは、安価に入手可能な金属材料であり、筒体の半径、長さ及び壁厚を含む形状は、仕様の変更に応じて容易に変更可能であり、それによって熱容量も容易に変更することができる。アルミニウムは、金属としては比較的に柔らかく、切削や穿孔等の加工性が優れている。また、アルミニウム製の筒体12は、セラミックス製の場合と比較して衝撃に強く、たとえ落下させても破損することはなく、取扱い性が優れている。更に、耐熱性についても、1000℃程度の高温にも耐え、200〜300℃の蒸発温度を有する有機原料の加熱・蒸発は勿論のこと、800℃の蒸発温度を有する成膜材料についても加熱・蒸発させることができる。
【0029】
加熱装置10の筒体12の外周には、加熱用ワイヤ13を収容して巻装可能な断面矩形の螺旋溝16が形成されている。また、筒体12の上端部15の縁部に、加熱用ワイヤ13が係止可能な係止用切欠き17が形成されている。筒体12は、アルミニウムが示す良好な切削加工性によって、螺旋溝16や係止用切欠き17を容易に形成することができる。螺旋溝16は、溝16a,16bから成る二条溝であり、折り返された加熱用ワイヤ13の各ワイヤ部分13a,13bをそれぞれ別々に溝16a,16b内に嵌め込んでおり、各ワイヤ部分13a,13bが途中で互いに接触して電気的に短絡するのを防止している。筒体12の下端部14には、一部に雄ねじ部19が形成されていると共に、雄ねじ部19の上方には環状の棚面21を有する鍔部20が一体に形成されている。蒸発筒45に設けられた取付け板(図5に示す31)の取付け孔に下端部14を挿通し、鍔部20と雄ねじ部19に螺合されるナット22とによって取付け板31を挟み込むことによって、加熱装置10の筒体12を取付け板31に取り付けることができる。螺旋溝16、係止用切欠き17及び雄ねじ部19が形成された筒体12は、この段階で陽極処理される。陽極処理は、蒸発源1の場合と同様であるので、再度の詳細な説明を省略する。筒体12を陽極処理することで、筒体12の表面は絶縁性となって被覆されていない加熱用ワイヤ13を直接巻装しても、電気的に短絡することが防止される。
【0030】
加熱用ワイヤ13は、通電によって発熱するニクロム線から構成することができる。加熱用ワイヤ13は、途中、即ち、長さのちょうど半分の部分で折り返して二重ワイヤに形成される。二重ワイヤとして構成された加熱用ワイヤ13の折り返し部13cが筒体12の上端部15に形成されている係止用切欠き17に係止され、その両側のワイヤ部分13a,13bがそれぞれ陽極処理が施された筒体12の溝16a,16bに収容されつつ下端部14側に向かって巻装される。加熱用ワイヤ13は螺旋溝16内に完全に収容される構造になり、加熱用ワイヤ13が筒体12の外周面から外側にはみ出た煩雑な構造にならない。従って、長期に渡って使用しても加熱用ワイヤ13を定位置で巻装維持し、加熱用ワイヤ13への通電時に筒体12を均等又は所望の温度分布で加熱することができる。筒体12には、鍔部20の上下両側に跨がって延びる軸方向溝23a,23bを、溝16a,16bよりも若干深い深さに形成することができる。軸方向溝23a,23bは、雄ねじ部19よりも下方に延びている。軸方向溝23bは、軸方向溝23aの直径方向反対側に位置する場所に形成されているが、煩雑さを回避するため図示を省略している。加熱用ワイヤ13の各ワイヤ部分13a,13bは、ナット22を雄ねじ部19に締め付けたとき、それぞれ軸方向溝23a,23bを通してナット22の下方より引き出すことができる。
【0031】
図3はこの発明における加熱装置に保温シースが適用された一部断面側面図である。筒体12の外側には、アルミニウム製の保温シース25を嵌着することができる。加熱用ワイヤ13は螺旋溝16内に収容された状態で巻装されるので、保温シース25は、加熱用ワイヤ13に妨げられることなく筒体12に嵌着される。保温シース25は、加熱用ワイヤ13が巻装された筒体12に、その下端部26が棚面21に突き当たるまで嵌着される。この状態で、筒体12の上端部27は、筒体12の上端部15よりも僅かに上方まで延びる位置にある。保温シース25についても陽極処理を施して酸化被膜から成る硬化保護層が形成されているので、腐食や異物の衝突による損傷を受けにくい。また、硬化保護層は絶縁性を示すので、仮に加熱用ワイヤ13が保温シース25に接触しても短絡が生じることはない。保温シース25は、加熱用ワイヤ13が熱膨張に起因して螺旋溝16から外れるのを防止する作用も奏する。保温シース25は、発熱する加熱用ワイヤ13や高温化した筒体12からの蒸発筒45内での放熱を妨げ、冷却されやすい筒体12の保温を行い、加熱に要する電力の削減等の省エネルギーを図ることができる。保温シース25には、棚面21に突き当たった状態で筒体12に形成されている温度センサ取付け部12aに対応して孔が形成されている。筒体12の孔を通して、温度センサ42用のワイヤが外部に導き出される。
【0032】
加熱用ワイヤ13が断線したときに、セラミックス製の筒体を用いた加熱装置では、加熱用ワイヤ13が焼き固まったセメント状のセラミックス中に埋設状態にあるため、セメントを破砕して加熱用ワイヤ13を取り出し、修理の後、セメントを修復することになるので、事実上、交換・修理が不可能であり、高価な加熱装置が使い捨てとなっていた。本発明では、保温シース25を筒体12から取り外すことで、加熱用ワイヤ13の交換・修理を簡単に行うことができ、筒体12の再使用が可能である。
【0033】
この発明においては、成膜材料の加熱蒸発装置として、蒸発源1と蒸発源加熱装置10とを組み合わせて用いることができる。即ち、図3に示すように、成膜材料8を収容した蒸発源1を蒸発源加熱装置10の内部に昇降棒41で昇降させ、上昇時に蒸発源1を蒸発源加熱装置10が取り囲んで蒸発源1を加熱し、収容された成膜材料8を加熱・蒸発させている。蒸発源1と蒸発源加熱装置10とを、共にアルミニウム製とし、あるいは陽極処理を施すことで、成膜材料の加熱蒸発装置として、同じ製造、保管、運搬等について、同様の取扱いや品質管理を行うことができる。また、同じ材料を用いることで、成膜装置の仕様に応じて熱的設計や熱管理がしやすくなる。
【0034】
【発明の効果】
この発明による成膜装置用蒸発源は、上記のように、成膜材料を収容可能であって全体がアルミニウムで製作されている。また、成膜装置用蒸発源の加熱装置は、成膜装置用蒸発源が内部に出入り可能な両端開放形の筒体と、前記筒体の外周に巻装される加熱用ワイヤとを備え、前記筒体がアルミニウムで製作されていることから成っており、加熱用ワイヤに通電する等して筒体を加熱することで筒体は高温となり、筒体は、成膜材料を収容した成膜装置用蒸発源を外側から輻射熱にて加熱する。成膜装置用蒸発源、及び加熱装置の筒体はアルミニウムで製作されているので、低コストで入手可能な金属材料であると共に、比較的に柔らかくて切削等の加工性が良好な材料である。従って、成膜装置用蒸発源、及びその加熱装置は、安価に且つ任意の形状に製作可能である。また、セラミックス製の筒体と比較して、耐衝撃性に優れている。また、耐熱性についても、1000℃の高温にも耐え、800℃の蒸発温度を有する成膜材料についても対応可能である。また、アルミニウム製の成膜装置用蒸発源や筒体を陽極処理することにより、表面が絶縁性を備えると共に、表面硬化され、腐食や損傷に耐えることができる。このように、成膜装置用蒸発源や筒体に材料面で工夫を施すことにより、蒸発源や加熱装置を安価に製作でき、取扱いが容易であり、特に同じ材料から成る両者を組み合わせた成膜材料の蒸発加熱装置は、品質管理や設計面で有利であり、蒸発温度の高い成膜材料を扱う成膜装置にも適用可能である。
【図面の簡単な説明】
【図1】この発明による成膜装置用蒸発源の一実施例を示す斜視図である。
【図2】この発明による成膜装置用蒸発源の加熱装置の一実施例を示す斜視図である。
【図3】図2に示す加熱装置に保温シースが適用された状態を示す一部断面側面図である。
【図4】従来の有機EL素子の製造装置の一例を示す図である。
【符号の説明】
1 成膜装置用蒸発源        2 収容部
5 係合部             6 通気孔
8 成膜材料
10 成膜装置用蒸発源の加熱装置  12 筒体
13 加熱用ワイヤ         13a,13b ワイヤ部分
14 下端部            15 上端部
16 螺旋溝            16a,16b 溝
17 係止用切欠き         19 雄ねじ部
20 鍔部             21 棚面
22 ナット            25 保温シース
40 セル型蒸発源         41 昇降棒(操作棒)
42 温度センサ          43 温度制御装置
44 ヒータ電源          45 蒸発筒
B  基板             M マスク
S  シャッタ
[0001]
TECHNICAL FIELD OF THE INVENTION
According to the present invention, for example, in the manufacture of an organic EL device, an organic material such as an organic electroluminescent (hereinafter abbreviated as “organic EL”) luminescent material is heated and evaporated, and a gaseous organic material is deposited on a substrate. In a film forming apparatus for forming a luminescent thin film layer, an evaporation source for a film forming apparatus containing a film forming material, a heating apparatus for heating the evaporation source, and a film forming material heating and evaporating apparatus using a combination thereof About.
[0002]
[Prior art]
Examples of the thin film layer formed in the thin film display element or the thin film semiconductor element include a semiconductor layer, a thin film electrode layer made of an electrode material, and the like, in addition to the thin film light emitting layer made of the organic EL light emitting material. As one of the basic techniques for manufacturing these thin film display elements and thin film semiconductor elements, an evaporation source and a film formation substrate are appropriately combined and arranged in a vacuum atmosphere such as a vacuum chamber, and a film formation material is formed. There is a vacuum evaporation method in which a film is formed by heating and evaporating the generated evaporative gas on a substrate in a linear, dot, or planar pattern.
[0003]
Conventionally, as a device for heating an evaporation source, a resistance heating method in which a film forming material is housed in a metal container having a relatively high electric resistance, and the container itself is heated by passing an electric current through the metal container to evaporate a film forming material. (For example, see Patent Document 1). In the resistance heating method, a container capable of containing a film-forming material is usually manufactured by processing a metal material having a relatively high melting point, such as tungsten, tantalum, or molybdenum, into a thin plate, and further molding the thin plate. Although the resistance heating method has a relatively simple structure as a heating device, it is necessary to frequently replenish the film-forming material because the amount of film-forming material to be charged at one time is small. For this reason, the operating rate of the film forming apparatus is reduced, and there is a limit in reducing the manufacturing cost of the film forming element. Further, as another method of evaporating a film forming material, a method of directly irradiating a beam such as an electron beam or a laser beam is known.
[0004]
On the other hand, as a heating / evaporating method in which a large amount of a film-forming material is supplied at one time, there is a method of indirectly heating a cell-type evaporation source containing a film-forming material (for example, see Patent Document 2). The indirect heating method of the evaporation source is a method of heating the evaporation source by radiant heat from a heating body heated to a high temperature by a heating coil or the like disposed around the evaporation source. The responsiveness and evaporation rate control from the evaporation of the film-forming material from the stop or the heating to the stop of the evaporation of the film-forming material are slightly reduced compared to the direct heating method, but the structure is simple, Used. In particular, in the case of manufacturing an organic EL element, since the evaporation temperature of an expensive organic material, which is a film forming material, is low, heat radiation efficiency is poor, thermal responsiveness is further reduced, and it is more difficult to reduce the manufacturing cost.
[0005]
An example of a conventional heating device for heating an evaporation source is shown in FIG. As shown in FIG. 4, the heating device 30 for heating the evaporation source is attached to the evaporation cylinder 45 by the mounting plate 31 at the lower end 34 and connected to the heater 32 and the heater body 44 having upper and lower ends opened. Further, a heating wire 33 made of a nichrome wire or the like closely wound around the cylindrical body 32 is provided. By energizing the heating wire 33, the cylindrical body 32 is heated, and a cell-type evaporation source 40 composed of a film-forming material (for example, an organic material) and a container such as a crucible (for example, made of glass) containing the film-forming material is formed. It is heated by the radiant heat from the cylinder 32 that has become hot. The evaporating cylinder 45 is arranged in a vacuum chamber (not shown).
[0006]
The cell-type evaporation source 40 is moved into and out of the inside 36 of the cylindrical body 32 through the opened lower end portion 34 by raising and lowering a lifting rod 41 as an operation rod. The film-forming material heated and evaporated by the radiant heat from the cylindrical body 32 rises from the opened upper end portion 35 and is discharged into the interior of the evaporation cylinder 45 when the shutter S provided on the evaporation cylinder 45 is open. Then, it is deposited on the substrate B through an opening formed in the mask M. The temperature of the cylinder 32 is detected by a temperature sensor 42 provided on the cylinder 32, and a temperature controller 43 controls the current flowing through the heating wire 33 based on the detected temperature to control the temperature of the cylinder 32. The heating wire 33 is double-wrapped around the outer periphery of the cylindrical body 32 so that both terminals come to the lower end portion 34 side, and the folded front-side inverted portion 33a is bent into a U-shape. It is engaged with an engaging portion 35 a formed on the upper end 35.
[0007]
In order to indirectly heat the evaporation source in a vacuum environment, the radiant heat generated by the heating device heats the evaporation source, so that the heating device needs to be heated to a considerably high temperature. In order to improve the heat resistance of the evaporation source for a film forming apparatus and its heating device, it has been considered to manufacture the cylindrical body of the evaporation source and the heating device with ceramic. Ceramic cell-type evaporation sources and cylinders are manufactured by firing ceramic powder into ceramic containers or ceramic pipes, which are generally expensive and are easily damaged by impact. It is not possible to flexibly respond to changes in dimensions, and when changing the storage capacity of the evaporation source or the heat capacity of the ceramic cylinder, it is necessary to redesign from the mold, which is a cost increase factor . In addition, since the workability of ceramics is generally low, it is difficult to form a cell-type evaporation source or to form a spiral groove for winding a heating wire at a predetermined pitch around the outer periphery of a cylindrical body. It is difficult to reduce the manufacturing cost while maintaining the long term. In addition, in order to avoid the necessity of forming a spiral groove and obtain heat retention, cement is attached to a heating wire and wound around the outer periphery of a ceramic pipe for firing of the evaporation source heating cylinder. However, as the manufacturing process becomes complicated and the manufacturing cost rises, the heating wire is buried in the cement, so it is virtually impossible to repair the heating wire if it burns out. It becomes disposable. Furthermore, a ceramic evaporation cell and a cylindrical body exhibit heat resistance that can withstand a high temperature of 1200 ° C., but when a film-forming material is an organic raw material, a nichrome wire as a heating wire usually has 3 to 3 μm. It is sufficient to heat the organic raw material at a relatively low heating temperature of up to 400 ° C. by passing a current of 5 A, and the heat resistance of the ceramic evaporation cell and the cylindrical body is generally excessive.
[0008]
[Patent Document 1]
JP-A-10-319870 (pages 3 to 4, FIG. 3)
[Patent Document 2]
JP-A-11-229123 (page 2, FIG. 7)
[0009]
[Problems to be solved by the invention]
Wire-like heating means, such as nichrome wires, are useful heating means made from relatively inexpensive and easy-to-process materials, and alternative heating means are currently difficult to find. Therefore, focusing on the evaporation source for the film forming apparatus for housing and evaporating the film forming material and evaporating the film forming material, or focusing on the material of the cylindrical body constituting the heating apparatus together with the wire-shaped heating means, at a low cost. An evaporation source for a film forming apparatus which can be manufactured, is easy to process and has excellent impact resistance, an evaporation source heating apparatus for heating the evaporation source for the film forming apparatus, and a film forming material heating and evaporating apparatus using them. There are issues to be solved in terms of gain.
[0010]
An object of the present invention is to provide a film forming apparatus for depositing a film forming material heated and evaporated to manufacture a film forming element on a substrate or the like. Alternatively, a cylindrical body that is heated by surrounding an evaporation source for a film forming apparatus that enters and exits to heat and evaporate a film forming material is manufactured from a material that is easy to process, low cost, and has heat resistance and impact resistance. Thus, an evaporation source for a film forming apparatus, a heating apparatus for an evaporation source for a film forming apparatus, and a heating method for a film forming material using the same, which can be manufactured at low cost, are easy to handle, and can cope with a film forming material having a high evaporation temperature. It is to provide an evaporator.
[0011]
[Means for Solving the Problems]
In order to solve the above-described problems, the evaporation source for a film forming apparatus according to the present invention includes a storage unit that stores a film forming material to be heated for vapor deposition on a substrate, and is entirely made of aluminum. Made up of
[0012]
According to this evaporation source for a film forming apparatus, the material is aluminum, which is available at a low cost and is a relatively soft metal material as compared with a ceramic material. Good molding by processing such as drilling and drilling. In addition, the shape of the peripheral wall of the housing, such as the diameter, thickness, and length, does not require a mold, and requires only changing processing conditions, as compared with the case of ceramics, which must be manufactured from a mold. Can be easily handled based on the specifications. Furthermore, as compared with a ceramic cell-type evaporation source, it is more resistant to impact and does not break even if dropped. With regard to heat resistance, the evaporation source made of aluminum can withstand a high temperature of 1000 ° C. as well as a film forming material having an evaporation temperature of 800 ° C., and can cope with a sufficient amount of a normal evaporation material.
[0013]
In this evaporation source for a film forming apparatus, the aluminum may be anodized. By anodizing the aluminum forming the evaporation source for the film forming apparatus, the surface of the evaporation source for the film forming apparatus is covered with an aluminum oxide layer as a passivation film and is hardened so as not to be damaged. As a result, a protective evaporation source is obtained that does not corrode or damage the surface even when used for a long period of time.
[0014]
In this film forming apparatus evaporation source, the housing section is formed in a cylindrical container having an open upper end, and a bottom side of the housing section is provided with a heating apparatus for heating the film forming apparatus evaporation source. An engaging portion into which an operation rod for moving in and out can be fitted is formed of the aluminum integrally with the housing portion. The evaporating source for the film forming apparatus is provided with an engaging portion with which an operation rod is engaged to raise and lower the evaporating source for the film forming apparatus into the heating apparatus. In consideration of the performance, the engaging portion can also be formed integrally with the housing portion. Further, the evaporation source for the film forming apparatus thus formed can be easily handled such as storage and transportation, installation in the apparatus, and the like.
[0015]
Further, in order to solve the above-described problems, a heating apparatus for an evaporation source for a film forming apparatus according to the present invention includes an open-ended cylindrical body through which an evaporation source for a film forming apparatus containing a film forming material can enter and exit, A heating wire wound around the outer periphery of the cylindrical body, and the cylindrical body is made of aluminum.
[0016]
According to the heating apparatus of the evaporation source for the film forming apparatus, the cylindrical body is heated by energizing a heating wire or the like so that the temperature of the cylindrical body becomes high. The source is surrounded, and the evaporation source for the film forming apparatus is heated from all around. The material forming the cylinder is aluminum, which is available at a lower cost and is relatively soft compared to ceramic materials, so it can be cut or drilled using a normal machine tool. By such processing, the formation of grooves, notches, holes, holes, etc. is good. In addition, the shape of the peripheral wall, such as diameter, thickness and length, can be easily determined based on the specifications, such as only setting the processing conditions in the machine tool, compared to the case of ceramics that must start to be manufactured from the mold. Can be handled. Furthermore, as compared with a ceramic cylinder, it is more resistant to impact and does not break even if dropped. Regarding heat resistance, the aluminum cylinder can withstand a high temperature of 1000 ° C. as well as a film forming material having an evaporation temperature of 800 ° C., and can sufficiently cope with a normal evaporation material.
[0017]
In the heating device for the evaporation source for the film forming apparatus, a spiral groove for winding the heating wire can be formed on the outer periphery of the cylindrical body. As described above, the cylinder is made of aluminum, which has a soft hardness as a metal, so it has excellent cutting workability, and the spiral groove can be easily formed by the usual processing method of cutting with a cutting tool while rotating the cylinder. It is possible to form. By winding the heating wire in the spiral groove thus formed, the outer periphery of the cylindrical body is simplified, and even when used for a long time, the position of the winding of the heating wire around the cylindrical body does not shift. It is wound at a fixed position, and it is possible to prevent the temperature of the cylindrical body from being biased.
[0018]
In the heating device of the evaporation source for a film forming apparatus, the heating wire is a double wire formed by being folded in the middle, and the cylindrical body has an edge portion at one end, and the double wire is The folded notch is formed with a locking notch that can be locked, and the spiral groove can be a double groove into which each wire portion before and after the double wire folding is fitted. The heating wire is folded back in the middle to form a double wire, so that, for example, the heating wire can be handled in a state where both terminals are aligned without energizing the terminals when the heating wire is energized. The heating wire configured as a double wire is wound, for example, from the base end side of the cylindrical body, and a folded end that is the distal end of the double wire is formed at the edge of the distal end of the cylindrical body. Locked in the notch for stopping. The spiral groove is a double groove, and since the respective wire portions of the double wire are separately fitted in each line, the heating wires do not come into contact with each other and short-circuit.
[0019]
In the heating device of the evaporation source for the film forming apparatus, the cylindrical body can be made of anodized aluminum. By anodizing the aluminum that forms the cylindrical body, the cylindrical body is in a hardened state in which the surface is covered with an aluminum oxide layer as a passivation film and is hardly damaged, and the uncoated heating wire As a result, the surface of the cylinder is not corroded or damaged even if the cylinder is used for a long time.
[0020]
In the heating device for the evaporation source for the film forming apparatus, an aluminum heat insulating sheath can be fitted to the cylindrical body around which the heating wire is wound. The heat insulation sheath is fitted to the cylindrical body around which the heating wire is wound, and is in a state of covering the cylindrical body in a surrounding state, and heat generated from the heating wire and the high temperature cylindrical body is discharged outside the heating device. Insulate the heating device to prevent dissipation. According to the heat retaining sheath, it is possible to maintain the temperature of the cylindrical body which is easily radiated and cooled in the evaporating cylinder, to secure the heating and evaporation of the film forming material, and to save energy such as reduction of heating power. Moreover, the heat insulation sheath can also prevent damage such as cutting of the heating wire due to collision of foreign matter. Furthermore, when the heating wire is damaged by cutting or the like, if the heating wire is baked with ceramics, it is necessary to crush the ceramics, take out the heating wire, and repair after repair. If a heat insulating sheath is used, simply removing the heat insulating sheath can replace the heating wire wound around the outer surface of the cylinder, take measures such as repair, and reuse the cylinder. It is possible.
[0021]
In the heating device of the evaporation source for the film forming apparatus to which the heat insulation sheath is fitted, the heat insulation sheath is anodized. By anodizing the heat-insulating sheath, a hardened protective layer of an oxide film is formed on the surface of the heat-insulating sheath, so that the insulation for the heating wire can be secured, and the durability is reduced by preventing corrosion and damage. be able to.
[0022]
Further, the apparatus for heating and evaporating a film-forming material according to the present invention is configured by combining any one of the above-described evaporation sources for the film-forming apparatus and any one of the above-described apparatuses for heating the evaporation source for the film-forming apparatus. Both the evaporation source for the film forming apparatus and the heating apparatus into and out of which the evaporation source for the film forming apparatus enters and exits are made of aluminum, particularly anodized aluminum. Although it is a material, it is lightweight, does not require a mold in molding, has good workability such as cutting, and can easily realize a combination having accurate dimensions according to specifications. Further, since the heating and evaporating device is made of aluminum, it has excellent impact resistance as compared with a ceramic evaporating device, and has sufficient heat resistance to obtain organic material deposition.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of an evaporation source for a film forming apparatus, a heating apparatus for an evaporation source for a film forming apparatus, and a heating and evaporating apparatus for a film forming material using a combination thereof will be described with reference to the accompanying drawings. . FIG. 1 is a perspective view showing one embodiment of an evaporation source for a film forming apparatus according to the present invention. The structure of the film forming apparatus itself including the evaporating cylinder and the substrate and the mask may be, for example, the structure shown in FIG. 4, and the description thereof will not be repeated.
[0024]
An evaporation source 1 for a film forming apparatus (hereinafter simply referred to as “evaporation source 1” for simplicity) shown in FIG. 1 is a cell that stores an organic material to be deposited on a substrate and evaporates the organic material by heating from the surroundings. Type evaporation source. The evaporation source 1 includes a substantially cylindrical storage unit 2 that stores a film forming material 8 such as an organic raw material. The accommodating part 2 has a structure of a cylindrical container whose upper end part 3 is open. An engaging part 5 is integrally formed on the bottom part 4 of the housing part 2 to be engaged with an elevating rod 41 (see FIG. 4) as an operating rod for elevating and lowering the evaporation source 1. The engagement portion 5 is formed in a substantially cylindrical shape having a smaller diameter than the storage portion 2 and an opening at a lower portion. The engaging portion 5 has a ventilation hole 6 through which gas inside the engaging portion 5 can enter and exit from the evaporating source 1 in order to facilitate insertion and exit of the elevating rod 41 when loading and removing the evaporation source 1. Is formed.
[0025]
The evaporation source 1 is entirely made of aluminum. Aluminum is an inexpensive metal material, and the shape including the radius, length, and wall thickness of the cylindrical body forming the housing portion 2 and the engagement portion 5 can be easily adapted to changes in specifications. Yes, so that the heat capacity can also be easily changed. Aluminum is relatively soft as a metal and has excellent workability such as cutting and drilling. The aluminum evaporation source 1 is more resistant to impacts than the ceramic evaporation source, does not break even if dropped, and is excellent in handleability. Further, with respect to heat resistance, it can withstand a high temperature of about 1000 ° C. and not only heats and evaporates an organic material having an evaporation temperature of 200 to 300 ° C., but also heats and heats a film forming material having an evaporation temperature of 800 ° C. Can be evaporated.
[0026]
The aluminum evaporation source 1 is anodized at the stage when the housing part 2, the engagement part 5, and the ventilation hole 6 are formed. In the anodic treatment, a passivation which is a strong oxidation protective film (aluminum oxide layer) on the surface of the evaporation source 1 by passing a current through the evaporation source 1 as an anode of a battery in an electrolyte solution such as chromic acid or sulfuric acid. A coating is formed. By subjecting the evaporation source 1 to anodizing, the metallic luster loses its luster and becomes soft and easy to handle, and the surface of the evaporation source 1 is hardened to be less susceptible to corrosion and damage.
[0027]
FIG. 2 is a perspective view showing an embodiment of a heating apparatus for an evaporation source for a film forming apparatus according to the present invention. A heating device 10 (hereinafter, simply referred to as a “heating device 10”) of an evaporation source for a film forming apparatus shown in FIG. 2 is wound around an outer periphery of the cylinder 12 having upper and lower ends open. And a heating wire 13, and the cylindrical body 12 is arranged vertically in the film forming apparatus. The evaporation source 1 can enter and exit the cylindrical body 12 through the opened lower end portion 14 by operating the elevating rod 41, and the film forming material 8 (see FIG. 1 or 3) stored in the evaporation source 1 is heated. -When evaporating, it diffuses into the evaporating cylinder 45 from the open upper end 15. The vapor deposition of the evaporation gas on the substrate B is the same as the conventional method, and thus the detailed description is omitted.
[0028]
The cylinder 12 is made of aluminum, like the evaporation source 1. Aluminum is an inexpensive metal material, and the shape, including the radius, length and wall thickness of the cylinder, can be easily changed according to the change of the specification, thereby easily changing the heat capacity Can be. Aluminum is relatively soft as a metal and has excellent workability such as cutting and drilling. The aluminum cylinder 12 is more resistant to impacts than the ceramic cylinder 12 and is not damaged even if dropped, and is excellent in handleability. Further, with respect to heat resistance, it can withstand a high temperature of about 1000 ° C. and not only heats and evaporates an organic material having an evaporation temperature of 200 to 300 ° C., but also heats and heats a film forming material having an evaporation temperature of 800 ° C. Can be evaporated.
[0029]
On the outer periphery of the cylindrical body 12 of the heating device 10, there is formed a spiral groove 16 having a rectangular cross section which can accommodate and wind the heating wire 13. At the edge of the upper end 15 of the cylindrical body 12, a notch 17 for locking the heating wire 13 is formed. The cylindrical body 12 can easily form the spiral groove 16 and the notch 17 for locking by the good cutting workability exhibited by aluminum. The spiral groove 16 is a double groove composed of grooves 16a and 16b, and the wire portions 13a and 13b of the folded heating wire 13 are individually fitted into the grooves 16a and 16b, respectively. 13b are prevented from contacting each other on the way and causing an electrical short circuit. A male screw portion 19 is formed in a part of the lower end portion 14 of the cylindrical body 12, and a flange portion 20 having an annular shelf surface 21 is integrally formed above the male screw portion 19. The lower end 14 is inserted into a mounting hole of a mounting plate (31 shown in FIG. 5) provided in the evaporating cylinder 45, and the mounting plate 31 is sandwiched between the flange portion 20 and the nut 22 screwed to the male screw portion 19. The cylindrical body 12 of the heating device 10 can be mounted on the mounting plate 31. The cylindrical body 12 in which the spiral groove 16, the locking notch 17, and the male screw portion 19 are formed is anodized at this stage. The anodic treatment is the same as in the case of the evaporation source 1, so that detailed description is omitted again. By anodizing the cylindrical body 12, the surface of the cylindrical body 12 becomes insulative, and even if the uncoated heating wire 13 is directly wound, an electrical short circuit is prevented.
[0030]
The heating wire 13 can be composed of a nichrome wire that generates heat when energized. The heating wire 13 is folded in the middle, that is, at just half the length, to form a double wire. The folded portion 13c of the heating wire 13 configured as a double wire is locked by a locking notch 17 formed in the upper end portion 15 of the cylindrical body 12, and the wire portions 13a and 13b on both sides thereof are respectively connected to the anode. The cylindrical body 12 is wound toward the lower end portion 14 while being accommodated in the grooves 16a and 16b of the processed cylindrical body 12. The heating wire 13 is completely accommodated in the spiral groove 16, and does not have a complicated structure in which the heating wire 13 protrudes outside from the outer peripheral surface of the cylindrical body 12. Therefore, even when the heating wire 13 is used for a long period of time, the heating wire 13 can be wound and maintained at a fixed position, and when the heating wire 13 is energized, the cylindrical body 12 can be heated uniformly or at a desired temperature distribution. Axial grooves 23a and 23b extending over both upper and lower sides of the flange 20 can be formed in the cylindrical body 12 at a depth slightly deeper than the grooves 16a and 16b. The axial grooves 23a and 23b extend below the male screw portion 19. The axial groove 23b is formed at a position located on the opposite side of the axial groove 23a in the diametrical direction, but is not shown in order to avoid complication. Each of the wire portions 13a and 13b of the heating wire 13 can be pulled out from below the nut 22 through the axial grooves 23a and 23b when the nut 22 is tightened to the male screw portion 19.
[0031]
FIG. 3 is a partial cross-sectional side view in which a heating sheath is applied to the heating device according to the present invention. An aluminum insulation sheath 25 can be fitted to the outside of the cylinder 12. Since the heating wire 13 is wound while being housed in the spiral groove 16, the heat retaining sheath 25 is fitted to the cylindrical body 12 without being hindered by the heating wire 13. The heat insulating sheath 25 is fitted to the cylindrical body 12 around which the heating wire 13 is wound until the lower end portion 26 of the cylindrical body 12 abuts against the shelf surface 21. In this state, the upper end 27 of the tubular body 12 is located at a position extending slightly above the upper end 15 of the tubular body 12. Since the heat-insulating sheath 25 is also subjected to anodic treatment to form a hardened protective layer made of an oxide film, the heat-insulating sheath 25 is less susceptible to corrosion and damage due to collision of foreign matter. In addition, since the cured protective layer has an insulating property, even if the heating wire 13 comes into contact with the heat retaining sheath 25, no short circuit occurs. The heat insulation sheath 25 also has an effect of preventing the heating wire 13 from coming off the spiral groove 16 due to thermal expansion. The heat-retaining sheath 25 prevents heat generation in the evaporating cylinder 45 from the heating wire 13 and the high-temperature cylinder 12 that generates heat, keeps the temperature of the cylinder 12 easy to be cooled, and saves energy such as reduction of electric power required for heating. Can be achieved. The heat insulation sheath 25 has a hole corresponding to the temperature sensor attachment portion 12a formed in the cylindrical body 12 in a state of abutting the shelf surface 21. A wire for the temperature sensor 42 is led out through the hole of the cylinder 12.
[0032]
When the heating wire 13 is broken, in a heating device using a ceramic cylindrical body, the heating wire 13 is embedded in the hardened cement-like ceramic, so that the cement is crushed and the heating wire is crushed. Since the cement was repaired after the 13 was taken out and repaired, replacement and repair were practically impossible, and the expensive heating device was disposable. In the present invention, the heating wire 13 can be easily replaced or repaired by removing the heat retaining sheath 25 from the cylinder 12, and the cylinder 12 can be reused.
[0033]
In the present invention, an evaporation source 1 and an evaporation source heating device 10 can be used in combination as a device for heating and evaporating a film forming material. That is, as shown in FIG. 3, the evaporation source 1 containing the film-forming material 8 is moved up and down inside the evaporation source heating device 10 by the elevating rod 41, and the evaporation source 1 is surrounded by the evaporation source heating device 10 when ascending. The source 1 is heated to heat and evaporate the film forming material 8 contained therein. Both the evaporation source 1 and the evaporation source heating device 10 are made of aluminum, or are subjected to anodization, so that the same handling, quality control and the like for the same production, storage, transportation, etc. as a heating and evaporation device for a film forming material. It can be carried out. Further, the use of the same material facilitates thermal design and thermal management according to the specifications of the film forming apparatus.
[0034]
【The invention's effect】
As described above, the evaporation source for a film forming apparatus according to the present invention can accommodate a film forming material and is entirely made of aluminum. In addition, the heating device of the evaporation source for the film forming apparatus includes an open-ended cylindrical body through which the evaporation source for the film forming apparatus can enter and exit, and a heating wire wound around the outer circumference of the cylindrical body, The tubular body is made of aluminum, and the tubular body is heated by heating the tubular body by applying a current to a heating wire, and the tubular body is formed of a film containing a film-forming material. The apparatus evaporation source is heated by radiant heat from the outside. Since the evaporation source for the film forming apparatus and the cylinder of the heating apparatus are made of aluminum, it is a metal material that can be obtained at a low cost, and is a material that is relatively soft and has good workability such as cutting. . Therefore, the evaporation source for the film forming apparatus and the heating apparatus can be manufactured at low cost and in any shape. In addition, it is superior in impact resistance as compared with a ceramic cylinder. Further, with respect to heat resistance, it is possible to cope with a film forming material having a high temperature of 1000 ° C. and an evaporation temperature of 800 ° C. In addition, by anodizing the aluminum evaporation source and the cylindrical body for the film forming apparatus, the surface is provided with insulating properties, is hardened, and can withstand corrosion and damage. As described above, by elaborating the material of the evaporation source and the cylindrical body for the film forming apparatus, the evaporation source and the heating apparatus can be manufactured at a low cost, and the handling is easy. A film material evaporation heating apparatus is advantageous in quality control and design, and is applicable to a film formation apparatus that handles a film formation material having a high evaporation temperature.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of an evaporation source for a film forming apparatus according to the present invention.
FIG. 2 is a perspective view showing one embodiment of a heating apparatus for an evaporation source for a film forming apparatus according to the present invention.
FIG. 3 is a partial cross-sectional side view showing a state where a heat retaining sheath is applied to the heating device shown in FIG. 2;
FIG. 4 is a view showing an example of a conventional organic EL element manufacturing apparatus.
[Explanation of symbols]
1. Evaporation source for film forming equipment 2. Storage unit
5 Engagement part 6 Vent
8 Film forming materials
DESCRIPTION OF SYMBOLS 10 Heating device of evaporation source for film forming apparatus 12 Cylindrical body
13 Heating wire 13a, 13b Wire part
14 Lower end 15 Upper end
16 spiral groove 16a, 16b groove
17 Notch for locking 19 Male thread
20 Flange 21 Shelf surface
22 Nut 25 Heat insulation sheath
40 cell-type evaporation source 41 lifting rod (operation rod)
42 temperature sensor 43 temperature controller
44 Heater power supply 45 Evaporation cylinder
B substrate M mask
S shutter

Claims (10)

基板上に蒸着するために加熱される成膜材料を収容する収容部を備え、全体がアルミニウムで製作されていることから成る成膜装置用蒸発源。An evaporation source for a film forming apparatus, comprising: a housing for housing a film forming material to be heated for vapor deposition on a substrate, the whole being made of aluminum. 前記アルミニウムは、陽極処理されていることから成る請求項1に記載の成膜装置用蒸発源。The evaporation source according to claim 1, wherein the aluminum is anodized. 前記収容部は上端が開口した筒状容器に形成されており、前記収容部の底側には、前記成膜装置用蒸発源を加熱する加熱装置に対して出入りさせるための操作棒が嵌入可能な係合部が、前記収容部と一体的に前記アルミニウムで成形されていることから成る請求項1に記載の成膜装置用蒸発源。The housing portion is formed in a cylindrical container having an open upper end, and an operation rod for entering and exiting a heating device for heating the evaporation source for the film forming apparatus can be fitted into a bottom side of the housing portion. 2. The evaporation source for a film forming apparatus according to claim 1, wherein said engaging portion is formed integrally with said accommodating portion from said aluminum. 成膜材料を収容した成膜装置用蒸発源が内部に出入り可能な両端開放形の筒体と、前記筒体の外周に巻装される加熱用ワイヤとを備え、前記筒体がアルミニウムで製作されていることから成る成膜装置用蒸発源の加熱装置。An open-ended cylindrical body through which an evaporation source for a film-forming apparatus containing a film-forming material can enter and exit, and a heating wire wound around the outer periphery of the cylindrical body, wherein the cylindrical body is made of aluminum. A heating device for an evaporation source for a film forming apparatus. 前記筒体は、その外周に、前記加熱用ワイヤを巻装させるための螺旋溝が形成されていることから成る請求項4に記載の成膜装置用蒸発源の加熱装置。The heating device for an evaporation source for a film forming apparatus according to claim 4, wherein a spiral groove for winding the heating wire is formed on an outer periphery of the cylindrical body. 前記加熱用ワイヤは途中で折り返して形成された二重ワイヤであり、前記筒体は、一方の端部の縁部に、前記二重ワイヤの折り返し端部が係止可能な係止用切欠きが形成されており、前記螺旋溝は前記二重ワイヤ折返し前後の各ワイヤ部分が嵌め込まれる二条溝であることから成る請求項4に記載の成膜装置用蒸発源の加熱装置。The heating wire is a double wire formed by being folded in the middle, and the cylindrical body is provided with a notch for locking the folded end of the double wire at an edge of one end. The heating device for an evaporation source for a film forming apparatus according to claim 4, wherein the spiral groove is a double groove into which each wire portion before and after the double wire folding is fitted. 前記筒体を形成する前記アルミニウムは、陽極処理されていることから成る請求項4に記載の成膜装置用蒸発源の加熱装置。5. The heating device for an evaporation source for a film forming apparatus according to claim 4, wherein the aluminum forming the cylinder is anodized. 前記加熱用ワイヤが巻装された前記筒体には、アルミニウム製の保温シースが嵌着されることから成る請求項4に記載の成膜装置用蒸発源の加熱装置。The heating device for an evaporation source for a film forming apparatus according to claim 4, wherein an aluminum heat insulating sheath is fitted to the cylindrical body around which the heating wire is wound. 前記保温シースは、陽極処理されていることから成る請求項8に記載の成膜装置用蒸発源の加熱装置。The heating device for an evaporation source for a film forming apparatus according to claim 8, wherein the heat retaining sheath is anodized. 請求項1〜3のいずれか1項に記載の成膜装置用蒸発源と、請求項4〜9のいずれか1項に記載の成膜装置用蒸発源の加熱装置とを組み合わせて用いたことから成る成膜材料加熱蒸発装置。A combination of the evaporation source for a film formation apparatus according to any one of claims 1 to 3 and a heating apparatus for an evaporation source for a film formation apparatus according to any one of claims 4 to 9. A film-forming material heating and evaporating device comprising:
JP2002260683A 2002-09-05 2002-09-05 Evaporation source for deposition system, apparatus for heating the evaporation source, and apparatus for heating and evaporating deposition material by using them Pending JP2004099942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002260683A JP2004099942A (en) 2002-09-05 2002-09-05 Evaporation source for deposition system, apparatus for heating the evaporation source, and apparatus for heating and evaporating deposition material by using them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002260683A JP2004099942A (en) 2002-09-05 2002-09-05 Evaporation source for deposition system, apparatus for heating the evaporation source, and apparatus for heating and evaporating deposition material by using them

Publications (1)

Publication Number Publication Date
JP2004099942A true JP2004099942A (en) 2004-04-02

Family

ID=32261261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002260683A Pending JP2004099942A (en) 2002-09-05 2002-09-05 Evaporation source for deposition system, apparatus for heating the evaporation source, and apparatus for heating and evaporating deposition material by using them

Country Status (1)

Country Link
JP (1) JP2004099942A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006009107A (en) * 2004-06-28 2006-01-12 Hitachi Zosen Corp Evaporation apparatus, vapor deposition apparatus and method for switching evaporation apparatus in vapor deposition apparatus
US8123862B2 (en) * 2003-08-15 2012-02-28 Semiconductor Energy Laboratory Co., Ltd. Deposition apparatus and manufacturing apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8123862B2 (en) * 2003-08-15 2012-02-28 Semiconductor Energy Laboratory Co., Ltd. Deposition apparatus and manufacturing apparatus
US8524313B2 (en) 2003-08-15 2013-09-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a device
JP2006009107A (en) * 2004-06-28 2006-01-12 Hitachi Zosen Corp Evaporation apparatus, vapor deposition apparatus and method for switching evaporation apparatus in vapor deposition apparatus
JP4570403B2 (en) * 2004-06-28 2010-10-27 日立造船株式会社 Evaporation apparatus, vapor deposition apparatus, and method for switching evaporation apparatus in vapor deposition apparatus
KR101175165B1 (en) * 2004-06-28 2012-08-20 히다치 조센 가부시키가이샤 Evaporator vapor deposition apparatus and method of switching evaporator in vapor deposition apparatus

Similar Documents

Publication Publication Date Title
US7359630B2 (en) Evaporation source for evaporating an organic electroluminescent layer
CN100420352C (en) Method and apparatus for producing extreme ultraviolett radiation or soft x-ray radiation
JP4897190B2 (en) Heating container for organic thin film forming equipment
US8336489B2 (en) Thermal evaporation apparatus, use and method of depositing a material
JP2002146516A (en) Vapor deposition method for organic thin film
KR100736664B1 (en) Substrate with ITO transparent conductive film and method for producing same
JP2006228563A (en) Excimer lamp
US20130160712A1 (en) Evaporation cell and vacuum deposition system the same
JP2004099942A (en) Evaporation source for deposition system, apparatus for heating the evaporation source, and apparatus for heating and evaporating deposition material by using them
JP2003293120A (en) Evaporating source and thin film deposition system using the same
KR100461283B1 (en) Organic source boat structure for organic electro-luminescent display fabricating apparatus
JP2015082531A (en) Emitter for thermophotovoltaic generation of electricity
JP4233469B2 (en) Vapor deposition equipment
JP4268847B2 (en) Molecular beam source cell for thin film deposition
JP2016015260A (en) Filament, light source using the same, and method for manufacturing filament
JP2007197789A (en) Crucible for vapor deposition, and its manufacturing method
JP2005272965A (en) Electrode member and deposition system equipped therewith
US20180345215A1 (en) Anneal chamber with getter
JP4171365B2 (en) Vapor deposition equipment
WO2009075544A2 (en) A liner for semiconductor chamber
KR100789897B1 (en) Effusion cell heated by radiant heat
RU2378732C1 (en) Electron and ion source
JP2593292Y2 (en) Metal ion source radiation reflector structure
KR20220075621A (en) Point Evaporation Source
KR100583056B1 (en) Apparatus for heating deposition source material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090421