JP2004099810A - Liquid epoxy resin composition and semiconductor device - Google Patents

Liquid epoxy resin composition and semiconductor device Download PDF

Info

Publication number
JP2004099810A
JP2004099810A JP2002266359A JP2002266359A JP2004099810A JP 2004099810 A JP2004099810 A JP 2004099810A JP 2002266359 A JP2002266359 A JP 2002266359A JP 2002266359 A JP2002266359 A JP 2002266359A JP 2004099810 A JP2004099810 A JP 2004099810A
Authority
JP
Japan
Prior art keywords
epoxy resin
liquid epoxy
resin composition
indene
curing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002266359A
Other languages
Japanese (ja)
Other versions
JP3867784B2 (en
Inventor
Kazumasa Sumida
隅田 和昌
Shingo Ando
安藤 信吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2002266359A priority Critical patent/JP3867784B2/en
Publication of JP2004099810A publication Critical patent/JP2004099810A/en
Application granted granted Critical
Publication of JP3867784B2 publication Critical patent/JP3867784B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83909Post-treatment of the layer connector or bonding area
    • H01L2224/83951Forming additional members, e.g. for reinforcing, fillet sealant

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid epoxy resin composition capable of providing a cured product excellent in adhesiveness and providing a semiconductor device excellent in thermal shock without causing deterioration even under high temperature and humidity and to provide the semiconductor device. <P>SOLUTION: The liquid epoxy resin composition is composed of (A) a liquid epoxy resin, (B) an aromatic amine-based curing agent, (C) an inorganic filler and (D) a melt mixture of an indene-based polymer comprising a copolymer of indene with styrene and having 200-2,000 number-average molecular weight. The liquid epoxy resin composition comprises 0.1-20 pts. wt. indene-based polymer based on 100 pts. wt. components A and B. The liquid epoxy resin composition comprises at least one kind of compound among compounds represented by formulas (1) to (3) (wherein R<SB>1</SB>to R<SB>4</SB>are each a hydrogen atom or a monovalent hydrocarbon group) and having ≥99% purity in an amount of ≥5% based on total amount of the curing agent as the component B. In the resin composition, a molar ratio of the component A to the component B is 0.7-0.9. The composition has ≥3.5 toughness index K<SB>1c</SB>. The semiconductor device is obtained by using the resin composition. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体封止用として好適で、シリコンチップの素子表面(特に感光性ポリイミド、窒化膜、酸化膜)との密着性が非常に良好であり、耐湿性の高い硬化物を与え、特にリフロー温度260℃以上の高温熱衝撃に対して優れた封止材となり得る液状エポキシ樹脂組成物、及びこの組成物にて封止された半導体装置に関する。
【0002】
【従来の技術】
電気機器の小型化、軽量化、高機能化に伴い、半導体の実装方法もピン挿入タイプから表面実装が主流になっている。また、半導体素子の高集積化に伴い、ダイサイズの一辺が10mmを超えるものもあり、ダイサイズの大型化が進んできている。このような大型ダイを用いた半導体装置では、半田リフロー時にダイと封止材にかかる応力が増大し、封止材とダイ及び基板の界面で剥離が生じたり、基板実装時にパッケージにクラックが入るといった問題がクローズアップされてきている。
【0003】
更に、近い将来に鉛含有半田が使用できなくなることから、鉛代替半田が多数開発されている。この種の半田は、溶融温度が鉛含有の半田より高くなることから、リフローの温度も260〜270℃で検討されており、従来の液状エポキシ樹脂組成物の封止材では、より一層の不良が予想される。このようにリフローの温度が高くなると、従来においては何ら問題のなかったフリップチップ型のパッケージもリフロー時にクラックが発生したり、チップ界面、基板界面との剥離が発生するという重大な問題が起こるようになった。
【0004】
【特許文献1】
特許第3238340号公報
【特許文献2】
特開平10−158366号公報
【0005】
【発明が解決しようとする課題】
本発明は、上記事情に鑑みなされたもので、シリコンチップの表面、特に感光性ポリイミド樹脂や窒化膜との密着性に優れ、かつ強靭性に優れた硬化物を与え、リフローの温度が従来温度240℃付近から260〜270℃に上昇しても不良が発生せず、更にPCT(120℃/2.1atm)などの高温多湿の条件下でも劣化せず、−65℃/150℃の温度サイクルにおいて数百サイクルを超えても剥離、クラックが発生しない半導体装置の封止材となり得る液状エポキシ樹脂組成物、及びこの組成物の硬化物で封止された半導体装置を提供することを目的とする。
【0006】
【課題を解決するための手段及び発明の実施の形態】
本発明者は、上記目的を達成するために鋭意検討を重ねた結果、(A)液状エポキシ樹脂、(B)芳香族アミン系硬化剤、(C)無機質充填剤及び(D)インデンとスチレンの共重合体よりなる数平均分子量が200〜2000のインデン系ポリマーを予め液状エポキシ樹脂に溶融混合した混合物:インデン系ポリマーの配合量として、(A),(B)成分の総量100重量部に対して0.1〜20重量部を含有する液状エポキシ樹脂組成物において、(B)芳香族アミン系硬化剤が、下記一般式(1)〜(3)で表される少なくとも1種類の純度が99%以上の芳香族アミン化合物を硬化剤全体の5重量%以上含有し、(A)液状エポキシ樹脂と(B)芳香族アミン系硬化剤との配合モル比〔(A)/(B)〕が0.7以上0.9以下であり、この組成物の靭性値K1cが3.5以上となるように配合することにより、シリコンチップの表面、特に感光性ポリイミド樹脂や窒化膜、とりわけ窒化膜との密着性に優れ、PCT(120℃/2.1atm)などの高温多湿の条件下でも劣化せず、熱衝撃に対して優れており、特に大型ダイサイズの半導体装置の封止材として有効であることを知見した。
【0007】
【化2】

Figure 2004099810
(式中、R〜Rは水素原子又は炭素数1〜6の一価炭化水素基である。)
【0008】
即ち、上記芳香族アミン系硬化剤は、半導体封止材としては公知であり、特に特許第3238340号公報(特許文献1)、特開平10−158366号公報(特許文献2)では、上記一般式(1)〜(3)で表される芳香族アミン系硬化剤と同様なアミン硬化剤を用いており、また特開平10−158366号公報においては、エポキシ樹脂と硬化剤のモル比において、硬化剤1モルに対しエポキシ樹脂を0.9モル以下の硬化剤が過多の場合は、過剰に未反応のアミノ基が残存することとなり、耐湿性の低下・信頼性の低下に繋がるとしているが、本発明は、エポキシ樹脂と上記一般式(1)〜(3)で表される芳香族アミン系硬化剤とのモル比を0.7以上0.9以下の範囲で用いることによって、シリコンチップの表面、特に感光性ポリイミド樹脂や窒化膜との密着性に優れ、かつ熱衝撃性が著しく向上し、高温多湿下でも優れた特性を得ることが可能となることを見出した。また、上記エポキシ樹脂とアミン硬化剤の系では、シランカップリング剤を必須成分にしており、フリップチップ半導体装置の製造において、注入時又は樹脂の硬化時にボイドが発生するが、本発明では、これを改善するためにシランカップリング剤を配合しなくても信頼性に優れ、特に大型ダイサイズの半導体装置の封止材として有効となり得ることを見出した。更に、インデンとスチレンの共重合体よりなる数平均分子量が200〜2000のインデン系ポリマーの特定量を、液状エポキシ樹脂と予め溶融混合した混合物として配合することにより、窒化膜に対する密着性が格段に向上することを見出し、本発明をなすに至ったものである。
【0009】
従って、本発明は、
(A)液状エポキシ樹脂
(B)芳香族アミン系硬化剤
(C)無機質充填剤
(D)インデンとスチレンの共重合体よりなる数平均分子量が200〜2000のインデン系ポリマーを予め液状エポキシ樹脂に溶融混合した混合物:インデン系ポリマーの配合量として、(A),(B)成分の総量100重量部に対して0.1〜20重量部
を含有する液状エポキシ樹脂組成物において、(B)芳香族アミン系硬化剤として、上記一般式(1)〜(3)で表される少なくとも1種類の純度が99%以上の芳香族アミン化合物を硬化剤全体の5重量%以上含有し、(A)液状エポキシ樹脂と(B)芳香族アミン系硬化剤との配合モル比〔(A)/(B)〕が0.7以上0.9以下であり、この組成物の靭性値K1cが3.5以上であることを特徴とする液状エポキシ樹脂組成物、及びこの液状エポキシ樹脂組成物の硬化物で封止された半導体装置、並びにこの液状エポキシ樹脂組成物の硬化物をアンダーフィル材として封止したフリップチップ型半導体装置を提供する。
【0010】
以下、本発明につき更に詳しく説明する。
本発明の半導体封止材(液状エポキシ樹脂組成物)において、液状エポキシ樹脂(A)は、1分子内に2官能基以下のエポキシ基を含有する常温で液状であるエポキシ樹脂なら、いかなるものでも使用可能であるが、25℃における粘度が2,000ポイズ以下、特に500ポイズ以下のものが好ましく、具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェニルグリシジルエーテルなどが挙げられ、この中でも室温で液状のエポキシ樹脂が望ましい。これらのエポキシ樹脂には、下記構造で示されるエポキシ樹脂を浸入性に影響を及ぼさない範囲で添加しても何ら問題はない。
【0011】
【化3】
Figure 2004099810
【0012】
上記液状エポキシ樹脂中の全塩素含有量は、1,500ppm以下、望ましくは1,000ppm以下であることが好ましい。また、100℃で50%エポキシ樹脂濃度における20時間での抽出水塩素が10ppm以下であることが好ましい。全塩素含有量が1,500ppmを超え、又は抽出水塩素が10ppmを超えると半導体素子の信頼性、特に耐湿性に悪影響を与えるおそれがある。
【0013】
次に、本発明に使用する芳香族アミン系硬化剤(B)は、下記一般式(1)〜(3)で表される少なくとも1種類の純度が99%以上の芳香族アミン化合物を硬化剤全体の5重量%以上、好ましくは10〜100重量%、より好ましくは20〜100重量%含有する。一般式(1)〜(3)で表される芳香族アミン化合物が、硬化剤全体の5重量%未満であると、接着力が低下したり、クラックが発生する。また純度が99%未満であると、匂いが強いため生産作業性に劣る。なお、ここでいう純度とは、モノマーの純度である。
【0014】
【化4】
Figure 2004099810
(式中、R〜Rは水素原子又は炭素数1〜6の一価炭化水素基である。)
【0015】
ここで、R〜Rの一価炭化水素基としては、炭素数1〜6、特に1〜3のものが好ましく、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ヘキシル基等のアルキル基、ビニル基、アリル基、プロペニル基、ブテニル基、ヘキセニル基等のアルケニル基、フェニル基などや、これらの炭化水素基の水素原子の一部又は全部を塩素、フッ素、臭素等のハロゲン原子で置換したフロロメチル基、ブロモエチル基、トリフルオロプロピル基等のハロゲン置換一価炭化水素基を挙げることができる。
【0016】
また、上記芳香族アミン系硬化剤以外の硬化剤としては、2,4−ジアミノトルエン、1,4−ジアミノベンゼン、1,3−ジアミノベンゼン等の低分子芳香族アミンであることが好ましい。
【0017】
上記芳香族アミン系硬化剤は、通常、常温で固体であり、そのまま配合すると樹脂粘度が上昇し、作業性が著しく悪くなるため、あらかじめエポキシ樹脂と溶融混合することが好ましく、後述する指定の配合量で、70〜150℃の温度範囲で1時間〜2時間溶融混合することが望ましい。混合温度が70℃未満であると芳香族アミン系硬化剤が十分に相溶しにくくなるおそれがあり、150℃を超える温度であるとエポキシ樹脂と反応して粘度上昇するおそれがある。また、混合時間が1時間未満であると芳香族アミン系硬化剤が十分に相溶せず、粘度上昇を招くおそれがあり、2時間を超えるとエポキシ樹脂と反応し、粘度上昇するおそれがある。
【0018】
なお、本発明に用いられる芳香族アミン系硬化剤の総配合量は、液状エポキシ樹脂と芳香族アミン系硬化剤との配合モル比〔(A)液状エポキシ樹脂/(B)芳香族アミン系硬化剤〕を0.7以上0.9以下、好ましくは0.7以上0.9未満、更に好ましくは0.7〜0.85の範囲にすることが必要である。配合モル比が0.7未満では未反応のアミン基が残存し、ガラス転移温度の低下となり、また密着性が低下する。逆に0.9を超えるとK1c値が下がり、硬化物が硬く脆くなり、リフロー時にクラックが発生する。
【0019】
一方、本発明に用いられる無機質充填剤(C)は、膨張係数を小さくする目的から、従来より知られている各種の無機質充填剤を添加することができる。無機質充填剤として、具体的には、溶融シリカ、結晶シリカ、アルミナ、ボロンナイトライド、チッカアルミ、チッカ珪素、マグネシア、マグネシウムシリケート、アルミニウムなどが挙げられる。中でも真球状の溶融シリカが低粘度化のため望ましい。なお、これらの無機質充填剤は、シランカップリング剤等で表面処理されたものであってもよいが、表面処理なしでも使用できる。
【0020】
本発明の組成物をポッティング材として使用する場合、平均粒径が2〜20μmで、最大粒径が75μm以下、特に50μm以下のものが望ましい。平均粒径が2μm未満では粘度が高くなり、多量に充填できない場合があり、一方20μmを超えると粗い粒子が多くなり、リード線につまり、ボイドとなるおそれがある。
【0021】
この場合、無機質充填剤の充填量は、エポキシ樹脂100重量部に対して100〜600重量部の範囲が好ましい。100重量部未満では、膨張係数が大きく冷熱試験においてクラックの発生を誘発させるおそれがある。600重量部を超えると、粘度が高くなり流動性の低下をもたらすおそれがある。
【0022】
なお、アンダーフィル材として使用する場合には、侵入性の向上と低線膨張化の両立を図るためフリップチップギャップ幅(基板と半導体チップとの隙間)に対して平均粒径が約1/10以下、最大粒径が1/2以下とすることが好ましい。
【0023】
この場合の無機質充填剤の配合量としては、エポキシ樹脂100重量部に対して50〜400重量部で配合することが好ましく、より好ましくは100〜250重量部の範囲で配合する。50重量部未満では、膨張係数が大きく、冷熱試験においてクラックの発生を誘発させるおそれがある。400重量部を超えると、粘度が高くなり、薄膜侵入性の低下をもたらすおそれがある。
【0024】
本発明の液状エポキシ樹脂組成物には、特に窒化膜に対する密着性を向上させる目的から、インデンとスチレンの共重合体よりなるインデン系ポリマーを予め上記液状エポキシ樹脂に溶融混合した混合物(D)を配合するものである。この場合、インデン系ポリマーは、数平均分子量が200〜2000、好ましくは500〜1000のものである。またインデン系ポリマーは、軟化点が90〜150℃、150℃での溶融粘度が5〜60ポイズ、特に密着性向上のためには10〜50ポイズのものが好ましい。
【0025】
このようなインデン系ポリマーとして、具体的には、インデンとスチレンとの2元共重合体、インデンとクマロンとスチレンとの3元共重合体、インデンとベンゾチオフェンとスチレンとの3元共重合体より誘導されるインデン系ポリマーが挙げられ、特に下記式で示されるインデン系ポリマーが好ましい。
【0026】
【化5】
Figure 2004099810
であり、r、s、tはそれぞれ1以上の整数であり、r+s、r+t+sは上記数平均分子量を与える値である。)
【0027】
本発明において、インデン系ポリマー中のインデン単位量(上記式中のr)は、30モル%以上であることが好ましい。インデン単位が30モル%未満では、十分な密着性を得ることができないおそれがある。特に、密着性向上のためには、60モル%以上であることが好ましく、更に好ましくは90モル%以上である。上限としては、99モル%以下、特に98モル%以下であることが好ましい。また、インデン系ポリマー中のスチレン単位量(上記式中のs)としては、70モル%以下、特に60モル%以下であることが好ましく、下限としては、2モル%以上、特に10モル%以上であることが好ましい。
【0028】
このようなインデン系ポリマーとしては、たとえば新日鉄化学社製のインデン系オリゴマーIP−100(インデンとクマロンとスチレンとの3元共重合オリゴマー)、IS−100BT(インデンとベンゾチオフェンとスチレンとの3元共重合オリゴマー)等が挙げられる。
【0029】
なお、本発明において、インデン系ポリマーは、予め上記液状エポキシ樹脂と溶融混合しておくことが必要であり、この際のインデン系ポリマーと液状エポキシ樹脂との溶融混合比率は、重量比として、インデン系ポリマー:液状エポキシ樹脂=8:2〜4:6、特に7:3〜5:5であることが好ましい。インデン系ポリマーの割合が多すぎると相容性が悪く、粘度が高くなり、作業性が困難となる場合があり、また少なすぎるとインデン系ポリマーを必要量配合できなくなるおそれがある。
【0030】
インデン系ポリマーと液状エポキシ樹脂の溶融混合物は、両者を溶融温度下で完全に溶融混合するまで撹拌することによって得ることができる。この場合、溶融混合条件は、適宜選定することができるが、80〜150℃、特に100〜120℃の温度で、1〜2時間とすることが好ましい。
【0031】
(D)成分の配合量は、インデン系ポリマーの配合量として、組成物中の液状エポキシ樹脂と硬化剤の合計量100重量部に対して0.1〜20重量部、望ましくは0.5〜10重量部である。0.1重量部未満では十分な密着性向上の効果が得られず、20重量部を超えると架橋密度が低下し、十分な強度が得られなくなる。
【0032】
本発明の液状エポキシ樹脂組成物には、応力を低下させる目的でシリコーンゴム、シリコーンオイルや液状のポリブタジエンゴム、メタクリル酸メチル−ブタジエン−スチレンよりなる熱可塑性樹脂などを配合してもよい。好ましくは、アルケニル基含有エポキシ樹脂又はフェノール樹脂のアルケニル基と下記平均組成式(4)で示される1分子中の珪素原子の数が20〜400であり、かつ珪素原子に直接結合した水素原子(SiH基)の数が1〜5であるオルガノポリシロキサンのSiH基との付加反応により得られる共重合体からなるシリコーン変性樹脂を配合することが好ましい。
【0033】
SiO(4−a−b)/2      (4)
(但し、式中Rは置換又は非置換の一価炭化水素基、aは0.01〜0.1、bは1.8〜2.2、1.81≦a+b≦2.3である。)
【0034】
なお、Rの置換又は非置換の一価炭化水素基としては、炭素数1〜10、特に1〜8のものが好ましく、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ヘキシル基、オクチル基、デシル基等のアルキル基、ビニル基、アリル基、プロペニル基、ブテニル基、ヘキセニル基等のアルケニル基、フェニル基、キシリル基、トリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基などや、これらの炭化水素基の水素原子の一部又は全部を塩素、フッ素、臭素等のハロゲン原子で置換したフロロメチル基、ブロモエチル基、トリフルオロプロピル基等のハロゲン置換一価炭化水素基を挙げることができる。
上記共重合体としては、中でも下記構造のものが望ましい。
【0035】
【化6】
Figure 2004099810
【0036】
上記式中、Rは上記と同じであり、Rは水素原子又は炭素数1〜4のアルキル基であり、Rは−CHCHCH−、−OCH−CH(OH)−CH−O−CHCHCH−又は−O−CHCHCH−である。nは4〜199、好ましくは19〜99の整数、pは1〜10の整数、qは1〜10の整数である。
【0037】
上記共重合体をジオルガノポリシロキサン単位がエポキシ樹脂100重量部に対して0〜20重量部、特には2〜15重量部含まれるように配合することで応力をより一層低下させることができる。
【0038】
本発明の液状エポキシ樹脂組成物には、更に必要に応じ、接着向上用炭素官能性シラン、カーボンブラックなどの顔料、染料、酸化防止剤、その他の添加剤を本発明の目的を損なわない範囲で配合することができる。ただし、本発明においては、表面処理剤として使用する以外に接着向上用炭素官能性シラン等としてアルコキシ系シランカップリング剤を添加しないことが好ましい。特に、アンダーフィル材として用いる場合、少量でもアルコキシ系シランカップリング剤を配合すると、ボイドの原因となるおそれがある。
【0039】
本発明の液状エポキシ樹脂組成物は、例えば、液状エポキシ樹脂、芳香族アミン系硬化剤、無機質充填剤、インデン系ポリマーと液状エポキシ樹脂の溶融混合物及びその他の添加剤等を同時に又は別々に、必要により加熱処理を加えながら、撹拌、溶解、混合、分散させることにより得ることができる。これらの混合、撹拌、分散等の装置としては、特に限定されるものではないが、撹拌、加熱装置を備えたライカイ機、3本ロール、ボールミル、プラネタリーミキサー等を用いることができる。またこれら装置を適宜組み合わせて使用してもよい。
【0040】
なお、本発明において、封止材として用いる液状エポキシ樹脂組成物の粘度は、25℃において10,000ポイズ以下のものが好ましい。また、この組成物の成形方法、成形条件は、常法とすることができるが、好ましくは、先に100〜120℃、0.5時間以上、その後150℃、0.5時間以上の条件で熱オーブンキュアを行う。100〜120℃での加熱が0.5時間未満では、硬化後にボイドが発生する場合がある。また150℃での加熱が0.5時間未満では、十分な硬化物特性が得られない場合がある。
【0041】
また、本発明の液状エポキシ樹脂組成物の靭性値K1cは3.5以上であり、好ましくは4.0以上である。靭性値K1cが3.5未満であると熱衝撃性、温度サイクル性が低下する。
【0042】
ここで、本発明に用いるフリップチップ型半導体装置としては、例えば図1に示したように、通常、有機基板1の配線パターン面に複数個のバンプ2を介して半導体チップ3が搭載されているものであり、上記有機基板1と半導体チップ3との隙間(バンプ2間の隙間)にアンダーフィル材4が充填され、その側部がフィレット材5で封止されたものとすることができるが、本発明の封止材は、特にアンダーフィル材として使用する場合に有効である。
【0043】
本発明の液状エポキシ樹脂組成物をアンダーフィル材として用いる場合、その硬化物のガラス転移温度以下の膨張係数が20〜40ppm/℃であることが好ましい。なお、この場合、フィレット材用の封止材は公知のものでよく、特に上述したアンダーフィル材と同様の液状エポキシ樹脂組成物を用いることができるが、この場合はその硬化物のガラス転移温度以下の膨張係数が10〜20ppm/℃であるものが好ましい。
【0044】
【実施例】
以下、実施例及び比較例を挙げて本発明を詳細に説明するが、本発明は下記の実施例に制限されるものではない。
【0045】
[実施例1〜5、比較例1〜3]
表1に示す成分を3本ロールで均一に混練することにより、8種の樹脂組成物を得た。これらの樹脂組成物を用いて、以下に示す試験を行った。その結果を表1に示す。
【0046】
[粘度]
BH型回転粘度計を用いて4rpmの回転数で25℃における粘度を測定した。
【0047】
[ボイドテスト]
Si膜コートした10mm×10mmのシリコンチップを30mm×30mmのFR−4基板に約100μmのスペーサを用いて設置し、生じた隙間に組成物を侵入、硬化させ、ボイドの有無をC−SAM(SONIX社製)で確認した。
【0048】
[靭性値K1c
ASTM#D5045に基づき、常温の強靭性値K1cを測定した。
【0049】
[Tg(ガラス転移温度)、CTE1(膨張係数)、CTE2(膨張係数)]
5mm×5mm×15mmの硬化物試験片を用いて、TMA(熱機械分析装置)により毎分5℃の速さで昇温した時のTgを測定した。また、以下の温度範囲の膨張係数を測定した。
CTE1の温度範囲は50〜80℃、CTE2の温度範囲は200〜230℃である。
【0050】
[接着力テスト]
Si膜コートしたシリコンチップ上に上面の直径2mm、下面の直径5mm、高さ3mmの円錐台形状の試験片を載せ、150℃で3時間硬化させた。硬化後、得られた試験片の剪断接着力を測定し、初期値とした。更に、硬化させた試験片をPCT(121℃/2.1atm)で336時間吸湿させた後、接着力を測定した。いずれの場合も試験片の個数は5個で行い、その平均値を接着力として表記した。
【0051】
[PCT剥離テスト]
Si膜コートした10mm×10mmのシリコンチップを30mm×30mmのFR−4基板に約100μmのスペーサを用いて設置し、生じた隙間に組成物を侵入、硬化させ、30℃/65%RH/192時間後に最高温度265℃に設定したIRリフローにて5回処理した後の剥離、更にPCT(121℃/2.1atm)の環境下に置き、336時間後の剥離をC−SAM(SONIX社製)で確認した。
【0052】
[熱衝撃テスト]
Si膜コートした10mm×10mmのシリコンチップを30mm×30mmのFR−4基板に約100μmのスペーサを用いて設置し、生じた隙間に組成物を侵入、硬化させ、30℃/65%RH/192時間後に最高温度265℃に設定したIRリフローにて5回処理した後、−65℃/30分、150℃/30分を1サイクルとし、250,500,750サイクル後の剥離、クラックを確認した。
【0053】
【表1】
Figure 2004099810
【0054】
IP−100:インデンとクマロンとスチレンとの3元共重合オリゴマー(新日鉄化学製)
IS−100BT:インデンとベンゾチオフェンとスチレンとの3元共重合オリゴマー(新日鉄化学製)
C−100S:ジエチルジアミノフェニルメタン(日本化薬社製)
C−300S:テトラエチルジアミノフェニルメタン(日本化薬社製)
RE303S−L:ビスフェノールF型エポキシ樹脂(日本化薬社製)
MH700:メチルテトラヒドロ無水フタル酸(新日本理化製)
YH307:3,4−ジメチル−6−(2−メチル−1−プロぺニル)−1,2,3,6−テトラハイドロフタル酸と、1−イソプロピル−4−メチル−バイサクロ[2.2.2]オクト−5−エン−2,3−ジカルボン酸の混合物(混合比率=6:4)(油化シェルエポキシ製)
KBM403:シランカップリング剤、γ−グリシドキシプロピルトリメトキシシラン(信越化学製)
2E4MZ:2−エチル−4−メチルイミダゾール(四国化成製)
球状シリカ:最大粒径24μm以下、平均粒径6μmの球状シリカ
【0055】
共重合体:
【化7】
Figure 2004099810
【0056】
【発明の効果】
本発明の液状エポキシ樹脂組成物は、シリコンチップの表面、特に感光性ポリイミド樹脂や窒化膜、とりわけ窒化膜との密着性に優れた硬化物を与え、吸湿後のリフローの温度が従来温度240℃付近から260〜270℃に上昇しても不良が発生せず、更にPCT(120℃/2.1atm)などの高温多湿の条件下でも劣化せず、−65℃/150℃の温度サイクルにおいて数百サイクルを超えても剥離、クラックが起こらない半導体装置を提供することができる。
【0057】
【図面の簡単な説明】
【図1】本発明の封止材を用いたフリップチップ型半導体装置の一例を示す断面図である。
【符号の説明】
1 有機基板
2 バンプ
3 半導体チップ
4 アンダーフィル材
5 フィレット材[0001]
TECHNICAL FIELD OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is suitable for semiconductor encapsulation, and gives a cured product having very good adhesion to the element surface of a silicon chip (especially photosensitive polyimide, nitride film, and oxide film) and high moisture resistance. The present invention relates to a liquid epoxy resin composition that can be an excellent sealing material against high-temperature thermal shock at a reflow temperature of 260 ° C. or higher, and a semiconductor device sealed with this composition.
[0002]
[Prior art]
With the miniaturization, weight reduction, and sophistication of electric devices, semiconductor mounting methods have shifted from pin insertion type to surface mounting. In addition, with the increase in the degree of integration of semiconductor elements, there is a case in which one side of the die size exceeds 10 mm, and the die size is increasing. In a semiconductor device using such a large die, the stress applied to the die and the sealing material at the time of solder reflow increases, and peeling occurs at the interface between the sealing material, the die, and the substrate, or a package cracks when the substrate is mounted. Such problems are getting closer.
[0003]
Further, since lead-containing solders will not be used in the near future, many lead-substituting solders have been developed. Since the melting temperature of this type of solder is higher than that of lead-containing solder, the reflow temperature is also studied at 260 to 270 ° C., and the conventional liquid epoxy resin composition encapsulant is more defective. Is expected. When the reflow temperature is increased in this manner, a serious problem such as the occurrence of cracks at the time of reflow and the separation of the chip interface and the substrate interface from the flip-chip type package, which had no problem in the past, may occur. Became.
[0004]
[Patent Document 1]
Japanese Patent No. 3238340 [Patent Document 2]
JP-A-10-158366
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and provides a cured product having excellent adhesion to the surface of a silicon chip, particularly to a photosensitive polyimide resin or a nitride film, and having excellent toughness. No failure occurs even when the temperature rises from around 240 ° C to 260-270 ° C, and furthermore, it does not deteriorate even under high-temperature and high-humidity conditions such as PCT (120 ° C / 2.1atm), and a temperature cycle of -65 ° C / 150 ° C It is an object of the present invention to provide a liquid epoxy resin composition which can be used as a sealing material for a semiconductor device in which peeling and cracking do not occur even after exceeding several hundred cycles, and a semiconductor device sealed with a cured product of the composition. .
[0006]
Means for Solving the Problems and Embodiments of the Invention
The present inventor has conducted intensive studies to achieve the above object, and as a result, (A) a liquid epoxy resin, (B) an aromatic amine-based curing agent, (C) an inorganic filler, and (D) a mixture of indene and styrene. A mixture in which an indene polymer having a number average molecular weight of 200 to 2,000 made of a copolymer is melt-mixed in advance with a liquid epoxy resin: the blending amount of the indene polymer is based on 100 parts by weight of the total amount of the components (A) and (B). In the liquid epoxy resin composition containing 0.1 to 20 parts by weight, the aromatic amine-based curing agent (B) has a purity of at least one kind represented by the following general formulas (1) to (3) of at least one. % Or more of an aromatic amine compound in an amount of 5% by weight or more of the entire curing agent, and the mixing molar ratio of (A) the liquid epoxy resin to (B) the aromatic amine-based curing agent [(A) / (B)] is 0.7 or more and 0.9 or less , By blending as toughness K 1c in the composition is 3.5 or more, the surface of the silicon chip, in particular a photosensitive polyimide resin or a nitride film, especially excellent adhesion to the nitride film, PCT (120 (Atmospheric temperature / 2.1 atm), it does not deteriorate even under conditions of high temperature and high humidity, is excellent in thermal shock, and is found to be particularly effective as a sealing material for a semiconductor device having a large die size.
[0007]
Embedded image
Figure 2004099810
(In the formula, R 1 to R 4 are a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms.)
[0008]
That is, the aromatic amine-based curing agent is known as a semiconductor encapsulant. In particular, Japanese Patent No. 3238340 (Patent Document 1) and Japanese Patent Application Laid-Open No. 10-158366 (Patent Document 2) disclose the above-mentioned general formula. The same amine curing agent as the aromatic amine curing agent represented by (1) to (3) is used, and in Japanese Patent Application Laid-Open No. H10-158366, the curing ratio is determined by the molar ratio between the epoxy resin and the curing agent. If the amount of the curing agent of 0.9 mol or less of the epoxy resin per 1 mol of the agent is excessive, unreacted amino groups will remain excessively, leading to a decrease in moisture resistance and a decrease in reliability. The present invention provides a silicon chip by using a molar ratio of the epoxy resin and the aromatic amine-based curing agent represented by the general formulas (1) to (3) in the range of 0.7 or more and 0.9 or less. Surface, especially photosensitive Excellent adhesion to the polyimide resin or a nitride film, and thermal shock resistance is remarkably improved, have found that it is possible to obtain excellent characteristics even under high temperature and high humidity. Further, in the system of the epoxy resin and the amine curing agent, a silane coupling agent is an essential component, and in the production of a flip chip semiconductor device, voids are generated at the time of injection or curing of the resin. It has been found that even if a silane coupling agent is not blended in order to improve the reliability, it is excellent in reliability and can be particularly effective as a sealing material for a large-sized semiconductor device. Furthermore, by blending a specific amount of an indene-based polymer having a number average molecular weight of 200 to 2,000 consisting of a copolymer of indene and styrene as a mixture previously melt-mixed with a liquid epoxy resin, the adhesion to the nitride film is remarkably improved. The present invention has been found to be improved, and the present invention has been accomplished.
[0009]
Therefore, the present invention
(A) a liquid epoxy resin (B) an aromatic amine-based curing agent (C) an inorganic filler (D) an indene polymer having a number average molecular weight of 200 to 2,000, which is composed of a copolymer of indene and styrene, is converted into a liquid epoxy resin in advance. Melt-mixed mixture: In a liquid epoxy resin composition containing 0.1 to 20 parts by weight based on 100 parts by weight of the total amount of the components (A) and (B), As an aromatic amine-based curing agent, at least one aromatic amine compound having a purity of 99% or more represented by the general formulas (1) to (3) is contained in an amount of 5% by weight or more of the entire curing agent; The molar ratio [(A) / (B)] of the liquid epoxy resin to the aromatic amine curing agent (B) is 0.7 or more and 0.9 or less, and the toughness value K 1c of this composition is 3. Characterized by 5 or more Provided are a liquid epoxy resin composition, a semiconductor device sealed with a cured product of the liquid epoxy resin composition, and a flip chip type semiconductor device sealed with the cured product of the liquid epoxy resin composition as an underfill material. .
[0010]
Hereinafter, the present invention will be described in more detail.
In the semiconductor encapsulant (liquid epoxy resin composition) of the present invention, the liquid epoxy resin (A) may be any epoxy resin that is liquid at room temperature and contains two or less functional groups in one molecule. Although it can be used, it is preferable that the viscosity at 25 ° C. is 2,000 poise or less, particularly 500 poise or less. Specifically, bisphenol type epoxy resins such as bisphenol A type epoxy resin and bisphenol F type epoxy resin, naphthalene Type epoxy resin, phenylglycidyl ether, etc., among which an epoxy resin which is liquid at room temperature is desirable. There is no problem even if an epoxy resin having the following structure is added to these epoxy resins within a range that does not affect the infiltration property.
[0011]
Embedded image
Figure 2004099810
[0012]
The total chlorine content in the liquid epoxy resin is preferably 1,500 ppm or less, more preferably 1,000 ppm or less. Further, it is preferable that the extracted water chlorine in 20 hours at 100 ° C. and 50% epoxy resin concentration is 10 ppm or less. If the total chlorine content exceeds 1,500 ppm or the amount of chlorine in the extracted water exceeds 10 ppm, the reliability of the semiconductor element, particularly, the moisture resistance may be adversely affected.
[0013]
Next, the aromatic amine curing agent (B) used in the present invention comprises at least one aromatic amine compound having a purity of 99% or more represented by the following general formulas (1) to (3). The content is 5% by weight or more, preferably 10 to 100% by weight, more preferably 20 to 100% by weight of the whole. When the amount of the aromatic amine compound represented by any one of the general formulas (1) to (3) is less than 5% by weight of the entire curing agent, the adhesive strength is reduced or cracks occur. On the other hand, if the purity is less than 99%, the odor is so strong that the productivity is poor. In addition, the purity mentioned here is the purity of the monomer.
[0014]
Embedded image
Figure 2004099810
(In the formula, R 1 to R 4 are a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms.)
[0015]
Here, as the monovalent hydrocarbon group of R 1 to R 4 , those having 1 to 6, particularly 1 to 3 carbon atoms are preferable, and a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, tert-butyl group, alkyl group such as hexyl group, alkenyl group such as vinyl group, allyl group, propenyl group, butenyl group, hexenyl group, phenyl group and the like, and part or all of hydrogen atoms of these hydrocarbon groups. Examples include halogen-substituted monovalent hydrocarbon groups such as a fluoromethyl group, a bromoethyl group, and a trifluoropropyl group substituted with a halogen atom such as chlorine, fluorine, and bromine.
[0016]
The curing agent other than the aromatic amine-based curing agent is preferably a low-molecular aromatic amine such as 2,4-diaminotoluene, 1,4-diaminobenzene, and 1,3-diaminobenzene.
[0017]
The aromatic amine-based curing agent is usually solid at ordinary temperature, and if it is added as it is, the viscosity of the resin increases, and the workability is significantly deteriorated. It is desirable to melt-mix at a temperature of 70 to 150 ° C for 1 hour to 2 hours. If the mixing temperature is lower than 70 ° C., the aromatic amine-based curing agent may not be sufficiently compatible, and if the mixing temperature is higher than 150 ° C., it may react with the epoxy resin and increase the viscosity. Also, if the mixing time is less than 1 hour, the aromatic amine-based curing agent is not sufficiently compatible and may cause an increase in viscosity, and if it exceeds 2 hours, it may react with the epoxy resin and increase in viscosity. .
[0018]
The total amount of the aromatic amine-based curing agent used in the present invention is determined by the molar ratio of the liquid epoxy resin to the aromatic amine-based curing agent [(A) liquid epoxy resin / (B) aromatic amine-based curing agent]. Agent] should be in the range of 0.7 to 0.9, preferably 0.7 to less than 0.9, and more preferably 0.7 to 0.85. If the compounding molar ratio is less than 0.7, unreacted amine groups remain, which lowers the glass transition temperature and lowers the adhesion. Conversely, if it exceeds 0.9, the K1c value decreases, the cured product becomes hard and brittle, and cracks occur during reflow.
[0019]
On the other hand, the inorganic filler (C) used in the present invention may contain various conventionally known inorganic fillers for the purpose of reducing the expansion coefficient. Specific examples of the inorganic filler include fused silica, crystalline silica, alumina, boron nitride, titanium aluminum, titanium silicon, magnesia, magnesium silicate, and aluminum. Above all, fused silica having a true spherical shape is desirable for lowering the viscosity. These inorganic fillers may be surface-treated with a silane coupling agent or the like, but can be used without surface treatment.
[0020]
When the composition of the present invention is used as a potting material, it is desirable that the average particle size is 2 to 20 μm and the maximum particle size is 75 μm or less, particularly 50 μm or less. If the average particle size is less than 2 μm, the viscosity becomes high and a large amount cannot be filled in some cases. On the other hand, if the average particle size exceeds 20 μm, coarse particles increase and the lead wire may be clogged with voids.
[0021]
In this case, the filling amount of the inorganic filler is preferably in the range of 100 to 600 parts by weight based on 100 parts by weight of the epoxy resin. If the amount is less than 100 parts by weight, the coefficient of expansion is large and cracks may be induced in a thermal test. If the amount exceeds 600 parts by weight, the viscosity may increase and the fluidity may decrease.
[0022]
When used as an underfill material, the average particle size is about 1/10 of the flip chip gap width (gap between the substrate and the semiconductor chip) in order to achieve both improved penetration and low linear expansion. Hereinafter, it is preferable that the maximum particle size be 以下 or less.
[0023]
In this case, the compounding amount of the inorganic filler is preferably 50 to 400 parts by weight, more preferably 100 to 250 parts by weight, based on 100 parts by weight of the epoxy resin. If the amount is less than 50 parts by weight, the coefficient of expansion is large, and there is a possibility that cracks may be generated in a thermal test. If the amount exceeds 400 parts by weight, the viscosity becomes high, and there is a possibility that the penetration of the thin film is reduced.
[0024]
The liquid epoxy resin composition of the present invention includes a mixture (D) in which an indene-based polymer composed of a copolymer of indene and styrene is melt-mixed in advance with the above liquid epoxy resin for the purpose of improving the adhesion to a nitride film. It is to be blended. In this case, the indene-based polymer has a number average molecular weight of 200 to 2,000, preferably 500 to 1,000. The indene-based polymer preferably has a softening point of 90 to 150 ° C. and a melt viscosity at 150 ° C. of 5 to 60 poise, and particularly preferably 10 to 50 poise for improving adhesion.
[0025]
Specific examples of such an indene-based polymer include a terpolymer of indene and styrene, a terpolymer of indene, coumarone and styrene, and a terpolymer of indene, benzothiophene and styrene. And an indene polymer derived from the following formula.
[0026]
Embedded image
Figure 2004099810
Where r, s, and t are each an integer of 1 or more, and r + s and r + t + s are values that give the number average molecular weight. )
[0027]
In the present invention, the indene unit amount (r in the above formula) in the indene-based polymer is preferably at least 30 mol%. If the indene unit is less than 30 mol%, sufficient adhesion may not be obtained. In particular, in order to improve the adhesion, it is preferably at least 60 mol%, more preferably at least 90 mol%. The upper limit is preferably 99 mol% or less, particularly preferably 98 mol% or less. The styrene unit content (s in the above formula) in the indene-based polymer is preferably 70 mol% or less, particularly preferably 60 mol% or less, and the lower limit is 2 mol% or more, particularly 10 mol% or more. It is preferable that
[0028]
Examples of such an indene-based polymer include indene-based oligomer IP-100 (a ternary copolymerized oligomer of indene, coumarone, and styrene) and IS-100BT (a ternary copolymer of indene, benzothiophene, and styrene) manufactured by Nippon Steel Chemical Co., Ltd. Copolymerized oligomer) and the like.
[0029]
In the present invention, the indene-based polymer needs to be melt-mixed with the above-mentioned liquid epoxy resin in advance, and the melt-mixing ratio of the indene-based polymer and the liquid epoxy resin at this time is expressed as a weight ratio of indene. System polymer: liquid epoxy resin = 8: 2 to 4: 6, preferably 7: 3 to 5: 5. If the proportion of the indene-based polymer is too large, the compatibility may be poor, the viscosity may be high, and the workability may be difficult. If the proportion is too small, the required amount of the indene-based polymer may not be blended.
[0030]
The molten mixture of the indene polymer and the liquid epoxy resin can be obtained by stirring the two at the melting temperature until they are completely melt-mixed. In this case, the melt mixing conditions can be appropriately selected, but it is preferable to set the temperature at 80 to 150 ° C., particularly 100 to 120 ° C., for 1 to 2 hours.
[0031]
The amount of the component (D) is 0.1 to 20 parts by weight, preferably 0.5 to 50 parts by weight, based on 100 parts by weight of the total amount of the liquid epoxy resin and the curing agent in the composition, as the amount of the indene-based polymer. 10 parts by weight. If the amount is less than 0.1 part by weight, a sufficient effect of improving the adhesion cannot be obtained. If the amount is more than 20 parts by weight, the crosslinking density decreases, and sufficient strength cannot be obtained.
[0032]
The liquid epoxy resin composition of the present invention may be blended with silicone rubber, silicone oil, liquid polybutadiene rubber, a thermoplastic resin composed of methyl methacrylate-butadiene-styrene, or the like for the purpose of reducing stress. Preferably, the alkenyl group of the alkenyl group-containing epoxy resin or the phenol resin has 20 to 400 silicon atoms per molecule represented by the following average composition formula (4), and a hydrogen atom directly bonded to the silicon atom ( It is preferable to blend a silicone-modified resin comprising a copolymer obtained by an addition reaction of an organopolysiloxane having 1 to 5 (SiH groups) with SiH groups.
[0033]
H a R 5 b SiO (4 -a-b) / 2 (4)
(Where R 5 is a substituted or unsubstituted monovalent hydrocarbon group, a is 0.01 to 0.1, b is 1.8 to 2.2, 1.81 ≦ a + b ≦ 2.3. .)
[0034]
As the substituted or unsubstituted monovalent hydrocarbon group for R 5 , those having 1 to 10 carbon atoms, particularly 1 to 8 carbon atoms, are preferable, and methyl, ethyl, propyl, isopropyl, butyl, and isobutyl groups are preferred. , Tert-butyl group, hexyl group, octyl group, alkyl group such as decyl group, vinyl group, allyl group, alkenyl group such as butenyl group, hexenyl group, and aryl group such as phenyl group, xylyl group and tolyl group. A benzyl group, a phenylethyl group, an aralkyl group such as a phenylpropyl group, or a fluoromethyl group in which part or all of the hydrogen atoms of these hydrocarbon groups have been substituted with halogen atoms such as chlorine, fluorine and bromine, a bromoethyl group, Examples include a halogen-substituted monovalent hydrocarbon group such as a trifluoropropyl group.
Among the above copolymers, those having the following structures are particularly desirable.
[0035]
Embedded image
Figure 2004099810
[0036]
In the above formula, R 5 is the same as described above, R 6 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 7 is —CH 2 CH 2 CH 2 —, —OCH 2 —CH (OH) —CH 2 —O—CH 2 CH 2 CH 2 — or —O—CH 2 CH 2 CH 2 —. n is an integer of 4 to 199, preferably 19 to 99, p is an integer of 1 to 10, and q is an integer of 1 to 10.
[0037]
By blending the above copolymer so that the diorganopolysiloxane unit is contained in an amount of 0 to 20 parts by weight, particularly 2 to 15 parts by weight based on 100 parts by weight of the epoxy resin, the stress can be further reduced.
[0038]
The liquid epoxy resin composition of the present invention further includes, if necessary, a carbon-functional silane for improving adhesion, a pigment such as carbon black, a dye, an antioxidant, and other additives within a range that does not impair the purpose of the present invention. Can be blended. However, in the present invention, it is preferable not to add an alkoxy-based silane coupling agent as a carbon-functional silane or the like for improving adhesion other than being used as a surface treatment agent. In particular, when used as an underfill material, even a small amount of an alkoxy-based silane coupling agent may cause voids.
[0039]
The liquid epoxy resin composition of the present invention requires, for example, a liquid epoxy resin, an aromatic amine-based curing agent, an inorganic filler, a molten mixture of an indene-based polymer and a liquid epoxy resin, and other additives simultaneously or separately. By adding, stirring, dissolving, mixing, and dispersing heat treatment. The apparatus for mixing, stirring, dispersing and the like is not particularly limited, but a raikai machine equipped with a stirring and heating device, a three-roll machine, a ball mill, a planetary mixer and the like can be used. These devices may be used in combination as appropriate.
[0040]
In the present invention, the viscosity of the liquid epoxy resin composition used as the sealing material is preferably 10,000 poise or less at 25 ° C. In addition, the molding method and molding conditions of this composition can be conventional methods, but are preferably 100 to 120 ° C. for 0.5 hour or more, and then 150 ° C. for 0.5 hour or more. Perform a heat oven cure. If heating at 100 to 120 ° C. is less than 0.5 hour, voids may be generated after curing. If the heating at 150 ° C. is less than 0.5 hour, sufficient cured product properties may not be obtained.
[0041]
Further, the toughness value K 1c of the liquid epoxy resin composition of the present invention is 3.5 or more, and preferably 4.0 or more. When the toughness value K1c is less than 3.5, the thermal shock resistance and the temperature cycle property are reduced.
[0042]
Here, as a flip chip type semiconductor device used in the present invention, for example, as shown in FIG. 1, a semiconductor chip 3 is usually mounted on a wiring pattern surface of an organic substrate 1 via a plurality of bumps 2. A gap between the organic substrate 1 and the semiconductor chip 3 (a gap between the bumps 2) is filled with an underfill material 4 and the side portion thereof is sealed with a fillet material 5. The sealing material of the present invention is particularly effective when used as an underfill material.
[0043]
When the liquid epoxy resin composition of the present invention is used as an underfill material, the cured product preferably has an expansion coefficient of not more than the glass transition temperature of 20 to 40 ppm / ° C. In this case, the sealing material for the fillet material may be a known material, and in particular, a liquid epoxy resin composition similar to the underfill material described above can be used. In this case, the glass transition temperature of the cured product is used. Those having the following expansion coefficient of 10 to 20 ppm / ° C are preferred.
[0044]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
[0045]
[Examples 1 to 5, Comparative Examples 1 to 3]
Eight kinds of resin compositions were obtained by uniformly kneading the components shown in Table 1 with three rolls. The following tests were performed using these resin compositions. Table 1 shows the results.
[0046]
[viscosity]
The viscosity at 25 ° C. was measured at a rotation speed of 4 rpm using a BH type rotational viscometer.
[0047]
[Void test]
A 10 mm × 10 mm silicon chip coated with a Si 3 N 4 film was placed on a 30 mm × 30 mm FR-4 substrate using a spacer of about 100 μm, the composition penetrated into the generated gap, cured, and the presence or absence of voids was determined. -Confirmed with SAM (manufactured by SONIX).
[0048]
[Toughness value K 1c ]
Based on the ASTM # D5045, measured at normal temperature toughness value K 1c.
[0049]
[Tg (glass transition temperature), CTE1 (expansion coefficient), CTE2 (expansion coefficient)]
Using a 5 mm × 5 mm × 15 mm cured product test piece, Tg was measured at a rate of 5 ° C./min by TMA (thermomechanical analyzer). In addition, the expansion coefficient in the following temperature range was measured.
CTE1 has a temperature range of 50 to 80 ° C, and CTE2 has a temperature range of 200 to 230 ° C.
[0050]
[Adhesion test]
A frustum-shaped test piece having a diameter of 2 mm on the upper surface, a diameter of 5 mm on the lower surface, and a height of 3 mm was placed on a silicon chip coated with a Si 3 N 4 film, and cured at 150 ° C. for 3 hours. After curing, the shear adhesive strength of the obtained test piece was measured and used as an initial value. Furthermore, the cured test piece was subjected to PCT (121 ° C./2.1 atm) moisture absorption for 336 hours, and then the adhesive strength was measured. In each case, the number of test pieces was five, and the average value was expressed as adhesive strength.
[0051]
[PCT peeling test]
A 10 mm × 10 mm silicon chip coated with a Si 3 N 4 film was placed on a 30 mm × 30 mm FR-4 substrate using a spacer of about 100 μm, and the composition penetrated into the resulting gap, cured, and 30 ° C./65% After RH / 192 hours, peeling after 5 times treatment with IR reflow set to a maximum temperature of 265 ° C., and further placing in an environment of PCT (121 ° C./2.1 atm), peeling after 336 hours C-SAM ( SONIX).
[0052]
[Thermal shock test]
A 10 mm × 10 mm silicon chip coated with a Si 3 N 4 film is placed on a 30 mm × 30 mm FR-4 substrate using a spacer of about 100 μm, the composition penetrates into the generated gap, is cured, and the temperature is 30 ° C./65%. After RH / 192 hours, the substrate was treated 5 times by IR reflow set to a maximum temperature of 265 ° C., and then a cycle of −65 ° C./30 minutes and 150 ° C./30 minutes was performed. It was confirmed.
[0053]
[Table 1]
Figure 2004099810
[0054]
IP-100: Terpolymerized oligomer of indene, coumarone and styrene (Nippon Steel Chemical Co., Ltd.)
IS-100BT: Terpolymerized oligomer of indene, benzothiophene and styrene (Nippon Steel Chemical Co., Ltd.)
C-100S: diethyldiaminophenylmethane (Nippon Kayaku Co., Ltd.)
C-300S: Tetraethyldiaminophenylmethane (Nippon Kayaku Co., Ltd.)
RE303S-L: bisphenol F type epoxy resin (Nippon Kayaku Co., Ltd.)
MH700: Methyltetrahydrophthalic anhydride (Shin Nippon Rika)
YH307: 3,4-dimethyl-6- (2-methyl-1-propenyl) -1,2,3,6-tetrahydrophthalic acid and 1-isopropyl-4-methyl-bisacro [2.2. 2] Mixture of oct-5-ene-2,3-dicarboxylic acid (mixing ratio = 6: 4) (manufactured by Yuka Shell Epoxy)
KBM403: silane coupling agent, γ-glycidoxypropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd.)
2E4MZ: 2-ethyl-4-methylimidazole (Shikoku Chemicals)
Spherical silica: spherical silica having a maximum particle size of 24 μm or less and an average particle size of 6 μm
Copolymer:
Embedded image
Figure 2004099810
[0056]
【The invention's effect】
The liquid epoxy resin composition of the present invention provides a cured product having excellent adhesion to the surface of a silicon chip, particularly a photosensitive polyimide resin or a nitride film, especially a nitride film, and the reflow temperature after absorbing moisture is the conventional temperature of 240 ° C. No failure occurs even when the temperature rises to 260-270 ° C from the vicinity, and furthermore, it does not deteriorate even under high-temperature and high-humidity conditions such as PCT (120 ° C / 2.1atm). A semiconductor device free from peeling and cracking even when the number of cycles exceeds 100 can be provided.
[0057]
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a flip-chip type semiconductor device using a sealing material of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Organic substrate 2 Bump 3 Semiconductor chip 4 Underfill material 5 Fillet material

Claims (4)

(A)液状エポキシ樹脂
(B)芳香族アミン系硬化剤
(C)無機質充填剤
(D)インデンとスチレンの共重合体よりなる数平均分子量が200〜2000のインデン系ポリマーを予め液状エポキシ樹脂に溶融混合した混合物:インデン系ポリマーの配合量として、(A),(B)成分の総量100重量部に対して0.1〜20重量部
を含有する液状エポキシ樹脂組成物において、(B)芳香族アミン系硬化剤として、下記一般式(1)〜(3)で表される少なくとも1種類の純度が99%以上の芳香族アミン化合物を硬化剤全体の5重量%以上含有し、(A)液状エポキシ樹脂と(B)芳香族アミン系硬化剤との配合モル比〔(A)/(B)〕が0.7以上0.9以下であり、この組成物の靭性値K1cが3.5以上であることを特徴とする液状エポキシ樹脂組成物。
Figure 2004099810
(式中、R〜Rは水素原子又は炭素数1〜6の一価炭化水素基である。)
(A) a liquid epoxy resin (B) an aromatic amine-based curing agent (C) an inorganic filler (D) an indene polymer having a number average molecular weight of 200 to 2,000, which is composed of a copolymer of indene and styrene, is converted into a liquid epoxy resin in advance. Melt-mixed mixture: In a liquid epoxy resin composition containing 0.1 to 20 parts by weight based on 100 parts by weight of the total amount of the components (A) and (B), As an aromatic amine-based curing agent, at least one aromatic amine compound having a purity of 99% or more represented by the following general formulas (1) to (3) is contained in an amount of 5% by weight or more of the entire curing agent; The molar ratio [(A) / (B)] of the liquid epoxy resin to the aromatic amine curing agent (B) is 0.7 or more and 0.9 or less, and the toughness value K 1c of this composition is 3. Characterized by 5 or more Liquid epoxy resin composition.
Figure 2004099810
(In the formula, R 1 to R 4 are a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms.)
更に、アルケニル基含有エポキシ樹脂又はアルケニル基含有フェノール樹脂のアルケニル基と、下記平均組成式(4)
SiO(4−a−b)/2             (4)
(式中、Rは置換又は非置換の一価炭化水素基、aは0.01〜0.1、bは1.8〜2.2、1.81≦a+b≦2.3である。)
で示される1分子中の珪素原子の数が20〜400であり、かつ珪素原子に直接結合した水素原子(SiH基)の数が1〜5であるオルガノポリシロキサンのSiH基との付加反応により得られる共重合体からなるシリコーン変性樹脂を含有する請求項1記載の液状エポキシ樹脂組成物。
Further, an alkenyl group of the alkenyl group-containing epoxy resin or the alkenyl group-containing phenol resin is combined with the following average composition formula (4)
H a R 5 b SiO (4 -a-b) / 2 (4)
(Wherein, R 5 is a substituted or unsubstituted monovalent hydrocarbon group, a is 0.01 to 0.1, b is 1.8 to 2.2, 1.81 ≦ a + b ≦ 2.3. )
Wherein the number of silicon atoms in one molecule is 20 to 400 and the number of hydrogen atoms (SiH groups) directly bonded to the silicon atoms is 1 to 5 by an addition reaction with an SiH group of the organopolysiloxane. The liquid epoxy resin composition according to claim 1, comprising a silicone-modified resin comprising the obtained copolymer.
請求項1又は2記載の液状エポキシ樹脂組成物の硬化物で封止された半導体装置。A semiconductor device sealed with a cured product of the liquid epoxy resin composition according to claim 1. 請求項1又は2記載の液状エポキシ樹脂組成物の硬化物をアンダーフィル材として封止したフリップチップ型半導体装置。A flip-chip type semiconductor device in which a cured product of the liquid epoxy resin composition according to claim 1 or 2 is sealed as an underfill material.
JP2002266359A 2002-09-12 2002-09-12 Liquid epoxy resin composition and semiconductor device Expired - Lifetime JP3867784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002266359A JP3867784B2 (en) 2002-09-12 2002-09-12 Liquid epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002266359A JP3867784B2 (en) 2002-09-12 2002-09-12 Liquid epoxy resin composition and semiconductor device

Publications (2)

Publication Number Publication Date
JP2004099810A true JP2004099810A (en) 2004-04-02
JP3867784B2 JP3867784B2 (en) 2007-01-10

Family

ID=32265189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002266359A Expired - Lifetime JP3867784B2 (en) 2002-09-12 2002-09-12 Liquid epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP3867784B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023272A (en) * 2005-06-15 2007-02-01 Hitachi Chem Co Ltd Liquid epoxy resin composition for sealing and electronic part device and wafer level chip size package
JP2009155431A (en) * 2007-12-26 2009-07-16 Sumitomo Bakelite Co Ltd Liquid resin composition for sealing, semiconductor device, and method for making semiconductor device
JP2011079905A (en) * 2009-10-05 2011-04-21 Hitachi Chem Co Ltd Epoxy resin composition, resin composition for seal-filling semiconductor, and semiconductor device
US7981977B2 (en) * 2005-12-08 2011-07-19 Hitachi Chemical Co., Ltd. Sealant for electronics of epoxy resin, aromatic amine, accelerator and inorganic filler
JP2020105279A (en) * 2018-12-26 2020-07-09 住友ベークライト株式会社 Resin composition, resin film with carrier using the same, prepreg, laminate, printed wiring board and semiconductor device
CN113667433A (en) * 2020-05-14 2021-11-19 三星Sdi株式会社 Epoxy resin composition and semiconductor device encapsulated using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023272A (en) * 2005-06-15 2007-02-01 Hitachi Chem Co Ltd Liquid epoxy resin composition for sealing and electronic part device and wafer level chip size package
US7981977B2 (en) * 2005-12-08 2011-07-19 Hitachi Chemical Co., Ltd. Sealant for electronics of epoxy resin, aromatic amine, accelerator and inorganic filler
JP2009155431A (en) * 2007-12-26 2009-07-16 Sumitomo Bakelite Co Ltd Liquid resin composition for sealing, semiconductor device, and method for making semiconductor device
JP2011079905A (en) * 2009-10-05 2011-04-21 Hitachi Chem Co Ltd Epoxy resin composition, resin composition for seal-filling semiconductor, and semiconductor device
JP2020105279A (en) * 2018-12-26 2020-07-09 住友ベークライト株式会社 Resin composition, resin film with carrier using the same, prepreg, laminate, printed wiring board and semiconductor device
JP7342358B2 (en) 2018-12-26 2023-09-12 住友ベークライト株式会社 Resin compositions, resin films with carriers using the same, prepregs, laminates, printed wiring boards, and semiconductor devices
CN113667433A (en) * 2020-05-14 2021-11-19 三星Sdi株式会社 Epoxy resin composition and semiconductor device encapsulated using the same

Also Published As

Publication number Publication date
JP3867784B2 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
JP2526747B2 (en) Epoxy resin composition and semiconductor device
JP5502268B2 (en) Resin composition set for system-in-package semiconductor devices
JP2002146160A (en) Liquid epoxy resin composition and semiconductor device
JP5277537B2 (en) Liquid resin composition for electronic components and electronic component device using the same
JP5116152B2 (en) Resin composition for manufacturing semiconductor devices
JP5114935B2 (en) Liquid resin composition for electronic components, and electronic component device using the same
US20060204762A1 (en) Liquid epoxy resin composition and semiconductor device
JP5692212B2 (en) Liquid resin composition for electronic components and electronic component device using the same
JP3952143B2 (en) Liquid epoxy resin composition and semiconductor device
JP4066174B2 (en) Liquid epoxy resin composition, flip chip type semiconductor device and sealing method thereof
JP2002097257A (en) Liquid epoxy-resin composition and apparatus for semiconductor
JP3997422B2 (en) Liquid epoxy resin composition and semiconductor device
JP2002047394A (en) Liquid epoxy resin composition and semiconductor device
JP3707531B2 (en) Flip chip type semiconductor device sealing material and flip chip type semiconductor device
JP3773022B2 (en) Flip chip type semiconductor device
JP2009173744A (en) Underfill agent composition
JP2010111747A (en) Underfill agent composition
JP2001055488A (en) Encapsulant for flip chip type semiconductor device and flip chip type semiconductor device
JP2010077234A (en) Liquid epoxy resin composition and semiconductor device
JP3867784B2 (en) Liquid epoxy resin composition and semiconductor device
JP4697476B2 (en) Liquid epoxy resin composition and flip chip type semiconductor device
JP4221585B2 (en) Liquid epoxy resin composition and semiconductor device
JP5354721B2 (en) Underfill agent composition
JP3871032B2 (en) Liquid epoxy resin composition and flip chip type semiconductor device
JP4009853B2 (en) Liquid epoxy resin composition and flip chip type semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061003

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3867784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151020

Year of fee payment: 9

EXPY Cancellation because of completion of term