【0001】
【発明が属する技術分野】
本発明は、温水、冷却水を利用して肩こり、腰痛または筋肉痛等の治療、疲労回復及びリラクゼーションを図るための血行促進装置である。
【0002】
【従来の技術】
患部の状態により、温熱や冷却を連続的あるいは断続的に行う事は、血行促進に良いことが知られている。また、温熱と冷却を交互に繰り返すと、さらに血行促進の効果が高いことも知られている。これまで温水、冷却水を交互に温冷パッドに送り込むことや、ペルチェ素子を利用し直接患部に温熱、冷却を加えるような各種提案がなされている。
【0003】
ところが、いずれの方法でも、冷却水を作り出すのにペルチェ素子やコンプレッサーを使用するなど、装置が大掛かりになってしまい、一般家庭において簡便に血行促進装置を使用することが困難であった。
【0004】
【発明が解決しようとする課題】
温水、冷却水を利用しての一般的な治療時間は、せいぜい10分〜1時間の範囲で、使用時間が限定される。そのような限定された条件の中で、冷却部分に氷を利用して、安価な、一般家庭でも使用可能な血行促進装置を提供することである。
【0005】
【課題を解決するための手段】
本発明は、冷却部分に砕氷または保冷剤を使用し、冷却時には冷却水タンクからポンプ、温冷パッドを経由して冷却水タンクの上部の受け皿にある砕氷上に循環排水させ、冷却水タンク内の温度センサーにより、循環量を制御し、砕氷の能力がなくなるまで、冷却水の温度をほぼ一定に保つことができ、冷却部分を簡単にできる。循環水の制御のために、ポンプは流量調整可能な正逆転ポンプが望ましいが、定量正逆転ポンプでも実現は出来る。なお、以下、説明文中では、「砕氷または保冷剤」を「砕氷」で説明する。
【0006】
【発明の実施の形態】
冷却水をつくる目的と省エネルギーで作動させる目的を、砕氷を使用し簡単に冷却水を作り、かつ、正逆転ポンプと切換電磁弁の制御で温水、冷却水が混合せず無駄なエネルギーを消費させないように実現した。
【0007】
【実施例】
図1は、本発明装置の機構部分の概略図で、温水タンク1または冷却水タンク2から温冷水切換電磁弁5を経由し、正逆転ポンプ7で温冷パッド8に循環給水し、循環排出切換電磁弁6を通り温水タンク1または冷却水タンク2に排水させ、この循環を繰り返す。
【0008】
正逆転ポンプ7は制御部22より循環量が調整でき、また逆転時には温冷水に代わりエアーを吸入する。温冷水切換電磁弁5と循環排出切換電磁弁6は制御部22より温水側、冷却水側を任意に選択できる。
【0009】
温水タンク1及び冷却水タンク2は、断熱材12及び温水タンクフタ16と冷却水タンクフタ17で、概ね外気と遮蔽され、無駄なエネルギーを消費しないようになっている。装置の使用開始にあたって、温水タンク1に50℃以下の温水を入れ、冷却水タンク2には15℃以上の水を入れる。冷却水タンク2内の受け皿19に砕氷18を適量、供給する。温水タンク1及び冷却水タンク2には常温の水を入れても良い。冷却水タンク2の容量は、氷の溶解に従って水量が増えることを考慮して、大きさを決定する。水量増加の懸念がある場合は、例えば、フロート・スイッチ等を設け、制御部22で装置の停止を行うことも出来る。保冷剤を使用する場合は、この限りではない。
【0010】
温水タンク1の温度制御は、温水温度センサー3による制御部22の指示によりヒータ11の入り切りで実現される。冷却水タンク2の温度制御は、図2(b)に示されるように、砕氷18に冷却水循環排出パイプ14から排出された循環水を、冷却水温度センサー4による制御部22の指示により、正逆転ポンプ7の入り切り、または正逆転ポンプ7の回転数の増減により循環量を変えて実現する。冷却水の温度が設定温度よりも上がったときは循環量を増やし、結果として、循環水が砕氷18と熱交換量を増やし循環水を冷やす。温度制御は制御回路内のアナログ的、デジタル的またはコンピュータによる演算により、例えば、PID演算等で行うが、既知の技術であるので、詳細は省略する。
【0011】
砕氷の能力の有無は、制御部22で冷却水の温度制御をしても温度が下がらなくなったことで検出する。
【0012】
受け皿19に積まれた砕氷18に循環排水が流され、熱交換された循環水がスムースに冷却タンク2に流れ、かつ、砕氷が中央部に集まりやすくするために、図2(a)、(b)に示すように、受け皿19は円錐状に形成され、底部は砕氷18が落下しないようにアミ20が貼ってある。受け皿19は一例であり、砕氷に循環水を流し、その循環量の調整で冷却水の温度を制御できるものであれば、他の形状でも良い。
【0013】
温冷パッド8に温水を循環させるときは、温冷水切換電磁弁5と循環排出切換電磁弁6を温水側に切換え、正逆転ポンプ7は正転で運転し、温水タンク1、温水給排パイプ9、温冷水切換電磁弁5、正逆転ポンプ7、循環チューブ15a、温冷パット8、循環チューブ15b、循環排出切換電磁弁6、温水循環排出パイプ13を経由して、温水タンク1に戻り循環する。
【0014】
温冷パッド8に冷却水を循環させるときは、温冷水切換電磁弁5と循環排出切換電磁弁6を冷却水側に切換え、正逆転ポンプ7は正転で運転し、冷却水タンク2、冷却水給排パイプ10、温冷水切換電磁弁5、正逆転ポンプ7、循環チューブ15a、温冷パット8、循環チューブ15b、循環排出切換電磁弁6、冷却水循環排出パイプ14を経由して冷却水タンク2に戻り循環する。
【0015】
温冷パット8に温水が循環している状態から冷却水を循環させるときは、正逆転ポンプ7を逆転させ、温水循環排出パイプ13、循環排出切換電磁弁6、循環チューブ15b、温冷パット8、循環チューブ15a、正逆転ポンプ7を経由し、温冷水切換電磁弁5までの温水を抜き出し、その後、冷却水の循環を行う。
【0016】
温冷パット8に冷却水が循環している状態から温水を循環させるときは、正逆転ポンプ7を逆転させ冷却水循環排出パイプ14、循環排出切換電磁弁6、循環チューブ15b、温冷パット8、循環チューブ15a、正逆転ポンプ7を経由し、温冷水切換電磁弁5までの冷却水を抜き出し、その後、温水の循環を行う。
【0017】
温冷水切換時の正逆転ポンプ7の運転、停止は、正逆転ポンプ7の給排水能力、及び温冷パッド8を含む循環系の容積から駆動時間を算出し、制御部22のタイマーで行う。この制御は、例えば、該タンク内に設けた光電スイッチにより、循環水の抜き取り終了時に見られる空気の泡を検出して行っても良い。この循環水の抜き取りは、温水循環排出パイプ13の排出口と冷却水循環排出パイプ14の排出口が該タンク内の大気中に位置していることが肝要である。従って温冷水の切換時に於いて、温水と冷却水が混入することはなく、最小の熱量損失で実行できる。
【0018】
温水循環排出パイプ13及び冷却水循環排出パイプ14の排出口が、図1に示すように、水面上部に位置しているので、温冷水の滴下により、温水タンク1の温水、及び冷却水タンク2の冷却水が適度に攪拌され、温水タンク1及び冷却水タンク2の温度分布がほぼ一様になる
【0019】
温冷パッド8は患部にしっかり密着し、熱交換が十分にできる様に柔軟、かつ、熱伝導率が高い素材で形成される。図3(a)、(b)に示すように、循環水は多数の仕切り21により循環経路が増え、温冷パッド8全体の温度分布が一様になる。
【0020】
図4は構成図であり、制御部22と機構部は一体化され、温冷パッド8は循環チューブ15a、15bを介して機構部と接続される。
【0021】
【発明の効果】
使用条件を限定することで、冷却部分に一般家庭にある氷、または保冷剤を使用でき、また、1個の正逆転ポンプと2個の切換電磁弁と、機構部を考えられる最小の部品点数で構成でき、血行促進装置が安価に提供できる。
【図面の簡単な説明】
【図1】血行促進装置の機構部分の概略図である。
【図2】(a)は冷却水を得る部分の平面図である。
(b)は冷却水を得る部分の断面図である。
【図3】(a)は温冷パッドの上面断面図である。
(b)は温冷パッドの断面図である。
【図4】血行促進装置の構成図である。
【符号の説明】
1 温水タンク
2 冷却水タンク
3 温水温度センサー
4 冷却水温度センサー
5 温冷水切換電磁弁
6 循環排出切換電磁弁
7 正逆転ポンプ
8 温冷パッド
9 温水給排パイプ
10 冷却水給排パイプ
11 ヒータ
12 断熱材
13 温水循環排出パイプ
14 冷却水循環排出パイプ
15a 循環チューブ
15b 循環チューブ
16 温水タンクフタ
17 冷却水タンクフタ
18 砕氷
19 受け皿
20 アミ
21 仕切り
22 制御部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is a blood circulation promoting device for treating shoulder stiffness, lower back pain, muscle pain, etc., recovering from fatigue and relaxing using hot water and cooling water.
[0002]
[Prior art]
It is known that performing heating or cooling continuously or intermittently depending on the condition of the affected part is good for promoting blood circulation. It is also known that the effect of promoting blood circulation is higher when heating and cooling are alternately repeated. Until now, various proposals have been made such that hot water and cooling water are alternately sent to a heating / cooling pad, and heating and cooling are directly applied to an affected part using a Peltier device.
[0003]
However, any of these methods requires a large-scale device such as a Peltier device or a compressor for producing cooling water, and it has been difficult to easily use a blood circulation promoting device in ordinary households.
[0004]
[Problems to be solved by the invention]
A general treatment time using warm water and cooling water is limited to a range of 10 minutes to 1 hour at most. It is an object of the present invention to provide an inexpensive blood circulation promoting device that can be used in ordinary households by utilizing ice in a cooling portion under such limited conditions.
[0005]
[Means for Solving the Problems]
The present invention uses crushed ice or a cooling agent for the cooling part, and at the time of cooling, circulates and discharges water from the cooling water tank to the crushed ice in the upper tray of the cooling water tank via a pump and a heating / cooling pad. The temperature sensor controls the amount of circulation, keeps the temperature of the cooling water almost constant until the ice-breaking ability is lost, and simplifies the cooling part. For the control of the circulating water, the pump is preferably a forward / reverse pump whose flow rate can be adjusted, but can be realized by a quantitative forward / reverse pump. In the following description, the term “crushed ice or cold insulator” will be referred to as “crushed ice”.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The purpose of making cooling water and the purpose of operating with energy saving are to easily make cooling water using crushed ice, and by controlling the forward / reverse pump and switching solenoid valve, hot water and cooling water do not mix and waste energy is not consumed. So realized.
[0007]
【Example】
FIG. 1 is a schematic view of a mechanism portion of the apparatus of the present invention. Circulating water is supplied from a hot water tank 1 or a cooling water tank 2 to a hot / cooling pad 8 by a forward / reverse rotation pump 7 via a hot / cold water switching solenoid valve 5, and then circulated. The water is drained to the hot water tank 1 or the cooling water tank 2 through the switching solenoid valve 6, and this circulation is repeated.
[0008]
The forward / reverse rotation pump 7 can adjust the circulation amount by the control unit 22 and sucks air instead of hot and cold water at the time of reverse rotation. The hot / cold water switching solenoid valve 5 and the circulation / discharge switching solenoid valve 6 can be arbitrarily selected from the control unit 22 on the hot water side and the cooling water side.
[0009]
The hot water tank 1 and the cooling water tank 2 are generally shielded from the outside air by a heat insulating material 12, a hot water tank lid 16 and a cooling water tank lid 17, so that unnecessary energy is not consumed. At the start of use of the apparatus, hot water of 50 ° C. or less is put into the hot water tank 1 and water of 15 ° C. or more is put into the cooling water tank 2. An appropriate amount of crushed ice 18 is supplied to a tray 19 in the cooling water tank 2. The warm water tank 1 and the cooling water tank 2 may contain normal-temperature water. The size of the cooling water tank 2 is determined in consideration of the fact that the amount of water increases as the ice melts. If there is a concern that the amount of water will increase, for example, a float switch or the like may be provided, and the control unit 22 may stop the device. This is not the case when using a cooling agent.
[0010]
The temperature control of the hot water tank 1 is realized by turning on and off the heater 11 according to an instruction of the control unit 22 by the hot water temperature sensor 3. As shown in FIG. 2B, the temperature control of the cooling water tank 2 is performed by directing the circulating water discharged from the cooling water circulating / discharging pipe 14 to the crushed ice 18 according to an instruction of the control unit 22 by the cooling water temperature sensor 4. It is realized by changing the circulation amount by turning on / off the reverse rotation pump 7 or increasing or decreasing the rotation speed of the forward / reverse rotation pump 7. When the temperature of the cooling water rises above the set temperature, the circulation amount is increased, and as a result, the circulation water increases the heat exchange amount with the crushed ice 18 to cool the circulation water. The temperature control is performed by analog, digital or computer calculation in the control circuit, for example, by PID calculation, etc. However, since it is a known technique, the details are omitted.
[0011]
The presence or absence of the ability to break ice is detected when the temperature does not decrease even if the temperature of the cooling water is controlled by the control unit 22.
[0012]
2 (a), (a) in order to make the circulating drainage flow to the crushed ice 18 loaded on the tray 19, the circulated water having undergone heat exchange to flow smoothly to the cooling tank 2, and the crushed ice to be easily collected at the center. As shown in b), the receiving tray 19 is formed in a conical shape, and a bottom 20 is affixed to the bottom to prevent the crushed ice 18 from falling. The tray 19 is an example, and may have another shape as long as circulating water flows through the crushed ice and the temperature of the cooling water can be controlled by adjusting the amount of circulating water.
[0013]
When hot water is circulated through the hot / cold pad 8, the hot / cold water switching solenoid valve 5 and the circulation / discharge switching solenoid valve 6 are switched to the hot water side, the forward / reverse pump 7 is operated in forward rotation, the hot water tank 1, the hot water supply / drain pipe 9, return to hot water tank 1 via hot / cold water switching solenoid valve 5, forward / reverse pump 7, circulation tube 15a, hot / cold pad 8, circulation tube 15b, circulation / discharge switching solenoid valve 6, and hot water circulation / discharge pipe 13 I do.
[0014]
When circulating the cooling water through the hot / cold pad 8, the hot / cold water switching solenoid valve 5 and the circulation / discharge switching solenoid valve 6 are switched to the cooling water side, the forward / reverse pump 7 is operated in normal rotation, and the cooling water tank 2 and the cooling water tank 2 are cooled. Cooling water tank via water supply / discharge pipe 10, hot / cold water switching electromagnetic valve 5, forward / reverse pump 7, circulation tube 15a, hot / cold pad 8, circulation tube 15b, circulation / discharge switching electromagnetic valve 6, cooling water circulation / discharge pipe 14 Return to 2 and circulate.
[0015]
When circulating cooling water from a state in which hot water is circulating in the hot / cold pat 8, the forward / reverse pump 7 is reversed, and the hot water circulating / discharging pipe 13, the circulation / discharge switching solenoid valve 6, the circulation tube 15b, the hot / cold pat 8 The hot water is drawn up to the hot / cold water switching electromagnetic valve 5 via the circulation tube 15a and the forward / reverse pump 7, and then the cooling water is circulated.
[0016]
When circulating the hot water from the state where the cooling water is circulating in the hot / cold pad 8, the forward / reverse pump 7 is rotated in the reverse direction, the cooling water circulation / discharge pipe 14, the circulation / discharge switching solenoid valve 6, the circulation tube 15b, the hot / cold pad 8, Cooling water is drawn up to the hot / cold water switching electromagnetic valve 5 via the circulation tube 15a and the forward / reverse pump 7, and then hot water is circulated.
[0017]
The operation and stoppage of the forward / reverse pump 7 at the time of hot / cold water switching is performed by a timer of the control unit 22 by calculating a drive time from the supply / drainage capacity of the forward / reverse pump 7 and the volume of the circulation system including the hot / cold pad 8. This control may be performed, for example, by detecting air bubbles seen at the end of extracting the circulating water by using a photoelectric switch provided in the tank. It is important that the outlet of the hot water circulation / discharge pipe 13 and the outlet of the cooling water circulation / discharge pipe 14 are located in the atmosphere in the tank. Therefore, at the time of switching between the hot and cold water, the hot water and the cooling water do not mix with each other, and can be executed with the minimum heat loss.
[0018]
Since the outlets of the hot water circulation discharge pipe 13 and the cooling water circulation discharge pipe 14 are located above the water surface as shown in FIG. 1, the hot water of the hot water tank 1 and the cooling water tank 2 The cooling water is appropriately stirred, and the temperature distribution in the hot water tank 1 and the cooling water tank 2 becomes substantially uniform.
The heating / cooling pad 8 is formed of a material that is firmly adhered to the affected area and is flexible and has high thermal conductivity so that heat exchange can be sufficiently performed. As shown in FIGS. 3A and 3B, the circulation path of the circulating water is increased by a large number of partitions 21, and the temperature distribution of the entire heating / cooling pad 8 becomes uniform.
[0020]
FIG. 4 is a configuration diagram, in which the control unit 22 and the mechanism unit are integrated, and the heating / cooling pad 8 is connected to the mechanism unit via circulation tubes 15a and 15b.
[0021]
【The invention's effect】
By limiting the conditions of use, ice or refrigerant used in ordinary households can be used for the cooling part, and one forward / reverse pump, two switching solenoid valves, and the minimum number of parts that can be considered for the mechanical part And a blood circulation promoting device can be provided at low cost.
[Brief description of the drawings]
FIG. 1 is a schematic view of a mechanism part of a blood circulation promoting device.
FIG. 2A is a plan view of a portion for obtaining cooling water.
(B) is sectional drawing of the part which obtains cooling water.
FIG. 3A is a top cross-sectional view of a heating / cooling pad.
(B) is a cross-sectional view of the heating / cooling pad.
FIG. 4 is a configuration diagram of a blood circulation promoting device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Hot water tank 2 Cooling water tank 3 Hot water temperature sensor 4 Cooling water temperature sensor 5 Hot / cold water switching solenoid valve 6 Circulation discharge switching solenoid valve 7 Forward / reverse rotation pump 8 Hot / cold pad 9 Hot water supply / discharge pipe 10 Cooling water supply / discharge pipe 11 Heater 12 Heat insulation material 13 Hot water circulation discharge pipe 14 Cooling water circulation discharge pipe 15a Circulation tube 15b Circulation tube 16 Hot water tank lid 17 Cooling water tank lid 18 Crushed ice 19 Receiving tray 20 Ami 21 Partition 22 Control unit