JP2004098028A - Production method for high-performance hollow-fiber precision filtration film - Google Patents

Production method for high-performance hollow-fiber precision filtration film Download PDF

Info

Publication number
JP2004098028A
JP2004098028A JP2002267273A JP2002267273A JP2004098028A JP 2004098028 A JP2004098028 A JP 2004098028A JP 2002267273 A JP2002267273 A JP 2002267273A JP 2002267273 A JP2002267273 A JP 2002267273A JP 2004098028 A JP2004098028 A JP 2004098028A
Authority
JP
Japan
Prior art keywords
film
membrane
polymer
weight
stock solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002267273A
Other languages
Japanese (ja)
Other versions
JP3464000B1 (en
Inventor
Teruhiko Oishi
大石 輝彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Medical Co Ltd filed Critical Asahi Medical Co Ltd
Priority to JP2002267273A priority Critical patent/JP3464000B1/en
Application granted granted Critical
Publication of JP3464000B1 publication Critical patent/JP3464000B1/en
Publication of JP2004098028A publication Critical patent/JP2004098028A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a precision filtration film which has an anisotropic structure, is excellent in strengths and water permeability, and hardly causes clogging in internal pressure filtration. <P>SOLUTION: This method for producing the hollow-fiber precision filtration film comprises causing a film-forming stock solution and an internal liquid to be delivered from a double ring nozzle, followed by passing through an air gap and coagulating them in a coagulation bath. (a) The film-forming stock solution comprises a film-forming polymer, a solvent thereof, and a hydrophilic polymer, the ratio of the hydrophilic polymer to the film-forming polymer being 20-60wt%. (b) The internal liquid comprises water and at least one solvent, the water content being 35-55wt%. (c) The temperature of the film-forming stock solution at the nozzle section is 50°C or higher, and (d) the coagulation bath temperature is 85-100°C. (e) The ratio of the air gap to the spinning speed is set at 0.01-0.1m/(m/min). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、異方性の精密濾過膜であって、特に、高い強度と優れた透水性能を有し、且つ内圧濾過において目詰まりが少ない精密濾過膜の製造方法に関する。
【0002】
【従来の技術】
中空糸状膜は、精密濾過から限外濾過までの工業的用途に広く使われており、膜の素材としてポリエチレン、酢酸セルロース、ポリスルホン、ポリフッ化ビニリデン、ポリカーボネート、ポリアクリロニトリル等が用いられている。これらの素材からなる従来の中空糸状膜は、濾過性能の向上に注力して開発されたものであるため、中空糸状膜の破断強度や破断時の伸びが小さく、急激な温度変化や逆洗時の圧力変化により、しばしば中空糸状膜が破断することが指摘されている。
【0003】
この点を解決するため種々の試みがなされてきたが、一般的には特許文献1に記載された発明に示唆されているように、製膜原液中のポリマー濃度を高くして、中空糸状膜全体のポリマー密度を上げる方法が考えられる。しかしながら、この方法では膜の強度が向上する反面、膜の孔径が小さくなるとともに膜の透水量が大幅に低下するため、強度と透水性能のバランスに優れた中空糸状膜は得られていない。
【0004】
一方、膜の透水性能を向上させるためには、膜の孔径を大きくする方法が一般的に行なわれるが、孔径の増大は一般に膜の分画性能と膜強度の低下を招く。
以上のように、従来技術では、強度、透水性能及び分画性能のバランスがとれた高性能の中空糸状膜は得られていなかった。例えば、特許文献2には、高強度でかつ透水性能に優れた膜の製法が提案されているが、この製法によって作られた膜は孔径が大きく、透水性能と分画性能とのバランスがとれていない。
【0005】
特許文献3には、膜の外表面から内部に向かって孔径が連続的に小さくなり内部の最小孔径を経て再び連続的に孔径が大きくなり内表面に開孔する中空糸状精密濾過膜が開示されている。しかしながら、この構造の膜を用いて膜の中空部側(内表面側)から液体等を濾過した場合、急激な目詰まりを起こし長時間安定的に濾過を行なうことができない。
【0006】
【特許文献1】
特開昭59−228016号公報
【特許文献2】
特開平4−260424号公報
【特許文献3】
特開平2−102722号公報
【0007】
【発明が解決しようとする課題】
本発明の課題は、高い強度と優れた透水性能を有する異方性の精密濾過膜であって、特に内圧濾過において目詰まりが少ない優れた精密濾過膜の製造方法を提供することにある。
【0008】
【課題を解決するための手段】
上記の如く、膜の中空部側から液体等を濾過(以下「内圧濾過」ともいう)した場合、目詰まりが少なく、透水性能に優れた高強度の精密濾過膜はこれまでなかった。何故ならば、膜の外表面から内表面に向かって孔径が連続的に小さくなる傾斜構造の膜の膜内表面に、膜強度を高く維持したまま、0.01μm以上の(精密濾過領域の)孔を開口させることは、特にポリスルホン等の疎水性ポリマーでは従来不可能であったからである。
【0009】
そこで本発明者は、目詰まりを防止するため、膜の外表面から内表面に向かって孔径が連続的に小さくなる傾斜構造について鋭意研究を進めた結果、本発明に至ったものである。
【0010】
すなわち本発明は、
(1)製膜原液と内部液を2重環状ノズルから吐出させた後、エアギャップを通過させてから凝固浴で凝固させる中空糸状膜の製造方法において、
a)製膜原液が、膜形成ポリマー、該ポリマーの溶剤、及び親水性ポリマーからなる添加剤からなり、膜形成ポリマーに対する添加剤の比率が20〜60重量%、
b)内部液が水と少なくとも1種類以上の溶剤からなり、水の含有量が35〜55重量%、
c)ノズル部での製膜原液の温度が50℃以上、
d)凝固浴温度が85〜100℃、且つ
e)紡速に対するエアギャップの比率が0.01〜0.1m/(m/分)
であることを特徴とする中空糸状精密濾過膜の製造方法、
(2)さらに放射線照射することを特徴とする(1)に記載の製造方法、
(3)膜の内径に対する膜厚の比率が0.15〜0.4であることを特徴とする(1)又は(2)に記載の製造方法、
(4)膜の外径が500μm以下であることを特徴とする(1)〜(3)に記載の製造方法、
(5)膜形成ポリマーがポリスルホン系ポリマーであることを特徴とする(1)〜(4)に記載の製造方法、
(6)親水性ポリマーが重量平均分子量900,000以上のポリビニルピロリドンであることを特徴とする(1)〜(5)に記載の製造方法、
(7)膜形成ポリマーの溶剤がN−メチル−2−ピロリドンであることを特徴とする(1)〜(6)に記載の製造方法、および
(8)紡速が60m/分以上であることを特徴とする(1)〜(7)に記載の製造方法、
に関するものである。
【0011】
本発明の製造方法により、膜の外表面から内表面に向かって孔径が連続的に小さくなるスポンジ構造からなり、内圧濾過における阻止径が0.015〜1μmであることを特徴とする優れた中空糸状精密濾過膜が得られる。
【0012】
【発明の実施の形態】
以下に、本発明の中空糸状精密濾過膜(以下単に「膜」又は「中空糸状膜」ともいう)の製造方法について説明する。
本発明で得られる中空糸精密濾過膜は、河川水、湖沼水、地下水、海水等の天然水からの除濁、微生物の除去、及び無菌水の作成等の上水道分野、電着塗料溶液からの塗料回収分野、電子工業向け超純水製造分野、医薬・発酵及び食品の分野での使用など広範囲に応用できる。
【0013】
本発明の製造方法は、膜形成ポリマー、該ポリマーの溶剤、及び親水性ポリマーからなる添加剤から本質的になる特定温度の製膜原液を、該ポリマーに対する良溶剤の特定濃度の水溶液からなる内部液とともに2重環状ノズルから吐出させ、紡速に対して特定の比率のエアギャップを通過させた後、特定温度の凝固浴で凝固させることにより製造される。
【0014】
本発明の製造方法において用いられる膜形成ポリマーは、湿式製膜により膜を形成することができるポリマーであればよく、例えばポリスルホン系ポリマー、ポリフッ化ビニリデン系ポリマー、ポリアクリロニトリル系ポリマー、ポリメタクリル酸系ポリマー、ポリアミド系ポリマー、ポリイミド系ポリマー、ポリエーテルイミド系ポリマー及び酢酸セルロース系ポリマー等が挙げられる。中でも芳香族ポリスルホンは、その熱安定性、耐酸、耐アルカリ性および機械的強度に優れるが、疎水性であるため河川水、湖沼水、地下水、海水等の天然水からの除濁、微生物の除去や電着塗料溶液からの塗料回収分野及び医薬・発酵等の一般工業分野においても目詰まりし易いことが問題であった。製膜原液に親水性ポリマーを添加して製膜することにより一般工業分野での使用を可能にし、さらに医療分野においても血液適合性を向上できることから好ましく用いられる。芳香族ポリスルホンとしては、ビスフェノールA型ポリスルホンが特に好ましく用いられる。
【0015】
本発明で用いられる芳香族ポリスルホンとしては、下記の式(1)、または式(2)で示される繰り返し単位を有するものが挙げられる。なお、式中のArはパラ位での2置換のフェニル基を示し、重合度や分子量については特に限定しない。
−O−Ar−C(CH−Ar−O−Ar−SO−Ar−   (1)
−O−Ar−SO−Ar−                   (2)
【0016】
添加剤は、溶剤と相溶性があり、膜形成ポリマーを溶解しない親水性ポリマーが用いられる。膜形成ポリマーがポリスルホン系ポリマーであれば、添加剤としてはポリビニルピロリドンが好ましく用いられる。ポリビニルピロリドンは親水性ポリマーの中でも特に毒性が低いので好ましい。膜形成ポリマーが芳香族ポリスルホンの場合、ポリビニルピロリドン以外の添加剤を用いたのでは本発明の膜は得られにくい。
【0017】
ポリビニルピロリドンは高分子量のものほど膜への親水化効果が高いため、高分子量のものほど少量で十分な効果が発揮できることから、本発明においては重量平均分子量900,000以上のポリビニルピロリドンが使用される。900,000より小さい重量平均分子量を有するポリビニルピロリドンを用いて膜への親水化効果を付与するためには大量のポリビニルピロリドンを膜中に残存させる必要があるが、このために膜からの溶出物が増加することになる。また、逆に溶出物を下げるために900,000より小さい重量平均分子量のポリビニルピロリドンの膜中での残存量を少なくすると親水化効果が不十分となってしまう。また、重量平均分子量900,000以上のポリビニルピロリドンを用いないと膜厚部での親水性が不十分であることから、膜内表面緻密層(膜内表面部位)を通過した血漿タンパク質が膜厚部で吸着されてしまい、結果として良好な分離特性を発揮できない。
【0018】
ポリマーの溶剤としては、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等の溶剤が挙げられるが、膜形成ポリマーがポリスルホン系ポリマーの場合、N−メチル−2−ピロリドン(以下単に「NMP」ともいう)が好ましい。NMPは、ポリスルホン系ポリマーに対して最も溶解力の高い溶剤である。例えば、他の良溶剤であるN,N−ジメチルアセトアミドと比較して室温で約1.5倍の溶解力を有する。膜の外表面から内表面に向かって孔径が連続的に小さくなる傾斜構造において膜内表面に0.01μm以上の大孔径を開口させるには、内部液中の非溶剤により液液相分離が誘発されてから相分離(凝固)が終了するまでの時間、即ち粒子成長時間を長くする必要がある。ポリスルホン系ポリマーにおいては、非常に高い溶解力を有するNMPを用いることによってこの粒子成長時間をどの溶剤を用いるよりも長くすることが可能である。さらに、NMPはポリスルホン系ポリマーにおいて最良溶剤であることから、製膜原液中のポリスルホン系ポリマーの分子鎖同士の絡み合いが良く、結果的に高強度の膜を得ることが可能である。以上の理由から、膜形成ポリマーがポリスルホン系ポリマーの場合、NMP以外の溶剤を用いたのでは、本発明の膜は得られにくい。
【0019】
製膜原液は、本質的に膜形成ポリマー、ポリビニルピロリドン等の特定の添加剤、N−メチル−2−ピロリドン等の特定のポリマーの溶剤からなる。製膜原液にその他の添加剤、例えば従来添加剤として知られている水や金属塩等を加えると、本発明の膜は得られにくい。
【0020】
以上から、本発明の製造方法から得られた膜は、芳香族ポリスルホンとポリビニルピロリドンからなることが最も好ましい。さらに本発明の製造方法から得られた精密濾過膜は、内圧濾過によって用いられることから、濾過しようとする液が接触する膜内表面におけるポリビニルピロリドンの濃度が20〜45重量%であることが好ましい。濾過しようとする液が血液等の場合、膜の血液適合性に重要な因子は、血液が接する膜内表面の親水性であり、ポリビニルピロリドン(以下単に「PVP」ともいう)を含有するポリスルホン系膜では、膜内表面のPVP濃度が重要である。膜内表面のPVP濃度が低すぎると膜内表面が疎水性を示し、血漿タンパク質が吸着しやすく、血液の凝固も起こりやすい。すなわち、膜の血液適合性不良となる。逆に膜内表面のPVP濃度が高すぎると、PVPの血液系への溶出量が増加し好ましくない結果を与える。従って、血液、血漿、血清を内圧濾過する場合のPVPの濃度は、20〜45重量%の範囲であり、好ましくは25〜40重量%である。
【0021】
膜内表面のPVP濃度は、エックス線光量子スペクトル(X−ray Photoelectron spectroscopy、以下XPS)によって決定される。すなわち、膜内表面のXPSの測定は、試料を両面テープ上に並べた後、カッターで繊維軸方向に切開し、膜の内側が表になるように押し広げた後、通常の方法で測定する。すなわち、C1s、O1s、N1s、S2pスペクトルの面積強度から、装置付属の相対感度係数を用いて窒素の表面濃度(窒素原子濃度)とイオウの表面濃度(イオウ原子濃度)から求めた濃度をいうものであり、ポリスルホン系ポリマーが(2)式の構造であるときには(3)式により計算で求めることができる。
PVP濃度(重量%)=C×100/(C+C)    (3)
ここで、C:窒素原子濃度(%)
:イオウ原子濃度(%)
:PVPの繰り返しユニットの分子量(111)
:ポリスルホン系ポリマーの繰り返しユニットの分子量(442)
【0022】
本発明で用いられる製膜原液のポリマー濃度は、該原液からの製膜が可能で、かつ得られた膜が膜としての性能を有するような濃度の範囲であれば特に制限されず、10〜35重量%、好ましくは10〜30重量%である。高い透水性能又は大きな分画分子量を達成するためには、ポリマー濃度は低い方がよく、10〜25重量%が好ましい。
【0023】
さらに重要なことは製膜原液中の添加剤(親水性ポリマー)の量であり、ポリマーに対する添加剤の混和比率が20〜60重量%、好ましくは27〜60重量%である。ポリマーに対する添加剤の混和比率が20重量%未満では膜内表面の孔径が0.01μm以下の小孔径になる傾向にあり、60重量%を超えると製膜原液の粘性が高くなり製膜時の可紡性が悪くなる傾向にあるため好ましくない。
【0024】
さらに製膜原液の温度が重要であり、ノズルでの吐出時の製膜原液の温度は50℃以上、好ましくは60〜100℃である。50℃未満であると製膜時の可紡性が悪い。
【0025】
内部液は、中空糸状膜の中空部を形成させるために用いるものであり、水と少なくとも1種類以上の膜形成ポリマーに対する良溶剤からなる。水の含有量は、35〜55重量%であることが好ましい。水の含有量が35重量%未満では製膜時の可紡性が悪く、55重量%を超えると膜内表面の孔径が0.01μm以下の小孔径となる傾向にある。
【0026】
エアギャップとは、ノズルと凝固浴との間の隙間を意味する。本発明の膜を得るには紡速(m/分)に対するエアギャップ(m)の比率が極めて重要である。何故ならば本発明の膜構造は、内部液中の非溶剤が製膜原液と接触することによって該製膜原液の内表面部位から外表面部位側へと経時的に相分離が誘発され、さらに該製膜原液が凝固浴に入るまでに膜内表面部位から外表面部位までの相分離が完了しなければ、得られないからである。
【0027】
紡速に対するエアギャップの比率は、0.01〜0.1m/(m/分)であることが好ましく、さらに好ましくは0.01〜0.05m/(m/分)である。紡速に対するエアギャップの比率が0.01m/(m/分)未満では、本発明の構造と性能を有する膜を得ることが難しく、0.1m/(m/分)を超える比率では、膜へのテンションが高いことからエアギャップ部で膜切れを多発し製造しにくい傾向にあり好ましくない。
【0028】
また、紡速は生産効率に大きく寄与することから、早い程良いが、紡速が早くなると共にテンションが高くなることから早くすることが不可能であったが、本発明において紡速は60m/分以上、さらには70〜120m/分が可能である。
ここで、紡速とはノズルから内部液とともに吐出した製膜原液がエアギャップを通過して凝固浴にて凝固した膜が巻き取られる中空糸状膜の一連の製造工程において、該工程中に延伸操作が無い時の巻き取り速度を意味する。また、エアギャップを円筒状の筒などで囲み、一定の温度と湿度を有する気体を一定の流量でこのエアギャップに流すと、より安定した状態で中空糸状膜を製造することができる。
【0029】
凝固浴としては、例えば水;メタノール、エタノール等のアルコール類;エーテル類;n−ヘキサン、n−ヘプタン等の脂肪族炭化水素類などポリマーを溶解しない液体が用いられるが、水が好ましい。また、凝固浴にポリマーを溶解する溶剤を若干添加することにより凝固速度等をコントロールすることも可能である。
凝固浴の温度は、85〜100℃、好ましくは90〜100℃である。凝固浴の温度が85℃未満では膜内表面の孔径が0.01μm以下の小孔径となる傾向にあり、100℃以上では製膜時に糸切れ等を多発し好ましくない。
【0030】
さらに、本発明の膜を得るためには凝固後の膜の内径に対する膜厚の比率が0.15〜0.4、好ましくは0.2〜0.3である。膜の内径に対する膜厚の比率が0.15未満では膜の絶対強度が弱くなる傾向にある。また、該比率が0.4を超えると本発明の様な膜の外表面から内表面(又は内表面部位)に向かって孔径が小さくなる傾斜構造は得られにくい傾向にある。何故ならば、内部液中の非溶剤量に対する製膜原液中の溶剤量の割合が多いために、内部液中の非溶剤量のみでは凝固浴に入るまでに製膜原液の膜内表面部位から外表面部位までの相分離を完了できないためである。
【0031】
また、膜の外径は500μm以下、好ましくは400μm以下、より好ましくは300μm以下である。膜の外径が大きくなるとモジュール内の膜面積(充填量)を低下せざるを得ないため、結果として単位時間当たりの処理能力が劣り、好ましくない。逆に膜の外径を大きくしてモジュール内の膜面積(充填量)を同一にするにはモジュール容器を大きくせざるを得ず、結果としてコストアップとなり好ましくない。特に、医療用途で使用されるモジュールは患者の医療費負担を軽減するため高価な大型モジュールにすることは避ける必要がある。以上の処理能力とコストの関係から膜の外径は500μm以下であることが好ましい。
【0032】
さらに、本発明の膜は乾燥させることも可能であり、乾燥に際しては、グリセリン等の保湿剤を含浸させなくても良い。
また、膜に電子線及びγ線等の放射線を照射することにより、膜中のPVPの一部を水に不溶化できることから、膜からの溶出量を低減することが可能である。放射線の照射は、モジュール化前又はモジュール化後のどちらでも良い。また、膜中の全PVPを不溶化してしまうと、膜の膨潤性が悪くなるため分離性能が悪くなり好ましくない。
【0033】
本発明でいう水に不溶であるPVPとは、膜中の全PVP量から水に可溶であるPVP量を差し引いたものである。膜中の全PVP量は、窒素及びイオウの元素分析により容易に算出することができる。
また、水に可溶であるPVP量は、以下の方法により求めることができる。
例えば、膜形成ポリマーがポリスルホン系ポリマーの場合、膜をN−メチル−2−ピロリドンで完全に溶解した後、得られたポリマー溶液に水を添加して膜形成ポリマーを完全に沈殿させる。さらに該ポリマー溶液を静置した後、上澄み液中のPVP量を液体クロマトグラフィーで定量することにより水に可溶であるPVPを定量することができる。
【0034】
【実施例】
以下にこの発明の実施例を示すが、本発明は、これに限定されるものではない。
各測定方法は、下記のとおりである。
なお、測定サンプルとして使用した中空糸状膜は、すべて十分に水を含浸させた状態のものを用いた。
【0035】
(透水量の測定)
両端を接着剤で固定した有効長180mmの糸束(内表面積換算で110±10cmになるように膜本数を揃えたミニモジュール)の内表面から外表面に透過させ、その量をmL(ミリリットル)/(m・hr・mmHg)で表した。ただし、有効膜面積は内表面換算した。
【0036】
(破断強度の測定)
膜強度は、(株)島津製作所製のオートグラフAGS−5Dを使用し、サンプル長さ20mm、引張りスピード300mm/分で測定した。
【0037】
(阻止径の測定)
膜内表面の孔径が0.05μmよりも小さい場合やスリット状の孔であると、孔径の大きさを測定しても誤差が大きくなり意味をなさないことから、本発明では内圧濾過時の阻止径を用いて膜内表面の孔径の指標とした。本発明における内圧濾過における阻止径とは、以下の方法により決定された。
1)0.2重量%のドデシル硫酸ナトリウム水溶液中に、粒径の精度が±4%以内のポリスチレン系のラテックス粒子を0.02体積%の濃度で懸濁するように調整した原液を、両端を接着剤で固定した有効長180mmの糸束(内表面積換算で110±10cmになるように膜本数を揃えたもの)に対して、入り圧と出圧との平均圧力を0.5kgf/cm、流体線速=1cm/秒のクロスフローの条件で内圧濾過を行い、40分後の濾液と元液の濃度の阻止率を求めた。この時、阻止率に経時変化がないことが必要であり、20分後、40分後、及び60分後の各々の阻止率の絶対値の偏差が±10%以内でなければならない。得られた濾液と元液の濃度は、紫外分光光度計により280nmの波長にて測定し、下記の式(4)に代入して阻止率を算出する。2)次に、該阻止率が90%以上となる1)で用いたラテックス粒子の最小粒径を膜の阻止径とした。
阻止率(%)={1−(濾液の吸光度)/(元液の吸光度)}×100  (4)阻止径の測定には、0.0147μm(Magsphere社製、ポリスチレン系ポリマー、0.0147μm)、0.028μm(Magsphere社製、ポリスチレン系ポリマー、0.028μm)、0.037μm(Magsphere社製、ポリスチレン系ポリマー、0.037μm)、0.062μm(Seradyn社製、ポリスチレン系ポリマー、0.062μm)、0.088μm(Seradyn社製、ポリスチレン系ポリマー、0.088μm)及び0.102μm(Seradyn社製、ポリスチレン系ポリマー、0.102μm)のラテックス粒子(それぞれの粒径精度±4%)を使用した。
【0038】
(膜表面の開孔率の測定)
開口率は、膜の外表面の電子顕微鏡写真を画像解析して数値化することにより求めた。本発明でいう開口率とは、取り組んだ画像の面積に対する開孔部孔面積の総和の百分率と定義され、下記の式(5)で与えられる。なお、10ピクセル以下はノイズとみなして計数から除外した。
開孔率(%)=(開孔部の孔面積の総和/取り込んだ画像の面積)×100 (5)
【0039】
(膜表面の平均孔径の測定)
膜の表面に開口した孔の形状や大きさ等は、電子顕微鏡を用いて観察、測定した。
また、内表面及び外表面に開口した孔の平均孔径とは、下記の式(6)で示される値である。
=[{(D +……+(D }/{D +……+D }]1/2 (6)
ここでは平均孔径、Dはi個目の孔の実測径、Dはn個目の孔の実測径である。ただし、D、Dの実測径は、孔が円形に近い場合は、その直径で表し、孔が円形でない場合には,その孔と同一面積の円の直径で表す。
【0040】
【実施例1】
(製膜及び残溶剤の除去)
ポリスルホン(Amoco Engineering Polymers社製P−1700)20.0重量%、ポリビニルピロリドン(BASF社製 K90、重量平均分子量1,200,000)4.4重量%を、N−メチル−2−ピロリドン75.6重量%に溶解して均一な溶液とした。ここで、製膜原液中のポリスルホンに対するポリビニルピロリドンの混和比率は22.0重量%であった。この製膜原液を60℃に保ち、N−メチル−2−ピロリドン54重量%と水46重量%の混合溶液からなる内部液(水の含有量が46重量%)とともに、紡口(2重環状ノズル 0.1mm−0.2mm−0.3mm、ノズル温度60℃、ノズル部での製膜原液の温度60℃)から吐出させ、0.96mのエアギャップを通過させて95±1℃の水からなる凝固浴へ浸漬した。
この時、紡口から凝固浴までを円筒状の筒で囲み、外気が入らないように密閉した。紡速は、80m/分に固定した。ここで、紡速に対するエアギャップの比率は、0.012m/(m/分)であった。
巻き取った糸束を切断後、糸束の切断面上方から80℃の熱水シャワーを2時間かけて洗浄することにより膜中の残溶剤を除去した。さらに、2.5Mradのγ線を照射することにより膜中のPVPの一部を不溶化した。
【0041】
得られた膜を電子顕微鏡にて観察したところ、膜の外表面から内表面に向かって孔径が連続的に小さくなるスポンジ構造であることが明らかとなった。その他の膜構造及び膜性能等を表1に示す。膜の破断強度は50kgf/cm以上と高い強度を示し、さらに1,000mL/m・hr・mmHg以上の優れた透水性能を有する精密濾過膜であることが明らかとなった。さらに、平均粒径0.062μmのラテックス粒子の内圧濾過においても急激な目詰まりがなく長時間安定した濾液量を維持した。
【0042】
【実施例2】
製膜原液中のポリビニルピロリドンを10重量%、N−メチル−2−ピロリドンを70重量%とした以外は、実施例1と同様な操作を行った。この時の製膜原液中のポリスルホンに対するポリビニルピロリドンの混和比率は50.0重量%であった。得られた膜を電子顕微鏡にて観察したところ、膜の外表面から内表面に向かって孔径が連続的に小さくなるスポンジ構造であることが明らかとなった。その他の膜構造及び膜性能等を表1に示す。膜の破断強度は50kgf/cm以上と高い強度を示し、さらに1,000mL/m・hr・mmHg以上の優れた透水性能を有する精密濾過膜であることが明らかとなった。さらに、阻止径測定に使用した平均粒径0.037μmのラテックス粒子の内圧濾過においても急激な目詰まりがなく長時間安定した濾液量を維持した。
【0043】
【実施例3】
N−メチル−2−ピロリドン63重量%と水37重量%の混合溶液からなる内部液(水の含有量が37重量%)を用いた以外は、実施例1と同様な操作を行った。得られた膜を電子顕微鏡にて観察したところ、膜の外表面から内表面に向かって孔径が連続的に小さくなるスポンジ構造であることが明らかとなった。その他の膜構造及び膜性能等を表1に示す。膜の破断強度は50kgf/cm以上と高い強度を示し、さらに1,000mL/m・hr・mmHg以上の優れた透水性能を有する精密濾過膜であることが明らかとなった。さらに、阻止径測定に使用した平均粒径0.102μmのラテックス粒子の内圧濾過においても急激な目詰まりがなく長時間安定した濾液量を維持した。
【0044】
【実施例4】
N−メチル−2−ピロリドン46重量%と水54重量%の混合溶液からなる内部液(水の含有量が54重量%)を用いた以外は、実施例1と同様な操作を行った。得られた膜を電子顕微鏡にて観察したところ、膜の外表面から内表面に向かって孔径が連続的に小さくなるスポンジ構造であることが明らかとなった。その他の膜構造及び膜性能等を表1に示す。膜の破断強度は50kgf/cm以上と高い強度を示し、さらに1,000mL/m・hr・mmHg以上の優れた透水性能を有する精密濾過膜であることが明らかとなった。さらに、阻止径測定に使用した平均粒径0.028μmのラテックス粒子の内圧濾過においても急激な目詰まりがなく長時間安定した濾液量を維持した。
【0045】
【実施例5】
製膜原液中のポリビニルピロリドンを6.6重量%、N−メチル−2−ピロリドンを73.4重量%とした以外は、実施例1と同様な操作を行った。この時の製膜原液中のポリスルホンに対するポリビニルピロリドンの混和比率は33.0重量%であった。得られた膜を電子顕微鏡にて観察したところ、膜の外表面から内表面に向かって孔径が連続的に小さくなるスポンジ構造であることが明らかとなった。その他の膜構造及び膜性能等を表1に示す。膜の破断強度は50kgf/cm以上と高い強度を示し、さらに1,000mL/m・hr・mmHg以上の優れた透水性能を有する精密濾過膜であることが明らかとなった。さらに、阻止径測定に使用した平均粒径0.088μmのラテックス粒子の内圧濾過においても急激な目詰まりがなく長時間安定した濾液量を維持した。
【0046】
【比較例1】
製膜原液中のポリビニルピロリドンを3.4重量%、N−メチル−2−ピロリドンを76.6重量%とした以外は、実施例1と同様な操作を行った。この時の製膜原液中のポリスルホンに対するポリビニルピロリドンの混和比率は17.0重量%であった。得られた膜を電子顕微鏡にて観察したところ、膜の外表面から内表面に向かって孔径が連続的に小さくなるスポンジ構造であることが明らかとなった。その他の膜構造及び膜性能等を表2に示す。膜内表面の平均孔径は0.01μm以下であった。また、0.0147μmのラテックス粒子の阻止率が初期から100%を示したことから、この膜の阻止径は0.0147μm未満であることが明らかとなった。
【0047】
【比較例2】
実施例1で使用したポリスルホン20重量%、ポリビニルピロリドンを13重量%、およびN−メチル−2−ピロリドンを67重量%を溶解しようとした均一な溶液にすることができなかった。
【0048】
【比較例3】
N−メチル−2−ピロリドン43重量%と水57重量%の混合溶液からなる内部液(水の含有量が57重量%)を用いた以外は、実施例1と同様な操作を行った。得られた膜を電子顕微鏡にて観察したところ、膜の外表面から内表面に向かって孔径が連続的に小さくなるスポンジ構造であることが明らかとなった。その他の膜構造及び膜性能等を表2に示す。膜内表面の平均孔径は0.01μm以下であった。また、0.0147μmのラテックス粒子の阻止率が初期から100%を示したことから、この膜の阻止径は0.0147μm未満であることが明らかとなった。
【0049】
【比較例4】
N−メチル−2−ピロリドン62重量%と水38重量%の混合溶液からなる内部液(水の含有量が62重量%)を用いた以外は、実施例1と同様な操作を行ったが、糸切れが多発し紡糸できなかった。
【0050】
【比較例5】
製膜原液の温度を45℃、ノズル温度を45℃(ノズル部での製膜原液の温度45℃)にした以外は、実施例2と同様な操作を行ったが、糸切れが多発し紡糸できなかった。
【0051】
【比較例6】
溶剤をN−メチル−2−ピロリドンからN,N−ジメチルアセトアミドにした以外は実施例1と同様な操作を行った。得られた膜を電子顕微鏡にて観察したところ、膜の外表面から内表面に向かって孔径が連続的に小さくなるスポンジ構造であることが明らかとなった。その他の膜構造及び膜性能等を表2に示す。膜内表面の平均孔径は0.01μm以下であった。また、0.0147μmのラテックス粒子の阻止率が初期から100%を示したことから、この膜の阻止径は0.0147μm未満であることが明らかとなった。
【0052】
【表1】

Figure 2004098028
【0053】
【表2】
Figure 2004098028
【0054】
【発明の効果】
本発明の製造方法から得られた膜は、高い強度と優れた透水性能を有する異方性構造の精密濾過膜であって、特に内圧濾過において目詰まりが少ない優れた精密濾過膜であることから医薬用途、医療用途、及び一般工業用途に用いることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for producing an anisotropic microfiltration membrane, which has high strength and excellent water permeability, and has little clogging in internal pressure filtration.
[0002]
[Prior art]
Hollow fiber membranes are widely used in industrial applications from microfiltration to ultrafiltration, and polyethylene, cellulose acetate, polysulfone, polyvinylidene fluoride, polycarbonate, polyacrylonitrile, and the like are used as membrane materials. Conventional hollow fiber membranes made of these materials have been developed with an emphasis on improving filtration performance, so the hollow fiber membranes have low breaking strength and low elongation at break, and are subject to rapid temperature changes and backwashing. It has been pointed out that the hollow fiber membrane is often broken by the pressure change.
[0003]
Various attempts have been made to solve this problem. However, as generally suggested in the invention described in Patent Document 1, a hollow fiber membrane is prepared by increasing the polymer concentration in a stock solution for film formation. A method of increasing the overall polymer density is conceivable. However, in this method, while the strength of the membrane is improved, the pore diameter of the membrane is reduced and the amount of water permeation of the membrane is significantly reduced, so that a hollow fiber membrane excellent in balance between strength and water permeation performance has not been obtained.
[0004]
On the other hand, in order to improve the water permeability of the membrane, a method of increasing the pore size of the membrane is generally performed, but an increase in the pore size generally causes a decrease in the fractionation performance and strength of the membrane.
As described above, in the related art, a high-performance hollow fiber membrane in which strength, water permeability, and fractionation performance are balanced has not been obtained. For example, Patent Document 2 proposes a method for producing a membrane having high strength and excellent water permeability, but the membrane produced by this method has a large pore diameter, and balances water permeability and fractionation performance. Not.
[0005]
Patent Document 3 discloses a hollow fiber microfiltration membrane in which the pore size continuously decreases from the outer surface of the membrane toward the inside, gradually increases through the minimum pore size in the inside, and opens again on the inner surface. ing. However, when a liquid or the like is filtered from the hollow portion side (inner surface side) of the membrane using the membrane having this structure, rapid clogging occurs, and stable filtration cannot be performed for a long time.
[0006]
[Patent Document 1]
JP-A-59-228016 [Patent Document 2]
JP-A-4-260424 [Patent Document 3]
JP-A-2-102722
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing an anisotropic microfiltration membrane having high strength and excellent water permeation performance, and in particular, having less clogging in internal pressure filtration.
[0008]
[Means for Solving the Problems]
As described above, when liquid or the like is filtered from the hollow side of the membrane (hereinafter also referred to as “internal pressure filtration”), there has been no high-strength microfiltration membrane with little clogging and excellent water permeability. This is because, on the inner surface of the membrane having a gradient structure in which the pore diameter continuously decreases from the outer surface to the inner surface of the membrane, while maintaining high membrane strength, 0.01 μm or more (of the microfiltration region). This is because opening pores has been impossible in the past particularly with a hydrophobic polymer such as polysulfone.
[0009]
The inventor of the present invention has made intensive studies on an inclined structure in which the pore diameter is continuously reduced from the outer surface to the inner surface of the membrane in order to prevent clogging, and as a result, the present invention has been achieved.
[0010]
That is, the present invention
(1) In a method for producing a hollow fiber membrane in which a membrane-forming stock solution and an internal solution are discharged from a double annular nozzle and then passed through an air gap and then coagulated in a coagulation bath,
a) The membrane-forming stock solution is composed of an additive consisting of a film-forming polymer, a solvent for the polymer, and a hydrophilic polymer, wherein the ratio of the additive to the film-forming polymer is 20 to 60% by weight;
b) the internal liquid is composed of water and at least one solvent, and has a water content of 35 to 55% by weight;
c) the temperature of the stock solution at the nozzle is 50 ° C. or more,
d) the coagulation bath temperature is 85 to 100 ° C., and e) the ratio of the air gap to the spinning speed is 0.01 to 0.1 m / (m / min).
A method for producing a hollow fiber microfiltration membrane,
(2) The production method according to (1), wherein irradiation is further performed.
(3) The method according to (1) or (2), wherein the ratio of the film thickness to the inner diameter of the film is 0.15 to 0.4.
(4) The production method according to any one of (1) to (3), wherein the outer diameter of the membrane is 500 μm or less;
(5) The method according to (1) to (4), wherein the membrane-forming polymer is a polysulfone-based polymer;
(6) The method according to (1) to (5), wherein the hydrophilic polymer is polyvinylpyrrolidone having a weight average molecular weight of 900,000 or more.
(7) The production method according to (1) to (6), wherein the solvent of the film-forming polymer is N-methyl-2-pyrrolidone, and (8) the spinning speed is 60 m / min or more. The production method according to any one of (1) to (7),
It is about.
[0011]
According to the production method of the present invention, an excellent hollow having a sponge structure in which the pore size is continuously reduced from the outer surface to the inner surface of the membrane, and having a blocking diameter in internal pressure filtration of 0.015 to 1 μm. A fibrous microfiltration membrane is obtained.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a method for producing the hollow fiber microfiltration membrane (hereinafter, also simply referred to as “membrane” or “hollow fiber membrane”) of the present invention will be described.
The hollow fiber microfiltration membrane obtained in the present invention is used in water supply fields such as river water, lake water, groundwater, removal of microorganisms from natural water such as seawater, removal of microorganisms, and preparation of aseptic water, and from electrodeposition paint solutions. It can be applied to a wide range of applications such as paint recovery field, ultrapure water production field for electronics industry, use in medicine / fermentation and food fields.
[0013]
The production method of the present invention comprises the steps of: forming a film-forming stock solution at a specific temperature consisting essentially of a film-forming polymer, a solvent for the polymer, and an additive consisting of a hydrophilic polymer; The liquid is discharged from a double annular nozzle together with the liquid, passed through an air gap having a specific ratio to the spinning speed, and then coagulated in a coagulation bath at a specific temperature.
[0014]
The film-forming polymer used in the production method of the present invention may be any polymer capable of forming a film by wet film formation, such as a polysulfone-based polymer, a polyvinylidene fluoride-based polymer, a polyacrylonitrile-based polymer, and a polymethacrylic acid-based polymer. Examples thereof include polymers, polyamide polymers, polyimide polymers, polyetherimide polymers, and cellulose acetate polymers. Among them, aromatic polysulfone is excellent in thermal stability, acid resistance, alkali resistance and mechanical strength, but because of its hydrophobicity, it can remove turbidity from natural water such as river water, lake water, groundwater, seawater, and remove microorganisms. In the field of paint recovery from an electrodeposition coating solution and in general industrial fields such as medicine and fermentation, there is a problem that clogging is likely to occur. By adding a hydrophilic polymer to a membrane-forming stock solution to form a membrane, it can be used in general industrial fields, and is also preferably used in the medical field because it can improve blood compatibility. As the aromatic polysulfone, bisphenol A type polysulfone is particularly preferably used.
[0015]
Examples of the aromatic polysulfone used in the present invention include those having a repeating unit represented by the following formula (1) or (2). In the formula, Ar represents a para-substituted phenyl group, and the degree of polymerization and molecular weight are not particularly limited.
-O-Ar-C (CH 3 ) 2 -Ar-O-Ar-SO 2 -Ar- (1)
—O—Ar—SO 2 —Ar— (2)
[0016]
As the additive, a hydrophilic polymer that is compatible with the solvent and does not dissolve the film-forming polymer is used. If the film-forming polymer is a polysulfone-based polymer, polyvinylpyrrolidone is preferably used as an additive. Polyvinylpyrrolidone is preferred because of its particularly low toxicity among hydrophilic polymers. When the film-forming polymer is aromatic polysulfone, the use of an additive other than polyvinylpyrrolidone makes it difficult to obtain the film of the present invention.
[0017]
Polyvinylpyrrolidone has a higher effect of hydrophilizing the film as it has a higher molecular weight. Therefore, a smaller amount of polyvinylpyrrolidone can exert a sufficient effect. You. A large amount of polyvinylpyrrolidone needs to remain in the membrane in order to impart a hydrophilizing effect to the membrane using polyvinylpyrrolidone having a weight average molecular weight of less than 900,000. Will increase. Conversely, if the residual amount of polyvinylpyrrolidone having a weight average molecular weight of less than 900,000 in the film is reduced in order to reduce the eluate, the hydrophilizing effect becomes insufficient. In addition, if polyvinylpyrrolidone having a weight-average molecular weight of 900,000 or more is not used, the hydrophilicity in the film thickness portion is insufficient. At the part, so that good separation characteristics cannot be exhibited.
[0018]
Examples of the solvent for the polymer include N-methyl-2-pyrrolidone, N, N-dimethylformamide, and N, N-dimethylacetamide. When the film-forming polymer is a polysulfone-based polymer, N-methyl-2 -Pyrrolidone (hereinafter also simply referred to as "NMP") is preferred. NMP is the solvent having the highest dissolving power for the polysulfone-based polymer. For example, it has about 1.5 times the dissolving power at room temperature as compared with N, N-dimethylacetamide which is another good solvent. Non-solvent in the internal liquid induces liquid-liquid phase separation to open a large pore size of 0.01 μm or more on the inner surface of the membrane in a gradient structure where the pore size decreases continuously from the outer surface to the inner surface of the membrane. It is necessary to increase the time from the completion of the phase separation (solidification), that is, the particle growth time. In a polysulfone-based polymer, the particle growth time can be made longer by using NMP having a very high dissolving power than by using any solvent. Further, since NMP is the best solvent in the polysulfone-based polymer, the molecular chains of the polysulfone-based polymer in the membrane-forming stock solution are well entangled with each other, and as a result, a high-strength membrane can be obtained. For the above reasons, when the film-forming polymer is a polysulfone-based polymer, the use of a solvent other than NMP makes it difficult to obtain the film of the present invention.
[0019]
The film-forming stock solution consists essentially of a film-forming polymer, a specific additive such as polyvinylpyrrolidone, and a solvent of a specific polymer such as N-methyl-2-pyrrolidone. When other additives such as water and metal salts which are conventionally known as additives are added to the film forming stock solution, the film of the present invention is hardly obtained.
[0020]
From the above, it is most preferable that the membrane obtained by the production method of the present invention comprises aromatic polysulfone and polyvinylpyrrolidone. Furthermore, since the microfiltration membrane obtained from the production method of the present invention is used by internal pressure filtration, the concentration of polyvinylpyrrolidone on the inner surface of the membrane with which the liquid to be filtered comes into contact is preferably 20 to 45% by weight. . When the liquid to be filtered is blood or the like, an important factor for the blood compatibility of the membrane is the hydrophilicity of the inner surface of the membrane with which the blood comes into contact, and a polysulfone-based polymer containing polyvinylpyrrolidone (hereinafter also simply referred to as “PVP”). In a film, the PVP concentration on the inner surface of the film is important. If the PVP concentration on the inner surface of the membrane is too low, the inner surface of the membrane becomes hydrophobic, plasma proteins are easily adsorbed, and blood coagulation tends to occur. That is, the blood compatibility of the membrane becomes poor. Conversely, if the PVP concentration on the inner surface of the membrane is too high, the amount of PVP eluted into the blood system will increase, giving undesirable results. Therefore, the concentration of PVP when blood, plasma and serum are subjected to internal pressure filtration is in the range of 20 to 45% by weight, preferably 25 to 40% by weight.
[0021]
The PVP concentration on the inner surface of the film is determined by X-ray photoelectron spectroscopy (XPS). That is, the XPS of the inner surface of the film is measured by a usual method after arranging the samples on a double-sided tape, incising in the fiber axis direction with a cutter, spreading the film so that the inside of the film is exposed, and then spreading it. . That is, the concentration obtained from the surface intensity of nitrogen (nitrogen atom concentration) and the surface concentration of sulfur (nitrogen atom concentration) using the relative sensitivity coefficient attached to the device from the area intensity of the C1s, O1s, N1s, and S2p spectra. When the polysulfone-based polymer has the structure of the formula (2), it can be calculated by the formula (3).
PVP concentration (% by weight) = C 1 M 1 × 100 / (C 1 M 1 + C 2 M 2 ) (3)
Here, C 1 : nitrogen atom concentration (%)
C 2 : Sulfur atom concentration (%)
M 1 : molecular weight of the repeating unit of PVP (111)
M 2 : molecular weight of the repeating unit of the polysulfone-based polymer (442)
[0022]
The polymer concentration of the membrane-forming stock solution used in the present invention is not particularly limited as long as the membrane can be formed from the stock solution, and the obtained membrane has a performance as a membrane in a concentration range. It is 35% by weight, preferably 10 to 30% by weight. In order to achieve high water permeability or a large molecular weight cut-off, the lower the polymer concentration, the better, and preferably 10 to 25% by weight.
[0023]
What is more important is the amount of the additive (hydrophilic polymer) in the film forming stock solution, and the mixing ratio of the additive to the polymer is 20 to 60% by weight, preferably 27 to 60% by weight. If the mixing ratio of the additive to the polymer is less than 20% by weight, the pore diameter on the inner surface of the film tends to be small, 0.01 μm or less, and if it exceeds 60% by weight, the viscosity of the film forming stock solution increases, and It is not preferable because the spinnability tends to deteriorate.
[0024]
Further, the temperature of the film forming solution is important, and the temperature of the film forming solution at the time of discharge by the nozzle is 50 ° C. or more, preferably 60 to 100 ° C. If the temperature is lower than 50 ° C., spinnability during film formation is poor.
[0025]
The internal liquid is used to form the hollow portion of the hollow fiber membrane, and is composed of water and a good solvent for at least one or more types of the film-forming polymers. The water content is preferably from 35 to 55% by weight. If the water content is less than 35% by weight, the spinnability at the time of film formation is poor, and if it exceeds 55% by weight, the pore size on the inner surface of the film tends to be as small as 0.01 μm or less.
[0026]
Air gap refers to the gap between the nozzle and the coagulation bath. The ratio of the air gap (m) to the spin speed (m / min) is very important for obtaining the membrane of the present invention. Because, in the membrane structure of the present invention, the non-solvent in the internal solution comes into contact with the stock solution to induce phase separation over time from the inner surface portion to the outer surface portion side of the stock solution. This is because if the phase separation from the inner surface portion of the membrane to the outer surface portion is not completed before the film forming stock solution enters the coagulation bath, it cannot be obtained.
[0027]
The ratio of the air gap to the spinning speed is preferably from 0.01 to 0.1 m / (m / min), and more preferably from 0.01 to 0.05 m / (m / min). If the ratio of the air gap to the spinning speed is less than 0.01 m / (m / min), it is difficult to obtain a film having the structure and performance of the present invention. This is not preferable because the film tension tends to be high in the air gap portion due to high tension, and the production tends to be difficult.
[0028]
The spinning speed greatly contributes to the production efficiency. Therefore, the higher the spinning speed, the better. However, it is impossible to increase the spinning speed because the spinning speed increases and the tension increases. However, the spinning speed is 60 m / m in the present invention. Min or more, and even 70-120 m / min.
Here, the spinning speed refers to a film forming stock solution discharged from the nozzle together with the internal solution, passes through an air gap, and is wound in a coagulation bath. It means the winding speed when there is no operation. Further, when the air gap is surrounded by a cylindrical tube or the like, and a gas having a certain temperature and humidity flows through the air gap at a certain flow rate, the hollow fiber membrane can be manufactured in a more stable state.
[0029]
As the coagulation bath, a liquid that does not dissolve the polymer such as water; alcohols such as methanol and ethanol; ethers; and aliphatic hydrocarbons such as n-hexane and n-heptane is used, but water is preferable. It is also possible to control the coagulation rate and the like by adding a small amount of a solvent that dissolves the polymer to the coagulation bath.
The temperature of the coagulation bath is 85-100 ° C, preferably 90-100 ° C. If the temperature of the coagulation bath is lower than 85 ° C., the pore diameter on the inner surface of the film tends to be small, less than 0.01 μm.
[0030]
Further, in order to obtain the film of the present invention, the ratio of the film thickness to the inner diameter of the film after coagulation is 0.15 to 0.4, preferably 0.2 to 0.3. If the ratio of the film thickness to the inner diameter of the film is less than 0.15, the absolute strength of the film tends to be weak. On the other hand, if the ratio exceeds 0.4, it tends to be difficult to obtain an inclined structure in which the pore diameter decreases from the outer surface to the inner surface (or the inner surface portion) of the film as in the present invention. Because the ratio of the amount of solvent in the stock solution to the amount of non-solvent in the internal solution is large, the amount of non-solvent in the internal solution alone means that from the inner surface of the film of the stock solution before entering the coagulation bath. This is because phase separation up to the outer surface cannot be completed.
[0031]
Further, the outer diameter of the film is 500 μm or less, preferably 400 μm or less, and more preferably 300 μm or less. If the outer diameter of the membrane is large, the area (filling amount) of the membrane in the module must be reduced, and as a result, the processing capacity per unit time is inferior, which is not preferable. Conversely, in order to increase the outer diameter of the membrane and make the membrane area (filling amount) in the module the same, the module container must be enlarged, which results in an increase in cost, which is not preferable. In particular, it is necessary to avoid using large modules that are expensive for medical use in order to reduce the burden of medical expenses on patients. The outer diameter of the film is preferably 500 μm or less in view of the relationship between the processing capacity and the cost.
[0032]
Further, the membrane of the present invention can be dried, and does not have to be impregnated with a humectant such as glycerin at the time of drying.
In addition, by irradiating the film with radiation such as an electron beam and γ-ray, a part of PVP in the film can be insolubilized in water, so that the amount of elution from the film can be reduced. Irradiation with radiation may be performed before or after modularization. Further, if all the PVP in the membrane is insolubilized, the swelling property of the membrane deteriorates and the separation performance deteriorates, which is not preferable.
[0033]
The term "PVP insoluble in water" as used in the present invention is obtained by subtracting the amount of PVP soluble in water from the total amount of PVP in the membrane. The total amount of PVP in the film can be easily calculated by elemental analysis of nitrogen and sulfur.
The amount of PVP soluble in water can be determined by the following method.
For example, when the membrane-forming polymer is a polysulfone-based polymer, after completely dissolving the membrane with N-methyl-2-pyrrolidone, water is added to the obtained polymer solution to completely precipitate the membrane-forming polymer. Further, after the polymer solution is allowed to stand, PVP soluble in water can be determined by determining the amount of PVP in the supernatant by liquid chromatography.
[0034]
【Example】
Hereinafter, examples of the present invention will be described, but the present invention is not limited thereto.
Each measuring method is as follows.
The hollow fiber membranes used as the measurement samples were all fully impregnated with water.
[0035]
(Measurement of water permeability)
A thread bundle having an effective length of 180 mm (both mini-modules having the same number of membranes so as to have an inner surface area of 110 ± 10 cm 2 ) whose both ends are fixed with an adhesive is transmitted from the inner surface to the outer surface, and the amount is mL (milliliter). ) / (M 2 · hr · mmHg). However, the effective film area was converted to the inner surface.
[0036]
(Measurement of breaking strength)
The film strength was measured using an Autograph AGS-5D manufactured by Shimadzu Corporation at a sample length of 20 mm and a pulling speed of 300 mm / min.
[0037]
(Measurement of blocking diameter)
If the pore diameter of the inner surface of the membrane is smaller than 0.05 μm or a slit-shaped pore, measuring the pore size increases the error and has no meaning. The diameter was used as an index of the pore diameter on the inner surface of the membrane. The inhibition diameter in the internal pressure filtration in the present invention was determined by the following method.
1) A stock solution prepared by suspending polystyrene latex particles having a particle size accuracy of within ± 4% at a concentration of 0.02% by volume in a 0.2% by weight aqueous solution of sodium dodecyl sulfate was added to both ends. The average pressure of the input pressure and the output pressure is 0.5 kgf / with respect to a yarn bundle having an effective length of 180 mm (the number of membranes is adjusted so as to be 110 ± 10 cm 2 in terms of the internal surface area) in which is fixed with an adhesive. Internal pressure filtration was performed under the conditions of cross flow of cm 2 and a fluid linear velocity of 1 cm / sec, and the rejection of the concentration of the filtrate and the original solution after 40 minutes was determined. At this time, it is necessary that the rejection rate does not change with time, and the deviation of the absolute value of the rejection rate after 20 minutes, 40 minutes, and 60 minutes must be within ± 10%. The concentrations of the obtained filtrate and the original solution are measured at a wavelength of 280 nm using an ultraviolet spectrophotometer, and substituted into the following equation (4) to calculate the rejection. 2) Next, the minimum particle size of the latex particles used in 1) in which the rejection was 90% or more was defined as the rejection diameter of the film.
Inhibition rate (%) = {1- (absorbance of filtrate) / (absorbance of original solution)} × 100 (4) For measuring the inhibition diameter, 0.0147 μm (manufactured by Magsphere, polystyrene-based polymer, 0.0147 μm) 0.028 μm (manufactured by Magsphere, polystyrene-based polymer, 0.028 μm), 0.037 μm (manufactured by Magsphere, polystyrene-based polymer, 0.037 μm), 0.062 μm (manufactured by Seradyn, polystyrene-based polymer, 0.062 μm) ), 0.088 μm (Seradyn, polystyrene-based polymer, 0.088 μm) and 0.102 μm (Seradyn, polystyrene-based polymer, 0.102 μm) latex particles (each particle size accuracy ± 4%) did.
[0038]
(Measurement of porosity on membrane surface)
The aperture ratio was determined by numerically analyzing an electron micrograph of the outer surface of the film and analyzing the image. The aperture ratio according to the present invention is defined as a percentage of the sum of the area of the opening portion and the area of the worked image, and is given by the following equation (5). In addition, 10 pixels or less were considered as noise and were excluded from the count.
Perforation rate (%) = (total of perforated area of perforated part / area of captured image) × 100 (5)
[0039]
(Measurement of average pore diameter on membrane surface)
The shape and size of the holes opened on the surface of the film were observed and measured using an electron microscope.
The average pore diameter D of the pores opened on the inner surface and the outer surface is a value represented by the following equation (6).
D = [{(D i 2 ) 2 +... + (D n 2 ) 2 } / {D i 2 +... + D n 2 }] 1/2 (6)
Here, D is the average pore diameter, Di is the measured diameter of the i- th hole, and Dn is the measured diameter of the n- th hole. However, the measured diameters of D i and D n are represented by the diameter of the hole when the hole is close to a circle, and by the diameter of a circle having the same area as the hole when the hole is not circular.
[0040]
Embodiment 1
(Film formation and removal of residual solvent)
20.0% by weight of polysulfone (P-1700 manufactured by Amoco Engineering Polymers) and 4.4% by weight of polyvinylpyrrolidone (K90 manufactured by BASF, weight average molecular weight 1,200,000) were added to N-methyl-2-pyrrolidone 75. It was dissolved in 6% by weight to obtain a uniform solution. Here, the mixing ratio of polyvinylpyrrolidone to polysulfone in the membrane-forming stock solution was 22.0% by weight. This membrane-forming stock solution was kept at 60 ° C., and an internal solution (water content was 46% by weight) consisting of a mixed solution of 54% by weight of N-methyl-2-pyrrolidone and 46% by weight of water was spun (dual cyclic). Nozzle 0.1mm-0.2mm-0.3mm, Nozzle temperature 60 ° C, Temperature of film forming stock solution at the nozzle part 60 ° C), water through a 0.96m air gap, 95 ± 1 ° C water In a coagulation bath consisting of
At this time, the space from the spinneret to the coagulation bath was surrounded by a cylindrical tube, and was sealed so that outside air did not enter. The spinning speed was fixed at 80 m / min. Here, the ratio of the air gap to the spinning speed was 0.012 m / (m / min).
After the wound yarn bundle was cut, the remaining solvent in the film was removed by washing with a hot water shower at 80 ° C. for 2 hours from above the cut surface of the yarn bundle. Further, a part of PVP in the film was insolubilized by irradiating 2.5 Mrad of γ-ray.
[0041]
Observation of the obtained film with an electron microscope revealed that the film had a sponge structure in which the pore diameter was continuously reduced from the outer surface to the inner surface. Table 1 shows other film structures and film performances. The breaking strength of the membrane was as high as 50 kgf / cm 2 or more, and it was revealed that the membrane was a microfiltration membrane having excellent water permeability of 1,000 mL / m 2 · hr · mmHg or more. Furthermore, even when the latex particles having an average particle size of 0.062 μm were subjected to internal pressure filtration, the amount of filtrate remained stable for a long time without a rapid clogging.
[0042]
Embodiment 2
The same operation as in Example 1 was carried out except that polyvinylpyrrolidone was 10% by weight and N-methyl-2-pyrrolidone was 70% by weight in the film-forming stock solution. At this time, the mixing ratio of polyvinylpyrrolidone to polysulfone in the membrane-forming stock solution was 50.0% by weight. Observation of the obtained film with an electron microscope revealed that the film had a sponge structure in which the pore diameter was continuously reduced from the outer surface to the inner surface. Table 1 shows other film structures and film performances. The breaking strength of the membrane was as high as 50 kgf / cm 2 or more, and it was revealed that the membrane was a microfiltration membrane having excellent water permeability of 1,000 mL / m 2 · hr · mmHg or more. Further, even when the latex particles having an average particle size of 0.037 μm used for the measurement of the blocking diameter were subjected to the internal pressure filtration, the amount of the filtrate remained stable for a long time without rapid clogging.
[0043]
Embodiment 3
The same operation as in Example 1 was performed except that an internal liquid (water content: 37% by weight) composed of a mixed solution of 63% by weight of N-methyl-2-pyrrolidone and 37% by weight of water was used. Observation of the obtained film with an electron microscope revealed that the film had a sponge structure in which the pore diameter was continuously reduced from the outer surface to the inner surface. Table 1 shows other film structures and film performances. The breaking strength of the membrane was as high as 50 kgf / cm 2 or more, and it was revealed that the membrane was a microfiltration membrane having excellent water permeability of 1,000 mL / m 2 · hr · mmHg or more. Further, even when the latex particles having an average particle diameter of 0.102 μm used for the measurement of the inhibition diameter were subjected to internal pressure filtration, the amount of filtrate remained stable for a long time without a rapid clogging.
[0044]
Embodiment 4
The same operation as in Example 1 was performed except that an internal liquid (water content was 54% by weight) composed of a mixed solution of 46% by weight of N-methyl-2-pyrrolidone and 54% by weight of water was used. Observation of the obtained film with an electron microscope revealed that the film had a sponge structure in which the pore diameter was continuously reduced from the outer surface to the inner surface. Table 1 shows other film structures and film performances. The breaking strength of the membrane was as high as 50 kgf / cm 2 or more, and it was revealed that the membrane was a microfiltration membrane having excellent water permeability of 1,000 mL / m 2 · hr · mmHg or more. Further, in the internal pressure filtration of the latex particles having an average particle size of 0.028 μm used for the measurement of the inhibition diameter, the amount of filtrate maintained without a sudden clogging was maintained for a long time.
[0045]
Embodiment 5
The same operation as in Example 1 was performed except that the polyvinylpyrrolidone in the film forming solution was 6.6% by weight and the N-methyl-2-pyrrolidone was 73.4% by weight. At this time, the mixing ratio of polyvinylpyrrolidone to polysulfone in the membrane-forming stock solution was 33.0% by weight. Observation of the obtained film with an electron microscope revealed that the film had a sponge structure in which the pore diameter was continuously reduced from the outer surface to the inner surface. Table 1 shows other film structures and film performances. The breaking strength of the membrane was as high as 50 kgf / cm 2 or more, and it was revealed that the membrane was a microfiltration membrane having excellent water permeability of 1,000 mL / m 2 · hr · mmHg or more. Further, even when the latex particles having an average particle diameter of 0.088 μm used for the measurement of the inhibition diameter were subjected to the internal pressure filtration, the amount of the filtrate remained stable for a long time without rapid clogging.
[0046]
[Comparative Example 1]
The same operation as in Example 1 was performed except that the amount of polyvinylpyrrolidone was 3.4% by weight and the amount of N-methyl-2-pyrrolidone was 76.6% by weight in the stock solution for film formation. At this time, the mixing ratio of polyvinylpyrrolidone to polysulfone in the membrane-forming stock solution was 17.0% by weight. Observation of the obtained film with an electron microscope revealed that the film had a sponge structure in which the pore diameter was continuously reduced from the outer surface to the inner surface. Table 2 shows other film structures and film performances. The average pore diameter on the inner surface of the membrane was 0.01 μm or less. In addition, since the rejection of latex particles of 0.0147 μm was 100% from the initial stage, it was clear that the rejection diameter of this film was less than 0.0147 μm.
[0047]
[Comparative Example 2]
A homogeneous solution could not be obtained in which 20% by weight of polysulfone used in Example 1, 13% by weight of polyvinylpyrrolidone, and 67% by weight of N-methyl-2-pyrrolidone were dissolved.
[0048]
[Comparative Example 3]
The same operation as in Example 1 was performed except that an internal liquid (water content was 57% by weight) composed of a mixed solution of 43% by weight of N-methyl-2-pyrrolidone and 57% by weight of water was used. Observation of the obtained film with an electron microscope revealed that the film had a sponge structure in which the pore diameter was continuously reduced from the outer surface to the inner surface. Table 2 shows other film structures and film performances. The average pore diameter on the inner surface of the membrane was 0.01 μm or less. In addition, since the rejection of latex particles of 0.0147 μm was 100% from the initial stage, it was clear that the rejection diameter of this film was less than 0.0147 μm.
[0049]
[Comparative Example 4]
The same operation as in Example 1 was performed except that an internal solution (water content was 62% by weight) composed of a mixed solution of N-methyl-2-pyrrolidone 62% by weight and water 38% by weight was used. Thread breakage occurred frequently and spinning was not possible.
[0050]
[Comparative Example 5]
The same operation as in Example 2 was performed except that the temperature of the film forming solution was set at 45 ° C. and the nozzle temperature was set at 45 ° C. (temperature of the film forming solution at the nozzle portion was 45 ° C.). could not.
[0051]
[Comparative Example 6]
The same operation as in Example 1 was performed except that the solvent was changed from N-methyl-2-pyrrolidone to N, N-dimethylacetamide. Observation of the obtained film with an electron microscope revealed that the film had a sponge structure in which the pore diameter was continuously reduced from the outer surface to the inner surface. Table 2 shows other film structures and film performances. The average pore diameter on the inner surface of the membrane was 0.01 μm or less. In addition, since the rejection of latex particles of 0.0147 μm was 100% from the initial stage, it was clear that the rejection diameter of this film was less than 0.0147 μm.
[0052]
[Table 1]
Figure 2004098028
[0053]
[Table 2]
Figure 2004098028
[0054]
【The invention's effect】
The membrane obtained from the production method of the present invention is a microfiltration membrane having an anisotropic structure having high strength and excellent water permeability, and is particularly an excellent microfiltration membrane having little clogging in internal pressure filtration. It can be used for pharmaceutical applications, medical applications, and general industrial applications.

Claims (8)

製膜原液と内部液を2重環状ノズルから吐出させた後、エアギャップを通過させてから凝固浴で凝固させる中空糸状膜の製造方法において、
a)製膜原液が、膜形成ポリマー、該ポリマーの溶剤、及び親水性ポリマーからなり、膜形成ポリマーに対する親水性ポリマーの比率が20〜60重量%、
b)内部液が水と少なくとも1種類以上の溶剤からなり、水の含有量が35〜55重量%、
c)ノズル部での製膜原液の温度が50℃以上、
d)凝固浴温度が85〜100℃、且つ
e)紡速に対するエアギャップの比率が0.01〜0.1m/(m/分)
であることを特徴とする中空糸状精密濾過膜の製造方法。
A method for producing a hollow fiber membrane in which a stock solution and an internal solution are discharged from a double annular nozzle and then passed through an air gap and then coagulated in a coagulation bath.
a) the membrane-forming stock solution is composed of a film-forming polymer, a solvent for the polymer, and a hydrophilic polymer, and the ratio of the hydrophilic polymer to the film-forming polymer is 20 to 60% by weight;
b) the internal liquid is composed of water and at least one solvent, and has a water content of 35 to 55% by weight;
c) the temperature of the stock solution at the nozzle is 50 ° C. or more,
d) the coagulation bath temperature is 85 to 100 ° C., and e) the ratio of the air gap to the spinning speed is 0.01 to 0.1 m / (m / min).
A method for producing a hollow fiber microfiltration membrane, characterized in that:
さらに放射線照射することを特徴とする請求項1に記載の製造方法。The method according to claim 1, further comprising irradiating radiation. 膜の内径に対する膜厚の比率が0.15〜0.4であることを特徴とする請求項1又は2に記載の製造方法。3. The method according to claim 1, wherein the ratio of the film thickness to the inner diameter of the film is 0.15 to 0.4. 膜の外径が500μm以下であることを特徴とする請求項1〜3のいずれかに記載の製造方法。The method according to any one of claims 1 to 3, wherein the outer diameter of the membrane is 500 µm or less. 膜形成ポリマーがポリスルホン系ポリマーであることを特徴とする請求項1〜4のいずれかに記載の製造方法。The method according to any one of claims 1 to 4, wherein the film-forming polymer is a polysulfone-based polymer. 親水性ポリマーが重量平均分子量900,000以上のポリビニルピロリドンであることを特徴とする請求項1〜5のいずれかに記載の製造方法。The method according to any one of claims 1 to 5, wherein the hydrophilic polymer is polyvinylpyrrolidone having a weight average molecular weight of 900,000 or more. 膜形成ポリマーの溶剤がN−メチル−2−ピロリドンであることを特徴とする請求項1〜6のいずれかに記載の製造方法。The method according to any one of claims 1 to 6, wherein the solvent for the film-forming polymer is N-methyl-2-pyrrolidone. 紡速が60m/分以上であることを特徴とする請求項1〜7のいずれかに記載の製造方法。The method according to any one of claims 1 to 7, wherein the spinning speed is 60 m / min or more.
JP2002267273A 2002-09-12 2002-09-12 Manufacturing method of high performance hollow fiber microfiltration membrane Expired - Fee Related JP3464000B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002267273A JP3464000B1 (en) 2002-09-12 2002-09-12 Manufacturing method of high performance hollow fiber microfiltration membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002267273A JP3464000B1 (en) 2002-09-12 2002-09-12 Manufacturing method of high performance hollow fiber microfiltration membrane

Publications (2)

Publication Number Publication Date
JP3464000B1 JP3464000B1 (en) 2003-11-05
JP2004098028A true JP2004098028A (en) 2004-04-02

Family

ID=29545996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002267273A Expired - Fee Related JP3464000B1 (en) 2002-09-12 2002-09-12 Manufacturing method of high performance hollow fiber microfiltration membrane

Country Status (1)

Country Link
JP (1) JP3464000B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012020231A (en) * 2010-07-14 2012-02-02 Unitika Ltd Highly permeable polyamide hollow fiber membrane and method of producing the same
JP2015131298A (en) * 2015-02-09 2015-07-23 ユニチカ株式会社 Highly permeable polyamide hollow fiber membrane and method of producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012020231A (en) * 2010-07-14 2012-02-02 Unitika Ltd Highly permeable polyamide hollow fiber membrane and method of producing the same
JP2015131298A (en) * 2015-02-09 2015-07-23 ユニチカ株式会社 Highly permeable polyamide hollow fiber membrane and method of producing the same

Also Published As

Publication number Publication date
JP3464000B1 (en) 2003-11-05

Similar Documents

Publication Publication Date Title
JP5433921B2 (en) Polymer porous hollow fiber membrane
JP5504560B2 (en) Hollow fiber membrane for liquid processing
JP4172819B2 (en) Hollow fiber membrane
US10188991B2 (en) Permselective asymmetric membranes
WO2007125943A1 (en) Polymeric porous hollow fiber membrane
CN110079887B (en) Performance enhancing additives for fiber formation and polysulfone fibers
US10888823B2 (en) Membrane with improved permeability and selectivity
JPH10108907A (en) Membrane for hemocatharsis, its preparation and module for hemocatharsis
JP2008284471A (en) Polymeric porous hollow fiber membrane
JP2792556B2 (en) Blood purification module, blood purification membrane and method for producing the same
JP2024515027A (en) Hollow fiber membrane and method for producing same
JP3934340B2 (en) Blood purifier
US20010047959A1 (en) Polyacrylonitrile-based filtration membrane in a hollow fiber state
JP3594946B2 (en) High performance microfiltration membrane
JPS61164602A (en) Hllow yarn membrane made of polysulfone resin and its preparation
JP3317975B2 (en) Polyacrylonitrile hollow fiber filtration membrane
JP2703266B2 (en) Polysulfone hollow fiber membrane and method for producing the same
JP3431622B1 (en) High-performance plasma purification membrane
WO2016182015A1 (en) Porous hollow fiber membrane and manufacturing method therefor
JP3464000B1 (en) Manufacturing method of high performance hollow fiber microfiltration membrane
JP4190361B2 (en) Hollow fiber type body fluid treatment device, hollow fiber bundle used therefor, and method for producing them
JP3431623B1 (en) Method for producing plasma purification membrane
WO2019172077A1 (en) Hollow-fiber membrane and method for producing hollow-fiber membrane
JP4190445B2 (en) Hollow fiber plasma component separator with low protein adsorption
JPH07289866A (en) Polysulfone-based selective permeable membrane

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees