JP2004099449A - Method for producing fibrous fatty acid salt - Google Patents

Method for producing fibrous fatty acid salt Download PDF

Info

Publication number
JP2004099449A
JP2004099449A JP2002259377A JP2002259377A JP2004099449A JP 2004099449 A JP2004099449 A JP 2004099449A JP 2002259377 A JP2002259377 A JP 2002259377A JP 2002259377 A JP2002259377 A JP 2002259377A JP 2004099449 A JP2004099449 A JP 2004099449A
Authority
JP
Japan
Prior art keywords
fatty acid
fibrous
acid salt
oil
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002259377A
Other languages
Japanese (ja)
Other versions
JP4311612B2 (en
Inventor
Hiroshi Sakaguchi
坂口 豁
Yoshie Kida
木田 ▲吉▼重
Seiji Izeki
井関 清治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Okamura Oil Mill Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Okamura Oil Mill Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Okamura Oil Mill Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002259377A priority Critical patent/JP4311612B2/en
Publication of JP2004099449A publication Critical patent/JP2004099449A/en
Application granted granted Critical
Publication of JP4311612B2 publication Critical patent/JP4311612B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fats And Perfumes (AREA)
  • Removal Of Floating Material (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for solidifying oils discharged onto rivers, lakes and marches or the seas and efficiently recovering the oils. <P>SOLUTION: A method for producing a fibrous fatty acid salt is characterized as follows. A fatty acid is reacted with a base in the presence of water and the resultant reaction mixture is then cooled. The obtained fatty acid salt is deposited and formed into a fibrous state. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えば重油や軽油などの炭化水素を効率よく吸着し、固形化することができる繊維状脂肪酸塩の製造方法、および繊維状脂肪酸塩を使用する炭化水素を固形化する方法に関する。
【0002】
【従来の技術】
石油化学工業の規模が年々拡大され、有機化合物が大量生産、大量消費されるようになったことに伴い、各種化学工場、石油化学コンビナートやタンカーの事故による河川、湖沼、海洋などの汚染、また火災や爆発事故など、人類、生物の生存を脅かす公害や事故が世界的に頻発しており、石油化学物質をはじめとする炭化水素を含む有機化合物の安全な取り扱い、輸送、備蓄、事故発生後の適切な処理が大きな問題となっている。これらの公害や、爆発、火災、漏出事故などに対する根本的な対策の1つとしては、安全に貯蔵もしくは輸送が行える装置を設計することによって、事故そのものを起こさないことであるが、次善の策として、事故が起こったときに、速やかに適切な処置を行うことが望ましい。
【0003】
化学工場、石油化学コンビナートやタンカーの事故により水面が汚染されたとき、従来は多くの場合、そのまま放置して自然に蒸発、希釈、分解されるのを待つか、界面活性剤などを大量に散布して強制的に希釈するかの、いずれかの方法が採用されてきた。しかしこれらの方法では、長期ないしは短期のいずれの視点からも環境に悪影響を及ぼすのは避けられず、いずれも満足できる方法とは言い難い。
また、オイルフェンスを用いて流出油を囲い込み、油回収船で汚染された海水と一緒に汲み上げ、密度差によって分離して海水を海に戻す方法も行われているが、効率は悪く、結果的には流出油の大半は拡散して回収不可能となり、そのまま放置されている。
その他に、海水中に生息する微生物を用いて流出油を分解する試みもなされているが、未だ実験段階で実用化には程遠い。
【0004】
このような現状を考慮すると、河川、湖沼、海上に流出した油を、できるだけそのままの形で速やかに吸着、回収する技術の開発が望まれている。しかしながら、水上、水中に広範囲に容易に拡散する油の特性を考えると、機械的、物理的な回収は極めて困難だと思われる。また、油が流出した水中で何らかの化学反応を起こさせ流出油を他の安全な物質に変えてしまうことは一見望ましい方法のようにも見えるが、広い海洋中などで未知の新たな物質を大量に生産し、分散させてしまう可能性も大きく、従って、化学反応を伴う方法は避けなければならない。
このように考えると、物理化学的な手段を用いて、流出油をそのままの形で吸着、回収する方法が最も好ましいと考えられる。
【0005】
海面に流出した油の固形化材が備えるべき条件としては、▲1▼海水中の塩分で機能が損なわれずに作用し、油とともに固形化材が容易に回収でき、回収された固形化材のリサイクル使用が可能であること、▲2▼化学的に比較的安定であること、▲3▼大量に使用されることが想定されるので、安全かつ無害な物質であり、万一、海洋への流出が発生し回収が困難となっても、それ自体が海洋に棲む生物および環境に対し悪影響を及ぼす危険が少ないこと、などが挙げられる。
更に、河川、湖沼などの淡水、硬水中に油が流出した場合には、それぞれの水に含まれるイオンの種類、濃度に影響を受けることなく、固形化材が効率よく流出油に作用して、上記海水中と同様の働きをすることが必要である。
このような物理化学的固形化材は、現在のところゲル化剤として市販されているものも含めて極めて効率が悪く、十分に実用化されているとは言い難い。
【0006】
【発明が解決しようとする課題】
本発明は、上記のような条件を満足する油類固形化材として使用しうる繊維状脂肪酸塩を脂肪酸および塩基より工業的に有利に製造する方法を提供することを目的とする。さらに本発明は、河川、湖沼、もしくは海上に流出した油類を物理化学的吸着によって効率よく回収しうる方法をも提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、種々の長さのアルキル基を有する脂肪酸および塩基の水中における溶解、乳化、分散挙動について検討する過程で、脂肪酸および塩基が高温では完全に水に溶解すること、完全に溶解した後に塩化ナトリウム水溶液を高温で加えることによっても完全に溶解した状態が保たれること、完全溶解状態から攪拌、冷却することによって、均一な繊維状脂肪酸塩が析出すること、更に、このような繊維状脂肪酸塩が、効率よく重質油、軽質油などの混合油類を吸着・固形化することを見出し、このような知見に基づきさらに種々検討した結果、本発明を完成させるに至った。
【0008】
すなわち、本発明は、
(1) 水の存在下に脂肪酸と塩基とを反応させて得られる反応混合物を冷却し、脂肪酸塩を繊維状に析出形成させることを特徴とする繊維状脂肪酸塩の製造方法、
(2) 水の存在下に脂肪酸と塩基とを反応させて得られる反応混合物に塩を加え、ついで反応混合物を冷却し、脂肪酸塩を繊維状に析出形成させることを特徴とする繊維状脂肪酸塩の製造方法、
(3) 脂肪酸と塩基との反応を攪拌下に行うことを特徴とする上記(1)または(2)記載の繊維状脂肪酸塩の製造方法、
(4) 反応混合物を冷却前に熟成させることを特徴とする上記(1)〜(3)のいずれかに記載の繊維状脂肪酸塩の製造方法、
(5) 脂肪酸が炭素数6〜30の飽和脂肪酸または不飽和脂肪酸であり、1塩基酸、2塩基酸または3塩基酸であることを特徴とする上記(1)〜(4)のいずれかに記載の繊維状脂肪酸塩の製造方法、
(6) 塩基が水酸化ナトリウムであることを特徴とする上記(1)〜(5)のいずれかに記載の繊維状脂肪酸塩の製造方法、
(7) 脂肪酸と塩基との反応の反応温度が60〜300℃であることを特徴とする上記(1)〜(6)のいずれかに記載の繊維状脂肪酸塩の製造方法、
(8) 塩がボウショウ、リン酸塩、硝酸塩、食塩から選ばれる1以上であることを特徴とする上記(1)〜(7)のいずれかに記載の繊維状脂肪酸塩の製造方法、
(9) 繊維状脂肪酸塩を気体炭化水素と接触させることを特徴とする気体炭化水素の固化方法、
(10) 繊維状脂肪酸塩を液体炭化水素と接触させることを特徴とする液体炭化水素の固化方法、
(11) 繊維状脂肪酸塩を食用油又は廃油と接触させることを特徴とする油の固化方法、
に関する。
【0009】
【発明の実施の形態】
本発明において用いられる脂肪酸は、炭素数が6〜30、好ましくは8〜22、特に好ましくは10〜18である飽和脂肪酸でも不飽和脂肪酸でもよく、また遊離の脂肪酸でもよい。さらに本発明において用いられる脂肪酸は1塩基酸、2塩基酸また3塩基酸でもよく、塩基と併せて水中に完全に溶解し、所望により攪拌下に塩を加えて冷却することによって繊維状に析出することができるだけの、適度な長さのアルキル鎖長を有していることが好ましい。
【0010】
上記脂肪酸としては、より具体的には、例えばカプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、カプロレイン酸、ラウロレイン酸、オレイン酸、リノール酸、リノレイン酸などの他、ヤシ油、パーム核油、パーム油、大豆油、米糠油、豚脂、牛脂、魚油、落花生油などの動植物油脂、あるいはこれら動植物油脂の硬化油脂肪酸などが挙げられ、これらの脂肪酸は1種単独でまたは2種以上を適宜組み合わせて使用される。
【0011】
本発明において用いられる塩基の種類としては、例えば水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化マグネシウム、リン酸三ナトリウム、リン酸水素二ナトリウム、リン酸水素二カリウムなどが挙げられる。好ましくは水酸化ナトリウムが用いられる。
【0012】
上記脂肪酸は、塩基とともに攪拌下で加熱することによって水中に完全に溶解され、そのままもしくは攪拌下で塩を加えて冷却することによって、繊維状脂肪酸塩を析出することができる。
該脂肪酸および塩基を反応させる際の加熱温度は、通常約60〜300℃程度、好ましくは約100〜180℃程度であるが、脂肪酸が有しているアルキル鎖の長さによって異なる。
【0013】
本発明に係る固形化材を調製するために繊維状脂肪酸塩を析出させる際の脂肪酸/水のモル比は、好ましくは約1/10,000〜1/100程度、さらに好ましくは約1/50,000〜5/1,000程度である。また、塩基/脂肪酸のモル比は、好ましくは約0.5/1〜2/1程度、さらに好ましくは約0.8/1〜1.2/1程度である。
【0014】
脂肪酸と塩基を水中で溶解させた水溶液に、所望により攪拌しながら塩を加える。そのような塩としては、例えば食塩、ボウショウ、例えばリン酸ナトリウム、リン酸カリウム等のリン酸塩、例えば硝酸ナトリウム、硝酸カリウム等の硝酸塩などが挙げられ、これらの塩のうち1種単独で、または2種以上を適宜組み合わせて用いてよい。好ましくは食塩である。
【0015】
本発明の繊維状脂肪酸塩の製造方法においては、上記脂肪酸と塩基を先ず攪拌下で完全に純水中に溶解させ、次いで必要に応じて攪拌下に塩を含有する水溶液を加えて完全に混合し、冷却することによって水溶液中に繊維状脂肪酸塩を析出させることが特に好ましい。この繊維状脂肪酸塩を用いることによって、流出油類を極めて効率よく吸着し、炭化水素を巨視的な塊として回収することが可能となる。また、反応混合物を所望により冷却する前に約1時間程度熟成させてもよい。
【0016】
本発明の方法により形成された繊維状脂肪酸塩は、例えば重油等の油類で汚染された海水中に投入するだけで、繊維状脂肪酸塩は油類と接触して選択的に重油を吸着する。繊維状脂肪酸塩に対して重油の割合が過剰でない範囲では、実質的に重油を全て吸着し、浄化された海水上に浮遊する。重油を吸着した後の繊維状脂肪酸塩は、重油の割合が小さいときには微粒子状集合体として、重油の重量比が繊維状脂肪酸塩の数倍に達してからは、全体として堅い強固な球状塊(あるいは玉子状の)として海上に浮遊する。これは固形状を保ち、網や熊手などを用いる通常の手段で、海水中からすくいあげることによって海水と分離できる。
【0017】
本発明の繊維状脂肪酸塩からなる固形化材が吸着、回収しうる油類としては、A重油、C重油、原油、流動パラフィン、軽油、灯油などの混合油、精製された各種炭化水素、ハロゲン化炭化水素、即ちn−パラフィン類、オレフィン類、分岐状パラフィン類、シクロヘキサンなどの脂環式炭化水素類、芳香族炭化水素類などが挙げられる。回収しようとする油類の種類にもよるが、通常、本発明の繊維状脂肪酸塩1gに対して約10g〜100g程度の油類を吸着させることができる。本発明の繊維状脂肪酸塩に油類を吸着させるには、好ましくは1分以上、油類と繊維状脂肪酸塩を接触させればよく、緩やかに振蕩するのがさらに好ましい。
【0018】
油類を吸着した後の固形化物(固形状集合体)は、流出水から分離、回収後、水を加え、加熱することによって、繊維状脂肪酸塩と回収した油類の各成分に分離することができる。繊維状脂肪酸塩は分離して水の側に移行し、油類は、水から相分離でき、回収することができる。また、大半の繊維状脂肪酸塩は、再び油類吸収材として使用しうる繊維状脂肪酸塩を製造するのに用いることができ、繰り返し使用することができる。脂肪酸塩と油類の分離のための加熱は、通常80℃以上とするのが好ましい。
【0019】
本発明の繊維状脂肪酸塩からなる固形化材は、例えば、流出油事故の発生した海洋、河川および沼湖などの現場において、流出油に直接散布すればよい。散布量は、流出油の種類や現場の状況および上記の窒素源の種類や濃度などによって左右され、特に限定されないが、通常は流出油に対して約1〜30重量%程度、好ましくは約5〜20重量%程度である。
【0020】
また、本発明の固形化材は、食用油のみならず食用油の廃油、機械油、機械油の廃油にも適用することができる。そのような油としては特に限定されず、例えば食用油としては、大豆油、綿実サラダ油、菜種白絞油、コーン白絞油、サフラワーサラダ油、パーム油、ひまわり油、米油、ごま油、オリーブ油などが挙げられる。本発明の固形化材の量は固形化しようとする食用油の種類にもよるが、通常、本発明の固形化材1部に対し約15〜100部程度の油類を吸着させることができる。本発明の固形化材に食用油類を吸着させるには、好ましくは1分以上、室温あるいは室温〜−20℃の範囲において、食用油類と固形化材を接触させればよく、緩やかに振蕩するのがさらに好ましい。
【0021】
食用油類を固形化した後の固形化物(固形状集合体)は、元の食用油の性質、風味を損なわない程度の温度で、緩やかに加熱することによって、繊維状脂肪酸塩と回収した食用油類の各成分に分離することができる。分離する方法は、上述した方法と同様である。
【0022】
また、本発明の固形化材は、気体炭化水素を回収するためにも適用することができる。本発明の固形化材は、例えば気体炭化水素を導入して緩やかに振蕩するだけで、選択的に気体炭化水素を吸着する。繊維状脂肪酸塩に対して気体炭化水素の割合が過剰でない範囲では、実質的に気体炭化水素を全て吸着し、水上に浮遊する。気体炭化水素を吸着した後の複合体は、気体炭化水素の割合が小さいときには微粒子状複合体として、気体炭化水素の重量比が繊維状脂肪酸塩の数倍に達してからは、全体として球状の塊として水上に浮遊する。これは容易に水中からすくいあげることができる。
【0023】
本発明の固形化材が吸着、固形化しうる気体炭化水素としては、例えばn−ブタン、イソブタン、1−ブテン、シスー2−ブテン、トランス−2−ブテン、1,3−ブタジエン、プロパン、プロピレンなどが挙げられる。
また、本発明で、気体炭化水素の吸着、固形化を助けるために液体炭化水素を若干添加してもよい。用いられる液体炭化水素としては、n−ペンタンからn−ヘキサデカンまでの、室温で液体の全てのn−パラフィン、分岐状パラフィン、オレフィン、シクロヘキサンなどの脂環式パラフィン、ベンゼン、トルエン、キシレンなどの芳香族炭化水素、軽油、灯油、流動パラフィンなどの混合炭化水素が挙げられるが、固形化後の取り扱い、分解、回収のし易さなどを考慮すれば、不安定なオレフィン、混合炭化水素を敢えて用いる必要はなく、比較的単純で安定な構造の、パラフィン系炭化水素、脂環式パラフィン、芳香族炭化水素を用いればよい。
【0024】
固形化しようとする気体炭化水素の種類にもよるが、気体炭化水素単独の場合には、通常、本発明の繊維状脂肪酸塩1部に対し約1〜100部の気体炭化水素を吸着させることができる。また、液体炭化水素を併用する場合には、固形化された気体炭化水素が遥かに安定になるので、通常、本発明の繊維状脂肪酸塩1部に対し約5〜20部の気体炭化水素を吸着させることができる。
本発明の繊維状脂肪酸塩に気体炭化水素を吸着し、固形化させるには、好ましくは1分以上、気体炭化水素と繊維状脂肪酸塩を接触させればよく、緩やかに振蕩するのがさらに好ましい。
【0025】
気体炭化水素のみを固形化した後の固形状集合体は、一般に、固形状集合体の蒸気圧が、大気圧よりもほんの少し高いので、密閉容器に保存することが好ましい。従って、元の気体炭化水素を得るためには、常温で、大気圧下に開放し、通常の方法で気体炭化水素を回収すればよい。気体炭化水素と液体炭化水素を一緒に固形化した後の固形状集合体は、一般に、固形状集合体の蒸気圧が大気圧よりも低いので、密閉容器に保存することは必ずしも必要ではないが、より確実に安全を確保するためには、やはり、簡易な密閉容器に保存することが望ましい。
従って、この場合には、元の気体炭化水素を得るためには、約40〜60℃程度に加熱して、気体炭化水素を大気圧下に開放し、通常の方法で回収すればよい。
【0026】
【実施例】
〔実施例1〕
水1800g(100mol)を攪拌機付き反応缶に仕込み、ステアリン酸14.2g(0.05mol)加えて、95℃以上に加温した。10%水酸化ナトリウム溶液20gを60分間かけて添加した。1時間熟成して、硫酸ナトリウム(無水塩)を14.2g(0.1mol)添加して60分間攪拌をした。その後、ゆっくりと冷却しながら、結晶を析出させた。晶析時間は20時間以上かけて、10℃から20℃まで冷却し、幅2μm、長さ数mmの長繊維状ステアリン酸ナトリウムを得た。
この溶液200gを攪拌しながら、C重油を徐々に加えると58gのC重油を固形化できた。長繊維状カルボン酸ナトリウム塩に対して約35倍重量であった。
又同様にして、トルエン58g、クロロホルム58g、四塩化炭素36gを固形化できた。
【0027】
〔実施例2〕
水1800g(100mol)を攪拌機付き反応缶に仕込み、パルミチン酸12.8g(0.05mol)を加えて、95℃以上に加温した。10%水酸化ナトリウム溶液20gを60分間かけて添加した。1時間熟成して、塩化ナトリウムを5.85g(0.1mol)添加して60分間攪拌をした。その後、ゆっくりと冷却しながら、結晶を析出させた。晶析時間は20時間以上かけて、10℃から20℃まで冷却し、幅2μm、長さ数mmの長繊維状パルミチン酸ナトリウムを得た。
この溶液200gを攪拌しながら、C重油を徐々に加えると60gのC重油を固形化できた。長繊維状カルボン酸ナトリウム塩に対して約40倍重量であった。又同様にトルエンを70g(約50倍量)固形化できた。
【0028】
〔実施例3〕
水1800g(100mol)を攪拌機付き反応缶に仕込み、ラウリン酸20g(0.1mol)を加えて、95℃以上に加温した。10%水酸化ナトリウム溶液40gを60分間かけて添加した。1時間熟成して、硫酸ナトリウム(無水塩)を71g(0.5mol)添加して60分間攪拌をした。その後、ゆっくりと冷却しながら、結晶を析出させた。晶析時間は20時間以上かけて、10℃から20℃まで冷却し、幅2μm、長さ数mmの長繊維状ラウリン酸ナトリウムを得た。
この溶液200gを攪拌しながら、C重油を徐々に加えると80gのC重油を固形化できた。長繊維状カルボン酸ナトリウム塩に対して約35倍重量であった。又同様にトルエンを80g(約35倍量)固形化できた。
【0029】
〔実施例4〕
水1800g(100mol)を攪拌機付き反応缶に仕込み、エイコサン酸(炭素数20の脂肪酸)3.2g(0.01mol)を加えて、130℃以上に加温した。10%水酸化ナトリウム溶液4gを60分間かけて添加した。1時間熟成して、硫酸ナトリウム(無水塩)を14.2g(0.1mol)添加して60分間攪拌をした。その後、ゆっくりと冷却しながら、結晶を析出させた。晶析時間は20時間以上かけて、10℃から20℃まで冷却し、幅2μm、長さ数mmの長繊維状エイコサン酸ナトリウムを得た。
この溶液200gを攪拌しながら、C重油を徐々に加えると13gのC重油を固形化できた。長繊維状カルボン酸ナトリウム塩に対して約35倍重量であった。又同様にトルエンを11g(約30倍量)固形化できた。
【0030】
〔実施例5〕
水1800g(100mol)を攪拌機付き反応缶に仕込み、ベヘン酸(炭素数22の脂肪酸)3.4g(0.01mol)を加えて、150℃以上に加湿した。10%水酸化ナトリウム溶液4gを60分間かけて添加した。1時間熟成して、硫酸ナトリウム(無水塩)を14.2g(0.1mol)添加して60分間攪拌をした。その後、ゆっくりと冷却しながら、結晶を析出させた。晶析時間は20時間以上かけて、10℃から20℃まで冷却し、幅2μm、長さ数mmの長繊維状ベヘン酸ナトリウムを得た。
この溶液200gを攪拌しながら、灯油を徐々に加えると16gのC重油を固形化できた。長繊維状カルボン酸ナトリウム塩に対して約40倍重量であった。又同様にガソリンを12g(約30倍量)固形化できた。
【0031】
[実施例6]
実施例1で得られた長繊維状ステアリン酸ナトリウムを濾過し、乾燥して白色の結晶(水分3.5%)16gを得た。この乾燥物5gを長さ30cm、内径6mmのカラムに詰めて、トルエンの飽和ガス(トルエン濃度約2500ppm)を流量15ml/minでカラムを通過させて、トルエンを吸着させた。排気ガスの中の濃度をガスクロで分析すると0ppmであった。49.5g(乾燥物の9.5倍重量)のトルエンが吸着された。
同様にヘキサン濃度300ppmガスを流量15ml/minでカラムを通過させ、ヘキサンを吸着させた。31.5g(乾燥物の6.3倍重量)のヘキサンが吸着された。
同様にブタンガスの500ppmのガスを流量15ml/minでカラムを通過させて、30g(乾燥物の6倍重量)のブタンが吸着された。
【0032】
【発明の効果】
本発明の繊維状脂肪酸塩は、油類吸収材として使用することができ、例えば河川、湖沼、海水中または海水上で油類と接触させ、油類を選択的に効率よく吸着させることができる。
本発明の繊維状脂肪酸塩は油類を吸着することによって固形状を保ち(通常はボール状または玉子状となる)、かつ、水面に浮上するので吸着後に海水中から回収することが容易であり、さらに極めて安全な脂肪酸塩から構成されているので、油類固形化材自体による自然水の汚染も防止できる。
【0033】
また、本発明の繊維状脂肪酸塩は水中でも室温において長期間安定に繊維状脂肪酸塩の分散状態を維持するため、取り扱いが容易で、水中から集めた、油類を吸収した脂肪酸塩を加熱することにより脂肪酸塩と油類に分離することができ、流出油を元の状態で回収することが可能であり、さらに脂肪酸塩は、繊維状脂肪酸塩の製造に再利用できる。
このような繊維状脂肪酸塩を用いた本発明の流出油類の回収方法は、流出油事故の処理に好適である。
また、上記のように本発明の繊維状脂肪酸塩を食用油、機械油又はそれらの廃油、特に食用廃油に接触させると食用油は速やかに固化するから、当該繊維状脂肪酸塩は食用油の固形化剤に有用である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a fibrous fatty acid salt capable of efficiently adsorbing and solidifying a hydrocarbon such as heavy oil or light oil, and a method for solidifying a hydrocarbon using the fibrous fatty acid salt.
[0002]
[Prior art]
The scale of the petrochemical industry has been expanding year by year, and the mass production and consumption of organic compounds has led to the pollution of rivers, lakes, oceans, etc. due to accidents at various chemical plants, petrochemical complexes and tankers. Pollution and accidents, such as fire and explosion accidents, that threaten the survival of human beings and living things are occurring frequently, and the safe handling, transportation, stockpiling, and after the accident of organic compounds including hydrocarbons such as petrochemicals Proper processing is a major problem. One of the fundamental countermeasures against these pollutions, explosions, fires, and spills is to prevent accidents by designing devices that can be safely stored or transported. As a countermeasure, it is desirable to take appropriate measures promptly when an accident occurs.
[0003]
Conventionally, when the water surface is contaminated due to an accident at a chemical factory, petrochemical complex or tanker, it is often left as it is, waiting for it to evaporate, dilute or decompose naturally, or spraying a large amount of surfactant etc. Either of these methods has been adopted. However, these methods inevitably have an adverse effect on the environment from either a long-term or short-term viewpoint, and it is hard to say that all of these methods are satisfactory.
There is also a method of using an oil fence to enclose the spilled oil, pumping it up together with the contaminated seawater on an oil recovery vessel, separating the seawater back into the sea by density difference, but the efficiency is low, but the resulting Most of the spilled oil has been dispersed and cannot be recovered, and is left as it is.
In addition, attempts have been made to decompose oil spills using microorganisms that live in seawater, but it is still far from practical use at the experimental stage.
[0004]
In view of such a current situation, there is a demand for a technique for quickly adsorbing and recovering oil spilled to rivers, lakes and marshes, and the sea as it is. However, given the properties of oils that readily and widely diffuse into and out of water, mechanical and physical recovery appears to be extremely difficult. At first glance, it may seem like a desirable method to cause a chemical reaction in the spilled water to convert the spilled oil into another safe substance. It is highly possible to produce and disperse the chemicals, and methods involving chemical reactions must be avoided.
Considering the above, it is considered that a method of using a physicochemical means to adsorb and recover the spilled oil as it is is most preferable.
[0005]
The conditions that the solidified material of the oil spilled on the sea surface should have are as follows: (1) The salted water in the seawater works without impairing the function, and the solidified material can be easily recovered together with the oil. It is safe and harmless because it is assumed that it can be recycled, (2) it is chemically stable, and (3) it is expected to be used in large quantities. Even if spills occur and recovery is difficult, there is little danger of adverse effects on marine organisms and the environment.
Furthermore, when oil spills into freshwater or hard water such as rivers and lakes, the solidified material acts on the spilled oil efficiently without being affected by the type and concentration of ions contained in each water. It is necessary to perform the same function as the above seawater.
Such physicochemical solidifying materials are extremely inefficient, including those currently marketed as gelling agents, and are not sufficiently practically used.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for industrially advantageously producing a fibrous fatty acid salt which can be used as an oil solidifying material satisfying the above conditions from fatty acids and bases. Further, another object of the present invention is to provide a method capable of efficiently recovering oils flowing out of a river, a lake, or the sea by physicochemical adsorption.
[0007]
[Means for Solving the Problems]
In the process of studying the dissolution, emulsification, and dispersion behavior of fatty acids and bases having alkyl groups of various lengths in water, the present inventors have found that fatty acids and bases are completely soluble in water at high temperatures and completely dissolved. After that, the completely dissolved state is maintained even by adding an aqueous solution of sodium chloride at a high temperature, and stirring and cooling from the completely dissolved state precipitate uniform fibrous fatty acid salts. They have found that fibrous fatty acid salts efficiently adsorb and solidify mixed oils such as heavy oils and light oils, and as a result of further various studies based on such findings, they have completed the present invention.
[0008]
That is, the present invention
(1) a method for producing a fibrous fatty acid salt, comprising cooling a reaction mixture obtained by reacting a fatty acid and a base in the presence of water to precipitate and form a fatty acid salt in a fibrous form;
(2) A fibrous fatty acid salt characterized by adding a salt to a reaction mixture obtained by reacting a fatty acid and a base in the presence of water, and then cooling the reaction mixture to precipitate and form the fatty acid salt in a fibrous form. Manufacturing method,
(3) The method for producing a fibrous fatty acid salt according to the above (1) or (2), wherein the reaction between the fatty acid and the base is carried out under stirring.
(4) The method for producing a fibrous fatty acid salt according to any one of the above (1) to (3), wherein the reaction mixture is aged before cooling.
(5) The fatty acid according to any of (1) to (4) above, wherein the fatty acid is a saturated or unsaturated fatty acid having 6 to 30 carbon atoms, and is a monobasic acid, dibasic acid or tribasic acid. A method for producing a fibrous fatty acid salt according to the description,
(6) The method for producing a fibrous fatty acid salt according to any one of the above (1) to (5), wherein the base is sodium hydroxide;
(7) The method for producing a fibrous fatty acid salt according to any one of the above (1) to (6), wherein the reaction temperature of the reaction between the fatty acid and the base is 60 to 300 ° C.
(8) The method for producing a fibrous fatty acid salt according to any one of the above (1) to (7), wherein the salt is at least one selected from salt, phosphate, nitrate, and salt;
(9) a method for solidifying a gaseous hydrocarbon, which comprises contacting a fibrous fatty acid salt with a gaseous hydrocarbon;
(10) A method for solidifying a liquid hydrocarbon, which comprises contacting a fibrous fatty acid salt with a liquid hydrocarbon;
(11) a method for solidifying an oil, which comprises contacting a fibrous fatty acid salt with an edible oil or a waste oil;
About.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The fatty acid used in the present invention may be a saturated or unsaturated fatty acid having 6 to 30, preferably 8 to 22, particularly preferably 10 to 18 carbon atoms, or may be a free fatty acid. Further, the fatty acid used in the present invention may be a monobasic acid, dibasic acid or tribasic acid. The fatty acid is completely dissolved in water together with the base, and if desired, a salt is added thereto with stirring and cooled, and then precipitated in a fibrous form. It is preferable to have an alkyl chain length of an appropriate length as much as possible.
[0010]
More specifically, the fatty acids include, for example, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, caproleic acid, lauroleic acid, oleic acid, linoleic acid, linoleic acid, etc. And animal and vegetable oils such as palm oil, palm kernel oil, palm oil, soybean oil, rice bran oil, lard, tallow, fish oil, peanut oil, and hardened oil fatty acids of these animal and vegetable oils. They are used alone or in combination of two or more.
[0011]
Examples of the type of base used in the present invention include sodium hydroxide, potassium hydroxide, lithium hydroxide, magnesium hydroxide, trisodium phosphate, disodium hydrogen phosphate, dipotassium hydrogen phosphate, and the like. Preferably, sodium hydroxide is used.
[0012]
The above fatty acid is completely dissolved in water by heating under stirring with a base, and a fibrous fatty acid salt can be precipitated as it is or by adding a salt with stirring and cooling.
The heating temperature at the time of reacting the fatty acid and the base is usually about 60 to 300 ° C, preferably about 100 to 180 ° C, and varies depending on the length of the alkyl chain of the fatty acid.
[0013]
The molar ratio of the fatty acid / water when precipitating the fibrous fatty acid salt for preparing the solidified material according to the present invention is preferably about 1 / 10,000 to 1/100, more preferably about 1/50. It is about 5,000 to 5 / 1,000. The base / fatty acid molar ratio is preferably about 0.5 / 1 to 2/1, and more preferably about 0.8 / 1 to 1.2 / 1.
[0014]
A salt is added to an aqueous solution in which a fatty acid and a base are dissolved in water, if desired, with stirring. Examples of such salts include, for example, salt, salt, phosphates such as sodium phosphate and potassium phosphate, and nitrates such as sodium nitrate and potassium nitrate. One of these salts alone, or Two or more kinds may be used in appropriate combination. Preferably it is salt.
[0015]
In the method for producing a fibrous fatty acid salt of the present invention, the above fatty acid and the base are first completely dissolved in pure water with stirring, and then, if necessary, an aqueous solution containing the salt is added with stirring and mixed thoroughly. It is particularly preferable that the fibrous fatty acid salt is precipitated in the aqueous solution by cooling. By using this fibrous fatty acid salt, spilled oils can be extremely efficiently adsorbed and hydrocarbons can be recovered as macroscopic lumps. The reaction mixture may be aged for about one hour before cooling if desired.
[0016]
The fibrous fatty acid salt formed by the method of the present invention is simply introduced into seawater contaminated with oils such as heavy oil, for example, and the fibrous fatty acid salt contacts the oils and selectively adsorbs heavy oil. . As long as the ratio of the heavy oil to the fibrous fatty acid salt is not excessive, substantially all of the heavy oil is adsorbed and floats on the purified seawater. After the heavy oil is adsorbed, the fibrous fatty acid salt becomes a fine aggregate when the ratio of the heavy oil is small, and after the weight ratio of the heavy oil reaches several times that of the fibrous fatty acid salt, the solid strong spherical mass ( Or it floats on the sea as an egg). It is kept solid and can be separated from seawater by scooping it out from seawater by ordinary means using a net or rake.
[0017]
Examples of the oils to which the solidified material composed of the fibrous fatty acid salt of the present invention can be adsorbed and recovered include heavy oils A, heavy oils C, crude oils, mixed oils such as liquid paraffin, light oil, kerosene, refined various hydrocarbons, and halogens. Hydrocarbons, that is, n-paraffins, olefins, branched paraffins, alicyclic hydrocarbons such as cyclohexane, and aromatic hydrocarbons. Although it depends on the type of oil to be recovered, usually about 10 g to 100 g of oil can be adsorbed per 1 g of the fibrous fatty acid salt of the present invention. In order to adsorb oils to the fibrous fatty acid salt of the present invention, the oil and the fibrous fatty acid salt may be brought into contact with each other for preferably 1 minute or more, and it is more preferable to shake gently.
[0018]
The solidified matter (solid aggregate) after adsorbing the oils is separated from the effluent, collected, then added with water and heated to separate it into fibrous fatty acid salts and each component of the collected oils. Can be. The fibrous fatty acid salts separate and migrate to the water side, and oils can be phase separated from water and recovered. In addition, most of the fibrous fatty acid salts can be used again to produce fibrous fatty acid salts that can be used as oil absorbents, and can be used repeatedly. The heating for separating the fatty acid salt and the oils is usually preferably at least 80 ° C.
[0019]
The solidified material comprising the fibrous fatty acid salt of the present invention may be directly sprayed on the spilled oil, for example, at the site of an oil spill accident, such as in the ocean, river, and marsh lake. The amount of application depends on the type of spilled oil, the situation at the site, and the type and concentration of the nitrogen source, and is not particularly limited, but is usually about 1 to 30% by weight, preferably about 5% by weight, based on the spilled oil. About 20% by weight.
[0020]
Further, the solidified material of the present invention can be applied to not only edible oil but also edible oil waste oil, machine oil, and machine oil waste oil. Such oils are not particularly limited. For example, edible oils include soybean oil, cottonseed salad oil, rapeseed white oil, corn white oil, safflower salad oil, palm oil, sunflower oil, rice oil, sesame oil, and olive oil. And the like. Although the amount of the solidified material of the present invention depends on the type of edible oil to be solidified, usually about 15 to 100 parts of oil can be adsorbed per part of the solidified material of the present invention. . In order to adsorb edible oils to the solidified material of the present invention, the edible oils and the solidified material may be brought into contact with each other preferably at room temperature or in a range of room temperature to -20 ° C for 1 minute or more, and the mixture is gently shaken. More preferably,
[0021]
After solidifying the edible oil, the solidified product (solid aggregate) is heated at a temperature that does not impair the properties and flavor of the original edible oil, and the fibrous fatty acid salt is recovered with the edible oil. It can be separated into each component of oils. The method of separation is the same as the method described above.
[0022]
Further, the solidified material of the present invention can also be applied to recover gaseous hydrocarbons. The solidified material of the present invention selectively adsorbs gaseous hydrocarbons, for example, only by introducing gaseous hydrocarbons and gently shaking. When the ratio of the gaseous hydrocarbon to the fibrous fatty acid salt is not excessive, substantially all of the gaseous hydrocarbon is adsorbed and floats on the water. The composite after adsorbing gaseous hydrocarbons becomes a particulate composite when the proportion of gaseous hydrocarbons is small, and after the weight ratio of gaseous hydrocarbons reaches several times that of the fibrous fatty acid salt, it becomes spherical as a whole. It floats on the water as a lump. It can be easily scooped out of the water.
[0023]
Examples of gaseous hydrocarbons that the solidifying material of the present invention can adsorb and solidify include, for example, n-butane, isobutane, 1-butene, cis-2-butene, trans-2-butene, 1,3-butadiene, propane, propylene and the like. Is mentioned.
Further, in the present invention, a slight amount of liquid hydrocarbon may be added in order to assist adsorption and solidification of gaseous hydrocarbon. Examples of the liquid hydrocarbon used include all n-paraffins, branched paraffins, olefins, alicyclic paraffins such as cyclohexane, and aromatics such as benzene, toluene, and xylene from n-pentane to n-hexadecane. Mixed hydrocarbons such as aromatic hydrocarbons, light oils, kerosene, and liquid paraffin can be mentioned, but in consideration of the ease of handling, decomposition, and recovery after solidification, unstable olefins and mixed hydrocarbons are intentionally used. There is no need to use a paraffin-based hydrocarbon, an alicyclic paraffin, or an aromatic hydrocarbon having a relatively simple and stable structure.
[0024]
Depending on the type of gaseous hydrocarbon to be solidified, in the case of gaseous hydrocarbon alone, usually, about 1 to 100 parts of gaseous hydrocarbon is adsorbed to 1 part of the fibrous fatty acid salt of the present invention. Can be. When a liquid hydrocarbon is used in combination, the solidified gaseous hydrocarbon becomes much more stable, so that about 5 to 20 parts of gaseous hydrocarbon is usually added to 1 part of the fibrous fatty acid salt of the present invention. Can be adsorbed.
In order to adsorb the gaseous hydrocarbon to the fibrous fatty acid salt of the present invention and solidify it, the gaseous hydrocarbon and the fibrous fatty acid salt are preferably brought into contact for at least 1 minute, and it is more preferable to gently shake the fibrous fatty acid salt. .
[0025]
The solid aggregate after solidifying only gaseous hydrocarbons is generally preferably stored in a closed container because the vapor pressure of the solid aggregate is slightly higher than the atmospheric pressure. Therefore, in order to obtain the original gaseous hydrocarbon, the gaseous hydrocarbon may be recovered at normal temperature under atmospheric pressure and recovered by a usual method. It is not always necessary to store the solid aggregate after solidifying the gaseous hydrocarbon and the liquid hydrocarbon together in a closed container because the vapor pressure of the solid aggregate is generally lower than the atmospheric pressure. In order to ensure the safety more reliably, it is desirable to store it in a simple closed container.
Therefore, in this case, in order to obtain the original gaseous hydrocarbon, it is sufficient to heat the gaseous hydrocarbon to about 40 to 60 ° C., release the gaseous hydrocarbon under the atmospheric pressure, and collect the gaseous hydrocarbon by an ordinary method.
[0026]
【Example】
[Example 1]
1800 g (100 mol) of water was charged into a reactor equipped with a stirrer, 14.2 g (0.05 mol) of stearic acid was added, and the mixture was heated to 95 ° C. or higher. 20 g of a 10% sodium hydroxide solution was added over 60 minutes. After aging for 1 hour, 14.2 g (0.1 mol) of sodium sulfate (anhydrous salt) was added, and the mixture was stirred for 60 minutes. Thereafter, crystals were deposited while cooling slowly. The crystallization time was cooled from 10 ° C. to 20 ° C. over 20 hours to obtain long fibrous sodium stearate having a width of 2 μm and a length of several mm.
When 200 g of this solution was stirred and heavy C oil was gradually added, 58 g of C heavy oil could be solidified. It was about 35 times the weight of the long fibrous carboxylic acid sodium salt.
Similarly, 58 g of toluene, 58 g of chloroform, and 36 g of carbon tetrachloride could be solidified.
[0027]
[Example 2]
1800 g (100 mol) of water was charged into a reactor equipped with a stirrer, 12.8 g (0.05 mol) of palmitic acid was added, and the mixture was heated to 95 ° C. or higher. 20 g of a 10% sodium hydroxide solution was added over 60 minutes. After aging for 1 hour, 5.85 g (0.1 mol) of sodium chloride was added, and the mixture was stirred for 60 minutes. Thereafter, crystals were deposited while cooling slowly. The crystallization time was cooled from 10 ° C. to 20 ° C. over 20 hours to obtain a long fibrous sodium palmitate having a width of 2 μm and a length of several mm.
When 200 g of this solution was stirred and heavy fuel oil C was gradually added, 60 g of heavy fuel oil could be solidified. It was about 40 times the weight of the long fibrous carboxylic acid sodium salt. Similarly, 70 g (about 50 times) of toluene was solidified.
[0028]
[Example 3]
1800 g (100 mol) of water was charged into a reactor equipped with a stirrer, 20 g (0.1 mol) of lauric acid was added, and the mixture was heated to 95 ° C. or higher. 40 g of a 10% sodium hydroxide solution was added over 60 minutes. After aging for 1 hour, 71 g (0.5 mol) of sodium sulfate (anhydrous salt) was added, and the mixture was stirred for 60 minutes. Thereafter, crystals were deposited while cooling slowly. The crystallization time was cooled from 10 ° C. to 20 ° C. over 20 hours to obtain a long-fibrous sodium laurate having a width of 2 μm and a length of several mm.
When 200 g of this solution was stirred and heavy fuel oil C was gradually added, 80 g of heavy fuel oil C could be solidified. It was about 35 times the weight of the long fibrous carboxylic acid sodium salt. Similarly, 80 g (about 35 times) of toluene could be solidified.
[0029]
[Example 4]
1800 g (100 mol) of water was charged into a reactor equipped with a stirrer, 3.2 g (0.01 mol) of eicosanoic acid (fatty acid having 20 carbon atoms) was added, and the mixture was heated to 130 ° C. or higher. 4 g of a 10% sodium hydroxide solution was added over 60 minutes. After aging for 1 hour, 14.2 g (0.1 mol) of sodium sulfate (anhydrous salt) was added, and the mixture was stirred for 60 minutes. Thereafter, crystals were deposited while cooling slowly. The crystallization time was cooled from 10 ° C. to 20 ° C. over 20 hours to obtain a long-fibrous sodium eicosanoate having a width of 2 μm and a length of several mm.
When 200 g of this solution was stirred and heavy C oil was gradually added, 13 g of heavy C oil could be solidified. It was about 35 times the weight of the long fibrous carboxylic acid sodium salt. Similarly, 11 g (about 30 times) of toluene was solidified.
[0030]
[Example 5]
1800 g (100 mol) of water was charged into a reactor equipped with a stirrer, and 3.4 g (0.01 mol) of behenic acid (fatty acid having 22 carbon atoms) was added thereto, followed by humidification at 150 ° C. or higher. 4 g of a 10% sodium hydroxide solution was added over 60 minutes. After aging for 1 hour, 14.2 g (0.1 mol) of sodium sulfate (anhydrous salt) was added, and the mixture was stirred for 60 minutes. Thereafter, crystals were deposited while cooling slowly. The crystallization time was cooled from 10 ° C. to 20 ° C. over 20 hours to obtain a long fibrous sodium behenate having a width of 2 μm and a length of several mm.
When kerosene was gradually added while stirring 200 g of this solution, 16 g of C heavy oil could be solidified. It was about 40 times the weight of the long fibrous carboxylic acid sodium salt. Similarly, 12 g (about 30 times) of gasoline could be solidified.
[0031]
[Example 6]
The long fiber sodium stearate obtained in Example 1 was filtered and dried to obtain 16 g of white crystals (water content: 3.5%). 5 g of the dried product was packed in a column having a length of 30 cm and an inner diameter of 6 mm, and a saturated gas of toluene (toluene concentration of about 2500 ppm) was passed through the column at a flow rate of 15 ml / min to adsorb toluene. When the concentration in the exhaust gas was analyzed by gas chromatography, it was 0 ppm. 49.5 g (9.5 times the weight of the dried product) of toluene was adsorbed.
Similarly, a gas having a hexane concentration of 300 ppm was passed through the column at a flow rate of 15 ml / min to adsorb hexane. 31.5 g (6.3 times the weight of the dried product) of hexane was adsorbed.
Similarly, 500 ppm of butane gas was passed through the column at a flow rate of 15 ml / min to adsorb 30 g (6 times the weight of the dried product) of butane.
[0032]
【The invention's effect】
The fibrous fatty acid salt of the present invention can be used as an oil-absorbing material. For example, it can be brought into contact with oil in rivers, lakes and marshes, in seawater or on seawater, and the oils can be selectively and efficiently adsorbed. .
The fibrous fatty acid salt of the present invention maintains a solid state by adsorbing oils (usually in a ball shape or an egg shape), and floats on the water surface, so that it can be easily recovered from seawater after adsorption. Further, since it is composed of an extremely safe fatty acid salt, contamination of natural water by the solidified oils itself can be prevented.
[0033]
In addition, the fibrous fatty acid salt of the present invention stably maintains the dispersed state of the fibrous fatty acid salt in water at room temperature for a long period of time, is easy to handle, and heats the fatty acid salt absorbed from oil collected from water. As a result, the fatty acid salt and oil can be separated, the spilled oil can be recovered in its original state, and the fatty acid salt can be reused for producing a fibrous fatty acid salt.
The oil spill recovery method of the present invention using such a fibrous fatty acid salt is suitable for treating an oil spill accident.
Further, as described above, the edible oil solidifies quickly when the fibrous fatty acid salt of the present invention is brought into contact with edible oil, machine oil or waste oil thereof, particularly edible waste oil. Useful for agents.

Claims (11)

水の存在下に脂肪酸と塩基とを反応させて得られる反応混合物を冷却し、脂肪酸塩を繊維状に析出形成させることを特徴とする繊維状脂肪酸塩の製造方法。A method for producing a fibrous fatty acid salt, comprising cooling a reaction mixture obtained by reacting a fatty acid and a base in the presence of water to precipitate and form a fatty acid salt in a fibrous form. 水の存在下に脂肪酸と塩基とを反応させて得られる反応混合物に塩を加え、ついで反応混合物を冷却し、脂肪酸塩を繊維状に析出形成させることを特徴とする繊維状脂肪酸塩の製造方法。A method for producing a fibrous fatty acid salt, comprising adding a salt to a reaction mixture obtained by reacting a fatty acid and a base in the presence of water, cooling the reaction mixture, and depositing and forming the fatty acid salt in a fibrous form. . 脂肪酸と塩基との反応を攪拌下に行うことを特徴とする請求項1または2記載の繊維状脂肪酸塩の製造方法。The method for producing a fibrous fatty acid salt according to claim 1 or 2, wherein the reaction between the fatty acid and the base is carried out with stirring. 反応混合物を冷却前に熟成させることを特徴とする請求項1〜3のいずれかに記載の繊維状脂肪酸塩の製造方法。The method for producing a fibrous fatty acid salt according to any one of claims 1 to 3, wherein the reaction mixture is aged before cooling. 脂肪酸が炭素数6〜30の飽和脂肪酸または不飽和脂肪酸であり、1塩基酸、2塩基酸または3塩基酸であることを特徴とする請求項1〜4のいずれかに記載の繊維状脂肪酸塩の製造方法。The fibrous fatty acid salt according to any one of claims 1 to 4, wherein the fatty acid is a saturated fatty acid or an unsaturated fatty acid having 6 to 30 carbon atoms, and is a monobasic acid, dibasic acid or tribasic acid. Manufacturing method. 塩基が水酸化ナトリウムであることを特徴とする請求項1〜5のいずれかに記載の繊維状脂肪酸塩の製造方法。The method for producing a fibrous fatty acid salt according to any one of claims 1 to 5, wherein the base is sodium hydroxide. 脂肪酸と塩基との反応の反応温度が60〜300℃であることを特徴とする請求項1〜6のいずれかに記載の繊維状脂肪酸塩の製造方法。The method for producing a fibrous fatty acid salt according to any one of claims 1 to 6, wherein the reaction temperature of the reaction between the fatty acid and the base is 60 to 300 ° C. 塩がボウショウ、リン酸塩、硝酸塩、食塩から選ばれる1以上であることを特徴とする請求項1〜7のいずれかに記載の繊維状脂肪酸塩の製造方法。The method for producing a fibrous fatty acid salt according to any one of claims 1 to 7, wherein the salt is one or more selected from salt, phosphate, nitrate, and salt. 繊維状脂肪酸塩を気体炭化水素と接触させることを特徴とする気体炭化水素の固化方法。A method for solidifying a gaseous hydrocarbon, comprising bringing a fibrous fatty acid salt into contact with a gaseous hydrocarbon. 繊維状脂肪酸塩を液体炭化水素と接触させることを特徴とする液体炭化水素の固化方法。A method for solidifying a liquid hydrocarbon, comprising bringing a fibrous fatty acid salt into contact with a liquid hydrocarbon. 繊維状脂肪酸塩を食用油又は廃油と接触させることを特徴とする油の固化方法。A method for solidifying oil, comprising bringing a fibrous fatty acid salt into contact with edible oil or waste oil.
JP2002259377A 2002-09-04 2002-09-04 Method for producing fibrous fatty acid salt Expired - Lifetime JP4311612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002259377A JP4311612B2 (en) 2002-09-04 2002-09-04 Method for producing fibrous fatty acid salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002259377A JP4311612B2 (en) 2002-09-04 2002-09-04 Method for producing fibrous fatty acid salt

Publications (2)

Publication Number Publication Date
JP2004099449A true JP2004099449A (en) 2004-04-02
JP4311612B2 JP4311612B2 (en) 2009-08-12

Family

ID=32260419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002259377A Expired - Lifetime JP4311612B2 (en) 2002-09-04 2002-09-04 Method for producing fibrous fatty acid salt

Country Status (1)

Country Link
JP (1) JP4311612B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068105A (en) * 2003-08-27 2005-03-17 National Institute Of Advanced Industrial & Technology High-purity crystal of lithium carboxylate and method for producing the same
JP2007284628A (en) * 2006-04-20 2007-11-01 Arakawa Chem Ind Co Ltd Metal soap, method for producing the same and oil-absorbing material
JP2013124371A (en) * 2011-12-15 2013-06-24 Xerox Corp Phase selective gelation with alkylated aromatic acid compounds

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068105A (en) * 2003-08-27 2005-03-17 National Institute Of Advanced Industrial & Technology High-purity crystal of lithium carboxylate and method for producing the same
JP2007284628A (en) * 2006-04-20 2007-11-01 Arakawa Chem Ind Co Ltd Metal soap, method for producing the same and oil-absorbing material
JP2013124371A (en) * 2011-12-15 2013-06-24 Xerox Corp Phase selective gelation with alkylated aromatic acid compounds

Also Published As

Publication number Publication date
JP4311612B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
AU748308B1 (en) Method for removing oil, petroleum products and/or chemical pollutants from liquid and/or gas and/or surface
FR2527584A1 (en) AGENT FOR THE PURIFICATION OF WASTEWATER AND PROCESS FOR PRODUCING THE SAME
Vibhute et al. How Far Are We in Combating Marine Oil Spills by Using Phase‐Selective Organogelators?
Silva et al. Oil spills: impacts and perspectives of treatment technologies with focus on the use of green surfactants
Ayanda et al. Kinetics and equilibrium models for the sorption of tributyltin to nZnO, activated carbon and nZnO/activated carbon composite in artificial seawater
BR112014002122B1 (en) surface-treated calcium carbonate, method for bonding and bioremediation of hydrocarbon-containing compositions, use of surface-treated calcium carbonate, and composite material
US6797846B2 (en) Fibrous crystal aggregates, preparation method thereof and use thereof
GB2045224A (en) Process for removing oils or petroleum hydrocarbons from the surface of water
Ejeromedoghene et al. Multifunctional metal-organic frameworks in oil spills and associated organic pollutant remediation
JP4311612B2 (en) Method for producing fibrous fatty acid salt
CN108641681A (en) A kind of preparation method of Attapulgite particle as oil-spill dispersant
JP3953742B2 (en) Gas hydrocarbon immobilization material, its use and hydrocarbon solidification method
JP4167566B2 (en) Solidifying material for liquid organic compound, use thereof and method for solidifying organic compound
JP3894734B2 (en) Fibrous crystal body, method for producing the same, and use of the crystal body as a recovery material
JP3953743B2 (en) Liquid hydrocarbon solidifying material, use thereof and method for solidifying hydrocarbon
JP2004292794A (en) Solidification material for solidifying liquid hydrocarbon, use of the same, and method for solidifying the liquid hydrocarbon
JP3769570B2 (en) Immobilizing material for gas hydrocarbon fixation, its use and method for solidifying gas hydrocarbon
AL-Aoh et al. Isotherm and kinetic studies of 4-nitrophenol adsorption by NaOH-modified palm oil fuel ash
US20050047984A1 (en) High-purity lithium carboxylate crystal, production method thereof and use thereof
JPS582000B2 (en) Haikubutsu Shitsuno Mugaikahouhou
JP3005677B1 (en) Method for solidifying hydrocarbon and method for regenerating hydrocarbon from solid aggregate
JP3743720B2 (en) Oil / water separation method of a mixture of (water / heavy oil type emulsion substance) and (heavy oil / water type emulsion substance)
JP3388725B2 (en) Solid aggregate and its use as oil absorbent, method for producing the same, and method for recovering oil spilled at sea
JPH06504300A (en) Methods for converting hydrocarbons
Nyankson Smart Dispersant Formulations for Reduced Environmental Impact of Crude Oil Spills

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090312

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4311612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term