JP2004099667A - Method for preparing block copolymer film having vertically oriented lamellar structure - Google Patents

Method for preparing block copolymer film having vertically oriented lamellar structure Download PDF

Info

Publication number
JP2004099667A
JP2004099667A JP2002260512A JP2002260512A JP2004099667A JP 2004099667 A JP2004099667 A JP 2004099667A JP 2002260512 A JP2002260512 A JP 2002260512A JP 2002260512 A JP2002260512 A JP 2002260512A JP 2004099667 A JP2004099667 A JP 2004099667A
Authority
JP
Japan
Prior art keywords
block copolymer
substrate
film
surface roughness
lamella
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002260512A
Other languages
Japanese (ja)
Inventor
Takeji Hashimoto
橋本 竹治
Sivania Ethan
イーサン シバニア
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Technology Licensing Organization Co Ltd
Original Assignee
Kansai Technology Licensing Organization Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Technology Licensing Organization Co Ltd filed Critical Kansai Technology Licensing Organization Co Ltd
Priority to JP2002260512A priority Critical patent/JP2004099667A/en
Publication of JP2004099667A publication Critical patent/JP2004099667A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for readily preparing a block copolymer film having a vertically oriented lamellar structure in which the block copolymer composed of monomers A and B is separated into a micro-phase of a lamella A composed of a monomer unit of A and a lamella B composed of a monomer unit of B and formed so as to be vertically and alternately oriented relative to a substrate. <P>SOLUTION: The substrate having prescribed characteristic surface roughness or more in an inorganic compound substrate and an organic compound substrate according to purposes of uses such as indium tin oxide (ITO), Si, SiOx, carbon and a polyimide resin is used. A resin is placed thereon and heated to prepare the film. Thereby, the block copolymer film having the vertically oriented lamellar structure relative to the substrate is prepared. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、基板に対して垂直な配向ラメラ構造を有するブロック共重合体膜を作製する方法に関する。
【0002】
このような垂直配向ラメラ構造を有する膜に対しては、特定の試薬での処理、プラズマ処理、紫外線照射処理等で当該処理等に耐性を持たない一方の部位のみを侵して除去することにより、膜の微細加工を行うことが可能である。従って、ナノレベルの精度が要求される様々な技術分野においてこのような方法を適用することにより、微細加工を施した製品を作製することができる。具体的には、例えば、偏光フィルム、回折格子、ナノオーダーのパターンを作製するためのレジスト、このレジストを使用して作製した電子デバイス、樹脂の除去部分を磁性体や光学材料により置き換えた高密度メモリなどを考えることができる。
【0003】
【従来の技術】
高分子化合物の出発物質である化合物(モノマー)は、通常、そのモノマーの構造に起因して、凝集エネルギー密度が異なっているため、他の物質に対する親和性はそれぞれのモノマーで異なっている。
【0004】
一方、ブロック共重合体とは、複数の繰り返しモノマー単位からなる高分子化合物であって、途中で枝分かれすることなく連続してつながった配列を有するものをいい、例えば、モノマーA及びBからなる化合物である場合、AAAAABBBBBAAAAABBBBBAAAAAのように配列するものをいう。ここで、AまたはBの連鎖をブロックといい、それぞれ、Aブロック、Bブロックと表す。なお、モノマーの種類は3種類以上であってもよい。
【0005】
ブロック共重合体は、異種のブロックが互いによく混ざり合うことなく相分離する時には、秩序だった特徴的なミクロドメイン構造をつくる。これをミクロ相分離と呼ぶ。
【0006】
このような性質のため、 相分離しやすいブロック共重合体を基板上で成膜すると、基板に対してより親和性の高いブロックが基板に接するように、自由表面(基板と反対側の表面)に対してより親和性の高いブロックが自由表面に接するように、配列する。その結果、ブロック共重合体膜のミクロドメイン構造は、通常は、図1のように基板に対して平行な配向ラメラ構造を有することとなる。なお、図1において11は基板であり、12はブロック共重合体膜、そして13及び14は各ブロックから成るラメラを表す。
【0007】
従って、ミクロドメイン構造が図2のような垂直配向ラメラ構造を有するブロック共重合体膜を作製することは困難であり、従来は、ブロック共重合体樹脂を2枚の基板で挟んだ後に、両基板の間に電圧を印加し、配向させる電気的方法(非特許文献1参照)、又は、基板表面をブロック共重合体を構成する各モノマーのいずれにも等しい親和性を持つように処理する中性膜コート法(非特許文献2参照)等により、垂直配向ラメラ構造を有するミクロドメイン構造膜を作製していた。
【0008】
【非特許文献1】
「マクロモレキュールズ」(Macromolecules),(アメリカ),1991年,第24巻,p.6546
【非特許文献2】
「マクロモレキュールズ」(Macromolecules),(アメリカ),1999年,第32巻,p.5299
【0009】
【発明が解決しようとする課題】
しかし、上記電気的方法は、基板にブロック共重合体の樹脂溶液を塗布した後に更なる工程を必要とするものである。また、中性膜コート法は、樹脂溶液塗布前に他の樹脂膜をコーティングしたり、表面処理する工程を必要とするばかりでなく、ブロック共重合体を構成する各モノマーのいずれにも親和性のある樹脂や表面処理方法を見いだすのが困難であるという問題点がある。このことから、これらの方法を実際に処理方法として採用するのは現実的ではなかった。
【0010】
本発明はこのような課題を解決するために成されたものであり、その目的とするところは、容易に、ミクロドメイン構造が垂直配向ラメラ構造を有するブロック共重合体膜を作製する方法を提供することにある。
【0011】
【課題を解決するための手段】
上記課題を解決するために成された本発明に係るブロック共重合体膜作製方法は、所定の特性表面粗さを有する基板上にブロック共重合体樹脂を載置した後、該樹脂を熱処理することにより、基板上のブロック共重合体膜に垂直配向ラメラ構造を形成するというものである。
【0012】
【発明の実施の形態】
上記方法により、ブロック共重合体を構成する各モノマー(及び、ブロック)が、各々のラメラドメインにミクロ相分離し、各々のラメラ界面が基板に対して垂直かつ交互に配列する(図3)。本明細書(特許請求の範囲を含む)では、これを垂直配向ラメラ構造を有するブロック共重合体膜と呼ぶ。
【0013】
本発明の原理は次のように説明される。基板上にAブロックから成るラメラ及びBブロックから成るラメラの2種のラメラから成る交互ラメラ構造を有するブロック共重合体膜が存在する場合を考える。前述のとおり、平坦な基板上にブロック共重合体膜12を作製した場合、基板11との親和性が良い方のAブロックからなるラメラ13が基板に接するように、ブロック共重合体膜12は平行配向ラメラ構造をとる。これは、基板11とAブロックから成るラメラ13との間の界面張力が基板11とBブロックから成るラメラとの間の界面張力よりも小さいことを意味する。
【0014】
基板11の表面を徐々に粗くしてゆくと、各ラメラはその表面形状に沿ってうねるようになり、基板11とAブロックから成るラメラ13との間の界面自由エネルギー及びABラメラ間の界面自由エネルギーが増加する。基板11の表面粗さが所定の値(これを臨界値と呼ぶ)を超えたとき、垂直配向ラメラ構造をとった方が系全体の自由エネルギーが低くなる。すなわち、表面粗さが臨界値よりも小さい場合には平行配向ラメラ構造が好まれ、臨界値よりも大きい場合には垂直配向ラメラ構造が好まれる。
【0015】
この臨界値は、ブロック共重合体膜が形成される雰囲気(例えば空気中)とブロック共重合体膜を構成する各ブロックとの表面張力、基板と各ブロックとの界面張力、異種ブロック間の界面張力、及び分子量により決まる。これらの関係は次の式で表される。
【数1】

Figure 2004099667
【0016】
γA,air、γB,airはそれぞれブロック共重合体膜のAブロック、Bブロックと空気との間の表面張力、γA,subs、γB,subsはそれぞれAブロック、Bブロックと基板との間の界面張力、γA,BはAブロックとBブロックの間の界面張力である。f(d/dref)はブロック共重合体膜内のブロックのラメラ間距離d(詳しくは、所定の基準ラメラ間距離drefに対する比)に依存する値であり、d=drefのときf(d/dref)=1であり、(qR)cは一般にdに依存する。具体的数値は[0019]に示す。また、d/drefの値が小さくなるとf(d/dref)の値は大きくなる。すなわち、ラメラ間距離dが小さくなると臨界特性表面粗さの値は大きくなる。
なお、基板表面から膜表面まで垂直な配向ラメラ構造が形成されるためには、γA,airとγB,airの差は小さいことが望ましく、∂air、∂subsの値は0.5mN/mより小さくなければならない。ポリスチレン−ポリメタクリル酸メチルのブロック共重合体の場合は∂air=│γPS,air−γPMMA,air│=0.1mN/mである。
【0017】
上式における表面粗さ(の臨界値)は、特性表面粗さで表されるものである。特性表面粗さとは図4に示すように、基板表面の断面曲線に基づき、基板面と平行な方向をx方向、基板面と垂直な方向をz方向としたときの、x方向における表面の凹凸の平均周期λの逆数とz方向の振幅から関係づけられる数値である。ここではq=2π/λと基板表面の平均面mからの偏差Δzの二乗平均根Rとの積qRを特性表面粗さと定義した。この特性表面粗さは無次元値であり、絶対的な大きさによらない、形状だけを表すものである。例えば、図4の(b)と(c)は相似形であり、同じ特性表面粗さを有するが、(c)は(d)よりも大きい特性表面粗さ値を有する。
【0018】
ただし、基板の特性表面粗さをこの臨界値以下として基板上に垂直配向ラメラ構造を有するブロック共重合体膜を作製したとしても、それを加熱すると、(qR)の大きさに依存する或る特定の時間の後にブロック共重合体膜は平行配向ラメラ構造に変化する。
【0019】
例えば、ITO基板上に分子量約38,000のポリスチレンと分子量約36,800のポリメタクリル酸メチルのブロック共重合体(これを38k−36.8kのPS−PMMAと表す)を載置した場合の、基板の特性表面粗さと垂直配向ラメラ構造から平行配向ラメラ構造に変化するまでの加熱時間の関係を図5に示す。図5において、カーブの左側が垂直配向ラメラ構造、右側が平行配向ラメラ構造を表す。この図より、特性表面粗さの値が0.38以上になると、38k−36.8kのPS−PMMAはいくら長時間加熱しても平行配向ラメラ構造とはならず、恒久的に垂直配向ラメラ構造を維持することがわかる。この特性表面粗さを臨界特性表面粗さ(又は臨界値)という。
【0020】
一方、上記式1右辺のf(d/dref)を除いた項に各表面張力及び界面張力γA,air、γB,air、γA,subs、γB,subs、γA,Bの値を入れて計算すると、(qR)c=0.36となる。これは、図5より求められた上記値0.38に近い値となっている。従って、PS−PMMAの場合、38k−36.8kのPS−PMMAのラメラ間距離dがほぼ基準ラメラ間距離drefとなることがわかる。これより、任意の分子量のPS−PMMAに対して臨界特性表面粗さ(qR)cを決定することができる。なお、PS−PMMAの場合、ラメラ間距離dはブロック共重合体の平均重合度Nとの関係で、Nが280以上の場合、d=0.3N0.75で近似されることがわかっている(図6)。また、上記臨界値0.36の値は、18k−18k以上のPS−PMMAにおいて当てはまることもわかっている。
【0021】
本発明は、基板の特性表面粗さを図5の臨界値以上としておくことにより、安定な垂直配向ラメラ構造を得るというものである。
【0022】
上記理論に加え、実験により次のことも判明している。まず、垂直配向ラメラ構造を得るためには、ブロック共重合体膜厚はラメラ間距離dの2倍以上で、且つ1μm以下でなければならない。また、基板表面の凹凸の周期λはブロック共重合体のラメラ間距離dとほぼ同程度以上でなければならない。
【0023】
また、2種のモノマーからなるブロック共重合体の場合、ラメラ構造を形成するためには、一方のブロックの平均重合度をN、他方のブロックの平均重合度をN、両ブロックの総重合度をNとした場合に、NおよびNの体積分率N/N、N/Nの値は0.35〜0.65でなければならない。
【0024】
基板としては、ITO(Indium tin oxide)、Si、SiOx、カーボン、ポリイミド樹脂など、使用目的に応じて無機化合物基板、有機化合物基板のいずれも選択することができるが、ブロック共重合体樹脂の塗布及び硬化のための加熱が可能なものでなければならないため、ブロック共重合体との親和性及び200〜300℃程度の加熱に耐えうる基板を選択することが必要である。
【0025】
基板に関しては、通常の電子線リソグラフィーやホログラフィーなどを用いることにより、所望のナノ構造の表面を有する、所望の表面粗さを有する基板を作製することが可能である。
また、例えば、金属又は金属酸化物の蒸気蒸着、溶液からの安定化コロイド粒子、ラングミュアトラフ蒸着技術などを用いて、サブミクロンサイズの粒子を基板表面に蒸着、凝集させることにより、所望の表面粗さを有する基板を作製することが可能である。
【0026】
ブロック共重合体を構成するモノマーには、スチレン、p−クロロスチレン、アクリロニトリル、酢酸ビニル、塩化ビニル、メタクリル酸メチル等のブロック共重合体をつくることのできるモノマーであれば、いずれも使用可能である。その組み合わせは、スチレンとp−クロロスチレン、スチレンとメタクリル酸メチル、スチレンと酢酸ビニル、スチレンと塩化ビニルなどの、ブロック共重合体を形成するようなモノマーの組み合わせであればよい。
【0027】
ブロック共重合体を揮発性有機溶剤に溶解させた樹脂溶液を基板に塗布する方法としては、スピンコート法、溶媒キャスト法、ロールコート法、浸漬コーティング法、カーテンコート法などの一般的な塗布方法を採用することができる。
【0028】
スピンコート法により塗布する場合は、樹脂溶液を基板上に滴下後、適当な膜厚が得られるような回転速度でスピンコーターにより基板を回転させて、樹脂溶液を基板上に均一に塗布すると同時に有機溶剤を揮発させたのち、これを樹脂のガラス転移温度以上に加熱することにより、ブロック共重合体を配列させる。加熱温度及び時間は、使用する樹脂及び膜厚に応じて適宜設定するが、一般的には、ブロック共重合体のガラス転移温度以上で加熱を行う。加熱温度は通常、100−300℃で可能であるが、ブロック共重合体を構成するモノマー単位のガラス転移温度を考慮すると190−270℃が好ましい。加熱時間は10分以上が適当である。また、加熱によるブロック共重合体膜の酸化劣化を防ぐため、不活性雰囲気または真空中で加熱を行う。
【0029】
【発明の効果】
ブロック共重合体の分子量及び種類に応じた適当な特性表面粗さを有する基板を使用することにより、容易に、ラメラ状ミクロドメイン構造が垂直配向ラメラ構造を有する膜を作製することが可能となる。
【0030】
基板の表面粗さは、例えば通常のリソグラフィーによる制御など、一般的な基板製作工程の中で用いられている各種方法により制御することが可能である。このため、垂直配向ラメラ構造は、前記従来の方法に比べて容易に作製することができる。二次元的に基板の表面粗さを制御すれば、垂直配向ラメラ構造を有する膜を任意の所望の形状に制御することも可能であると考えられる。
【0031】
このような垂直配向ラメラ構造を有する膜に対しては、特定の試薬での処理、プラズマ処理、紫外線照射等で当該試薬等に耐性を持たない一方の部位のみを侵して、除去することにより、膜の微細加工を行うことが可能である。ナノレベルの精度が要求される様々な技術分野においてこのような方法を適用することによって、微細加工を施した製品を作製することができるが、本発明に係る方法により、その適用範囲が大きく広がる。
【0032】
適用例としては、例えば、偏光フィルム、回折格子、ナノオーダーのパターンを作製するためのレジスト、このレジストを使用して作製した電子デバイス、樹脂の除去部分を磁性体や光学材料により置き換えた高密度メモリなどが考えられる。
【0033】
【実施例】
以下に本発明の実施例を示すが、本発明はこれに限定されるものではない。
なお、基板の特性表面粗さは原子間力顕微鏡(AFM)により測定を行い、膜の配向構造は、AFMならびに透過型電子顕微鏡(TEM)による断面観察によって行った。
【0034】
【実施例1】
ガラス板に蒸着させた、特性表面粗さ0.6のITO上に、38k−36.8kのPS−PMMA樹脂溶液をスピンコータにより塗布する。そして有機溶剤を揮発させた後、230℃で2時間、不活性雰囲気下で加熱することによりブロック共重合体を配列させた。これにより、膜厚320nmの38k−36.8kのPS−PMMAブロック共重合体膜を得た。
TEMによる膜断面観察から、ミクロドメイン構造において垂直配向ラメラ構造が形成されていることが確認された。その写真を図7に示す。
【0035】
【実施例2】
ガラス板に蒸着させた、特性表面粗さ0.65のITO上に、14k−14kのPS−PMMA樹脂溶液をスピンコータにより塗布すると同時に有機溶剤を揮発させた後、190℃で1時間加熱することによりブロック共重合体を配列させた。これにより、膜厚180nmの14k−14kのPS−PMMAブロック共重合体膜を得た。
AFMによる表面観察の写真を図8に示す。
【0036】
【比較例1】
ガラス板に蒸着させた、特性表面粗さ0.03のITO上に38k−36.8kのPS−PMMA樹脂溶液をスピンコータにより塗布すると同時に有機溶剤を揮発させた後、200℃で5時間加熱することによりブロック共重合体を配列させた。これにより、膜厚600nmの38k−36kのPS−PMMAブロック共重合体膜を得た。
TEMによる膜断面観察から、ミクロドメイン構造においては、垂直配向ラメラ構造ではなく、平面配向ラメラ構造が形成されていることが確認された。その写真を図9に示す。
【図面の簡単な説明】
【図1】基板に対して平行配向ラメラ構造を有するブロック共重合体膜の断面図。
【図2】基板に対して垂直配向ラメラ構造を有するブロック共重合体膜の断面図。
【図3】表面粗さを有する基板上に垂直配向ラメラ構造を有するブロック共重合体膜を形成した場合の断面図。
【図4】特性表面粗さの定義を説明するための図。
【図5】38k−36.8kのPS−PMMAの特性粗さと垂直配向ラメラ構造から平行配向ラメラ構造に変化するまでの加熱時間の関係を示すグラフ。
【図6】PS−PMMAの平均重合度と樹脂膜内のラメラ間距離との関係図。
【図7】特性表面粗さ0.6のITO上に形成された38k−36.8kのPS−PMMA膜のTEMによる膜断面観察写真。
【図8】特性表面粗さ0.65のITO上に形成された14k−14kのPS−PMMA膜のAFMによる表面観察写真。
【図9】特性表面粗さ0.03のITO上に形成された38k−36.8kのPS−PMMA膜のTEMによる膜断面観察写真。
【符号の説明】
11…基板
12…平行配向ラメラ構造を有するブロック共重合体膜
13…ブロックAからなるラメラ
14…ブロックBからなるラメラ
15…垂直配向ラメラ構造を有するブロック共重合体膜[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a block copolymer film having an alignment lamellar structure perpendicular to a substrate.
[0002]
For a film having such a vertical alignment lamella structure, by treatment with a specific reagent, plasma treatment, ultraviolet irradiation treatment, etc., by invading and removing only one part that is not resistant to such treatment, It is possible to perform fine processing of the film. Therefore, by applying such a method in various technical fields that require nano-level accuracy, a product that has been subjected to fine processing can be manufactured. Specifically, for example, a polarizing film, a diffraction grating, a resist for producing a pattern on the order of nanometers, an electronic device produced using this resist, and a high-density material in which a portion where the resin is removed is replaced with a magnetic material or an optical material. You can think of memory and so on.
[0003]
[Prior art]
Compounds (monomers), which are starting materials for polymer compounds, usually have different cohesive energy densities due to the structure of the monomers, and therefore have different affinities for other substances.
[0004]
On the other hand, a block copolymer is a high molecular compound composed of a plurality of repeating monomer units and having a continuous sequence without branching in the middle, for example, a compound composed of monomers A and B When it is, it means what arranges like AAAAAABBBBBAAAAAABBBBBAAAAA. Here, the chain of A or B is called a block, and is expressed as an A block and a B block, respectively. The types of the monomers may be three or more.
[0005]
Block copolymers create an ordered and distinctive microdomain structure when dissimilar blocks phase separate without mixing well with one another. This is called microphase separation.
[0006]
Due to such properties, when a block copolymer that is easily phase-separated is formed on a substrate, the free surface (the surface opposite to the substrate) is placed so that the block with higher affinity for the substrate is in contact with the substrate. Are arranged such that the blocks with higher affinity for are in contact with the free surface. As a result, the microdomain structure of the block copolymer film usually has an oriented lamella structure parallel to the substrate as shown in FIG. In FIG. 1, 11 is a substrate, 12 is a block copolymer film, and 13 and 14 are lamellas composed of each block.
[0007]
Therefore, it is difficult to produce a block copolymer film having a microdomain structure having a vertically oriented lamellar structure as shown in FIG. 2, and conventionally, after sandwiching a block copolymer resin between two substrates, An electric method in which a voltage is applied between the substrates to orient the substrate (see Non-Patent Document 1), or a method in which the surface of the substrate is treated so as to have an equal affinity to each of the monomers constituting the block copolymer. A microdomain structure film having a vertical alignment lamella structure has been manufactured by a non-conductive film coating method (see Non-Patent Document 2) or the like.
[0008]
[Non-patent document 1]
"Macromolecules", (USA), 1991, Vol. 24, p. 6546
[Non-patent document 2]
"Macromolecules", (USA), 1999, Vol. 32, p. 5299
[0009]
[Problems to be solved by the invention]
However, the above electrical method requires an additional step after applying the resin solution of the block copolymer to the substrate. In addition, the neutral film coating method not only requires a step of coating another resin film before applying the resin solution or performing a surface treatment, but also has an affinity for each of the monomers constituting the block copolymer. There is a problem in that it is difficult to find a resin having a good quality and a surface treatment method. For this reason, it is not realistic to actually employ these methods as processing methods.
[0010]
The present invention has been made to solve such a problem, and an object of the present invention is to provide a method for easily producing a block copolymer film having a microdomain structure having a vertically oriented lamella structure. Is to do.
[0011]
[Means for Solving the Problems]
The method for producing a block copolymer film according to the present invention, which has been made to solve the above-described problem, includes a step of placing a block copolymer resin on a substrate having a predetermined characteristic surface roughness and then subjecting the resin to a heat treatment. Thereby, a vertically oriented lamellar structure is formed in the block copolymer film on the substrate.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the above method, each monomer (and block) constituting the block copolymer is microphase-separated into each lamella domain, and each lamella interface is arranged vertically and alternately with the substrate (FIG. 3). In this specification (including the claims), this is referred to as a block copolymer film having a vertically oriented lamellar structure.
[0013]
The principle of the present invention is described as follows. Consider a case where a block copolymer film having an alternating lamella structure composed of two types of lamellas, a lamella composed of an A block and a lamella composed of a B block, is present on a substrate. As described above, when the block copolymer film 12 is formed on a flat substrate, the block copolymer film 12 is formed such that the lamella 13 composed of the A block having the better affinity for the substrate 11 is in contact with the substrate. Takes a parallel-oriented lamella structure. This means that the interfacial tension between the substrate 11 and the lamella composed of the A blocks is smaller than the interfacial tension between the substrate 11 and the lamella composed of the B blocks.
[0014]
As the surface of the substrate 11 is gradually roughened, each lamella undulates along its surface shape, and the interface free energy between the substrate 11 and the lamella 13 composed of the A block and the interface free energy between the AB lamella. Energy increases. When the surface roughness of the substrate 11 exceeds a predetermined value (this is referred to as a critical value), the free energy of the whole system becomes lower when the vertical alignment lamellar structure is adopted. That is, when the surface roughness is smaller than the critical value, a parallel alignment lamellar structure is preferred, and when the surface roughness is larger than the critical value, a vertical alignment lamellar structure is preferred.
[0015]
This critical value depends on the atmosphere (for example, in the air) in which the block copolymer film is formed, the surface tension of each block constituting the block copolymer film, the interface tension between the substrate and each block, and the interface between different types of blocks. Determined by tension and molecular weight. These relationships are represented by the following equations.
(Equation 1)
Figure 2004099667
[0016]
γ A, air , γ B, air are the surface tension between the A block, B block and air of the block copolymer film, γ A, subs , γ B, subs are the A block, B block and the substrate, respectively. A, B is the interfacial tension between A block and B block. f (d / d ref) is between lamellae blocks in the block copolymer in the film the distance d (For details, the ratio with respect to a predetermined reference interlamellar distance dref) is a value that depends on, when d = d ref f ( d / d ref ) = 1, and (qR) c generally depends on d. Specific numerical values are shown in [0019]. When the value of d / d ref decreases, the value of f (d / d ref ) increases. That is, the value of the critical characteristic surface roughness increases as the interlamellar distance d decreases.
In order to form a vertical alignment lamellar structure from the substrate surface to the film surface , the difference between γ A, air and γ B, air is desirably small, and the values of ∂ air and ∂ subs are 0.5 mN / m. Polystyrene - the case of the block copolymer of poly (methyl methacrylate) is ∂ air = │γ PS, air -γ PMMA, air │ = 0.1mN / m.
[0017]
The surface roughness (the critical value of) in the above equation is represented by the characteristic surface roughness. As shown in FIG. 4, the characteristic surface roughness is a surface roughness in the x direction when the direction parallel to the substrate surface is defined as the x direction and the direction perpendicular to the substrate surface is defined as the z direction based on the cross-sectional curve of the substrate surface. Is a numerical value associated with the reciprocal of the average period λ and the amplitude in the z direction. Here, the product qR of q = 2π / λ and the root mean square R of the deviation Δz from the average surface m of the substrate surface was defined as the characteristic surface roughness. This characteristic surface roughness is a dimensionless value and represents only the shape, not depending on the absolute size. For example, FIGS. 4B and 4C are analogous and have the same characteristic surface roughness, but FIG. 4C has a higher characteristic surface roughness value than FIG.
[0018]
However, even if the characteristic surface roughness of the substrate is set to the critical value or less and a block copolymer film having a vertically oriented lamellar structure is formed on the substrate, when it is heated, it depends on the size of (qR). After a certain time, the block copolymer film changes to a parallel-aligned lamellar structure.
[0019]
For example, when a block copolymer of polystyrene having a molecular weight of about 38,000 and polymethyl methacrylate having a molecular weight of about 36,800 (this is represented as 38 k to 36.8 k PS-PMMA) is mounted on an ITO substrate. FIG. 5 shows the relationship between the characteristic surface roughness of the substrate and the heating time required for changing from the vertical alignment lamellar structure to the parallel alignment lamellar structure. In FIG. 5, the left side of the curve represents the vertical alignment lamella structure, and the right side represents the parallel alignment lamella structure. According to this figure, when the value of the characteristic surface roughness is 0.38 or more, the PS-PMMA of 38k-36.8k does not have a parallel-aligned lamella structure even if heated for a long time, and is permanently a vertically-aligned lamella. It can be seen that the structure is maintained. This characteristic surface roughness is called critical characteristic surface roughness (or critical value).
[0020]
On the other hand, the terms of the surface tension and the interfacial tensions γ A, air , γ B, air , γ A, subs , γ B, subs , γ A, B are added to the terms excluding f (d / dref) on the right side of the above equation 1. And (qR) c = 0.36. This is a value close to the above value 0.38 obtained from FIG. Therefore, in the case of PS-PMMA, it can be seen that the lamella distance d of the PS-PMMA of 38k-36.8k is substantially equal to the reference lamella distance dref. Thereby, the critical characteristic surface roughness (qR) c can be determined for PS-PMMA having an arbitrary molecular weight. In the case of PS-PMMA, the distance d between lamellas is related to the average degree of polymerization N of the block copolymer. When N is 280 or more, it is found that d = 0.3N 0.75. (FIG. 6). It has also been found that the above critical value of 0.36 is applicable to PS-PMMA of 18k-18k or more.
[0021]
The present invention is to obtain a stable vertical alignment lamella structure by setting the characteristic surface roughness of the substrate to be equal to or more than the critical value shown in FIG.
[0022]
In addition to the above theory, the following has also been found through experiments. First, in order to obtain a vertically oriented lamellar structure, the thickness of the block copolymer must be at least twice the interlamellar distance d and at most 1 μm. Further, the period λ of the irregularities on the substrate surface must be substantially equal to or greater than the interlamellar distance d of the block copolymer.
[0023]
Also, when the block copolymer comprising two monomers, to form a lamellar structure, an average polymerization degree of one block N A, the average polymerization degree of the other block N B, the total of the two blocks If the degree of polymerization is N, the volume fraction of the N a and N B N a / N, the value of N B / N should be 0.35-0.65.
[0024]
As the substrate, any of an inorganic compound substrate and an organic compound substrate such as ITO (Indium Tin Oxide), Si, SiOx, carbon, and polyimide resin can be selected according to the purpose of use. In addition, since the substrate must be capable of heating for curing, it is necessary to select a substrate that has an affinity for the block copolymer and can withstand heating at about 200 to 300 ° C.
[0025]
With respect to the substrate, it is possible to produce a substrate having a desired nanostructured surface and a desired surface roughness by using ordinary electron beam lithography, holography, or the like.
In addition, for example, vapor deposition of metal or metal oxide, stabilized colloid particles from a solution, Langmuir Trough deposition technology, etc., are used to deposit and agglomerate submicron-sized particles on the substrate surface to obtain a desired surface roughness. It is possible to manufacture a substrate having a thickness.
[0026]
Any monomer that can form a block copolymer such as styrene, p-chlorostyrene, acrylonitrile, vinyl acetate, vinyl chloride, and methyl methacrylate can be used as the monomer constituting the block copolymer. is there. The combination may be any combination of monomers that form a block copolymer, such as styrene and p-chlorostyrene, styrene and methyl methacrylate, styrene and vinyl acetate, and styrene and vinyl chloride.
[0027]
As a method of applying a resin solution obtained by dissolving a block copolymer in a volatile organic solvent to a substrate, a general coating method such as a spin coating method, a solvent casting method, a roll coating method, a dip coating method, a curtain coating method, etc. Can be adopted.
[0028]
When applying by the spin coating method, after dripping the resin solution onto the substrate, the substrate is rotated by a spin coater at a rotation speed such that an appropriate film thickness is obtained, and the resin solution is uniformly applied onto the substrate at the same time. After volatilizing the organic solvent, the organic solvent is heated above the glass transition temperature of the resin to arrange the block copolymer. The heating temperature and time are appropriately set according to the resin used and the film thickness. Generally, heating is performed at a temperature equal to or higher than the glass transition temperature of the block copolymer. The heating temperature can be usually from 100 to 300 ° C, but preferably 190 to 270 ° C in consideration of the glass transition temperature of the monomer units constituting the block copolymer. The heating time is suitably at least 10 minutes. Further, in order to prevent the block copolymer film from being oxidized and deteriorated by heating, the heating is performed in an inert atmosphere or a vacuum.
[0029]
【The invention's effect】
By using a substrate having an appropriate characteristic surface roughness according to the molecular weight and type of the block copolymer, it is possible to easily produce a film in which the lamellar microdomain structure has a vertically oriented lamellar structure. .
[0030]
The surface roughness of the substrate can be controlled by various methods used in a general substrate manufacturing process, such as control by ordinary lithography. For this reason, the vertical alignment lamella structure can be easily manufactured as compared with the conventional method. It is considered that by controlling the surface roughness of the substrate two-dimensionally, it is possible to control the film having the vertical alignment lamella structure to any desired shape.
[0031]
For a film having such a vertical alignment lamella structure, by treating with a specific reagent, plasma treatment, ultraviolet irradiation, etc., only one part having no resistance to the reagent or the like is attacked and removed, It is possible to perform fine processing of the film. By applying such a method in various technical fields where nano-level accuracy is required, it is possible to produce a product subjected to fine processing, but the method according to the present invention greatly expands its application range. .
[0032]
Examples of applications include polarizing films, diffraction gratings, resists for producing nano-order patterns, electronic devices made using this resist, and high-density materials in which the resin removed parts are replaced with magnetic or optical materials. A memory is conceivable.
[0033]
【Example】
Examples of the present invention will be described below, but the present invention is not limited to these examples.
The characteristic surface roughness of the substrate was measured by an atomic force microscope (AFM), and the orientation structure of the film was measured by AFM and cross-sectional observation by a transmission electron microscope (TEM).
[0034]
Embodiment 1
A 38k-36.8k PS-PMMA resin solution is applied by a spin coater onto ITO having a characteristic surface roughness of 0.6 deposited on a glass plate. After the organic solvent was volatilized, the block copolymer was arranged by heating at 230 ° C. for 2 hours under an inert atmosphere. Thus, a PS-PMMA block copolymer film having a thickness of 320 nm and a thickness of 38 k to 36.8 k was obtained.
Observation of the cross section of the film by TEM confirmed that a vertically oriented lamella structure was formed in the microdomain structure. The photograph is shown in FIG.
[0035]
Embodiment 2
Applying a 14k-14k PS-PMMA resin solution by spin coater onto ITO having a characteristic surface roughness of 0.65 deposited on a glass plate and volatilizing the organic solvent at the same time, then heating at 190 ° C for 1 hour. To arrange the block copolymer. Thus, a PS-PMMA block copolymer film having a thickness of 180 nm and a thickness of 14 k to 14 k was obtained.
FIG. 8 shows a photograph of surface observation by AFM.
[0036]
[Comparative Example 1]
A PS-PMMA resin solution of 38k-36.8k is applied on ITO having a characteristic surface roughness of 0.03 deposited on a glass plate by a spin coater, and at the same time, an organic solvent is volatilized, followed by heating at 200 ° C for 5 hours. As a result, the block copolymer was arranged. Thus, a PS-PMMA block copolymer film having a thickness of 600 nm and a thickness of 38 k-36 k was obtained.
From the observation of the film cross section by TEM, it was confirmed that in the microdomain structure, not a vertically-oriented lamellar structure but a planar-oriented lamellar structure was formed. The photograph is shown in FIG.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a block copolymer film having a lamella structure parallel to a substrate.
FIG. 2 is a cross-sectional view of a block copolymer film having a lamellar structure oriented vertically to a substrate.
FIG. 3 is a cross-sectional view of a case where a block copolymer film having a vertical alignment lamella structure is formed on a substrate having a surface roughness.
FIG. 4 is a diagram for explaining the definition of characteristic surface roughness.
FIG. 5 is a graph showing the relationship between the characteristic roughness of PS-PMMA of 38k-36.8k and the heating time required to change from a vertically aligned lamellar structure to a parallel aligned lamellar structure.
FIG. 6 is a graph showing the relationship between the average degree of polymerization of PS-PMMA and the distance between lamellas in the resin film.
FIG. 7 is a TEM cross-sectional observation photograph of a 38k-36.8k PS-PMMA film formed on ITO having a characteristic surface roughness of 0.6.
FIG. 8 is an AFM surface observation photograph of a 14k-14k PS-PMMA film formed on ITO having a characteristic surface roughness of 0.65.
FIG. 9 is a TEM observation photograph of a 38k-36.8k PS-PMMA film formed on ITO having a characteristic surface roughness of 0.03.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Substrate 12 ... Block copolymer film which has a parallel orientation lamellar structure 13 ... Lamellar which consists of block A 14 ... lamella which consists of block B15 ... Block copolymer film which has a vertical orientation lamellar structure

Claims (6)

所定値以上の特性表面粗さを有する基板上にブロック共重合体樹脂を載置した後、該樹脂を熱処理することにより、垂直配向ラメラ構造を有するブロック共重合体膜を作製する方法。A method for preparing a block copolymer film having a vertically oriented lamellar structure by placing a block copolymer resin on a substrate having a characteristic surface roughness equal to or greater than a predetermined value and then subjecting the resin to a heat treatment. 基板の表面粗さの凹凸周期が、ブロック共重合体のラメラ間距離と同等以上であることを特徴とする請求項1に記載のブロック共重合体膜作製方法。2. The method according to claim 1, wherein the irregularity period of the surface roughness of the substrate is equal to or greater than the interlamellar distance of the block copolymer. ブロック共重合体が2種の繰り返しモノマー単位から成り、一方の体積分率が0.35〜0.65であることを特徴とする請求項1又は2に記載のブロック共重合体膜作製方法。3. The method according to claim 1, wherein the block copolymer is composed of two types of repeating monomer units, and one of the volume fractions is 0.35 to 0.65. ブロック共重合体の繰り返しモノマー単位がポリスチレンとポリメタクリル酸メチルであることを特徴とする請求項1〜3のいずれかに記載のブロック共重合体膜作製方法。The method for producing a block copolymer film according to any one of claims 1 to 3, wherein the repeating monomer units of the block copolymer are polystyrene and polymethyl methacrylate. 基板の特性表面粗さが、0.36以上であることを特徴とする請求項4に記載のブロック共重合体膜作製方法。The method according to claim 4, wherein the characteristic surface roughness of the substrate is 0.36 or more. ブロック共重合体膜の厚さがブロック共重合体のラメラ間距離の2倍以上であり、且つ、1μm以下であることを特徴とする請求項5に記載のブロック共重合体膜作製方法。6. The method according to claim 5, wherein the thickness of the block copolymer film is at least twice the distance between the lamellas of the block copolymer and at most 1 μm.
JP2002260512A 2002-09-05 2002-09-05 Method for preparing block copolymer film having vertically oriented lamellar structure Pending JP2004099667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002260512A JP2004099667A (en) 2002-09-05 2002-09-05 Method for preparing block copolymer film having vertically oriented lamellar structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002260512A JP2004099667A (en) 2002-09-05 2002-09-05 Method for preparing block copolymer film having vertically oriented lamellar structure

Publications (1)

Publication Number Publication Date
JP2004099667A true JP2004099667A (en) 2004-04-02

Family

ID=32261206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002260512A Pending JP2004099667A (en) 2002-09-05 2002-09-05 Method for preparing block copolymer film having vertically oriented lamellar structure

Country Status (1)

Country Link
JP (1) JP2004099667A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006159815A (en) * 2004-12-10 2006-06-22 Asahi Kasei Corp Micro phase separation structure and manufacturing method of micro phase separation structure
JP2007313568A (en) * 2006-05-23 2007-12-06 Kyoto Univ Micro-structure, pattern medium, and manufacturing method thereof
JP2008520450A (en) * 2004-11-22 2008-06-19 ウィスコンシン・アラムナイ・リサーチ・ファウンデーション Method and composition for non-periodic pattern copolymer films
JP2009263668A (en) * 2008-04-18 2009-11-12 Commissariat A L'energie Atomique Method for preparing polymer film having feature of nanoscale on its surface and microstructured in all or part of its thickness according to specific system
US8143343B2 (en) 2006-10-20 2012-03-27 Nagoya Instiute of Technology Microphase-separated structure, immobilized microphase-separated structure and wavelength-variable laser oscillator, temperature sensor and light filter using the structure
US8501304B2 (en) 2004-11-22 2013-08-06 Wisconsin Alumni Research Foundation Methods and compositions for forming patterns with isolated or discrete features using block copolymer materials
US8618221B2 (en) 2005-10-14 2013-12-31 Wisconsin Alumni Research Foundation Directed assembly of triblock copolymers
US8623493B2 (en) 2005-10-06 2014-01-07 Wisconsin Alumni Research Foundation Fabrication of complex three-dimensional structures based on directed assembly of self-assembling materials on activated two-dimensional templates
WO2014054570A1 (en) * 2012-10-02 2014-04-10 東京エレクトロン株式会社 Substrate treatment method, computer storage medium, and substrate treatment system
US9183870B2 (en) 2007-12-07 2015-11-10 Wisconsin Alumni Research Foundation Density multiplication and improved lithography by directed block copolymer assembly
US9299381B2 (en) 2011-02-07 2016-03-29 Wisconsin Alumni Research Foundation Solvent annealing block copolymers on patterned substrates
US9372398B2 (en) 2012-03-02 2016-06-21 Wisconsin Alumni Research Foundation Patterning in the directed assembly of block copolymers using triblock or multiblock copolymers
JP2017501261A (en) * 2013-12-06 2017-01-12 エルジー・ケム・リミテッド Block copolymer
US9718250B2 (en) 2011-09-15 2017-08-01 Wisconsin Alumni Research Foundation Directed assembly of block copolymer films between a chemically patterned surface and a second surface
US10907250B2 (en) 2016-07-29 2021-02-02 Dexerials Corporation Block copolymer pattern formation method and diffraction limited optical element

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008520450A (en) * 2004-11-22 2008-06-19 ウィスコンシン・アラムナイ・リサーチ・ファウンデーション Method and composition for non-periodic pattern copolymer films
US8287957B2 (en) 2004-11-22 2012-10-16 Wisconsin Alumni Research Foundation Methods and compositions for forming aperiodic patterned copolymer films
US8501304B2 (en) 2004-11-22 2013-08-06 Wisconsin Alumni Research Foundation Methods and compositions for forming patterns with isolated or discrete features using block copolymer materials
JP4563162B2 (en) * 2004-12-10 2010-10-13 旭化成株式会社 Microphase-separated structure and method for producing microphase-separated body
JP2006159815A (en) * 2004-12-10 2006-06-22 Asahi Kasei Corp Micro phase separation structure and manufacturing method of micro phase separation structure
US8623493B2 (en) 2005-10-06 2014-01-07 Wisconsin Alumni Research Foundation Fabrication of complex three-dimensional structures based on directed assembly of self-assembling materials on activated two-dimensional templates
US9539788B2 (en) 2005-10-06 2017-01-10 Wisconsin Alumni Research Foundation Fabrication of complex three-dimensional structures based on directed assembly of self-assembling materials on activated two-dimensional templates
US8618221B2 (en) 2005-10-14 2013-12-31 Wisconsin Alumni Research Foundation Directed assembly of triblock copolymers
JP2007313568A (en) * 2006-05-23 2007-12-06 Kyoto Univ Micro-structure, pattern medium, and manufacturing method thereof
US8143343B2 (en) 2006-10-20 2012-03-27 Nagoya Instiute of Technology Microphase-separated structure, immobilized microphase-separated structure and wavelength-variable laser oscillator, temperature sensor and light filter using the structure
US9183870B2 (en) 2007-12-07 2015-11-10 Wisconsin Alumni Research Foundation Density multiplication and improved lithography by directed block copolymer assembly
US10438626B2 (en) 2007-12-07 2019-10-08 Wisconsin Alumni Research Foundation Density multiplication and improved lithography by directed block copolymer assembly
JP2009263668A (en) * 2008-04-18 2009-11-12 Commissariat A L'energie Atomique Method for preparing polymer film having feature of nanoscale on its surface and microstructured in all or part of its thickness according to specific system
US9299381B2 (en) 2011-02-07 2016-03-29 Wisconsin Alumni Research Foundation Solvent annealing block copolymers on patterned substrates
US9718250B2 (en) 2011-09-15 2017-08-01 Wisconsin Alumni Research Foundation Directed assembly of block copolymer films between a chemically patterned surface and a second surface
US9372398B2 (en) 2012-03-02 2016-06-21 Wisconsin Alumni Research Foundation Patterning in the directed assembly of block copolymers using triblock or multiblock copolymers
WO2014054570A1 (en) * 2012-10-02 2014-04-10 東京エレクトロン株式会社 Substrate treatment method, computer storage medium, and substrate treatment system
JP2014087781A (en) * 2012-10-02 2014-05-15 Tokyo Electron Ltd Substrate treatment method, program, computer storage medium, and substrate treatment system
JP2017501261A (en) * 2013-12-06 2017-01-12 エルジー・ケム・リミテッド Block copolymer
US10907250B2 (en) 2016-07-29 2021-02-02 Dexerials Corporation Block copolymer pattern formation method and diffraction limited optical element

Similar Documents

Publication Publication Date Title
JP2004099667A (en) Method for preparing block copolymer film having vertically oriented lamellar structure
JP4654280B2 (en) Manufacturing method of fine structure
JP5178401B2 (en) Production method of polymer thin film having fine structure and patterned substrate
KR101999870B1 (en) Directed assembly of block copolymer films between a chemically patterned surface and a second surface
Lo et al. Orienting block copolymer thin films via entropy
EP1906237A2 (en) Nanostructured pattern method of manufacture
Park et al. Deep-nanoscale pattern engineering by immersion-induced self-assembly
EP1887391A1 (en) Wire grid polarizer
Ludwigs et al. Combinatorial mapping of the phase behavior of ABC triblock terpolymers in thin films: experiments
KR20140130146A (en) Anhydride copolymer top coats for orientation control of thin film block copolymers
Nagpal et al. Pattern dimensions and feature shapes of ternary blends of block copolymer and low molecular weight homopolymers directed to assemble on chemically nanopatterned surfaces
Han et al. Resist free patterning of nonpreferential buffer layers for block copolymer lithography
Ferrarese Lupi et al. High aspect ratio PS-b-PMMA block copolymer masks for lithographic applications
KR20140074427A (en) Method of manufacturing nano structure and method of forming a pattern using it
US20100055390A1 (en) Microphase-separated structure on flexible substrate, and method of manufacture thereof
JP2005008701A (en) Polymer film and method for producing the same
Man et al. Defect-free perpendicular diblock copolymer films: the synergy effect of surface topography and chemistry
Qiang et al. Simultaneous in-film polymer synthesis and self-assembly for hierarchical nanopatterns
Oh et al. Shear-rolling process for unidirectionally and perpendicularly oriented sub-10-nm block copolymer patterns on the 4 in scale
Morimitsu et al. “Structurally Neutral” Densely Packed Homopolymer-Adsorbed Chains for Directed Self-Assembly of Block Copolymer Thin Films
Toth et al. Film thickness and composition effects in symmetric ternary block copolymer/homopolymer blend films: domain spacing and orientation
Park et al. Guiding block copolymers into sequenced patterns via inverted terrace formation
Liu et al. Metallic nanomeshes fabricated by multimechanism directed self-assembly
CN107868194A (en) The method that fine pattern is formed using block copolymer
JP2005007244A (en) Method for preparing polymer mixture