JP2004098222A - Cutting device, machining device, and cutting method - Google Patents

Cutting device, machining device, and cutting method Download PDF

Info

Publication number
JP2004098222A
JP2004098222A JP2002263784A JP2002263784A JP2004098222A JP 2004098222 A JP2004098222 A JP 2004098222A JP 2002263784 A JP2002263784 A JP 2002263784A JP 2002263784 A JP2002263784 A JP 2002263784A JP 2004098222 A JP2004098222 A JP 2004098222A
Authority
JP
Japan
Prior art keywords
cutting
speed
cutting device
impacting
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002263784A
Other languages
Japanese (ja)
Inventor
Yutaka Matsuda
松田 裕
Mikio Yotsumoto
四元 幹夫
Yasuo Sasaki
佐々木 靖男
Masayuki Makino
牧野 正幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002263784A priority Critical patent/JP2004098222A/en
Publication of JP2004098222A publication Critical patent/JP2004098222A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To continuously cut an object made of a single member such as glass, ceramics, resin and metal or a composite member by one kind of cutting tool. <P>SOLUTION: A striking body 1 is mounted on a spindle 103 erected by providing a fitting gap on a main surface of a rotating body 101. The striking body 1 has a prescribed fitting gap 104 with the spindle 103 and is mounted so that a part of an outer periphery of the striking body 1 may be located at the outside of an outer periphery of the rotating body 101. The rotating body 101 is rotated at high speed to collide the striking body 1 with a workpiece at a speed more than the critical impact speed of the workpiece. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はガラス、セラミックス、樹脂、金属等の単一部材またはこれらの複合部材からなる物体を一種類の切断ツール(切断工具)で連続して切断可能にする切断装置に関する。より詳しくは、物体に硬質固体からなる打撃体を高速で高頻度に衝突させることにより物体のごく表面領域を破砕しながら切断する切断装置及び切断方法に関する。
【0002】
【従来の技術】
リサイクル処理を目的としてブラウン管(CRT/陰極線管)ガラスを切断解体する場合、ヒータ線をCRTの周囲に巻回し通電加熱による熱衝撃を利用する方法、あるいはダイヤモンドホイールカッターの高速回転による切断、あるいはガス溶断等の手段を用いるのが一般的である。
【0003】
また、自動車のボディ、各種家電製品の筐体やその他の構成部材を形成する薄鋼板(冷間圧延鋼板等)の切断は、硬度の高い鋸刃を備えたバンド状カッター(バンドソー)若しくは円盤状カッター(メタルソー)を用いた切断、または砥粒を円盤状や円筒体状に成形した砥石工具を用いるグラインダー切断、またはアセチレンガス等を用いたガス溶断等が一般的である。
【0004】
樹脂成形品の切断はバンドソー、メタルソー、エンドミル等による切断が一般的である。なお、一種類のツール(切れ刃を備えた工具)を回転または高速移動させ、上記ブラウン管等のガラス、薄鋼板、樹脂成形品などの異材質部材を順次、連続切断できる切断装置は提案されていない。切断ではなく、破砕機あるいは金属の表面処理機としてはハンマー型のものが紹介されているが、これは機構の動作原理上切断機になりえない。(特許文献1および2参照)。
【0005】
【特許文献1】
米国特許第2244577号
【特許文献2】
米国特許第5562257号
【0006】
【発明が解決しようとする課題】
しかしながら、上記の従来の切断方法にはそれぞれ以下のような問題があった。
【0007】
(1)前述のCRTガラス切断において、CRTの形状、サイズ、製造工程の違い等によりガラスの残留応力も一定でない。従って、熱衝撃を利用するヒータ線通電加熱方式では、安定した切断加熱条件を見出したり、安定した一定の切断面を形成することは困難である。
【0008】
また、ダイヤモンドホイールカッターによる切断では、切断スピードを早めれば、摩擦熱によりダイヤモンドホイールカッターの摩耗速度が大きくなるので、切断速度は制限される。かつ、ダイヤモンドホイールカッターは高価であり、切断量とダイヤモンドホイールの摩耗量とは密接な関係にあり切断コストが大きい。
【0009】
また、高温ガスを用いた溶断は、切断速度が遅く、被切断物あるいは切断部付近に可燃物があれば危険で、使用可能範囲が限定される。
【0010】
(2)前記薄鋼板をバンドソー、メタルソー等のツールを用いて切断する場合、前記ツールの切れ刃部を被切断物に強く押し付け、被切断物に連続したせん断破壊を起こすことにより切断加工される。
【0011】
切れ刃部を被切断物に強く押しつけるため切断部位の摩擦熱は大きく、熱による刃先の脆化と軟弱化は刃先の摩耗を増大する。
【0012】
切れ刃部の摩耗により切断速度は大幅に低下し制限される。また切れ刃部を被切断物に食い込ませるため、ツール(カッター)の保持と被切断物の保持とに大きな剛性を要し、大掛かりな保持機構と高い設備コストを要する。
【0013】
砥石を用いたグラインダー切断は、砥粒の持つ切れ刃による連続した小さな剪断によって行われる。砥粒の角部(切れ刃)はさほど鋭利ではないこと及びグラインダーの周速度が比較的大きいことにより切断部位の摩擦熱は大きい。砥石の寿命を確保するには切断部位の温度を適切に抑制する必要があり切断速度は制限される。
【0014】
アセチレン等のガス溶断は切断部近傍に可燃物が無いことが安全上重要であり切断範囲が制限される。
【0015】
(3)樹脂成型品等の切断にバンドソー、メタルソー等を用いた場合、切断速度を大きくするとツールとの摩擦熱により被切断物の切断部位近傍が発火または溶融し物理的性質が変化する。
【0016】
(4)金属磁性部品の切断に際し、鉄合金を主体にした刃を使用した場合、切断時に発生する被切断物の破片及び粉末が磁性体ゆえに刃先に付着し、刃先の摩擦抵抗の増大あるいは刃先の損傷により切断能力が大幅に低下する。
【0017】
(5)異なる物性を持つ複数の部材(例えば、金属、樹脂成形品、ガラス、フェライト等)で構成された被切断物を、同一のツールで順次、連続して切断することは極めて困難である。
【0018】
(6)被切断物の切断加工情報(物理的性質等)が不明の場合、あるいは被切断物が複数の部材で構成され、かつ、表面部材の背後に隠れた部材の形状や材質が不明の場合、被切断物の表面や外観形状の画像情報だけでは最適な切断条件が見出せず、最適な切断の自動制御は不可能である。
【0019】
【課題を解決するための手段】
本発明は上記課題を解決するために、臨界衝撃速度(critical inpact velocity)以上の高速引っ張り力を加えると着力端で直ちに破断がおきる塑性波理論、または臨界衝撃速度以上の高速圧縮力や高速張力を加えると急激に延性が低下し、着力端は小さな歪で破壊する(脆くなることと類似の現象)という理論を切断装置として実用化したものである。
【0020】
詳しくは、従来の切れ刃を備えたツールに代え、金属などの硬質固体からなる打撃体を被切断物(以下、「加工対象物」又は「ワーク」という)に超高速、高頻度で衝突させ、瞬時に打撃体先端の衝突部位のみを破壊し除去するものである。
打撃体は衝突直後反射し 臨界衝撃速度以下で被切断物に影響を与えないようにする。
【0021】
即ち、本発明は、高速円運動する打撃体がワークに該ワークの臨界衝撃速度以上で衝突し、反射(反発)する時、衝撃を伴って発生する高速圧縮、または摩擦による高速引っ張り、高速せん断等によって打撃体とワークの衝突部位及びその近傍のごく限られた範囲でワーク表面を微粒子状または微細片に瞬時に破砕(破壊)する原理に基づく切断装置とした。
【0022】
一般に、加工時には工具の移動によりワークに引張り力、圧縮力、又はせん断力等の外力が付与され、ワークに歪みや変形が生じる。このとき、工具の速度、即ち加工速度を増加させていくと、加工速度がある限界に達するとワークの延性は急激に低下する。この限界速度は臨界衝撃速度と呼ばれる。加工速度が臨界衝撃速度以上になると、ワークの工具による着力端は直ちに破壊する。これを利用すれば、打撃体をワークに臨界衝撃速度以上で衝突反射させることで、ワークの衝突部のごく表層部分のみを破壊して除去することができる。そして、単位時
間当たりの打撃体の衝突回数を極めて多くすれば、この現象を繰り返し発生させることができる。
【0023】
さらに、打撃体の衝突位置を順次移動させれば、ワークの衝突部以外の部分を破壊することなく、衝突部のみを順次除去加工することができる。これを巨視的に見ればワークを切断加工していることになる。この切断方法によれば比較的な滑らかな切断面が得られる。
【0024】
ワークの延性を急激に低下させるため、打撃体をワークの臨界衝撃速度以上でワークに衝突させる必要がある。具体的には、該衝突速度を一般に約100m/秒(約360km/時)以上とするのが好ましく、約340m/秒(約1224km/時)以上とするのがより好ましい。
【0025】
上記衝突速度を円板の周速に換算すると、直径100mmの円板であれば、それぞれ順に回転数19100rpm以上、及び65,130rpm以上で回転するのに相当する。
【0026】
実際には臨界衝撃速度はワークの種類によって相違する。例えば、アルミニウム、軟鋼、ステンレス鋼、チタンの臨界衝撃速度は、それぞれ順に49.7m/秒、30.0m/秒、152.3m/秒、61.8m/秒程度である。従って、打撃体の衝突速度はワークの種類に応じて変更することができる。打撃体の衝突速度をワークの臨界衝撃速度の2倍以上、更には3倍以上、特に4倍以上とすると、安定した切断が可能になるので好ましい。
【0027】
回転体には貫通穴が形成され、打撃体を保持する支軸と回転体の支軸挿入穴は所定の嵌合隙間を有して回転可能に保持される。
【0028】
嵌合隙間を設けることにより、打撃体がワークに衝突した直後反射し被切断物に対する打撃体の慣性の影響をを吸収することができる。打撃体の形状は慣性モーメントができるだけ小さくなるようにしている。
【0029】
前記打撃体を支承する支軸と、前記打撃体の貫通穴との嵌合隙間を好適には2mm以上、より好適には5〜10mm程度とする。嵌合隙間は打撃体の衝突速度の増大に対応して大きく設定する必要がある。なお、本発明における嵌合隙間は、一般的に軸と軸受との嵌合状態を規定するJIS規格のスキマ数値よりはるかに大きく2桁〜3桁上回るものである。
【0030】
このように本発明の加工原理は従来のハンマー型の破砕機に代表される衝撃の加工原理とは異なる。
従来の加工原理は大きな慣性モーメントを持った切削工具(ツール)を支軸と回転体の間及び切削工具と支軸の間を通常の嵌合で取り付け刃部を比較的低速でワークに衝突させ切れ刃部は衝突し減速後なを慣性によってワークに力を加える。
【0031】
ワークは塑性変形を経て破壊へと順次変形し、ワーク表面の比較的広い範囲が破壊するものである。
【0032】
また、本発明における打撃体は従来の切削工具(ツール)のような鋭利な切れ刃部を備えるものでない。
【0033】
上記構成により本発明による切断は、以下の特徴を有する。
(1)打撃体が臨界衝撃速度以上でワークと衝突する時、打撃体先端の衝突部のごく限られた範囲(打撃体の厚み)で、ワークは延性をなくし粒状に破壊する。回転体の回転に伴い打撃体は連続して衝突し、打撃体の厚みでワークを線状に破壊し切断する。臨界衝撃速度以上の打撃体の衝突で切断する原理により、ワークにおける切断部位の摩擦熱の発生は極めて少なく、高速切断ができる。また打撃で切断するため、打撃体の先端が鋭利である必要がない。従って、打撃体の切断できる寿命は極めて長い。併せて摩擦熱による樹脂等のワークの変質がない。
【0034】
(2)回転、往復運動、あるいは、直線運動する切削工具(ツール)は、摩耗が激しい。しかし、本発明の打撃体は、ワークとの衝突により打撃体が加工硬化を受け、使用につれて硬化し耐摩耗性が増大する。
【0035】
(3)本発明の切断原理は切断抵抗と摩擦抵抗が小さい。その結果、切断時にワークを強固に保持、固定する必要がない。また、前記打撃体を支承する支軸、高速回転する回転体や主軸の剛性、軸受の剛性、回転体主軸を把持するロボットの剛性等を強固に構築する必要がない。
【0036】
(4)切断に際し、ワークに対応して回転体が発する固有の振動波形(または振動数)を検出する振動検出手段を多軸制御ロボット等に取り付けることにより、ワークに対応して加工条件(打撃体の衝突速度、移動速度等)を制御できる。
【0037】
(5)異なる複数の部材(例えば、金属、樹脂成形品、ガラス、フェライト等)で構成され、かつ、内部の見えないワークであっても、各部材の中で最大の臨界衝撃速度で打撃対を衝突させる時 同一の切断装置で連続して高速の切断が可能である。
【0038】
以上のように本発明における切断装置は、構造が簡単で長寿命化と信頼性の大幅な向上が図れる。また、切断過程でワークの異材質混在、摩擦熱を考慮する必要性がなく、リサイクル設備の一環である破砕または切断装置として極めて有効である。
【0039】
従って、本発明は、廃棄処理を目的とした家電製品や自動車等の解体切断処理の自動化が可能となり、加工対象物や構成部材の種類に応じて切削工具の種類や加工条件、切断装置を変更する必要がなくなる。また、切断装置の寿命と信頼性の向上、リサイクル率の向上に寄与し、環境保全、資源の有効活用に貢献する。
【0040】
本発明の切断装置の具体的構成は以下の通りである。
本発明における第1の発明は、回転体の主面に立設した支軸に打撃体を回動可能に取り付け、前記回転体を高速回転させ前記打撃体を加工対象物(ワーク)の臨界衝撃速度以上の速度で加工対象物に衝突させるようにしたことを特徴とする切断装置としたもので、遠心力を利用した衝撃切断により切刃部の摩耗を減少させ切断装置の長寿命化と信頼性の向上を図れる。また、加工対象物の種類を選ばず、高速切断を可能にする。
【0041】
さらに、第2の発明は、主面が対向した一対の回転体間に嵌合隙間をもうけて軸を架設し、該支軸に打撃体を取り付け、前記一対の回転体を高速回転させ前記打撃体を加工対象物(ワーク)の臨界衝撃速度以上の速度で加工対象物に衝突反射させるようにしたことを特徴とする切断装置としたもので、遠心力を利用した衝撃切断により切刃部の摩耗を減少させ切断装置の長寿命化と信頼性の向上を図れる。
また、加工対象物の種類を選ばず、高速破砕または高速切断を可能にする。
【0042】
さらに、第3の発明は、主面が対向した一対の回転体間に嵌合隙間をもうけて軸を架設し、該支軸に打撃体を取り付けてなる切断ユニットを複数用意し、前記切断ユニットを同一主軸に所定間隔毎に取り付け、前記主軸を高速回転させ前記各打撃体を加工対象物(ワーク)の臨界衝撃速度以上の速度で加工対象物に衝突反射させるようにしたことを特徴とする切断装置としたもので、広い面を一度に加工でき、加工対象物の材質、種類を問わず高速で微粉砕または表面切削加工ができる。
【0043】
さらに、第4の発明は、主面が対向した一対の回転体間に嵌合隙間を設けて支軸を架設し、該支軸に打撃体を取り付けてなる切断ユニットを複数用意し、前記切断ユニットを平行配置した2本の軸にそれぞれ取り付け、前記2本の軸を加工対象物(ワーク)を巻き込むごとくそれぞれ異なる方向に高速回転させ、前記各打撃体を加工対象物の臨界衝撃速度以上の速度で加工対象物に衝突反射させるようにしたことを特徴とする切断装置としたもので、加工対象物の材質、種類を問わず高速で切断加工ができる。
【0044】
さらに、第5の発明は、主面が対向した一対の回転体間に嵌合隙間を設けて支軸を架設し、該支軸に打撃体を取り付けてなる切断ユニットを複数用意し、前記切断ユニットを平行配置した2本の軸にそれぞれ複数づつ所定間隔毎に取り付け、前記2本の軸を加工対象物(ワーク)を巻き込むごとくそれぞれ異なる方向に高速回転させ、前記各打撃体を加工対象物の臨界衝撃速度以上の速度で加工対象物に衝突させるようにしたことを特徴とする切断装置としたもので、加工対象物の材質、種類を問わずワークを高速で微細に破砕または表面の切削加工ができる。
【0045】
さらに、第6の発明は、第1〜第3の発明のいずれかに記載の切断装置を多軸制御機能を備えたロボットアームに取り付けたことを特徴とする加工装置としたもので、三次元加工(曲面加工)を可能とする。
【0046】
さらに、第7の発明は、第6の発明の加工装置において、打撃体が加工対象物に衝突することにより生じる固有の振動波形及び振動数のうちの少なくとも一方を検出し、前記打撃体の衝突速度と衝突方向、及び切断装置の移動速度のうちの少なくとも一つを制御する制御手段を備えたことを特徴とするもので、一定した加工速度またはワークに対応した最適加工速度を可能とする。
【0047】
さらに、第8の発明は、第1〜第5の発明において、打撃体を約100m/秒(約360km/時)以上の速度で、好ましくは約150回/秒以上の頻度で加工対象物に衝突させることを特徴とするもので、加工対象物の材質、種類を問わず高速で切断できる。
【0048】
さらに、第9の発明は、第1〜第5の発明において、打撃体を約340m/秒(約1224km/時)以上の速度で、好ましくは約150回/秒以上の頻度で加工対象物に衝突させることを特徴とするもので、加工対象物の材質、種類を問わず高速で切断できる。
【0049】
さらに、第10の発明は、第1〜第5の発明において、打撃体を加工対象物の臨界衝撃速度の2倍以上の速度で加工対象物に衝突させることを特徴とするもので、加工対象物の材質、種類を問わず高速で切断できる。
【0050】
【発明の実施の形態】
以下、本発明の切断装置の実施の形態を図1〜図11に基づいて説明する。
【0051】
(実施の形態1)
面図1は本発明の実施の形態1における切断装置の正面方向の断面図(図2の切断線S2−S2で切断した断面図)、図2は図1の切断装置の切断線S1−S1における側面方向の断面図、図3は図1の切断装置を用いてワークを切断している状態の正面方向の断面図、図4は図1の切断装置を構成する打撃体の正図、図5は図4の打撃体を切断線S3−S3で切断した断面図、図6、図7、図8は切断装置を構成する打撃体の別の例を示す図である。
【0052】
実施の形態1における切断装置100は、図1〜図3に示すように、主面が対向した一対の円板(回転体)101,101間に 打撃体1を取り付けた支軸103を架設し、前記一対の円板(回転体)101,101を主軸102を中心として高速回転させ前記打撃体1(硬質固体)をワークの臨界衝撃速度以上の速度でワーク105に衝突させる。回転体と支軸の嵌合部5は十分な隙間を設ける。なお、回転数は電源電圧の変動、その他の理由等で±10%程度のバラツキを許容する。
【0053】
打撃体1のワーク105に対する衝突速度は当然のことながら、前記一対の円板(回転体)101の回転数に対応する。本実施の形態では一対の円板(回転体)の回転数を10,000〜60,000rpmという高速回転領域を用いる。
【0054】
該回転数領域により、打撃体1の衝撃力の向上による切断速度向上および空冷効果と加工硬化による打撃対の寿命向上等が図れる。
【0055】
図1に示す切断装置100では、支軸取り付け穴3を有する円筒体2の外周面に4箇所の四角形突起4を備えた、平面形状が十字型の打撃体1(図4参照)を円板101の主面に等間隔に4カ所配置した。前記四角形突起4が従来工具の切刃部に相当し、ワークを打撃する。図1からも明らかなように打撃体1の外周の一部(四角形突起、即ち切刃部4)を前記円板101の外周より外方に位置させている。
【0056】
打撃体1を円板101の主面に等間隔に4箇所配置しているので、ワークの打撃頻度は(1万回転/分)×4箇所=4万回/分以上となる。
【0057】
支軸103と回転体101の勘合部5には所定の嵌合隙間104を設ける(後述する具体例では嵌合隙間を7mm程度とした)。該嵌合隙間104を設けることにより、打撃体1はワーク105に臨界衝撃速度以上の速度で激突後反射する。
激突時、ワーク105は打撃体1の先端厚さの範囲のみが粒状に破壊する。
【0058】
なお、前記打撃体の外形は前記十字型の他に任意に設定してよい。例えば、複数の角部を備えた多角形(正三角形、正四角形、長方形、正五角形、正六角形等)、または円盤形、略弓形などとしてもよい。図6、図7、図8に円盤形、正六角形、略弓形の打撃体の例を順に示す。
【0059】
図6は円盤形の打撃体1Aを示しており、図6(A)は正面図、図6(B)は断面図である。円盤形の打撃体1Aは、所定厚さのリング状の切刃部4Aの中央部に、貫通穴3Aを有する円筒体2Aを貫入させたような形状を有する。
【0060】
図7は正六角形の打撃体1Bを示しており、図7(A)は正面図、図7(B)は断面図である。正六角形の打撃体1Bは、外形が正六角形の所定厚さを有する切刃部4Bの中央部に、貫通穴3Bを有する円筒体2Bを貫入させたような形状を有する。
【0061】
図8は、略弓形の打撃体1Cを示しおり、図8(A)は正面図、図8(B)は側面図である。図8に示した略弓形の打撃体1Cは、略円弧状部分と該円弧の略両端を結ぶ弦とで囲まれた略弓形状の遊動部5Cを有する。遊動部5Cの一方の端部に、中央部に貫通穴3Cを有する円筒体2Cが一体化されて構成される。遊動部5Cの他方の端部に切刃部4Cが形成される。打撃体1Cは、回転体の支軸103に取り付けられる。
【0062】
さらに、前記回転体101の形状についても円板型の他に、正多角形など任意の形状としてよい。しかし、当然のことながら回転体の回転バランスが取れていることが必要である。
【0063】
次に、回転体と打撃体のディメンジョンと材質の一例を記す。図1に示す実施形態の装置の場合、円板101の直径は100mm,板厚5mm,材質は機械構造用炭素鋼、支軸103は直径10mm,材質は機械構造用炭素鋼または炭素工具鋼(JIS規格記号/SK2)、打撃体1の切刃部頂部間距離Lは約40mm,貫通穴3の直径は17mm,切刃部4の幅寸法wは約15mm,切刃部4の厚さ寸法tは約5mm,材質は機械構造用炭素鋼(S45C)、炭素工具鋼(SK2)、高速度工具鋼(SKH2)、Ni−Cr鋼(SNC631)、Ni−Cr−Mo鋼(SNCM420)、Cr−Mo鋼(SCM430)、クロム鋼(SCr430)、機械構造用マンガン鋼(SMn433)等の内いずれか一つとした。
【0064】
図3の切断例では、円板101を30,000rpmで矢印107方向に回転させ、打撃体1がワーク(0.8mm厚さの冷間圧延鋼板)105に衝突する衝突速度を157m/秒(565km/時)程度、切削移動速度を50mm/秒、切削方向108とした。なお、この場合の打撃頻度は(3万回転/分)×4箇所=12万回/分となる。
【0065】
主軸102が30,000rpmで高速回転するので打撃体1に大きな遠心力が働く。該遠心力によって打撃体1の切刃部4とワーク105の衝突面及びその近傍の限られた範囲で衝撃を伴って高速圧縮力が発生し、ワーク105の衝突面表層は瞬時に、かつ高速で破砕される。切断屑は微小粒状となる。鋭利な切刃部がなくても切断できることを実験により確認している。
【0066】
なお、CRTガラスについても上記加工条件で切断加工できた。また、回路用樹脂配線基板、樹脂成型品等のプラスチックを、円板101の回転数10,000rpm、打撃体1の打撃回数4万回/分(回転体に取り付けた打撃体の数は4つ)、切削移動速度を50mm/秒で加工できることも実験確認した。
【0067】
上記において、打撃体1の打撃速度は上記の具体例に限定されず、ワークの臨界衝撃速度以上であればワークの種類や切削条件等に応じて任意に設定することができる。また、打撃体1の単位時間当たりの打撃回数もワークの種類や切削条件に応じて変更することができる。
【0068】
ワークの材質が不明な場合、ワークが種類の異なる複数の部材から構成されている場合、外部から見えない箇所に材質が不明な部材が隠れている場合等では、打撃体の衝突速度を高めに設定すると、良好に切断することができる。
【0069】
また、打撃体の材質は硬質の固体であれば金属部材以外も任意に使用することができる。
【0070】
さらに、打撃体の数は2以上の複数であってもよいし、1つのみであってもよい。複数の打撃体を設置する場合は、回転体の回転中心に対して等角度間隔に設置すると、打撃間隔が均等になって安定切断が可能になるので好ましい。打撃体を1つのみとする場合は、回転バランスを確保するためにバランサ(おもり)を設置する。
【0071】
さらに、一対の回転体101を主面を対向させて配置するのではなく、回転体を1枚のみとしてその片側に打撃体を設置する構成であってもよい。
【0072】
前記回転体の駆動は一般的なスピンドルモータ等を用いて高速回転させればよい。
【0073】
本発明における打撃体1は従来の切断ツールのように鋭利な切れ刃部を備えるものでない。本発明における切削原理は従来の常識を超えるもので、打撃体1に従来の切断ツールよりはるかに大きな速度を与えることにより、鋭利な切刃部が無くても金属、樹脂、ガラス、セラミックスなど脆性部材まで切断を可能にする。
【0074】
(実施の形態2)
図9は本発明の実施の形態2における切断装置600の断面図を示す。この場合の切断装置は実施の形態1の切断装置をユニットとして一つの軸上に多数取り付けたものである。従って、切断メカニズムや切断加工条件等は実施の形態1と同様とした。図9において、符号600は切断装置、601は円板(回転体)、602は主軸、603は支軸、604は嵌合隙間、605と606はスペーサ、610は切断ユニットを示す。
【0075】
図9の切断装置600は、スペーサ605を介して主面が対向した一対の回転体601,601間に嵌合隙間を設けて支軸603を架設し、該支軸603に打撃体1を取り付けてなる切断ユニット610を複数用意し、前記切断ユニット610を同一主軸602にスペーサ606を介して所定間隔毎に取り付け、前記主軸602を高速回転させ前記各打撃体1を加工対象物(ワーク)の臨界衝撃速度以上の速度でワークに衝突させるようにしたことを特徴とする。
【0076】
配列する切断ユニット610の数や配設ピッチ、回転体601に配設する打撃体1の数、打撃体1の打撃速度などはワークに対応して任意に設定すればよい。
【0077】
主軸602の支持は片持ち軸受構造、両端支持軸受構造など任意に設定すればよい。
【0078】
(実施の形態3)
図10は本発明の実施の形態3における切断装置700の正面方向の断面図を示す。この場合の切断装置は実施の形態1の切断装置を回転主軸が平行するごとく所定間隔に配置したものである。従って、切断メカニズムや切断加工条件等は実施の形態1と同様である。
【0079】
図10はその一例を示すもので、主面が対向した一対の回転体701間に嵌合隙間を設けて支軸703を架設し、該支軸703に打撃体1を付けてなる切断ユニット710を複数用意し、前記切断ユニット710を平行配置した2本の主軸702にそれぞれ取り付け、前記2本の主軸702を加工対象物(ワーク)を巻き込むごとくそれぞれ異なる方向707に高速回転させ、前記各打撃体1をワークの臨界衝撃速度以上の速度でワークに衝突させるようにしたことを特徴とする。
図中、704は回転体701と支軸703との嵌合隙間、708はワークの送り方向である。
【0080】
配列する切断ユニット710の数や配設ピッチ、回転体701に配設する打撃体1の数、打撃体1の打撃速度などはワークに対応して任意に設定すればよい。
【0081】
主軸702の支持は片持ち軸受構造、両端支持軸受構造など任意に設定すればよい。
【0082】
なお、実施の形態2と同様に一つの主軸上に切断ユニット710を多数取り付け切断ユニットを所定間隔に配置してもよい(図示せず。)。
【0083】
詳しくは、主面が対向した一対の回転体間に嵌合隙間を設けて支軸を架設し、該支軸に打撃体1を取り付けてなる切断ユニットを複数用意し、前記切断ユニットを平行配置した2本の主軸にそれぞれ複数づつ所定間隔毎に取り付け、前記2本の主軸を加工対象物(ワーク)を巻き込むごとくそれぞれ異なる方向に高速回転させ、前記各打撃体をワークの臨界衝撃速度以上の速度でワークに衝突させる構成としてもよい。
【0084】
(実施の形態4)
図11は本発明の実施の形態4における切断加工装置の側面図を示す。この場合の切断加工装置は実施の形態1の切断装置を5軸制御(X軸、Y軸、Z軸、角度Θ1、角度Θ2)のロボットアームに取り付けた構成とした(図示せず。)。
【0085】
図11において、符号800は切断加工装置、810は実施の形態1で説明した切断装置、820は5軸制御の市販ロボット、830は加工対象物(ワーク、たとえば電子機器の樹脂成形キャビネット等)、840は搬送パレットを搬送するローラコンベア、850はワークを搭載する搬送パレットを示す。
【0086】
切断装置810の前に搬送パレット850に搭載されたワーク830が位置すると、これを自動的に検出し、ロボット820のアームに取り付けた切断装置810が回転、駆動され、5軸制御機能を介してキャビネット830の外周を所定に切断加工する(図示せず。)。
【0087】
加工条件は打撃体の打撃速度がワーク830の臨界衝撃速度以上とする。
【0088】
なお、上記装置において、打撃体がワーク830に衝突することにより生じる固有の振動波形及び振動数のうちの少なくとも一方を検出し、前記打撃体の衝突速度と衝突方向、及び切断装置810の移動速度のうちの少なくとも一つを制御する制御手段を備えるようにしてもよい(図示せず。)。このようにすれば、ワーク830が物性の異なる複数の部材で構成されている場合、ワーク830の材質が不明な場合、外部からは見えないワーク830の内部構造が不明な場合等でも、最適切断条件を自動設定することができ、切断作業の自動化を実現できる。
【0089】
また、コンベア装置はベルトコンベアやチェーンコンベアであってもよいことは言うまでもない。
【0090】
さらに、実施の形態1の切断装置の他に実施の形態2の切断装置をロボットで駆動するようにしてよいことも同様である。
【0091】
【発明の効果】
以上のように本発明は、廃棄処理を目的とした家電製品や自動車等の解体切断処理の自動化が可能となり、加工対象物や構成部材の種類に応じて、切削工具の種類や加工条件、切断装置を変更する必要がない。
【0092】
また、切断装置の寿命と信頼性の向上、リサイクル率の向上に寄与し、環境保全、資源の有効活用に貢献する。
【図面の簡単な説明】
【図1】本発明の実施の形態1における切断装置の正面方向の断面図
【図2】図1の切断装置の切断線S1−S1における側面方向の断面図
【図3】図1の切断装置を用いてワークを切断している状態の正面方向の断面図
【図4】図1の切断装置を構成する打撃体の正面図
【図5】図4の打撃体の切断線S3−S3における断面図
【図6】図1の切断装置の打撃体の別の例を示した図であり、
(A)は正面図
(B)は図6(A)のS4−S4線における断面図
【図7】図1の切断装置の打撃体のさらに別の例を示した図であり、
(A)は正面図
(B)は図7(A)のS5−S5線における断面図
【図8】図1の切断装置の打撃体のさらに別の例を示した図であり、
(A)は正面図
(B)は側面図
【図9】本発明の実施の形態2における切断装置の正面方向の断面図
【図10】本発明の実施の形態3における切断装置の正面方向の断面図
【図11】本発明の実施の形態4における加工装置の側面図
【符号の説明】
1、1A、1B、1C 打撃体
2、2A、2B、2C 円筒体
3、3A、3B、3C 貫通穴
4、4A、4B、4C 切刃部
5C 遊動部
100、600、700、810 切断装置
101、601、701 回転体(円板)
102、602、702 主軸
103、603、703 支軸
104、604、704 嵌合隙間
105、830 被切断物(加工対象物、ワーク)
107、707 回転方向
108 切断方向(移動方向)
605,606 スペーサ
610、710 切断ユニット
708 ワークの移動方向
800 切断加工装置
820 ロボット
840 ローラコンベア
850 搬送パレット
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a cutting device that can continuously cut an object made of a single member such as glass, ceramics, resin, metal, or the like or a composite member thereof with one kind of cutting tool (cutting tool). More specifically, the present invention relates to a cutting apparatus and a cutting method for cutting a very surface region of an object while crushing the object by colliding a hitting body made of a hard solid with the object at high speed and high frequency.
[0002]
[Prior art]
When cutting and disassembling CRT (CRT / cathode ray tube) glass for the purpose of recycling processing, a method of winding a heater wire around the CRT and using thermal shock by energizing heating, cutting by high-speed rotation of a diamond wheel cutter, or gas It is common to use means such as fusing.
[0003]
In addition, the cutting of thin steel sheets (cold rolled steel sheets, etc.) that form the body of automobiles, housings of various home appliances, and other components is performed by using a band-shaped cutter (band saw) with a hard saw blade or a disk shape. Generally, cutting using a cutter (metal saw), grinder cutting using a grindstone tool in which abrasive grains are formed into a disk shape or a cylindrical shape, or gas fusing using acetylene gas or the like is common.
[0004]
The cutting of the resin molded product is generally performed by a band saw, a metal saw, an end mill, or the like. A cutting device has been proposed that can rotate or move one type of tool (a tool having a cutting edge) at high speed to sequentially and continuously cut different materials such as glass such as the above-mentioned cathode ray tube, a thin steel plate, and a resin molded product. Absent. Instead of cutting, a hammer type is introduced as a crusher or metal surface treatment machine, but this cannot be a cutting machine due to the principle of operation of the mechanism. (See Patent Documents 1 and 2).
[0005]
[Patent Document 1]
U.S. Pat. No. 2,244,577
[Patent Document 2]
U.S. Pat. No. 5,562,257
[0006]
[Problems to be solved by the invention]
However, the above-mentioned conventional cutting methods have the following problems.
[0007]
(1) In the above-described CRT glass cutting, the residual stress of the glass is not constant due to differences in the shape, size, manufacturing process, and the like of the CRT. Therefore, it is difficult to find stable cutting and heating conditions and to form a stable and constant cut surface in the heater wire energization heating method using thermal shock.
[0008]
Further, in cutting with a diamond wheel cutter, if the cutting speed is increased, the wear speed of the diamond wheel cutter increases due to frictional heat, so that the cutting speed is limited. Moreover, the diamond wheel cutter is expensive, and the cutting amount is closely related to the wear amount of the diamond wheel, so that the cutting cost is large.
[0009]
Further, the fusing using a high-temperature gas has a low cutting speed, and is dangerous if there is an inflammable material near an object to be cut or a cut portion, and the usable range is limited.
[0010]
(2) When cutting the thin steel sheet using a tool such as a band saw or a metal saw, the cutting is performed by strongly pressing the cutting edge portion of the tool against the object to be cut and causing continuous shear failure to the object to be cut. .
[0011]
Since the cutting edge is strongly pressed against the object to be cut, the frictional heat at the cutting portion is large, and the embrittlement and softening of the cutting edge due to the heat increase the wear of the cutting edge.
[0012]
The cutting speed is greatly reduced and limited by the wear of the cutting edge. Further, since the cutting edge portion is cut into the object, a large rigidity is required for holding the tool (cutter) and the object, and a large holding mechanism and high equipment cost are required.
[0013]
The grinder cutting using a grindstone is performed by continuous small shearing by cutting edges of abrasive grains. Since the corners (cutting edges) of the abrasive grains are not so sharp and the peripheral speed of the grinder is relatively high, the frictional heat at the cut portion is large. In order to secure the life of the grindstone, it is necessary to appropriately control the temperature of the cutting portion, and the cutting speed is limited.
[0014]
In gas blowing of acetylene or the like, it is important for safety that there is no combustible material near the cut portion, and the cutting range is limited.
[0015]
(3) When a band saw, a metal saw, or the like is used for cutting a resin molded product or the like, if the cutting speed is increased, the vicinity of the cut portion of the object to be cut is ignited or melted due to frictional heat with the tool, and physical properties change.
[0016]
(4) When cutting a metal magnetic component using a blade mainly made of an iron alloy, fragments and powder of the object to be cut generated at the time of cutting adhere to the cutting edge because of the magnetic material, and increase the frictional resistance of the cutting edge or increase the cutting edge. Damage greatly reduces the cutting ability.
[0017]
(5) It is extremely difficult to sequentially and continuously cut an object to be cut composed of a plurality of members having different physical properties (eg, metal, resin molded product, glass, ferrite, etc.) using the same tool. .
[0018]
(6) When the cutting information (physical property, etc.) of the object to be cut is unknown, or the object to be cut is composed of a plurality of members, and the shape or material of the member hidden behind the surface member is unknown. In this case, the optimum cutting conditions cannot be found only from the image information of the surface or the external shape of the object to be cut, and automatic control of the optimum cutting is impossible.
[0019]
[Means for Solving the Problems]
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a plastic wave theory in which a high-speed tensile force equal to or higher than a critical impact velocity causes a break immediately at a force end, or a high-speed compressive force or a high-speed tension higher than a critical impact speed. The theory that ductility is rapidly reduced by adding, and the applied end is broken by a small strain (a phenomenon similar to becoming brittle) was put to practical use as a cutting device.
[0020]
Specifically, instead of a tool having a conventional cutting edge, a striking body made of a hard solid such as metal is made to collide with an object to be cut (hereinafter, referred to as a “workpiece” or a “workpiece”) at a very high speed and at a high frequency. This instantaneously destroys and removes only the impact portion at the tip of the impacting body.
The impacting body reflects immediately after the collision and does not affect the object below the critical impact velocity.
[0021]
That is, according to the present invention, when a high-speed circular moving impact body collides with a work at a speed higher than the critical impact speed of the work and reflects (rebounds), the high-speed compression generated by the impact, or the high-speed pull by friction, the high-speed shearing The cutting device is based on the principle of instantaneously crushing (breaking) the surface of the work into fine particles or fine pieces in a very limited range in the vicinity of the collision area between the impacting body and the work.
[0022]
Generally, at the time of processing, an external force such as a tensile force, a compressive force, or a shear force is applied to a work by the movement of a tool, thereby causing distortion or deformation of the work. At this time, as the tool speed, that is, the processing speed is increased, when the processing speed reaches a certain limit, the ductility of the work rapidly decreases. This critical speed is called the critical impact speed. When the processing speed becomes equal to or higher than the critical impact speed, the contact end of the workpiece with the tool is immediately destroyed. By utilizing this, the impacting body is caused to impact and reflect on the work at a critical impact speed or higher, so that only the very surface portion of the collision portion of the work can be destroyed and removed. And the unit time
This phenomenon can be repeatedly generated if the number of hits of the hitting body per hit is extremely increased.
[0023]
Further, by sequentially moving the impact position of the impacting body, it is possible to sequentially remove only the impact portion without destroying portions other than the impact portion of the work. Macroscopically, this means that the workpiece is being cut. According to this cutting method, a relatively smooth cut surface can be obtained.
[0024]
In order to rapidly reduce the ductility of the work, it is necessary to cause the impacting body to collide with the work at a speed higher than the critical impact velocity of the work. Specifically, the collision speed is generally preferably about 100 m / sec (about 360 km / hr) or more, more preferably about 340 m / sec (about 1224 km / hr).
[0025]
When the collision speed is converted into the peripheral speed of a disk, a disk having a diameter of 100 mm corresponds to rotating at a rotational speed of 19100 rpm or more and 65,130 rpm or more, respectively.
[0026]
In practice, the critical impact speed differs depending on the type of work. For example, the critical impact velocities of aluminum, mild steel, stainless steel, and titanium are about 49.7 m / sec, 30.0 m / sec, 152.3 m / sec, and about 61.8 m / sec, respectively. Therefore, the impact speed of the impacting body can be changed according to the type of the work. The impact speed of the impacting body is preferably at least twice, more preferably at least three times, especially at least four times the critical impact speed of the work, because stable cutting can be performed.
[0027]
A through hole is formed in the rotating body, and a spindle for holding the impacting body and a spindle insertion hole of the rotating body are rotatably held with a predetermined fitting gap.
[0028]
By providing the fitting gap, the impact is reflected immediately after the impacting body collides with the workpiece, and the influence of the inertia of the impacting body on the object to be cut can be absorbed. The shape of the impacting body is such that the moment of inertia is as small as possible.
[0029]
The fitting gap between the support shaft supporting the impacting body and the through hole of the impacting body is preferably 2 mm or more, more preferably about 5 to 10 mm. The fitting gap needs to be set large in accordance with an increase in the impact speed of the impacting body. In addition, the fitting gap in the present invention is generally much larger than the clearance value of the JIS standard for defining the fitting state between the shaft and the bearing by two to three digits.
[0030]
Thus, the working principle of the present invention is different from the working principle of impact represented by the conventional hammer type crusher.
The conventional processing principle is to attach a cutting tool (tool) with a large moment of inertia between the spindle and the rotating body and between the cutting tool and the spindle by normal fitting and to make the cutting edge collide with the work at a relatively low speed. The cutting edge collides and applies a force to the workpiece by inertia after deceleration.
[0031]
The work is sequentially deformed to fracture through plastic deformation, and a relatively large area of the work surface is broken.
[0032]
Further, the impacting body in the present invention does not have a sharp cutting edge like a conventional cutting tool (tool).
[0033]
With the above configuration, the cutting according to the present invention has the following features.
(1) When the impacting body collides with the workpiece at a speed higher than the critical impact velocity, the workpiece loses ductility and breaks down into a granular form within a very limited range (thickness of the impacting body) at the impacting portion at the tip of the impacting body. The striking body continuously collides with the rotation of the rotating body, and breaks and cuts the work into a linear shape with the thickness of the striking body. Due to the principle of cutting by the impact of a hitting body at a critical impact speed or higher, the generation of frictional heat at the cut portion of the work is extremely small, and high-speed cutting can be performed. Moreover, since the cutting is performed by hitting, the tip of the hitting body does not need to be sharp. Therefore, the life of the impacting body that can be cut is extremely long. In addition, there is no deterioration of the work such as resin due to frictional heat.
[0034]
(2) A cutting tool (tool) that rotates, reciprocates, or moves linearly has high wear. However, in the hitting body of the present invention, the hitting body undergoes work hardening due to the collision with the work, and hardens as it is used, increasing wear resistance.
[0035]
(3) The cutting principle of the present invention has low cutting resistance and frictional resistance. As a result, there is no need to hold and fix the work firmly during cutting. Further, it is not necessary to rigidly build the rigidity of the spindle supporting the impacting body, the rigidity of the rotating body and the main shaft rotating at high speed, the rigidity of the bearing, the rigidity of the robot gripping the main body of the rotating body, and the like.
[0036]
(4) At the time of cutting, by attaching a vibration detecting means for detecting a unique vibration waveform (or frequency) generated by the rotating body corresponding to the work to a multi-axis control robot or the like, the processing conditions (strike) corresponding to the work are Body collision speed, movement speed, etc.).
[0037]
(5) Even if the workpiece is made of a plurality of different members (for example, metal, resin molded product, glass, ferrite, etc.) and the inside of which is not visible, the impact resistance is the highest in each member. High speed cutting is possible continuously with the same cutting device.
[0038]
As described above, the cutting device according to the present invention has a simple structure and can achieve a long life and a great improvement in reliability. Further, there is no need to consider the mixture of different materials and frictional heat of the work in the cutting process, and it is extremely effective as a crushing or cutting device as a part of recycling equipment.
[0039]
Therefore, according to the present invention, it is possible to automate the dismantling and cutting processing of household electric appliances and automobiles for the purpose of disposal processing, and to change the type of a cutting tool, processing conditions, and a cutting device according to the type of a processing target or a constituent member. You don't have to. In addition, it contributes to the improvement of the life and reliability of the cutting device, the improvement of the recycling rate, the environmental protection and the effective use of resources.
[0040]
The specific configuration of the cutting device of the present invention is as follows.
According to a first aspect of the present invention, a striking body is rotatably mounted on a spindle erected on a main surface of a rotating body, and the rotating body is rotated at a high speed so that the striking body is subjected to a critical impact of a workpiece. The cutting device is characterized by colliding with the workpiece at a speed higher than the speed.The impact cutting using centrifugal force reduces the wear of the cutting blade part, extending the life of the cutting device and improving reliability Performance can be improved. In addition, high-speed cutting is enabled regardless of the type of the processing object.
[0041]
Further, in the second invention, a shaft is erected with a fitting gap between a pair of rotating bodies whose main surfaces are opposed to each other, a hitting body is attached to the support shaft, and the pair of rotating bodies are rotated at a high speed, and The cutting device is characterized in that the body is made to collide with and reflect on the workpiece at a speed higher than the critical impact speed of the workpiece (work). Wear can be reduced to extend the life of the cutting device and improve reliability.
Also, high-speed crushing or high-speed cutting can be performed regardless of the type of the object to be processed.
[0042]
Further, in the third invention, a plurality of cutting units are provided, in which a shaft is erected with a fitting gap provided between a pair of rotating bodies whose main surfaces are opposed to each other, and a striking body is attached to the support shaft. Are attached to the same main spindle at predetermined intervals, and the main spindle is rotated at a high speed so that each of the impacting bodies collides with and reflects on the workpiece at a speed higher than the critical impact speed of the workpiece (work). With a cutting device, a wide surface can be machined at a time, and fine grinding or surface cutting can be performed at high speed regardless of the material and type of the object to be machined.
[0043]
Further, the fourth invention provides a plurality of cutting units in which a support shaft is provided by providing a fitting gap between a pair of rotating bodies whose main surfaces are opposed to each other, and a striking body is attached to the support shaft. The unit is attached to each of two shafts arranged in parallel, and the two shafts are rotated at high speeds in different directions as if the workpiece (work) is involved, and each of the impacting bodies is at or above the critical impact speed of the workpiece. The cutting device is characterized in that it is made to collide and reflect the object to be processed at a high speed, and can perform high-speed cutting regardless of the material and type of the object to be processed.
[0044]
Further, in the fifth invention, a plurality of cutting units are provided in which a support shaft is provided by providing a fitting gap between a pair of rotating bodies whose main surfaces face each other, and a striking body is attached to the support shaft. A plurality of units are attached to two shafts arranged in parallel at predetermined intervals, respectively, and the two shafts are rotated at high speed in different directions so as to involve a workpiece (work). It is a cutting device characterized by colliding with the workpiece at a speed higher than the critical impact speed of the workpiece, regardless of the material and type of the workpiece, crushing the workpiece finely at high speed or cutting the surface Can be processed.
[0045]
According to a sixth aspect of the present invention, there is provided a processing apparatus characterized in that the cutting apparatus according to any one of the first to third aspects is mounted on a robot arm having a multi-axis control function. Processing (curved surface processing) is enabled.
[0046]
A seventh aspect of the present invention is the processing apparatus according to the sixth aspect, wherein at least one of a unique vibration waveform and a vibration frequency generated when the impacting body collides with the object to be processed is detected, and the collision of the impacting body is detected. The apparatus is provided with control means for controlling at least one of the speed, the collision direction, and the moving speed of the cutting device, and enables a constant processing speed or an optimum processing speed corresponding to a workpiece.
[0047]
According to an eighth aspect of the present invention, in the first to fifth aspects, the impacting body is applied to the workpiece at a speed of about 100 m / sec (about 360 km / hour) or more, preferably at a frequency of about 150 times / sec or more. It is characterized by collision, and can cut at high speed regardless of the material and type of the object to be processed.
[0048]
In a ninth aspect, in the first to fifth aspects, the impacting body is moved at a speed of about 340 m / sec (about 1,224 km / hour) or more, preferably at a frequency of about 150 times / sec or more. It is characterized by collision, and can cut at high speed regardless of the material and type of the object to be processed.
[0049]
Furthermore, a tenth invention is characterized in that, in the first to fifth inventions, the striking body is caused to collide with the object at a speed of at least twice the critical impact velocity of the object. High-speed cutting is possible regardless of the material and type of object.
[0050]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of a cutting device according to the present invention will be described below with reference to FIGS.
[0051]
(Embodiment 1)
FIG. 1 is a front sectional view (a sectional view cut along a cutting line S2-S2 in FIG. 2) of the cutting device according to the first embodiment of the present invention, and FIG. 2 is a cutting line S1-S1 of the cutting device in FIG. , FIG. 3 is a front sectional view showing a state in which a workpiece is cut using the cutting device of FIG. 1, and FIG. 4 is a front view of a striking body constituting the cutting device of FIG. 5 is a cross-sectional view of the hitting body of FIG. 4 taken along a cutting line S3-S3, and FIGS. 6, 7, and 8 are views showing another example of the hitting body constituting the cutting device.
[0052]
As shown in FIGS. 1 to 3, the cutting device 100 according to the first embodiment has a support shaft 103 on which the striking body 1 is mounted between a pair of disks (rotating bodies) 101, 101 whose main surfaces face each other. Then, the pair of disks (rotating bodies) 101, 101 are rotated at high speed around the main shaft 102, and the impacting body 1 (hard solid) collides with the work 105 at a speed higher than the critical impact speed of the work. A sufficient gap is provided between the fitting portion 5 between the rotating body and the support shaft. It should be noted that the rotation speed is allowed to fluctuate by about ± 10% due to fluctuations in the power supply voltage and other reasons.
[0053]
The impact speed of the impacting body 1 against the work 105 naturally corresponds to the number of rotations of the pair of disks (rotating bodies) 101. In the present embodiment, a high-speed rotation region in which the number of rotations of a pair of disks (rotating bodies) is 10,000 to 60,000 rpm is used.
[0054]
By the rotation speed range, the cutting speed can be improved by improving the impact force of the impacting body 1, and the life of the impacting pair can be improved by the air cooling effect and the work hardening.
[0055]
In the cutting device 100 shown in FIG. 1, a striking body 1 (see FIG. 4) having a cross shape in a plan view, provided with four rectangular projections 4 on the outer peripheral surface of a cylindrical body 2 having a spindle mounting hole 3, is disc-shaped. 101 were arranged at equal intervals on the main surface of the 101. The square projection 4 corresponds to a cutting edge of a conventional tool, and hits a workpiece. As is clear from FIG. 1, a part of the outer periphery of the impacting body 1 (square projection, that is, the cutting blade portion 4) is located outside the outer periphery of the disk 101.
[0056]
Since the impacting bodies 1 are arranged at four locations on the main surface of the disk 101 at equal intervals, the frequency of impact of the workpiece is (10,000 rotations / minute) × 4 locations = 40,000 operations / minute or more.
[0057]
A predetermined fitting gap 104 is provided in the fitting portion 5 between the support shaft 103 and the rotating body 101 (the fitting gap is about 7 mm in a specific example described later). By providing the fitting gap 104, the impacting body 1 reflects on the workpiece 105 after a collision at a speed higher than the critical impact speed.
At the time of collision, only the range of the thickness of the impact body 1 at the tip end of the work 105 is broken into particles.
[0058]
In addition, the outer shape of the impacting body may be arbitrarily set in addition to the cross shape. For example, the shape may be a polygon having a plurality of corners (a regular triangle, a regular square, a rectangle, a regular pentagon, a regular hexagon, or the like), or a disk, a substantially arcuate shape, or the like. 6, 7, and 8 show examples of a disc-shaped, regular hexagonal, and substantially bow-shaped striking body in order.
[0059]
FIG. 6 shows a disk-shaped impacting body 1A, FIG. 6 (A) is a front view, and FIG. 6 (B) is a sectional view. The disc-shaped impacting body 1A has a shape in which a cylindrical body 2A having a through-hole 3A penetrates into the center of a ring-shaped cutting blade 4A having a predetermined thickness.
[0060]
FIG. 7 shows a regular hexagonal impact body 1B, FIG. 7 (A) is a front view, and FIG. 7 (B) is a sectional view. The regular hexagonal impacting body 1B has such a shape that a cylindrical body 2B having a through hole 3B penetrates into the center of a cutting blade 4B having a regular hexagonal outer shape and a predetermined thickness.
[0061]
FIG. 8 shows a substantially bow-shaped impacting body 1C, FIG. 8 (A) is a front view, and FIG. 8 (B) is a side view. The substantially bow-shaped impacting body 1C shown in FIG. 8 has a substantially arc-shaped floating portion 5C surrounded by a substantially arc-shaped portion and a string connecting substantially both ends of the arc. A cylindrical body 2C having a through hole 3C at the center is integrated with one end of the floating portion 5C. A cutting edge portion 4C is formed at the other end of the floating portion 5C. The impact body 1C is attached to a spindle 103 of a rotating body.
[0062]
Further, the shape of the rotating body 101 may be an arbitrary shape such as a regular polygon other than the disk shape. However, it is needless to say that the rotation of the rotating body must be balanced.
[0063]
Next, an example of dimensions and materials of the rotating body and the striking body will be described. In the case of the apparatus of the embodiment shown in FIG. 1, the diameter of the disk 101 is 100 mm, the plate thickness is 5 mm, the material is carbon steel for machine structure, the shaft 103 is 10 mm in diameter, and the material is carbon steel for machine structure or carbon tool steel ( JIS standard symbol / SK2), distance L between the tops of the cutting blades of the impacting body 1 is about 40 mm, the diameter of the through hole 3 is 17 mm, the width w of the cutting blades 4 is about 15 mm, and the thickness of the cutting blades 4 t is about 5 mm, and the material is carbon steel for machine structure (S45C), carbon tool steel (SK2), high-speed tool steel (SKH2), Ni-Cr steel (SNC631), Ni-Cr-Mo steel (SNCM420), Cr -Any one of Mo steel (SCM430), chrome steel (SCr430), manganese steel for machine structure (SMn433) and the like.
[0064]
In the cutting example of FIG. 3, the disk 101 is rotated in the direction of the arrow 107 at 30,000 rpm, and the impact speed at which the impacting body 1 collides with the work (a cold-rolled steel plate having a thickness of 0.8 mm) 105 is 157 m / sec ( 565 km / hour), the cutting movement speed was 50 mm / sec, and the cutting direction was 108. In this case, the impact frequency is (30,000 rotations / minute) × 4 places = 120,000 times / minute.
[0065]
Since the main shaft 102 rotates at a high speed of 30,000 rpm, a large centrifugal force acts on the impacting body 1. Due to the centrifugal force, a high-speed compressive force is generated with an impact on the collision surface between the cutting blade portion 4 of the impacting body 1 and the work 105 and in a limited area in the vicinity thereof, and the collision surface of the work 105 is instantaneously and rapidly formed. Is crushed. The cutting chips are in the form of fine particles. Experiments have confirmed that cutting can be performed without a sharp cutting edge.
[0066]
Note that the CRT glass could also be cut under the above processing conditions. In addition, plastic such as a resin circuit board for a circuit, a resin molded product, or the like, is manufactured by rotating the disk 101 at 10,000 rpm and hitting the striking body 1 at 40,000 times / minute (the number of striking bodies attached to the rotating body is four). ), It was also experimentally confirmed that the cutting speed could be processed at 50 mm / sec.
[0067]
In the above description, the impact speed of the impacting body 1 is not limited to the specific example described above, and can be arbitrarily set according to the type of the workpiece, the cutting conditions, and the like as long as the impact speed is equal to or higher than the critical impact velocity of the workpiece. Also, the number of hits of the hitting body 1 per unit time can be changed according to the type of the workpiece and the cutting conditions.
[0068]
If the material of the workpiece is unknown, if the workpiece is composed of multiple members of different types, or if the unknown material is hidden in places that cannot be seen from the outside, etc., increase the impact speed of the impacting body. When set, it can be cut well.
[0069]
In addition, as long as the material of the impacting body is a hard solid, any material other than the metal member can be arbitrarily used.
[0070]
Further, the number of impacting bodies may be two or more, or may be only one. When a plurality of impacting bodies are installed, it is preferable to install them at equal angular intervals with respect to the rotation center of the rotating body, since the impacting intervals become uniform and stable cutting becomes possible. When only one impacting body is used, a balancer (weight) is installed to ensure rotational balance.
[0071]
Further, instead of arranging the pair of rotating bodies 101 with their main surfaces facing each other, a configuration may be adopted in which only one rotating body is used and a hitting body is installed on one side thereof.
[0072]
The rotating body may be driven at a high speed by using a general spindle motor or the like.
[0073]
The striking body 1 in the present invention does not have a sharp cutting edge unlike a conventional cutting tool. The cutting principle in the present invention exceeds conventional common sense. By giving the impacting body 1 a much higher speed than the conventional cutting tool, brittleness of metals, resins, glass, ceramics and the like can be obtained without a sharp cutting edge. Enables cutting to members.
[0074]
(Embodiment 2)
FIG. 9 shows a sectional view of a cutting apparatus 600 according to Embodiment 2 of the present invention. In this case, a large number of the cutting devices according to the first embodiment are mounted on one shaft as a unit. Therefore, the cutting mechanism, cutting processing conditions, and the like were the same as those in the first embodiment. 9, reference numeral 600 denotes a cutting device, 601 denotes a disk (rotating body), 602 denotes a main shaft, 603 denotes a support shaft, 604 denotes a fitting gap, 604 and 606 denote spacers, and 610 denotes a cutting unit.
[0075]
In the cutting apparatus 600 shown in FIG. 9, a support shaft 603 is installed with a fitting gap provided between a pair of rotating bodies 601 and 601 whose main surfaces face each other via a spacer 605, and the striking body 1 is attached to the support shaft 603. A plurality of cutting units 610 are prepared, and the cutting units 610 are attached to the same main shaft 602 at predetermined intervals via spacers 606, and the main shaft 602 is rotated at a high speed so that each of the impacting bodies 1 is used as a workpiece (work). The workpiece is made to collide at a speed higher than the critical impact speed.
[0076]
The number and arrangement pitch of the cutting units 610 to be arranged, the number of impacting bodies 1 arranged on the rotating body 601, the impact speed of the impacting body 1, and the like may be arbitrarily set according to the workpiece.
[0077]
The support of the main shaft 602 may be arbitrarily set, such as a cantilever bearing structure or a both-ends support bearing structure.
[0078]
(Embodiment 3)
FIG. 10 is a front sectional view of a cutting apparatus 700 according to Embodiment 3 of the present invention. The cutting device in this case is one in which the cutting devices of the first embodiment are arranged at predetermined intervals so that the main rotating shafts are parallel. Therefore, the cutting mechanism, cutting processing conditions, and the like are the same as those in the first embodiment.
[0079]
FIG. 10 shows an example of this. A cutting unit 710 in which a support shaft 703 is installed with a fitting gap provided between a pair of rotating bodies 701 whose main surfaces face each other, and the hitting body 1 is attached to the support shaft 703. Are prepared, and the cutting units 710 are attached to two main shafts 702 arranged in parallel, respectively, and the two main shafts 702 are rotated at high speeds in different directions 707 as if a work (work) is involved. It is characterized in that the body 1 is caused to collide with the work at a speed higher than the critical impact speed of the work.
In the figure, reference numeral 704 denotes a fitting gap between the rotating body 701 and the support shaft 703, and reference numeral 708 denotes a workpiece feeding direction.
[0080]
The number and arrangement pitch of the cutting units 710 to be arranged, the number of impacting bodies 1 arranged on the rotating body 701, the impact speed of the impacting body 1, and the like may be arbitrarily set according to the workpiece.
[0081]
The support of the main shaft 702 may be arbitrarily set, such as a cantilever bearing structure or a both-ends support bearing structure.
[0082]
As in the second embodiment, a large number of cutting units 710 may be mounted on one main shaft and the cutting units may be arranged at predetermined intervals (not shown).
[0083]
More specifically, a plurality of cutting units are provided by providing a fitting gap between a pair of rotating bodies whose main surfaces face each other, providing a support shaft, and attaching the impacting body 1 to the support shaft, and disposing the cutting units in parallel. A plurality of the spindles are attached to the two spindles at predetermined intervals, and the two spindles are rotated at high speeds in different directions so as to involve a workpiece (workpiece). It may be configured to collide with the work at a speed.
[0084]
(Embodiment 4)
FIG. 11 shows a side view of a cutting apparatus according to Embodiment 4 of the present invention. In this case, the cutting device was configured such that the cutting device of the first embodiment was attached to a robot arm of five-axis control (X axis, Y axis, Z axis, angle Θ1, angle Θ2) (not shown).
[0085]
11, reference numeral 800 denotes a cutting apparatus, 810 denotes the cutting apparatus described in the first embodiment, 820 denotes a 5-axis control commercially available robot, 830 denotes an object to be processed (a work, for example, a resin molding cabinet of an electronic device), 840 is a roller conveyor for transporting the transport pallet, and 850 is a transport pallet for mounting the work.
[0086]
When the work 830 mounted on the transport pallet 850 is positioned in front of the cutting device 810, the work 830 is automatically detected, and the cutting device 810 attached to the arm of the robot 820 is rotated and driven. The outer periphery of the cabinet 830 is cut in a predetermined manner (not shown).
[0087]
The processing conditions are such that the impact speed of the impacting body is equal to or higher than the critical impact speed of the work 830.
[0088]
In the above-described apparatus, at least one of a unique vibration waveform and a vibration frequency generated when the impacting body collides with the workpiece 830 is detected, and the collision speed and the collision direction of the impacting body, and the moving speed of the cutting device 810 are detected. May be provided (not shown) for controlling at least one of them. In this way, even if the work 830 is composed of a plurality of members having different physical properties, the material of the work 830 is unknown, or the internal structure of the work 830 that cannot be seen from the outside is unknown, the optimum cutting is performed. Conditions can be automatically set, and automation of the cutting operation can be realized.
[0089]
Needless to say, the conveyor device may be a belt conveyor or a chain conveyor.
[0090]
Further, similarly, the cutting device according to the second embodiment may be driven by a robot in addition to the cutting device according to the first embodiment.
[0091]
【The invention's effect】
As described above, the present invention makes it possible to automate the disassembly and cutting process of home appliances and automobiles for the purpose of disposal, and according to the type of the object to be processed and the components, the type of the cutting tool, the processing conditions, and the cutting. No need to change equipment.
[0092]
In addition, it contributes to the improvement of the life and reliability of the cutting device, the improvement of the recycling rate, the environmental protection and the effective use of resources.
[Brief description of the drawings]
FIG. 1 is a front sectional view of a cutting device according to a first embodiment of the present invention.
2 is a side sectional view of the cutting apparatus of FIG. 1 taken along a cutting line S1-S1.
3 is a front sectional view showing a state in which a workpiece is being cut using the cutting device of FIG. 1;
FIG. 4 is a front view of a striker constituting the cutting device of FIG. 1;
5 is a sectional view of the impacting body of FIG. 4 taken along section line S3-S3.
FIG. 6 is a view showing another example of a hitting body of the cutting device of FIG. 1;
(A) is a front view
6B is a sectional view taken along line S4-S4 in FIG.
FIG. 7 is a view showing still another example of a hitting body of the cutting device of FIG. 1;
(A) is a front view
7B is a cross-sectional view taken along line S5-S5 in FIG.
FIG. 8 is a view showing still another example of the hitting body of the cutting device of FIG. 1;
(A) is a front view
(B) is a side view
FIG. 9 is a front sectional view of a cutting device according to a second embodiment of the present invention.
FIG. 10 is a front sectional view of a cutting device according to a third embodiment of the present invention.
FIG. 11 is a side view of a processing apparatus according to a fourth embodiment of the present invention.
[Explanation of symbols]
1, 1A, 1B, 1C hitting body
2, 2A, 2B, 2C cylindrical body
3, 3A, 3B, 3C Through hole
4, 4A, 4B, 4C Cutting edge
5C idle part
100, 600, 700, 810 Cutting device
101, 601, 701 Rotating body (disc)
102, 602, 702 spindle
103, 603, 703 Support shaft
104, 604, 704 Fitting gap
105,830 Workpiece (workpiece, work)
107, 707 Rotation direction
108 Cutting direction (moving direction)
605,606 spacer
610, 710 Cutting unit
708 Work moving direction
800 Cutting machine
820 robot
840 roller conveyor
850 Transport pallet

Claims (16)

主面を対向させて配置した一対の回転体と、前記一対の回転体間に架設された支軸に取り付けられた少なくとも1つ以上の回動可能な打撃体とを有する切断装置であって、前記打撃体と前記支軸の嵌合部及び前記回転体と前記支軸の嵌合部あるいは前記回転体と前記支軸の嵌合部は所定の嵌合隙間を有して、かつ、前記打撃体の外周の一部が前記回転体の外周より外方に位置できるように取り付けられており、前記回転体を高速回転させ前記打撃体を臨界衝撃速度以上の速度で加工対象物に衝突させるようにしたことを特徴とする切断装置。A cutting device having a pair of rotating bodies whose main surfaces are opposed to each other, and at least one or more rotatable hitting bodies attached to a spindle mounted between the pair of rotating bodies, The fitting portion between the impacting body and the support shaft and the fitting portion between the rotating body and the support shaft or the fitting portion between the rotating body and the support shaft have a predetermined fitting gap, and A part of the outer periphery of the body is attached so as to be located outside the outer periphery of the rotating body, and the rotating body is rotated at high speed so that the impacting body collides with the workpiece at a speed equal to or higher than the critical impact speed. A cutting device characterized in that: 主面を対向させて配置した一対の回転体と、前記一対の回転体間に架設された支軸に取り付けられた少なくとも1つ以上の回動可能な打撃体とからなる前記切断ユニットを平行に配置した2本の軸にそれぞれ取り付けてなる切断装置であって、前記打撃体と前記支軸の嵌合部及び/あるいは前記回転体と前記支軸の嵌合部は所定の嵌合隙間を有しており、かつ、前記打撃体の外周の一部が前記回転体の外周より外方に位置できるように取り付けられており、前記2本の軸を異なる方向に高速回転させ前記各打撃体を臨界衝撃速度以上の速度で加工対象物に衝突させるようにしたことを特徴とする切断装置。The cutting unit consisting of a pair of rotating bodies whose main surfaces are opposed to each other and at least one or more rotatable hitting bodies attached to a support shaft spanned between the pair of rotating bodies is parallel to the cutting unit. A cutting device attached to each of two arranged shafts, wherein a fitting portion between the hitting body and the support shaft and / or a fitting portion between the rotating body and the support shaft has a predetermined fitting gap. And it is attached so that a part of the outer periphery of the impacting body can be located outside the outer periphery of the rotating body, and the two shafts are rotated at a high speed in different directions to make each of the impacting bodies A cutting device characterized in that it is caused to collide with a workpiece at a speed higher than a critical impact speed. 主面を対向させて配置した一対の回転体と、前記一対の回転体間に架設された支軸に取り付けられた少なくとも1つ以上の打撃体とからなる切断ユニットを複数個有し、前記切断ユニットを同一主軸に所定間隔を設けて取り付けてなる切断装置であって、前記回転体は前記支軸と所定の嵌合隙間を有して、かつ、前記打撃体の外周の一部が前記回転体の外周より外方に位置できるように取り付けられており、前記主軸を高速回転させ前記各打撃体を臨界衝撃速度以上の速度で加工対象物に衝突させるようにしたことを特徴とする切断装置。A plurality of cutting units each comprising a pair of rotating bodies whose main surfaces are opposed to each other, and at least one or more hitting bodies attached to a support shaft provided between the pair of rotating bodies; A cutting device in which units are attached to a same main shaft at predetermined intervals, wherein the rotating body has a predetermined fitting gap with the support shaft, and a part of the outer periphery of the impacting body is rotated by the rotating body. A cutting device, which is attached so as to be located outside the outer periphery of the body, wherein the main shaft is rotated at a high speed so that each of the impacting bodies collides with a workpiece at a speed higher than a critical impact speed. . 主面を対向させて配置した一対の回転体と、前記一対の回転体間に架設された支軸に取り付けられた少なくとも1つ以上の打撃体とからなる切断ユニットを複数個有し、前記切断ユニットを平行に配置した2本の軸にそれぞれ取り付けてなる切断装置であって、前記回転体は前記支軸と所定の嵌合隙間を有して、かつ、前記打撃体の外周の一部が前記回転体の外周より外方に位置できるように取り付けられており、前記2本の軸を異なる方向に高速回転させ前記各打撃体を臨界衝撃速度以上の速度で加工対象物に衝突させるようにしたことを特徴とする切断装置。A plurality of cutting units each comprising a pair of rotating bodies whose main surfaces are opposed to each other, and at least one or more hitting bodies attached to a support shaft provided between the pair of rotating bodies; A cutting device in which a unit is attached to two shafts arranged in parallel with each other, wherein the rotating body has a predetermined fitting gap with the support shaft, and a part of the outer periphery of the impacting body is formed. It is attached so that it can be located outside the outer periphery of the rotating body, and the two shafts are rotated at high speed in different directions so that the impacting bodies collide with the workpiece at a speed equal to or higher than the critical impact speed. A cutting device, characterized in that: 主面を対向させて配置した一対の回転体と、前記一対の回転体間に架設された支軸に取り付けられた少なくとも1つ以上の打撃体とからなる切断ユニットを複数個有し、前記切断ユニットを平行に配置した2本の軸にそれぞれ複数個ずつ所定間隔を設けて取り付けてなる切断装置であって、前記回転体は前記支軸と所定の嵌合隙間を有して、かつ、前記打撃体の外周の一部が前記回転体の外周より外方に位置できるように取り付けられており、前記2本の軸を異なる方向に高速回転させ前記各打撃体を臨界衝撃速度以上の速度で加工対象物に衝突させるようにしたことを特徴とする切断装置。A plurality of cutting units each comprising a pair of rotating bodies whose main surfaces are opposed to each other, and at least one or more hitting bodies attached to a support shaft provided between the pair of rotating bodies; A cutting device in which a plurality of units are attached to two shafts arranged in parallel with a predetermined interval between each other, wherein the rotating body has a predetermined fitting gap with the support shaft, and A part of the outer periphery of the impacting body is mounted so that it can be located outside the outer periphery of the rotating body, and the two shafts are rotated at high speed in different directions to rotate each of the impacting bodies at a speed higher than the critical impact speed. A cutting device, wherein the cutting device is caused to collide with a workpiece. 前記打撃体を前記回転体の回転中心に対して等角度間隔に複数配置した請求項1〜5のいずれかに記載の切断装置。The cutting device according to any one of claims 1 to 5, wherein a plurality of the impacting bodies are arranged at equal angular intervals with respect to a rotation center of the rotating body. 前記回転体と前記支軸の嵌合部との嵌合隙間が2mm以上である請求項1〜5のいずれかに記載の切断装置。The cutting device according to claim 1, wherein a fitting gap between the rotating body and a fitting portion of the support shaft is 2 mm or more. 前記回転体と前記支軸の嵌合部との嵌合隙間が5〜10mm程度である請求項1〜5のいずれかに記載の切断装置。The cutting device according to claim 1, wherein a fitting gap between the rotating body and a fitting portion of the support shaft is about 5 to 10 mm. 前記打撃体の外形形状が、複数の角部を備えた多角形、複数の角部を備えた十字型、円盤形、及び略弓形のうちいずれか一つである請求項1〜8のいずれかに記載の切断装置。9. The outer shape of the impacting body is any one of a polygon having a plurality of corners, a cross having a plurality of corners, a disk, and a substantially arcuate. 3. The cutting device according to claim 1. 前記打撃体を約139m/秒(約500km/時)以上の速度で前記加工対象物に衝突させる請求項1〜9のいずれかに記載の切断装置。The cutting device according to claim 1, wherein the impacting body is caused to collide with the workpiece at a speed of about 139 m / sec (about 500 km / hour) or more. 前記打撃体を約340m/秒(約1224km/時)以上の速度で前記加工対象物に衝突させる請求項1〜9のいずれかに記載の切断装置。The cutting device according to any one of claims 1 to 9, wherein the impacting body is caused to collide with the workpiece at a speed of about 340 m / sec (about 1,224 km / hour) or more. 前記加工対象物の臨界衝撃速度の2倍以上の速度で前記打撃体を前記加工対象物に衝突させる請求項1〜5のいずれかに記載の切断装置。The cutting device according to any one of claims 1 to 5, wherein the impacting body collides with the processing object at a speed equal to or more than twice a critical impact velocity of the processing object. 前記打撃体が衝突した前記加工対象物の表面を破砕することにより前記加工対象物を切断する請求項1〜12のいずれかに記載の切断装置。The cutting device according to claim 1, wherein the processing object is cut by crushing a surface of the processing object with which the impacting body collides. 請求項1〜13のいずれかに記載の切断装置を多軸制御機能を備えたロボットアームに取り付けたことを特徴とする加工装置。A processing apparatus comprising the cutting device according to claim 1 attached to a robot arm having a multi-axis control function. 前記打撃体が前記加工対象物に衝突することにより生じる固有の振動波形及び振動数のうちの少なくとも一方を検出し、前記打撃体の衝突速度と衝突方向、及び前記切断装置の移動速度のうちの少なくとも一つを制御する制御手段を備えた請求項14に記載の加工装置。Detecting at least one of a unique vibration waveform and a vibration frequency generated by the impacting body colliding with the processing object, and detecting a collision speed and a collision direction of the impacting body, and a moving speed of the cutting device. The processing apparatus according to claim 14, further comprising control means for controlling at least one. 請求項1〜5のいずれかに記載の切断装置を用い、前記打撃体を加工対象物の臨界衝撃速度以上の速度で加工対象物に衝突させて、加工対象物を切断する切断方法。A cutting method using the cutting device according to any one of claims 1 to 5, wherein the impacting body collides with the workpiece at a speed equal to or higher than the critical impact speed of the workpiece to cut the workpiece.
JP2002263784A 2002-09-10 2002-09-10 Cutting device, machining device, and cutting method Pending JP2004098222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002263784A JP2004098222A (en) 2002-09-10 2002-09-10 Cutting device, machining device, and cutting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002263784A JP2004098222A (en) 2002-09-10 2002-09-10 Cutting device, machining device, and cutting method

Publications (1)

Publication Number Publication Date
JP2004098222A true JP2004098222A (en) 2004-04-02

Family

ID=32263411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002263784A Pending JP2004098222A (en) 2002-09-10 2002-09-10 Cutting device, machining device, and cutting method

Country Status (1)

Country Link
JP (1) JP2004098222A (en)

Similar Documents

Publication Publication Date Title
JP3523552B2 (en) Cutting device, processing device, and cutting method
US6938318B2 (en) Method for collecting a foam resin from a housing of a refrigerator
WO1990005025A1 (en) Replaceable end cap assembly for the spider arm of a hammermill
JP4467742B2 (en) Home appliance and air conditioner cutting device, and home appliance and air conditioner disassembly method
EP2849886A1 (en) Hammer for shredding machines
WO2005108032A1 (en) Method and mechanism for increasing critical speed in rotating disks and reducing kerf at high speeds in saw blades
JP2001347416A (en) Cutting device and cutting method
JP4310840B2 (en) Crushing device and crushing method
WO2002006668A2 (en) Refrigerator dismantling method, compression equipment, and refrigerator dismantling device
JP2004098222A (en) Cutting device, machining device, and cutting method
JP4415423B2 (en) Electronic device dismantling device and dismantling device
JPS61500537A (en) Crusher
EP1405702A1 (en) Cutting device and cutting method
JPH02502172A (en) Equipment for external magnetic abrasive machining of cylindrical components
CA2394688A1 (en) Roll-type reducing apparatus
JP6382177B2 (en) Cutting blade of shearing type crusher and shearing type crusher having the same
CN101700502B (en) Totally-enclosed rotor on waste steel crusher
JPS6365963A (en) Cutting treater
RU1784277C (en) Material disintegration method
JP2000157884A (en) Crusher for plastics
JPH0672252B2 (en) How to insert a circular saw
JPS62237956A (en) Crusher
JPH10373A (en) Crushing rotary blade
JPH09300224A (en) Air-cooled high speed rotary grinder
JPH03186358A (en) Method for grinding wallastonite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050831

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080922

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090331