JP2004095763A - Laminate material for electronic component - Google Patents

Laminate material for electronic component Download PDF

Info

Publication number
JP2004095763A
JP2004095763A JP2002253417A JP2002253417A JP2004095763A JP 2004095763 A JP2004095763 A JP 2004095763A JP 2002253417 A JP2002253417 A JP 2002253417A JP 2002253417 A JP2002253417 A JP 2002253417A JP 2004095763 A JP2004095763 A JP 2004095763A
Authority
JP
Japan
Prior art keywords
layer
intermediate layer
electronic component
laminated
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002253417A
Other languages
Japanese (ja)
Inventor
Hiroshi Takashima
高島 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002253417A priority Critical patent/JP2004095763A/en
Publication of JP2004095763A publication Critical patent/JP2004095763A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminate material for an electronic component having a fine and highly strong intermediate layer. <P>SOLUTION: A laminate material constituted of at least three layers used as raw materials for an electronic component can be constituted of a plate material/an intermediate layer constituted of a single or a plurality of layers/plate material, and at least one layer of the intermediate layers can be constituted of a dry type deposited metal layer. A crystal particle dimension in the cross-sectional tissue of the dry type deposited metal layer can be set so as to be substantially 5μm or less. It is desired that the laminate material for the electronic component is configured so that the mean roughness of the joint interface of the plate material and the intermediate layer can be set so as to be substantially 1μm or less. It is more desired that the laminate material for an electronic component is configured so that the dry type deposited metal layer can be formed as a columnar crystal, and it is further desired that the laminate material for an electronic component is configured so that peeling strength can be set so as to range from 1kN/m or more. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、電子部品の構成部材として用いられる極薄中間層を有する積層板材に関するものである。
【0002】
【従来の技術】
近年、電子部品及び実装分野では、小型化、薄型、軽量化が著しく進み、従来の構造の改良や全く新規な構造の開発が精力的に行われている。
例えば、SAW(Suraface Acoustic Wave)フィルター、水晶振動子等に採用されているセラミックパッケージは、セラミックパッケージ上にFe−Ni合金板やFe−Ni−Co合金板の両面に厚さ数μmのNi中間層を配置した板材とロウ材とを積層した積層板材からなる蓋体を被せ、電子ビーム等により加熱、封止するハーメチックシール構造が採用されている。
配線回路基板においては、複数の基板を積層した多層基板の開発が行われており、上下基板の接続方法について多くの提案が行われている。例えば、特開2001−111189号では、導体回路形成用銅層と突起形成用銅層の間に厚さ数μmのエッチングバリア層を配置した三層構造からなる積層板材を用いる方法が開示されている。
【0003】
【発明が解決しようとする課題】
前記蓋体のNi中間層は蓋体とセラミック製のベースとの接合に大きな影響を及ぼし、特にメッキにより形成されたNi中間層はミクロホールやピンホールを多数内包するため強度が低く、加熱前後の伸縮時に破断するためパッケージの機密性を損なう原因となる。
また、配線回路基板に関する上記の特開2001−111189号では、エッチングにより片側の銅層に導体回路を、反対側の銅層にはバンプと呼ばれる突起を形成することでエッチングバリア層を介して導体回路とバンプとを接続した基板を複数作成し、これらを積層し多層基板とする。この例に於いては、前記積層板材の中間層はエッチングバリアと上下層間の電気的接続を担うため、中間層に欠陥が存在するとエッチングバリア性と電気的接続信頼性を損なう原因となり、中間層の強度が低い場合も同様に基板製造工程で加わる熱伸縮により破断して電気的接続信頼性を損なう原因となるが、この方法においても中間層はメッキにより形成されることが開示されており、ミクロホールやピンホールを多数内包するため強度が低く、エッチングバリア性に劣るなどという欠点を有しているものである。
【0004】
以上説明するように、従来から用いられている電子部品用積層板材においては、過熱に伴う軟化により中間層の強度が低いことや中間層に存在する欠陥によりエッチングバリア性に劣るなどの問題点が指摘されている。
本発明の目的は上述の問題を解決し、緻密で高強度な中間層を有する電子部品用積層板材を提供することである。
【0005】
【課題を解決するための手段】
本発明者は上述の問題を鋭意検討した結果、中間層が乾式成膜層から成り、その断面組織における結晶粒径を微細に調整することで強度とエッチングバリア性に優れた中間層を有する積層板材となることを見出し、本発明に到達した。
すなわち本発明は、電子部品用素材として用いられる三つ以上の層から構成される積層板材において、該積層板材は板材/単層または複数層でなる中間層/板材の構成を有し、前記中間層の少なくとも一層が乾式成膜金属層からなり、該乾式成膜金属層の断面組織における結晶粒径が実質的に5μm以下である電子部品用積層板材である。
好ましくは、板材と中間層との接合界面の平均粗さが実質的に1μm以下である電子部品用積層板材である。
更に好ましくは、乾式成膜金属層が柱状晶である電子部品用積層板材である。
また更に望ましくは、引き剥がし強さが1kN/m以上である電子部品用積層板材である。
【0006】
【発明の実施の形態】
上述したように、本発明の重要な特徴は三つ以上の層から構成される積層板材において、中間層のうち少なくとも一層が乾式成膜金属層からなり、前記乾式成膜金属層の断面組織における結晶粒径を実質的に5μm以下としたことにある。
中間層を乾式成膜金属層とした理由は、本質的に密度が高く、欠陥やクラックが極めて少ないためであり、特にエッチングバリアとして用いる場合、優れたバリア性を有するためである。また、半導体用パッケージに用いる場合に動作信頼性上問題となるアルカリ金属(Na、K)等の不純物の混入が本質的に極めて少ないこともその理由である。
なお、本発明で言う中間層のうち少なくとも一層が乾式成膜金属層からなるとは、積層板材を構成する板材が板材と板材との積層材または、板材にメッキが施されて積層された構造となった場合もあり、中間層が複数層となる場合を含むものとして、中間層のうち少なくとも一層が乾式成膜金属層からなるとした。
【0007】
結晶粒径を前述の範囲に規定した理由は、Petchの式(降伏点)∝(結晶粒径)−1/2から理解されるように中間層の強度を向上させる効果があるためである。このため結晶粒径は小さいほど好ましく5μm以下とすれば十分であるが、好ましくは3μm以下であり、更に好ましくは1μm以下である。
また、特に配線回路基板に用いられる積層板材において中間層にφ500μm以下の円形パターンや巾100μm以下の直線などの微細なパターンをエッチングする際、高いパターン精度を得るには結晶粒径を1μm以下とすると良く、好ましくは0.5μm以下とすると良い。
なお、本発明において結晶粒径とは図1に示す通り断面組織の電子顕微鏡像や透過電子顕微鏡像等において個々の結晶粒に対して描いた最小外接円の直径dとする。また、結晶粒界は多くの材質において後述する個々の柱状晶内に生成され、乾式成膜金属層を膜面に垂直に切断した断面、もしくは膜面に平行にスライスした断面を透過型電子顕微鏡で観察することにより観察可能である。
【0008】
本発明の積層金属板においては、界面粗さを平均1μm以下に調整することが好ましい。その理由は、界面の粗さがこれ以上大きいと中間層の破断の起点となり、接続信頼性を損ねる原因となるためである。平均界面粗さは好ましくは0.5μm以下であり、更に好ましくは0.3μm以下である。なお、界面粗さの定義は例えば日本工業規格B0601に従うものとする。
また、平均界面粗さを前述の範囲に調整するには、後述する製造方法において素材の表面粗さを上述の範囲に調整することにより可能である。
【0009】
本発明の積層金属板においては、乾式成膜金属層が柱状晶からなることが好ましい。その理由は乾式成膜層を柱状晶とすることにより繊維状構造が得られ、特に繊維に対して直角にあたる方向すなわち膜面に平行な方向に加わる応力に対する強度を高めることが出来るためである。
なお、本発明において柱状晶とは乾式成膜金属層を膜面に垂直に切断した断面に現れる繊維状の構造を指す。この柱状晶の輪郭は前述の結晶粒径観察と同様に透過型電子顕微鏡像においても確認出来るし、前記切断面をバフ研磨しイオンミリング装置等によりエッチングを施したのち走査型電子顕微鏡で観察しても明瞭に観察が可能である。
また本発明では、図2に示す柱状晶断面組織の模式図において内接する最長の線分をLとし、その線分に直交し結晶粒の輪郭に内接する最長の線分の長さをLとしたとき、L/Lで定義されるアスペクト比が2を超えるものと定義する。
【0010】
更に、本発明の積層金属板においては、引き剥がし強度が1kN/m以上であることが好ましい。その理由は引き剥がし強度がこの値を下回ると、例えば前記ハーメチックシール材や配線材に用いた場合、熱伸縮に伴うストレスにより界面から剥離する場合があるためである。
なお、引き剥がし強さの評価は一般的な180度ピールで行うことが可能であり、例えば日本工業規格C6471方法Bに定められている方法により行うものと定義する。
【0011】
本発明の積層板材の製造方法としては、例えば本発明者らが特開2001−162382号に開示している製造方法によって製造することができ、この特開2001−162382号の製造方法の適用が生産性の観点から言うと好適であり、この方法で得られる積層板材は帯状の板材となる。
図3に示すように、真空槽内に配置された巻き出しスプール(2)と、もう一方の巻き出しスプールとから巻き出された金属箔A(5)と、金属箔B(6)が乾式成膜装置の蒸着源(4)とほぼ対峙する位置に設けられた圧接用ロール(7)上を通過する時、箔の被接合表面に乾式成膜法により乾式成膜層が付着形成され、圧接用ロール(7)によって圧着接合が完了し、金属箔Aと金属箔Bとの中間に乾式成膜金属層を有する電子部品用積層板材(8)を得ることが出来、これを巻き取りスプール(3)によって巻き取ることもできる。
【0012】
乾式成膜層の形成方法としては、真空蒸着法、スパッタ法、イオンプレーティング等の物理蒸着法が適しており、いずれを選択しても良い。
結晶粒径を前記範囲に調整するためには、成膜条件を調整することにより可能であるが、例えば基板温度をT/T<0.8(T:基板温度、T:融点、単位K)を満たす範囲に調整すると良い。
実際の基板温度は成膜時に基板に加わる熱量と基板からの放熱により失われる熱量によって決定されるため、これらの関係を制御することにより前記範囲に調整すると良い。
但し、基板温度を下げ過ぎると、乾式成膜層と板材との接合強度が低下する場合があるので、過剰に冷却することは避ける必要がある。また、成膜雰囲気に不純物を導入もしくは残留させることによって粒成長を抑制し結晶粒径を前記範囲に調整することが出来る。例えば、蒸着の場合、真空排気後、成膜前の残留ガス中の酸素分圧を増加させることにより結晶粒径を微細化させることが出来る。
【0013】
乾式成膜層を柱状晶とするためには、例えば基板温度をT/T<0.7(T:基板温度、T:融点 単位K)を満たす範囲に調整すると良い。また、成膜方式にスパッタ法を採用した場合、放電圧力を通常より高く設定すると良い。
但し、放電圧力が高過ぎると成膜速度が低下し生産性が低下するため、過剰に高圧に設定することは避ける必要がある。
【0014】
【実施例】
以下の実施例により本発明の積層板材について詳述する。
(実施例1)
図3に示す装置の巻き出しスプールに厚さ100μmのFe−29Ni−17Co(mass%)の板材と厚さ20μmのAg−29%Cu(mass%)の板材を取り付け、圧接ロールに対峙させた蒸着源からNiを蒸着しながら接合を行い、Fe−Ni−Co(100μm)/Ni(10μm)/Ag−Cu(20μm)なる三層構成の電子部品用積層板材とした。この際、圧接ロール内に組み込んだヒーターにより素材温度が100℃となるよう調整した。
なお、界面粗さの影響を比較するためそれぞれの板材は表面粗さが異なるものを複数用意しそれぞれについて積層板材を作製した。
比較材として片面に電解Niメッキを施したFe−29Ni−17Co(mass%)の板材のNiメッキ面を接合面としてAg−29Cu(mass%)の板材と重ね合わせ、クラッド圧延により接合した上述の積層板材と同様の厚さ構成からなる電子部品用積層板材を作製した。
【0015】
これらの積層板材の中間層断面組織を観察するため、透過電子顕微鏡を用いて観察を行い中間層の結晶粒径を求めた。さらに断面をバフ研磨後イオンミリング装置を用いてエッチングを行い、柱状構造の輪郭を出した後、走査型電子顕微鏡を用いて観察を行い、アスペクト比、界面の粗さを画像処理により求めた。更に、日本工業規格C6471方法Bに定義されている方法によりピール強度を測定した。
次に上述の積層板材について180度折り曲げ試験を行い、試験前後の中間層の断面を研磨し光学顕微鏡により中間層の断面ミクロ組織を観察した。
更に上記素材を蓋の形状に打ち抜き加工し、セラミックベース上にロウ付けしハーメチックシール構造のパッケージを作成した。次にそれぞれの積層板材を用いたパッケージを無作為に抽出し気密性検査を実施した。
【0016】
【表1】

Figure 2004095763
【0017】
表1より、本発明の積層金属箔のNi層には殆ど欠陥が見られなかったのに対し、比較例においては多数の欠陥が見られたことから、本発明の積層金属箔の中間層は高い強度を有することがわかる。また、接合界面の平均粗さRaを1μm以下に調整した試料は特に高い強度を有することがわかる。なお、比較例においては中間層に柱状構造が確認出来なかった。
また、本発明の積層金属箔を用いたパッケージは気密性が良好であったが、比較例の積層金属箔においては、不良の比率が高く、断面観察を行ったところNi層の破断、剥離が生じていた。
【0018】
(実施例2)
図3に示す装置の巻き出し側に厚さ25μmと50μmの無酸素銅箔をそれぞれ取り付け、圧接ロールに対峙させた蒸着源からTiを蒸着しながら接合を行い、Cu(25μm)/Ti(1μm)/Cu(50μm)なる三層構成の積層板材を得た。この際、結晶粒径を変化させるために到達真空度を10−2 ̄10−4Paの範囲で変化させ、界面粗さの影響を比較するために無酸素銅箔は表面粗さを変えたものを複数用意し、それぞれについて電子部品用積層板材を作製した。
比較材として真空熱間圧延にて無酸素銅、Ti箔、無酸素銅箔の順に重ね合わせ真空熱間クラッドにより接合したCu(25μm)/Ti(1μm)/Cu(50μm)なる三層構成の積層板材を作製した。
次にこれらの積層板材の中間層断面組織を観察するため、透過電子顕微鏡を用いて観察を行い中間層の結晶粒径を求めた。さらに断面をバフ研磨後イオンミリング装置を用いてエッチングを行い、柱状構造の輪郭を出した後、走査型電子顕微鏡を用いて観察を行い、アスペクト比、界面の粗さを画像処理により求めた。
【0019】
【表2】
Figure 2004095763
【0020】
上記積層板材の厚さ50μmの銅層に直径φ200μmのバンプのレジストパターンを形成し、次いで塩化第二鉄(47ボーメ)を用いて銅層をエッチングし、エッチング後のバリア層の表面状態を実体顕微鏡を用いて観察した。本発明例の積層板材はいずれもバリア性が良好であったが、比較例においてはバリア層を貫通し反対側の銅層までエッチングされている部分が見られた。
続けてメルテックス(株)製エンストリップPL−142コンクを用いてTi層のエッチングを行い、バンプ周辺を走査型電子顕微鏡により隈なく観察したところ、本発明例の積層板材に形成したバンプ周辺はTi層の結晶粒径が微細であるためバンプのパターンに忠実な形状が得られていたのに対し、比較例においてはTi層の結晶粒径が大きいため、凹凸が見られた。
更に、上記素材を用いたテスト用基板を作成し、それぞれについて電流導通テストを行ったところ、本発明の積層金属板を用いた基板はバンプの導通が良好で高い合格率を示したのに対し、比較例の積層金属箔においては、Ti層の破断により導通不良が発生した。不良箇所の断面観察を行ったところTi層の破断によるバンプ脱落が生じていた。特に結晶粒径が微細で表面粗さが低いものほど高いピール強度と導通信頼性を有していた。
【0021】
【発明の効果】
本発明によれば、高い品質を備えた中間層を有する電子部品用積層板材が得られ、高密度なエレクトロニクス用実装部材にとって欠くことのできない技術となる。
【図面の簡単な説明】
【図1】中間層の結晶粒径の定義を示す模式図である。
【図2】柱状晶の定義を示す模式図である。
【図3】積層板材の製造装置の一例を示す模式図である。
【符号の説明】
1.乾式成膜金属層、2.巻き出しスプール、3.巻き取りスプール、
4.蒸着源、5.金属箔A、6.金属箔B、7.圧接用ロール、
8.積層板材(電子部品用積層板材)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a laminated board having an extremely thin intermediate layer used as a component of an electronic component.
[0002]
[Prior art]
In recent years, in the field of electronic components and mounting, miniaturization, thinning, and weight reduction have been remarkably progressing, and improvements of conventional structures and development of completely new structures have been vigorously made.
For example, a ceramic package used for a SAW (Surface Acoustic Wave) filter, a crystal oscillator, or the like is composed of an Fe—Ni alloy plate or a Fe—Ni—Co alloy plate on both sides of a ceramic intermediate package. A hermetic seal structure is adopted in which a cover made of a laminated plate material in which a plate material on which layers are arranged and a brazing material are laminated is covered, heated and sealed by an electron beam or the like.
In the printed circuit board, a multilayer board in which a plurality of boards are stacked has been developed, and many proposals have been made on a method of connecting the upper and lower boards. For example, Japanese Patent Application Laid-Open No. 2001-111189 discloses a method of using a laminate having a three-layer structure in which an etching barrier layer having a thickness of several μm is disposed between a copper layer for forming a conductor circuit and a copper layer for forming a protrusion. I have.
[0003]
[Problems to be solved by the invention]
The Ni intermediate layer of the lid has a great effect on the joining between the lid and the ceramic base. In particular, the Ni intermediate layer formed by plating has many microholes and pinholes, and thus has low strength. The package is broken when it expands and contracts, which may impair the confidentiality of the package.
In Japanese Patent Application Laid-Open No. 2001-111189 relating to a printed circuit board, a conductor circuit is formed on a copper layer on one side by etching, and a protrusion called a bump is formed on a copper layer on the other side, thereby forming a conductor via an etching barrier layer. A plurality of substrates in which circuits and bumps are connected are prepared, and these are laminated to form a multilayer substrate. In this example, since the intermediate layer of the laminated plate material serves as an electrical connection between the etching barrier and the upper and lower layers, the presence of a defect in the intermediate layer causes deterioration of the etching barrier property and electrical connection reliability. If the strength is low, it may cause breakage due to thermal expansion and contraction applied in the substrate manufacturing process and impair the electrical connection reliability, but it is disclosed that the intermediate layer is also formed by plating in this method. It has disadvantages such as low strength due to inclusion of many microholes and pinholes and poor etching barrier properties.
[0004]
As described above, conventionally used electronic component laminates have problems such as low strength of the intermediate layer due to softening due to overheating and poor etching barrier properties due to defects existing in the intermediate layer. It is pointed out.
An object of the present invention is to solve the above-mentioned problems and to provide a laminated board for electronic components having a dense and high-strength intermediate layer.
[0005]
[Means for Solving the Problems]
As a result of the inventor's intensive study of the above-described problems, the intermediate layer is composed of a dry film-forming layer, and a laminate having an intermediate layer having excellent strength and etching barrier properties by finely adjusting the crystal grain size in the sectional structure thereof. The present inventors have found that it becomes a plate material, and have reached the present invention.
That is, the present invention relates to a laminated board composed of three or more layers used as a material for electronic components, wherein the laminated board has a configuration of a plate / a single layer or an intermediate layer composed of a plurality of layers; At least one of the layers is a dry-formed metal layer, and the laminated film material for an electronic component has a crystal grain size of substantially 5 μm or less in a cross-sectional structure of the dry-formed metal layer.
Preferably, it is a laminated board for electronic components in which the average roughness of the joining interface between the board and the intermediate layer is substantially 1 μm or less.
More preferably, it is a laminated board material for electronic parts in which the dry film-forming metal layer is a columnar crystal.
Still more preferably, it is a laminate for electronic parts having a peel strength of 1 kN / m or more.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
As described above, an important feature of the present invention is that in a laminated board material composed of three or more layers, at least one of the intermediate layers is formed of a dry-formed metal layer, and the cross-sectional structure of the dry-formed metal layer is different. In other words, the crystal grain size is substantially 5 μm or less.
The reason why the intermediate layer is a dry-formed metal layer is that it has an inherently high density and extremely few defects and cracks, and has an excellent barrier property particularly when used as an etching barrier. Another reason is that contamination with impurities such as alkali metals (Na, K), which poses a problem in operation reliability when used in a semiconductor package, is essentially extremely small.
Note that at least one of the intermediate layers referred to in the present invention is composed of a dry film-forming metal layer, which means that the plate material constituting the laminated plate material is a laminated material of the plate material and the plate material, or a structure in which the plate material is plated and laminated. In some cases, the intermediate layer has a plurality of layers, and at least one of the intermediate layers is formed of a dry-formed metal layer.
[0007]
The reason why the crystal grain size is specified in the above-mentioned range is because there is an effect of improving the strength of the intermediate layer, as understood from the Petch equation (yield point) ∝ (crystal grain size) -1/2 . For this reason, it is sufficient that the crystal grain size is smaller and preferably 5 μm or less, but it is preferably 3 μm or less, and more preferably 1 μm or less.
In particular, when etching a fine pattern such as a circular pattern having a diameter of 500 μm or less or a straight line having a width of 100 μm or less in the intermediate layer in a laminate used for a printed circuit board, the crystal grain size is preferably 1 μm or less to obtain high pattern accuracy. It is preferable that the thickness be 0.5 μm or less.
Note that the crystal grain size in the present invention the diameter d G of the smallest circumscribed circle drawn on individual crystal grains in an electron micrograph or a transmission electron microscope image or the like as cross-sectional structure shown in FIG. In addition, crystal grain boundaries are generated in individual columnar crystals described later in many materials, and a cross section obtained by cutting a dry film-formed metal layer perpendicularly to the film surface or a cross section obtained by slicing parallel to the film surface is obtained by a transmission electron microscope. Observation is possible by observing with.
[0008]
In the laminated metal sheet of the present invention, it is preferable to adjust the interface roughness to an average of 1 μm or less. The reason is that if the roughness of the interface is larger than this, it becomes a starting point of the breakage of the intermediate layer, which causes a loss of connection reliability. The average interface roughness is preferably 0.5 μm or less, more preferably 0.3 μm or less. The definition of the interface roughness is based on, for example, Japanese Industrial Standard B0601.
Further, the average interface roughness can be adjusted to the above-mentioned range by adjusting the surface roughness of the material to the above-described range in a manufacturing method described later.
[0009]
In the laminated metal sheet of the present invention, it is preferable that the dry film-forming metal layer is composed of columnar crystals. The reason for this is that the fibrous structure can be obtained by making the dry film-forming layer a columnar crystal, and in particular, the strength against stress applied in a direction perpendicular to the fibers, that is, in a direction parallel to the film surface can be increased.
In the present invention, the columnar crystal refers to a fibrous structure appearing in a cross section of a dry-formed metal layer cut perpendicular to the film surface. The outline of the columnar crystals can be confirmed in a transmission electron microscope image as in the case of the crystal grain size observation described above, and the cut surface is buff-polished and etched with an ion milling device or the like, and then observed with a scanning electron microscope. Observation is clearly possible.
In the present invention also the longest line segment that is inscribed in the schematic diagram of the columnar crystal cross-sectional structure shown in FIG. 2 and L A, the length of the longest line segment that is inscribed in the grain contour perpendicular to the line segment L When B , the aspect ratio defined by L A / L B is defined as exceeding 2.
[0010]
Further, in the laminated metal sheet of the present invention, the peel strength is preferably 1 kN / m or more. The reason is that if the peeling strength is lower than this value, for example, when used in the hermetic sealing material or the wiring material, the material may be peeled off from the interface due to stress accompanying thermal expansion and contraction.
The evaluation of the peeling strength can be performed at a general 180 degree peel, and is defined to be performed according to, for example, a method specified in Japanese Industrial Standard C6471 Method B.
[0011]
As a method for producing the laminated plate material of the present invention, for example, the present inventors can produce the laminate by the production method disclosed in JP-A-2001-162382, and the production method of JP-A-2001-162382 can be applied. It is preferable from the viewpoint of productivity, and the laminated board obtained by this method is a strip-shaped board.
As shown in FIG. 3, the unwinding spool (2) arranged in the vacuum chamber, the metal foil A (5) unwound from the other unwinding spool, and the metal foil B (6) are dry-type. When passing over a pressure roll (7) provided at a position substantially opposite to the evaporation source (4) of the film forming apparatus, a dry film forming layer is adhered and formed on the surface to be joined of the foil by a dry film forming method, The pressure bonding is completed by the press roll (7), and a laminated board material (8) for an electronic component having a dry-formed metal layer between the metal foil A and the metal foil B can be obtained. It can also be wound by (3).
[0012]
As a method for forming the dry film formation layer, a physical vapor deposition method such as a vacuum vapor deposition method, a sputtering method, and an ion plating is suitable, and any of them may be selected.
The crystal grain size can be adjusted to the above range by adjusting the film forming conditions. For example, the substrate temperature is set to T / T M <0.8 (T: substrate temperature, T M : melting point, unit It is advisable to adjust to a range that satisfies K).
Since the actual substrate temperature is determined by the amount of heat applied to the substrate during film formation and the amount of heat lost due to heat radiation from the substrate, it is preferable to control these relationships to adjust the temperature to the above range.
However, if the substrate temperature is too low, the bonding strength between the dry film-forming layer and the plate material may decrease, so it is necessary to avoid excessive cooling. Further, by introducing or leaving impurities in the film formation atmosphere, grain growth can be suppressed and the crystal grain size can be adjusted to the above range. For example, in the case of vapor deposition, after evacuation, the crystal grain size can be reduced by increasing the oxygen partial pressure in the residual gas before film formation.
[0013]
In order to make the dry film formation layer into a columnar crystal, for example, the substrate temperature may be adjusted to a range that satisfies T / TM <0.7 (T: substrate temperature, TM : melting point unit K). When a sputtering method is used as the film forming method, the discharge pressure is preferably set higher than usual.
However, if the discharge pressure is too high, the film formation rate is reduced and the productivity is reduced. Therefore, it is necessary to avoid setting the pressure to an excessively high pressure.
[0014]
【Example】
The laminated plate of the present invention will be described in detail with reference to the following examples.
(Example 1)
A plate material of 100 μm thick Fe-29Ni-17Co (mass%) and a plate material of 20 μm thick Ag-29% Cu (mass%) were attached to the unwind spool of the apparatus shown in FIG. Bonding was performed while Ni was vapor-deposited from a vapor deposition source to obtain a three-layer laminated board material for electronic components of Fe—Ni—Co (100 μm) / Ni (10 μm) / Ag—Cu (20 μm). At this time, the raw material temperature was adjusted to 100 ° C. by a heater incorporated in the press roll.
In order to compare the influence of the interface roughness, a plurality of plate materials having different surface roughnesses were prepared, and a laminated plate material was produced for each of them.
As a comparative material, the Ni-plated surface of a plate material of Fe-29Ni-17Co (mass%) having one surface subjected to electrolytic Ni plating was joined to the Ag-29Cu (mass%) plate material as a joining surface, and joined by clad rolling. A laminate for electronic components having a thickness similar to that of the laminate was prepared.
[0015]
In order to observe the cross-sectional structure of the intermediate layer of these laminates, observation was performed using a transmission electron microscope to determine the crystal grain size of the intermediate layer. Further, after the cross section was buff-polished, etching was performed using an ion milling device, and after the contour of the columnar structure was obtained, observation was performed using a scanning electron microscope, and the aspect ratio and interface roughness were determined by image processing. Further, the peel strength was measured by the method defined in Japanese Industrial Standard C6471 Method B.
Next, a 180-degree bending test was performed on the above-mentioned laminated plate material, the cross section of the intermediate layer before and after the test was polished, and the cross-sectional microstructure of the intermediate layer was observed with an optical microscope.
Further, the above-mentioned material was punched into a lid shape and brazed on a ceramic base to form a package having a hermetic seal structure. Next, the package using each laminated board material was extracted at random and the airtightness test was performed.
[0016]
[Table 1]
Figure 2004095763
[0017]
According to Table 1, while few defects were found in the Ni layer of the laminated metal foil of the present invention, whereas a large number of defects were found in the comparative example, the intermediate layer of the laminated metal foil of the present invention It turns out that it has high strength. In addition, it can be seen that the sample in which the average roughness Ra of the bonding interface is adjusted to 1 μm or less has particularly high strength. In the comparative example, no columnar structure was observed in the intermediate layer.
Although the package using the laminated metal foil of the present invention had good airtightness, the laminated metal foil of the comparative example had a high defect rate, and when the cross section was observed, the Ni layer was broken and peeled. Had occurred.
[0018]
(Example 2)
Oxygen-free copper foils having a thickness of 25 μm and 50 μm were respectively attached to the unwinding side of the apparatus shown in FIG. ) / Cu (50 μm). At this time, the ultimate vacuum was changed in the range of 10 −2  ̄10 −4 Pa in order to change the crystal grain size, and the oxygen-free copper foil was changed in surface roughness in order to compare the influence of interface roughness. A plurality of products were prepared, and a laminate for electronic components was produced for each of them.
As a comparative material, a three-layer structure of Cu (25 μm) / Ti (1 μm) / Cu (50 μm) joined by vacuum hot cladding in the order of oxygen-free copper, Ti foil, and oxygen-free copper foil by vacuum hot rolling. A laminated board was produced.
Next, in order to observe the cross-sectional structure of the intermediate layer of these laminates, observation was performed using a transmission electron microscope to determine the crystal grain size of the intermediate layer. Further, after the cross section was buff-polished, etching was performed using an ion milling device, and after the contour of the columnar structure was obtained, observation was performed using a scanning electron microscope, and the aspect ratio and interface roughness were determined by image processing.
[0019]
[Table 2]
Figure 2004095763
[0020]
A resist pattern of a bump having a diameter of 200 μm is formed on a copper layer having a thickness of 50 μm of the laminated board material, and then the copper layer is etched using ferric chloride (47 Baume). Observed using a microscope. All of the laminates of the present invention had good barrier properties, but in the comparative example, a portion penetrating the barrier layer and being etched to the copper layer on the opposite side was observed.
Subsequently, the Ti layer was etched using Enstrip PL-142 Conc manufactured by Meltex Co., Ltd., and the periphery of the bump was observed by a scanning electron microscope. Since the crystal grain size of the Ti layer was fine, a shape faithful to the pattern of the bump was obtained, whereas in the comparative example, the crystal grain size of the Ti layer was large, so that irregularities were observed.
Furthermore, a test substrate using the above-described material was prepared, and a current continuity test was performed for each of the substrates. On the other hand, a substrate using the laminated metal plate of the present invention showed good passability of the bump continuity and a high pass rate. In the laminated metal foil of the comparative example, poor conduction occurred due to breakage of the Ti layer. Observation of the cross section of the defective portion revealed that bumps fell off due to breakage of the Ti layer. In particular, the smaller the crystal grain size and the lower the surface roughness, the higher the peel strength and conduction reliability.
[0021]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the laminated board material for electronic components which has the intermediate | middle layer provided with high quality is obtained, and it becomes an indispensable technique for the mounting member for high-density electronics.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the definition of the crystal grain size of an intermediate layer.
FIG. 2 is a schematic view showing the definition of a columnar crystal.
FIG. 3 is a schematic view showing an example of a manufacturing apparatus for a laminated plate material.
[Explanation of symbols]
1. 1. dry-formed metal layer; 2. Unwind spool, Take-up spool,
4. 4. evaporation source; Metal foil A, 6. Metal foil B, 7. Roll for pressure welding,
8. Laminate materials (laminate materials for electronic components)

Claims (4)

電子部品用素材として用いられる三つ以上の層から構成される積層板材において、該積層板材は板材/単層または複数層でなる中間層/板材の構成を有し、前記中間層の少なくとも一層が乾式成膜金属層からなり、該乾式成膜金属層の断面ミクロ組織における結晶粒径が実質的に5μm以下であることを特徴とする電子部品用積層板材。In a laminated board composed of three or more layers used as a material for electronic components, the laminated board has a configuration of a plate / a single layer or an intermediate layer composed of a plurality of layers, and at least one of the intermediate layers is provided. A laminated board material for electronic parts, comprising a dry-formed metal layer, wherein a crystal grain size in a cross-sectional microstructure of the dry-formed metal layer is substantially 5 μm or less. 板材と中間層との接合界面の平均粗さが実質的に1μm以下であることを特徴とする請求項1に記載の電子部品用積層板材。2. The laminated board for electronic parts according to claim 1, wherein the average roughness of the joining interface between the board and the intermediate layer is substantially 1 [mu] m or less. 乾式成膜金属層が柱状晶であることを特徴とする請求項1または2に記載の電子部品用積層板材。3. The laminated board for electronic parts according to claim 1, wherein the dry-formed metal layer is a columnar crystal. 引き剥がし強さが1kN/m以上であることを特徴とする請求項1乃至3の何れかに記載の電子部品用積層板材。The laminate according to any one of claims 1 to 3, wherein the peel strength is 1 kN / m or more.
JP2002253417A 2002-08-30 2002-08-30 Laminate material for electronic component Pending JP2004095763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002253417A JP2004095763A (en) 2002-08-30 2002-08-30 Laminate material for electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002253417A JP2004095763A (en) 2002-08-30 2002-08-30 Laminate material for electronic component

Publications (1)

Publication Number Publication Date
JP2004095763A true JP2004095763A (en) 2004-03-25

Family

ID=32059419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002253417A Pending JP2004095763A (en) 2002-08-30 2002-08-30 Laminate material for electronic component

Country Status (1)

Country Link
JP (1) JP2004095763A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100749668B1 (en) * 2005-05-31 2007-08-14 에스케이 텔레콤주식회사 System for measuring lnb frequency error from gap filler and method the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100749668B1 (en) * 2005-05-31 2007-08-14 에스케이 텔레콤주식회사 System for measuring lnb frequency error from gap filler and method the same

Similar Documents

Publication Publication Date Title
WO2017149811A1 (en) Copper foil with carrier, production method for coreless support with wiring layer, and production method for printed circuit board
JP4764877B2 (en) Method for making a ceramic-metal substrate
JP5859155B1 (en) Composite metal foil, method for producing the same, and printed wiring board
JP2001130986A (en) Copper plated ceramic board, peltier element using the same and method for producing copper plated ceramic board
US11576267B2 (en) Ultra-thin copper foil, ultra-thin copper foil with carrier, and method for manufacturing printed wiring board
US20140338162A1 (en) Process for producing dcb substrates
JP7412523B2 (en) Copper foil with carrier
TWI716837B (en) Copper foil with glass carrier and manufacturing method thereof
US11756845B2 (en) Copper foil with glass carrier and production method therefor
JP7461506B2 (en) Carrier substrate and method for manufacturing the carrier substrate
JP6858786B2 (en) Copper-ceramic composite material
JP2004095763A (en) Laminate material for electronic component
JP2009148995A (en) Metal-clad polyethylene naphthalate substrate and method for manufacturing it
KR100664520B1 (en) Method of manufacturing metal foil/ceramics joining material and metal foil laminated ceramic substrate
KR20110045953A (en) Flexible cupper laminated film for a flexible circuit board and manufacturing method the same
JP4264091B2 (en) Wiring board manufacturing method
WO2012124424A1 (en) Method for forming electronic circuit, electronic circuit, and copper-clad laminated board for forming electronic circuit
JP7427846B1 (en) Metal foil with carrier
JP2000312066A (en) Composite material used for transcribing method, and its manufacture
JP3339632B2 (en) Manufacturing method of laminated metal strip and laminated metal strip
KR20230117139A (en) Metal foil provided with a carrier and its manufacturing method
JP2000188455A (en) Composite material for transfer method, its manufacture, and printed-circuit board and semiconductor device using the same
DE102020111698A1 (en) Method for producing a metal-ceramic substrate and a metal-ceramic substrate produced by such a method
CN116705752A (en) High-cycle performance ceramic metal-clad plate, preparation method thereof and chip heat dissipation module
JPWO2020235537A1 (en) Metal foil with carrier and its usage and manufacturing method