JP2004093431A - 微生物分析装置及び微生物分析方法 - Google Patents

微生物分析装置及び微生物分析方法 Download PDF

Info

Publication number
JP2004093431A
JP2004093431A JP2002256328A JP2002256328A JP2004093431A JP 2004093431 A JP2004093431 A JP 2004093431A JP 2002256328 A JP2002256328 A JP 2002256328A JP 2002256328 A JP2002256328 A JP 2002256328A JP 2004093431 A JP2004093431 A JP 2004093431A
Authority
JP
Japan
Prior art keywords
microorganisms
temperature
mixture
microorganism
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002256328A
Other languages
English (en)
Other versions
JP3745719B2 (ja
Inventor
Masaru Kameoka
亀岡 優
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pastec Co Ltd
Original Assignee
Nippon Pastec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pastec Co Ltd filed Critical Nippon Pastec Co Ltd
Priority to JP2002256328A priority Critical patent/JP3745719B2/ja
Publication of JP2004093431A publication Critical patent/JP2004093431A/ja
Application granted granted Critical
Publication of JP3745719B2 publication Critical patent/JP3745719B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】小型化を図るとともに分析に要する時間を短縮化した微生物分析装置を提供する。
【解決手段】微生物と水とが混ざった混合液を溜めるためのキュベット5aを具備するセル5と、キュベット5aに混合液を抽入するポンプ2及びエアロゾルコレクター1と、混合液にレーザー光を照射するレーザー光源部3と、混合液の温度を変化させる温度コントローラ7及び加熱冷却部5bと、レーザー光が混合液中を透過することで生じる超音波を検出して検出信号を出力する検出部5dと、混合液の温度が異なる状態で検出部5dから出力される複数の検出信号を取得して、その複数の検出信号の波形に基づいて混合液に含まれる微生物を特定する演算処理部Bとを備える。
【選択図】    図1

Description

【0001】
【発明の属する技術分野】
本発明は、微生物や微粒子を分析する微生物分析装置及び微生物分析方法に関する。
【0002】
【従来の技術】
半導体産業における製品開発においては、極めて純度の高い水を要する。ところが、その水に微生物や微粒子などの不純物が存在する場合には、不良品等の発生により多大な損害が生じてしまうことがある。また、新薬開発及びバイオハザードの面においては、無菌室での大気中の浮遊微生物の存在は直接、人体への健康を損なうこととなる。
そこで従来より、上記不純物を検出してその不純物が何かを特定する分析装置が提供されている(例えば、非特許文献1参照。)。
【0003】
【非特許文献1】
エノー・ダブリュウ・スモール(Enoch W. Small)、外2名,「フローレッセンス アンイソトロピー ディケイ オブ エチジウム バウンド トゥー ヌクレオソーム コア パーティクルズ(Fluorescence Anisotropy Decay of Ethidium Bound to Nucleosome Core Particles)」,バイオケミストリー(Biochemistry),(米国),アメリカン ケミカル ソサイエティ(American Chemical Society),1991年,第30巻,第21号
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の分析装置では、不純物を分析するために化学剤を用いたり、不純物が微生物であればこれを培養したりするなどの処理を行う必要がある。その結果、化学剤の注入混合などを行う機器を要して装置全体が大きくなり、持ち運びに不便といった問題がある。また、上記化学剤の注入混合や微生物の培養に時間を要するため分析時間が長くなってしまうという問題もある。
そこで、本発明は、かかる問題点に鑑み、小型化を図るとともに分析に要する時間を短縮化した微生物分析装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る微生物分析装置は、微生物及び微粒子の少なくとも一方と水との混合液を溜めるための容器と、前記容器に前記混合液を抽入する抽入手段と、前記混合液にレーザー光を照射するレーザー光照射手段と、前記混合液の温度を変化させる温度調整手段と、レーザー光が前記混合液中を透過することで生じる超音波を検出して検出信号を出力する検出手段と、前記温度調整手段を制御して前記混合液の温度を変化させるとともに、前記混合液の温度が異なる状態で検出手段から出力される複数の検出信号を取得して、前記複数の検出信号の波形に基づいて前記混合液に含まれる微生物及び微粒子の少なくとも一方を特定する処理手段と備えたことを特徴とする。
【0006】
さらに、前記処理手段は、前記混合液の温度が約4℃のときに検出手段から出力される検出信号と、前記混合液の温度が約4℃でないときに検出手段から出力される検出信号とを取得し、前記両検出信号の波形に基づいて前記混合液に含まれる微生物及び微粒子の少なくとも一方を特定することを特徴としても良い。
【0007】
また、前記抽入手段は、大気を吸引して所定の場所に送り込むポンプと、前記ポンプから送り込まれた大気を、予め内部に溜めておいた水に通して、前記大気中に含まれる微生物及び微粒子の少なくとも一方を水に混合することでこれを収集し、前記混合液を生成するエアロゾルコレクターとを備えても良い。
【0008】
なお、本発明は、微生物や微粒子を分析するための微生物分析方法として実現したり、その微生物分析方法が有するステップをコンピュータに実行させるためのプログラムとして実現したりすることもできる。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態における微生物分析装置について図面を参照しながら説明する。
図1は、本発明の実施の形態における微生物分析装置の外観を示す外観構成図である。
この微生物分析装置は、光音響法を用いて大気中に浮遊する微生物や微粒子を分析する装置であって、大気を内部に導入して大気中に浮遊する微生物や微粒子に応じた信号を出力する分析機器部Aと、分析機器部Aからの出力信号に基づいて演算処理して上記微生物を特定する例えばノートパソコンなどからなる演算処理部Bとで構成される。なお、以下、微生物及び微粒子をまとめて微生物と称する。
【0010】
分析機器部Aは、大気を吸引して所定の場所に送り込むポンプ2と、ポンプ2から送り込まれた大気に含まれる微生物を収集するエアロゾルコレクター1と、パルス状のレーザー光を出力するレーザー光源部3と、エアロゾルコレクター1により収集された微生物に応じた検出信号を出力するセル5と、セル5からの出力信号を信号処理して出力するデータ処理部6と、セル5内部の温度を変化させるための温度コントローラ7と、ポンプ2及びレーザー光源部3並びにデータ処理部6などに電源を供給する例えば二次電池や燃料電池などからなるバッテリー8と、上記エアロゾルコレクター1、ポンプ2、レーザー光源部3、セル5、データ処理部6、温度コントローラ7、及びバッテリー8を収納する可搬型のケース50とから構成されている。
【0011】
ケース50は、一面を開口する略矩形箱状の収納部51と、その開口を塞ぐようにヒンジにより収納部51に開閉自在に取り付けられた蓋体52とで構成され、収納部51の周壁外側には分析機器部Aを持ち運ぶための取手53が取り付けられている。また、収納部51の周壁における取手53が取り付けられた面と隣り合う一面には、収納部51の内外を貫通する開口窓51aが穿設されているとともに、この開口窓51aを開閉する開閉扉51bがヒンジなどで取着されている。
【0012】
そしてポンプ2は、大気を吸引する吸引口2aを、図1に示すように開口窓51aの一部に臨ませるように収納部51に収納され、これと同様に、エアロゾルコレクター1は、ポンプ2により送り込まれた大気を外部に導出する導出口1aを、図1に示すように開口窓51aの他の部分に臨ませるように収納部51に収納される。
即ち、ユーザは、ケース50の蓋体52と開閉扉51bを閉じた状態で取手53を掴めば、容易に分析機器部Aを現場へ持ち運ぶことができる。また、分析機器部A及び演算処理部Bを現場へ持ち運んで、大気中の微生物を分析するときには、ユーザは、ケース50の開閉扉51bを開けることで、ポンプ2の吸引口2aとエアロゾルコレクター1の導出口1aとが外部に露出した状態となるため、分析機器部Aを容易に分析可能な状態にセッティングすることができる。
【0013】
図2は、微生物分析装置のブロック図である。
ポンプ2は、大気中に含まれる所定の大きさの微生物のみを透過させるように形成されたフィルター2bを備え、例えば毎分1000リットル以上の大気を吸引して、フィルター2bを透過した微生物のみを大気とともにエアロゾルコレクター1に送り込む。
【0014】
フィルター2bは、ポンプ2の吸引口2a付近に取着され、例えば10[μm]以上の幅寸法の微生物をカットして、それ未満の大きさの微生物のみを透過させるように形成されている。また、このようなフィルター2bは、分析対象となる微生物の大きさに応じて取り替えられるものであって、例えば、約1.5[μm]の微生物を分析対象とする場合には、1〜2[μm]の幅寸法の微生物のみを透過させるフィルター2bが取着されたり、約4[μm]の幅寸法の微生物を分析対象とする場合には、3〜5[μm]の幅寸法の微生物のみを透過させるフィルター2bが取着されたり、約8[μm]の幅寸法の微生物を分析対象とする場合には、6〜10[μm]の幅寸法の微生物のみを透過させるフィルター2bが取着される。これにより、分析対象となる微生物を絞り込むことができ、分析精度を向上することができる。
【0015】
エアロゾルコレクター1は、予め内部に純水を溜めており、ポンプ2で送られてきた大気中の微生物をその水の中に留めて収集し、微生物が除去された大気を導出口1aから外部に放出する。
【0016】
セル5は、エアロゾルコレクター1から導入される微生物と水とが混合された混合液を溜め置く容器であるキュベット5aと、温度コントローラ7からの制御に応じてキュベット5a内部の混合液を加熱又は冷却する加熱冷却部5bと、その混合液の温度を検出して温度信号を出力する温度センサ5cと、PZT素子からなる超音波センサを具備する検出部5dとを備えている。
【0017】
キュベット5aは、微量の混合液を内部に溜め置くように、例えば数[μl]〜数[ml]の容量を有し、内部の混合液に対して例えば1[MPa]まで圧力をかけることを可能とする機構と、その混合液を撹拌する機構とを備える。即ち、キュベット5a内に導入された微量の混合液は、上記両機構により所定の圧力に加圧され、微生物が広く均一に拡散した状態とされる。
【0018】
さらにキュベット5aは、レーザー光を内部に透過させるための第1の窓と、他の光を内部に透過させるための第2の窓とを有し、第1及び第2の窓はそれぞれ、レーザー光の出力方向と他の光の出力方向とが互いに略直交するように設けられている。そこで、レーザー光源部3から出力されるレーザー光は、第1の窓を介してキュベット5a内部に入り混合液中を透過する。
キュベット5a内の混合液にレーザー光が透過すると、光熱変換現象が生じ、この現象によって発生する熱は超音波として検出部5dにより検出される。即ち、レーザー光源部3及びセル5からいわゆるレーザー光音響装置が構成されている。
【0019】
温度コントローラ7は、温度センサ5cからの温度信号に基づいて、キュベット5a内部の混合液の温度を把握するとともに、演算処理部Bからの指示に従ってキュベット5a内部の混合液の温度が所定の温度となるように、加熱冷却部5bを制御する。
【0020】
データ処理部6は、検出部5dから出力される検出信号に対してA/D変換や増幅などの予め定められた信号処理を行い、その信号処理された検出信号を演算処理部Bに出力する。
また検出部5dは、超音波センサがキュベット5aに吸着するように配設されている。つまり、検出部5dは、超音波センサに圧力をかけてキュベット5aに押し付ける加圧機構を具備しており、その加圧機構は例えば演算処理部Bからの制御に応じて上記圧力が所定の値となるように圧力をかけている。これにより、超音波センサがキュベット5aに吸着する度合いに応じて検出信号が異なり、分析精度が低下してしまうのを防ぐことができる。
【0021】
演算処理部Bは、ポンプ2の駆動制御やレーザー光源部3の出力制御を行うとともに、温度コントローラ7を制御してキュベット5a内の混合液の温度を所定の温度にさせるとともに、データ処理部6から出力される検出信号を解析し、混合液中に含まれる微生物を特定する。そして、演算処理部Bは特定された微生物の名称をディスプレイ上に表示する。
【0022】
このような本実施の形態の微生物分析装置の一連の動作を、図3を参照して説明する。
図3は、本実施の形態の微生物分析装置の一連の動作を示す動作フロー図である。
【0023】
まず、ポンプ2は、例えば演算処理部Bからの指示に従って、大気を吸引してエアロゾルコレクター1に送り込む(ステップS10)。そして、エアロゾルコレクター1は、ポンプ2から送り込まれた大気中に存在する微生物を収集して、自らが保持する純水に混合する(ステップS12)。
次に、例えばユーザが演算処理部Bを操作して、エアロゾルコレクター1とキュベット5aを接続する配管の途中にある電磁弁を開くことにより、ユーザは、エアロゾルコレクター1が保持する混合液をセル5のキュベット5a内に導入する(ステップS14)。
【0024】
キュベット5a内に混合液が導入されると、演算処理部Bは、温度コントローラ7を制御してキュベット5a内の混合液の温度を約4℃に設定する(ステップS16)。そして、演算処理部Bは、レーザー光源部3からパルス状のレーザー光を照射させて(ステップS18)、データ処理部6から検出信号を取得する(ステップS20)。
【0025】
また、演算処理部Bは、検出信号の取得回数をカウントしており、その取得回数が所定の回数(n回)以上に達したか否かを判別する(ステップS22)。ここで取得回数がn回未満であると判別したときには(ステップS22のN)、温度コントローラ7を制御して混合液の温度を先に設定された温度から他の温度に変化させ(ステップS24)、再びレーザー光を照射させて検出信号を取得する。そして取得回数がn回に達すると判別したときには(ステップS22のY)、演算処理部Bは、取得された検出信号を解析して(ステップS26)、分析結果をディスプレイ上に表示する(ステップS28)。
【0026】
ここで上記ステップS26における演算処理部Bの処理について詳しく説明する。
演算処理部Bは、各微生物の名称と、その何れかの微生物が混合液に含まれている場合において、混合液の温度が約4℃及び他の温度のときの各検出信号の波形とが予め登録された微生物特定データを保有している。例えば、この微生物特定データには、タンソ菌が混合液に含まれている場合において、その混合液の温度が約4℃のときの検出信号の波形、約5℃のときの検出信号の波形、約7℃のときの検出信号の波形、約3℃のときの検出信号の波形、及び約1℃のときの検出信号の波形と、上記各波形に対応付けてタンソ菌という名称とが登録され、他の微生物についても、上述と同様の各温度における検出信号の波形と、その微生物の名称とが対応付けて登録されている。
【0027】
このような各温度における検出信号の波形は、微生物の種類に応じて異なっている。つまり、純水と微生物とが混合されると、その微生物は水和した状態となり、このような状態で混合液の温度を変化させると、微生物の体積が変化することとなる。この体積変化は微生物の種類に応じて異なり、本実施の形態では、その体積変化をレーザー光音響による上記検出信号の波形から捉えているのである。
【0028】
図4は、混合液の温度を変化させたときのデータ処理部6から出力される検出信号の波形図である。
図4に示すように、混合液の温度が3.74℃のときには検出信号の振幅は非常に小さく、上記温度から混合液の温度を5.00℃や7.00℃まで高く変化させると、混合液の温度が高くなるにつれて検出信号の振幅は大きくなる。またこれと同様に、3.74℃から混合液の温度を3.00℃や1.00℃まで低く変化させると、混合液の温度が低くなるにつれて検出信号の振幅は大きくなる。
【0029】
これにより、演算処理部Bは、図4に示すような各温度における検出信号を取得すると、ステップS26において上記取得された各検出信号と微生物特定データに登録された検出信号の波形とを比較し、微生物特徴データに略一致する波形があれば、その波形に対応付けて登録されている名称の微生物が、混合水中に含まれる微生物であると判断する。
【0030】
ここでさらに本実施の形態では、キュベット5a内部の混合液の温度を約4℃を基準に変化させ、混合液の温度が約4℃のときに取得された検出信号の波形を基準に、混合液の温度が約4℃でないときに取得された検出信号の波形を捉えている。これは、水はその温度が4℃のときに最も密度が大きくなるので、混合液の温度を、4℃を基準に変化させると、混合液中に含まれる微生物の体積変化が顕著に現れるからである。
上述のように特定された微生物の名称は演算処理部Bのディスプレイに表示される。
【0031】
図5は、演算処理部Bのディスプレイの画面表示図である。
この演算処理部Bのディスプレイには、上述のように温度を変化させたときの検出信号の波形を示す温度変化測定結果と、特定された微生物の名称とが表示される。
上記演算処理部Bのディスプレイを見ることにより、ユーザは大気中にどのような微生物が存在しているのかを容易に把握することができる。
【0032】
このように本実施の形態では、従来例のように微生物を分析するために化学剤を用いず、水のみを使用するため、化学剤の注入混合等を行う機器を要せずに装置全体の小型化を図ることができて、装置の持ち運びを容易にすることができる。さらに、分析にかかる時間を短縮することができる。例えば、テロリストにより炭疽菌の胞子が大気中に放出された場合でも、ユーザは本実施の形態の微生物分析装置を現場に簡単に持ち運び、大気中に浮遊する炭疽菌を早急にしかも簡単に特定することができて、その炭疽菌に対して速やかに対処することができる。
【0033】
なお、本実施の形態におけるセル5の温度センサ5cを、いわゆるナノスケール時分割カロリーメーターから構成しても良い。即ち、温度センサ5cは、キュベット5a内の混合液から受け取る熱エネルギーを数[ns]ごとに積算し、その結果を温度信号(熱信号)として出力する。
【0034】
この場合には、レーザー光源部3からのレーザー光を受けた混合液中の微生物が熱を発生すると、温度センサ5cは混合液中の熱変化を捉えて、その変化を示す温度信号を出力する。そして、その温度信号を温度コントローラ7を介して取得した演算処理部Bは、その温度信号により示される熱変化から微生物の生死及びライフタイムを判別して、例えばライフタイムが160[ns]であることをディスプレイ上に表示させる。
これにより、微生物の特定とともにその微生物のライフタイム分析が可能となり、微生物をさらに詳しく分析することができる。
(変形例)
【0035】
次に、上記本実施の形態における微生物分析装置の変形例について図6及び図7を用いて説明する。
図6は、変形例に係る微生物分析装置のブロック図である。
この変形例に係る微生物分析装置は、混合液中に含まれる微生物の特定を行うとともに、蛍光を検出することによって微生物の生存率を判別する装置であって、分析機器部Cと演算処理部Bとからなる。
【0036】
分析機器部Cは、上記分析機器部Aと基本的な構成を等しくし、ポンプ2とエアロゾルコレクター1とレーザー光源部3と光出力部4とセル5Aとデータ処理部6aと温度コントローラ7とを備え、これらのポンプ2及びエアロゾルコレクター1などは全てケース50に収められる。
【0037】
光出力部4は、例えばハロゲンランプやキセノンランプなどからなり、光をセル5Aにおけるキュベット5aの第2の窓に照射する。これにより、光出力部4から光が照射されると、その光がキュベット5aの混合液中を透過し、混合液に含まれる微生物に応じた蛍光が生じる。
【0038】
セル5Aは、上記セル5と同様に、キュベット5aと検出部5dと温度センサ5cと加熱冷却部5bとを備えるとともに、さらにキュベット5a内部で生じる上記蛍光をその波長に応じて検出する例えばCCD(Charge Couple Devices)などを具備した蛍光検出部5eを備えている。
【0039】
蛍光検出部5eは、検出結果を蛍光検出信号としてデータ処理部6aに出力する。そしてデータ処理部6aは、その蛍光検出信号に対して所定の信号処理した後に、その蛍光検出信号を演算処理部Bに出力する。つまり、この変形例に係る分析機器部Cは、セル5Aのキュベット5a及び蛍光検出部5e並びに光出力部4から構成される蛍光分析装置を備えている。
【0040】
上記蛍光検出信号を受けた演算処理部Bは、その蛍光検出信号に基づき蛍光のスペクトル分布を作成し、そのスペクトル分布から微生物の生存率を判別する。即ち、混合液に含まれる微生物が100%生存しているときと50%生存しているときとで上記スペクトル分布が異なり、このようなスペクトル分布と生存率との対応関係から演算処理部Bは混合液に含まれる微生物の生存率を判別する。
【0041】
図7は、スペクトル分布と微生物の生存率を示すスペクトル分布図である。
この図7に示すように、スペクトル分布は微生物の生存率に応じて異なっている。例えば、微生物の生存率が100%の場合には、700[nm]の蛍光強度に対する540[nm]の蛍光強度の割合は非常に高く、生存率が90%の場合には、上記蛍光強度の割合は生存率100%の場合よりも小さくなり、生存率が50%の場合には、上記蛍光強度の割合はさらに小さくなる。また、蛍光強度が最大となる波長は、生存率が50%以上のときには約540[nm]となるが、生存率が10%や0%のときでは約630[nm]となる。
【0042】
演算処理部Bは、上述のようなスペクトル分布と生存率との対応関係を予め記憶しており、蛍光検出信号からスペクトル分布を作成すると、そのスペクトル分布を予め記憶しているスペクトル分布と比較し、略一致する分布に対応付けて記憶している生存率が、混合液に含まれる微生物の生存率であると判別する。
これにより、微生物をさらに詳細に分析することができる。
【0043】
ところで、本実施の形態及びその変形例ではポンプ2及びエアロゾルコレクター1を備えたが、ポンプ2及びエアロゾルコレクター1の代わりに生物からその体液を抽出してセル5,5Aのキュベット5aに抽入する体液抽入出器を備えても良い。
これにより、本実施の形態では、体液中に含まれる細胞などを特定することができるとともに、温度センサ5cをナノスケール時間分割カロリーメーターとして用いれば、体液中の細胞の熱エネルギーをナノスケールで検出して、癌の進行状況や生物の成長及び加齢状況を特定することができる。また生体内のDNAなどの配位を判定することもできる。
【0044】
また、本実施の形態及びその変形例では、レーザー光音響装置や蛍光分析装置を備えたが、さらに、ラマン分光分析装置や赤外光分光分析装置やエバネッセンスを測定するための装置などを、分析機器部A,Cにケース50内部に収納される形で備えても良い。この場合には、セル5,5Aのキュベット5aを上記各装置に対して共用させて、上記各装置特有の電磁波を出力してキュベット5a内部の混合液に透過させる電磁波出力機器と、その電磁波により混合液中で生じる変化を検出する検出機器とをケース50に備える。例えば赤外光分光分析装置では、赤外光を出力する光源機器と、赤外光を検出する検出機器だけをケース50に備える。これにより、装置全体の大型化を抑えつつ分析の幅を広げ、さらに詳しく微生物を分析することができる。
【0045】
【発明の効果】
以上の説明から明らかなように、本発明に係る微生物分析装置は、微生物及び微粒子の少なくとも一方と水との混合液を溜めるための容器と、前記容器に前記混合液を抽入する抽入手段と、前記混合液にレーザー光を照射するレーザー光照射手段と、前記混合液の温度を変化させる温度調整手段と、レーザー光が前記混合液中を透過することで生じる超音波を検出して検出信号を出力する検出手段と、前記温度調整手段を制御して前記混合液の温度を変化させるとともに、前記混合液の温度が異なる状態で検出手段から出力される複数の検出信号を取得して、前記複数の検出信号の波形に基づいて前記混合液に含まれる微生物及び微粒子の少なくとも一方を特定する処理手段と備えたことを特徴とする。
【0046】
これにより、従来例のように微生物を分析するために化学剤を用いることなく、水のみを使用するため、化学剤の注入混合等を行う機器を要せずに装置全体の小型化を図ることができて、装置の持ち運びを容易にすることができる。さらに、分析にかかる時間を短縮することができる。
【0047】
さらに、前記処理手段は、前記混合液の温度が約4℃のときに検出手段から出力される検出信号と、前記混合液の温度が約4℃でないときに検出手段から出力される検出信号とを取得し、前記両検出信号の波形に基づいて前記混合液に含まれる微生物及び微粒子の少なくとも一方を特定することを特徴としても良い。
これにより、混合液の温度が4℃のときには水の密度が最も小さくなることで、混合液に含まれる微生物又は微粒子の体積変化が顕著に現れ、その結果、前記両検出信号の波形に大きな差が現れて、分析精度を向上することができる。
【0048】
また、前記抽入手段は、大気を吸引して所定の場所に送り込むポンプと、前記ポンプから送り込まれた大気を、予め内部に溜めておいた水に通して、前記大気中に含まれる微生物及び微粒子の少なくとも一方を水に混合することでこれを収集し、前記混合液を生成するエアロゾルコレクターとを備えても良い。
【0049】
これにより、大気中に浮遊する微生物や微粒子が水と混じって前記容器へ抽入されるため、大気中に浮遊する微生物や微粒子を迅速にしかも簡単に分析することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態における微生物分析装置の外観構成図である。
【図2】同上の微生物分析装置の機能ブロック図である。
【図3】同上の微生物分析装置の一連の動作を示す動作フロー図である。
【図4】同上のデータ処理部から出力される検出信号の波形図である。
【図5】同上の演算処理部の画面表示図である。
【図6】同上の変形例に係る微生物分析装置のブロック図である。
【図7】同上の蛍光スペクトル分布と微生物の生存率を示すスペクトル分布図である。
【符号の説明】
1 エアロゾルコレクター
2 ポンプ
3 レーザー光源部
5 セル
5a キュベット
5b 加熱冷却部
5c 温度センサ
5d 検出部
6 データ処理部
7 温度コントローラ
50 ケース
51a 開口窓
51b 開閉扉
51 収納部
52 蓋体
A 分析機器部
B 演算処理部

Claims (18)

  1. 微生物及び微粒子の少なくとも一方と水との混合液を溜めるための容器と、
    前記容器に前記混合液を抽入する抽入手段と、
    前記混合液にレーザー光を照射するレーザー光照射手段と、
    前記混合液の温度を変化させる温度調整手段と、
    レーザー光が前記混合液中を透過することで生じる超音波を検出して検出信号を出力する検出手段と、
    前記温度調整手段を制御して前記混合液の温度を変化させるとともに、前記混合液の温度が異なる状態で検出手段から出力される複数の検出信号を取得して、前記複数の検出信号の波形に基づいて前記混合液に含まれる微生物及び微粒子の少なくとも一方を特定する処理手段と
    を備えたことを特徴とする微生物分析装置。
  2. 前記処理手段は、
    前記混合液の温度が約4℃のときに検出手段から出力される検出信号と、前記混合液の温度が約4℃でないときに検出手段から出力される検出信号とを取得し、前記両検出信号の波形に基づいて前記混合液に含まれる微生物及び微粒子の少なくとも一方を特定する
    ことを特徴とする請求項1項に記載の微生物分析装置。
  3. 前記抽入手段は、
    大気を吸引して所定の場所に送り込むポンプと、
    前記ポンプから送り込まれた大気を、予め内部に溜めておいた水に通して、前記大気中に含まれる微生物及び微粒子の少なくとも一方を水に混合することでこれを収集し、前記混合液を生成するエアロゾルコレクターと
    を備えたことを特徴とする請求項1又は2記載の微生物分析装置。
  4. 前記ポンプは、
    毎分1000リットル以上の大気を吸引して前記エアロゾルコレクターに送り込む
    ことを特徴とする請求項3記載の微生物分析装置
  5. 前記ポンプは、
    大気中に含まれる所定の大きさの微生物及び微粒子を透過させるように形成されたフィルターを備え、
    前記フィルターを透過した微生物及び微粒子の少なくとも一方を大気とともに前記エアロゾルコレクターに送り込む
    ことを特徴とする請求項3又は4記載の微生物分析装置。
  6. 前記フィルターは、
    1〜2[μm]の幅寸法の微生物及び微粒子を透過させるように形成されている
    ことを特徴とする請求項5記載の微生物分析装置。
  7. 前記微生物分析装置は、さらに、
    前記容器内の混合液中から生じる熱エネルギーを検出して熱信号を出力するカロリーメーターを備え、
    前記処理手段は、前記混合液中に微生物が含まれるときには、前記熱信号を基に前記微生物の生死を判別する
    ことを特徴とする請求項1〜6の何れか1項に記載の微生物分析装置。
  8. 前記微生物分析装置は、さらに、
    前記混合液中で蛍光を発生させる光を出力する光出力手段と、
    前記光が前記混合液中を透過することで生じる蛍光を検出して蛍光検出信号を出力する蛍光検出手段とを備え、
    前記処理手段は、
    前記混合液中に微生物が含まれるときには、前記蛍光検出信号に基づいて前記蛍光のスペクトル分布を作成し、前記スペクトル分布の形状から前記混合液中に含まれる微生物の生存率を特定する
    ことを特徴とする請求項1〜7の何れか1項に記載の微生物分析装置。
  9. 前記処理手段は、
    文字及び画像を表示するディスプレイを備え、
    特定された微生物又は微粒子の名称を前記ディスプレイに表示させる
    ことを特徴とする請求項1〜8の何れか1項に記載の微生物分析装置。
  10. 前記処理手段は、
    前記混合液の温度が異なる状態で検出手段から出力される複数の検出信号の波形を前記ディスプレイに表示させる
    ことを特徴とする請求項9記載の微生物分析装置。
  11. 前記微生物分析装置は、さらに、
    少なくとも前記容器と、抽入手段と、レーザー光照射手段と、温度調整手段と、検出手段とを収納する可搬型のケースを備えた
    ことを特徴とする請求項1〜10の何れか1項に記載の微生物分析装置。
  12. 微生物及び微粒子の少なくとも一方を分析するための微生物分析方法であって、
    微生物及び微粒子の少なくとも一方と水との混合液を容器に抽入する抽入ステップと、
    前記混合液の温度を所定の温度に設定する温度設定ステップと、
    前記混合液にレーザー光を照射するレーザー光照射ステップと、
    レーザー光が前記混合液中を透過することで生じる超音波を検出して、検出結果を示す検出信号を取得する検出ステップと、
    前記混合液の温度を前記所定の温度から変化させる温度変化ステップと、
    前記混合液にレーザー光を照射して再び検出信号を取得する再検出ステップと、
    取得された前記複数の検出信号の波形に基づいて前記混合液に含まれる微生物及び微粒子の少なくとも一方を特定する特定ステップと
    を含むことを特徴とする微生物分析方法。
  13. 前記温度設定ステップにおいて、混合液の温度を約4℃に設定する
    ことを特徴とする請求項12記載の微生物分析方法。
  14. 前記抽入ステップでは、
    大気を吸引する吸引ステップと、
    吸引された大気を水に通して、前記大気中に含まれる微生物及び微粒子の少なくとも一方を水に混合することでこれを収集し、前記混合液を生成する収集ステップと
    を含むことを特徴とする請求項12又は13記載の微生物分析方法。
  15. 前記微生物分析方法は、さらに、
    前記混合液中で蛍光を発生させる光を出力する光出力ステップと、
    前記光が前記混合液中を透過することで生じる蛍光を検出して、前記検出結果を示す蛍光検出信号を取得する蛍光検出ステップと、
    前記蛍光検出信号に基づいて前記蛍光のスペクトル分布を作成するスペクトル分布作成ステップと、
    前記スペクトル分布の形状から前記混合液中に含まれる微生物の生存率を特定する生存率特定ステップと
    を含むことを特徴とする請求項12〜14の何れか1項に記載の微生物分析方法。
  16. 前記微生物分析方法は、さらに、
    特定された微生物又は微粒子の名称を表示する表示ステップ
    を含むことを特徴とする請求項12〜15の何れか1項に記載の微生物分析方法。
  17. 前記表示ステップでは、さらに、
    前記混合液の温度が異なる状態で取得された複数の検出信号の波形を表示する
    ことを特徴とする請求項16記載の微生物分析方法。
  18. 微生物及び微粒子の少なくとも一方を分析するためのプログラムであって、
    請求項12〜17の何れか1項に記載の微生物分析方法に含まれるステップをコンピュータに実行させるプログラム。
JP2002256328A 2002-09-02 2002-09-02 微生物分析装置及び微生物分析方法 Expired - Fee Related JP3745719B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002256328A JP3745719B2 (ja) 2002-09-02 2002-09-02 微生物分析装置及び微生物分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002256328A JP3745719B2 (ja) 2002-09-02 2002-09-02 微生物分析装置及び微生物分析方法

Publications (2)

Publication Number Publication Date
JP2004093431A true JP2004093431A (ja) 2004-03-25
JP3745719B2 JP3745719B2 (ja) 2006-02-15

Family

ID=32061582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002256328A Expired - Fee Related JP3745719B2 (ja) 2002-09-02 2002-09-02 微生物分析装置及び微生物分析方法

Country Status (1)

Country Link
JP (1) JP3745719B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100830107B1 (ko) 2005-07-07 2008-05-20 가부시끼가이샤 도시바 레이저 기반 보수 장치
JP2010504209A (ja) * 2006-09-25 2010-02-12 エルヴェーオー ゲーエムベーハー 水浄化装置
CN102288582A (zh) * 2011-03-25 2011-12-21 深圳大学 大气气溶胶粒子管形弥漫装置
KR101445749B1 (ko) 2013-02-05 2014-10-06 주식회사 아이센스 싱글 빔 분광분석장치
US9250174B2 (en) 2012-06-27 2016-02-02 Rion Co., Ltd. Particle counting system
CN114778510A (zh) * 2022-06-20 2022-07-22 之江实验室 一种呼出气溶胶微生物快速检测方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100830107B1 (ko) 2005-07-07 2008-05-20 가부시끼가이샤 도시바 레이저 기반 보수 장치
JP2010504209A (ja) * 2006-09-25 2010-02-12 エルヴェーオー ゲーエムベーハー 水浄化装置
CN102288582A (zh) * 2011-03-25 2011-12-21 深圳大学 大气气溶胶粒子管形弥漫装置
US9250174B2 (en) 2012-06-27 2016-02-02 Rion Co., Ltd. Particle counting system
KR101445749B1 (ko) 2013-02-05 2014-10-06 주식회사 아이센스 싱글 빔 분광분석장치
CN114778510A (zh) * 2022-06-20 2022-07-22 之江实验室 一种呼出气溶胶微生物快速检测方法
CN114778510B (zh) * 2022-06-20 2022-10-04 之江实验室 一种呼出气溶胶微生物快速检测方法

Also Published As

Publication number Publication date
JP3745719B2 (ja) 2006-02-15

Similar Documents

Publication Publication Date Title
US7057721B2 (en) Wide field method for detecting pathogenic microorganisms
US7113275B2 (en) Method for detection of pathogenic microorganisms
US7436510B2 (en) Method and apparatus for identifying a substance using a spectral library database
US7760354B2 (en) Spectroscopic method and apparatus for identification of a substance using a tunable light source
US20050200843A1 (en) Fiber optic laser-induced breakdown spectroscopy device and methods of use
US7967968B2 (en) Method and system for monitoring material separation process such as electrophoresis process in a sample
CN108088834A (zh) 基于优化反向传播神经网络的包虫病血清拉曼光谱诊断仪
JP7128748B2 (ja) 生体物質の培養のための装置
US20240011907A1 (en) Microplastic analysis method, analysis device for same, microplastic detection device, and microplastic detection method
JP2004093431A (ja) 微生物分析装置及び微生物分析方法
US20080028832A1 (en) Best mode usage
JP2009162578A (ja) 細胞間相互作用を測定するための方法及び装置
Banerjee et al. Deciphering the finger prints of brain cancer glioblastoma multiforme from four different patients by using near infrared Raman spectroscopy
EP3227664B1 (en) Multi-sample laser-scatter measurement instrument with incubation feature, and systems for using the same
JP2005257652A (ja) 生体試料の検出装置および解析方法
WO2017120647A1 (en) Method for detecting or quantifying carbon black and/or black carbon particles
Woess et al. Raman spectroscopy for postmortem interval estimation of human skeletal remains: A scoping review
Liu et al. Combination of hyperspectral imaging and laser-induced breakdown spectroscopy for biomedical applications
US11517903B2 (en) Biological agent specimen collection and growth system
Jain et al. Bioethical education and standardization of sample handling procedures in Raman spectroscopy research studies involving human subjects
Rehse et al. Recent advances in the use of laser-induced breakdown spectroscopy (LIBS) as a rapid point-of-care pathogen diagnostic
US20200386587A1 (en) Environmental Monitoring Embodiment Comprising Multiple Analyzing, Assessment and Monitoring Components
Bai et al. Label-free detection of plasma using surface-enhanced Raman spectroscopy for bladder cancer screening
Popp Biophotonics-A Powerful Tool for Non-invasive and Labelfree Cell-and Tissue Screening
Berberashvili et al. Experimental Methods of Investigation of Vibrational Properties of Nanobioobjects

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050314

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050701

Free format text: JAPANESE INTERMEDIATE CODE: A131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20051109

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20051117

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees