JP2004093199A - Gas sensor element - Google Patents

Gas sensor element Download PDF

Info

Publication number
JP2004093199A
JP2004093199A JP2002251335A JP2002251335A JP2004093199A JP 2004093199 A JP2004093199 A JP 2004093199A JP 2002251335 A JP2002251335 A JP 2002251335A JP 2002251335 A JP2002251335 A JP 2002251335A JP 2004093199 A JP2004093199 A JP 2004093199A
Authority
JP
Japan
Prior art keywords
gas
measured
sensor element
electrodes
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002251335A
Other languages
Japanese (ja)
Other versions
JP4037220B2 (en
Inventor
Toru Katabuchi
片渕 亨
Keigo Mizutani
水谷 圭吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2002251335A priority Critical patent/JP4037220B2/en
Publication of JP2004093199A publication Critical patent/JP2004093199A/en
Application granted granted Critical
Publication of JP4037220B2 publication Critical patent/JP4037220B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas sensor element capable of accurately detecting the concentration of specific gases by reducing an offset current. <P>SOLUTION: The gas sensor element 1 is provided with both chambers 121 and 122 for gases to be measured and for introducing the gases to be measured and a sensor cell 4 for detecting the concentration of the specific gases in the gases to be measured. The sensor cell 4 comprises both a solid electrolytic plate 11 and a pair of electrodes 41 and 42, provided for the front and back surfaces of the solid electrolytic plate 11 and detects the concentration of the specific gases through the use of a weak current flowing between the electrodes. The electrodes 41 and 42 have electrical continuity to terminals 412 and 422 exposed to the outside of the gas sensor element 1 via conductive lead parts 411 and 421. At least a part of the conductive lead part 421 connected to the electrode 42, facing the chamber 122 for the gases to be measured on the side of the gases to be measured among the pair of electrodes, contains Pt-Au. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【技術分野】
本発明は,内燃機関の排気系等に設置して,排ガス中のNOx濃度等を測定するガスセンサ素子に関する。
【0002】
【従来技術】
自動車エンジンの排気系に設置し,排ガス中のNOx濃度,酸素濃度,またエンジン燃焼室の空燃比を測定するガスセンサに用いるガスセンサ素子として,次に示す構成の素子が知られている。
このガスセンサ素子は,被測定ガス室に対し酸素をポンピングするポンプセルと,被測定ガス室に導入されたNOx濃度を測定するセンサセルとからなる。
【0003】
NOx濃度を測定するセンサセルは,固体電解質板と該固体電解質板に設けた一対の電極とからなり,一方の電極は被測定ガス室に対面し,他方の電極は基準ガスとなる大気を導入した大気室と対面する。被測定ガス室と対面する電極にはNOxに活性な電極が用いられる。
また,ポンプセルは,固体電解質板と該固体電解質板に設けた一対のポンプ電極からなり,一方のポンプ電極は被測定ガス室に対面する。被測定ガス側の電極にはNOxに不活性な電極が用いられる。
【0004】
センサセルにおけるNOx濃度の測定は,被測定ガス側電極上でNOxを分解し,発生した酸素イオン電流に基づいて行う。従って,被測定ガス室の酸素濃度は非常に少ないか,または定常状態となっていなければならない。
そのため,ポンプセルを用いて被測定ガス室の酸素濃度を調整している。
そして,上記センサセルにおける電極は,ガスセンサ素子の外部においてセンサ回路に接続するための端子に,導電性リード部を介して接続されている。
【0005】
【解決しようとする課題】
しかしながら,該導電性リード部はPtにより構成されており,このPtリードは,Pt粒子間もしくはPtとZrOとの間に隙間が多く存在する。そのため,導電性リード部を通じてガスセンサ素子の外部における酸素ガスが,上記被測定ガス室側の電極に流入することがある。電極に達した酸素ガスは,該電極において分解され,酸素イオン電流を生じさせる。
【0006】
そのため,実際に上記被測定ガス室にNOxが存在しない場合にもセンサセルに発生する出力電流,即ちオフセット電流が流れてしまう。
上記NOx濃度の検出は,上記センサセルに流れる微弱電流であるため,わずかなオフセット電流であっても,NOx濃度の検出に影響しうる。そのため,精密なNOx濃度の検出を行うことが困難であった。
【0007】
本発明は,かかる従来の問題点に鑑みてなされたもので,オフセット電流を低減し,特定ガスの濃度の検出を精密に行うことができるガスセンサ素子を提供しようとするものである。
【0008】
【課題の解決手段】
本発明は,被測定ガスを導入する被測定ガス室と,上記被測定ガス中の特定ガスの濃度を検出するセンサセルとを有するガスセンサ素子において,
上記センサセルは,固体電解質板と該固体電解質板の表裏に設けた一対の電極とよりなり,両電極間に流れる微弱電流を利用して上記特定ガスの濃度の検出を行うよう構成されており,
上記電極は導電性リード部を介してガスセンサ素子の外部に露出した端子と電気的に導通し,
上記一対の電極のうち上記被測定ガス室に面した被測定ガス側電極に接続された上記導電性リード部は,その少なくとも一部がPt−Auを含有することを特徴とするガスセンサ素子にある(請求項1)。
【0009】
次に,本発明の作用効果につき説明する。
上記センサセルにおける特定ガス濃度の検出は,被測定ガス側電極上で特定ガスを分解し,発生した酸素イオン電流に基づいて行う。それ故,外部に露出した端子から,導電性リード部を通じて上記被測定ガス側電極へ外部の酸素ガスが流入すると,これにより酸素イオン電流が発生し,上記特定ガス濃度の正確な検出を妨げるおそれがある。
【0010】
上記のごとく,本発明のガスセンサ素子においては,上記導電性リード部の少なくとも一部はPt−Auを含有する。そのため,上記導電性リード部の少なくとも一部は,緻密な結晶構造により形成される。Pt−Auが緻密である理由は定かではないが,Auの融点は,素子焼成時の温度より低いため,Pt−Auからなる導電性リード部で遊離しているわずかなAuが溶融し,Ptの間に発生する隙間を埋める。そのため,ガスが通り難い緻密なリード部となると考えられる。
これにより,ガスセンサ素子の外部に露出した端子から,酸素ガスが上記導電性リード部を介して上記被測定ガス側電極に流入することを抑制することができる。
それ故,上記センサセルに発生するオフセット電流を低減して,特定ガスの濃度の検出を精密に行うことができる。
【0011】
以上のごとく,本発明によれば,オフセット電流を低減し,特定ガスの濃度の検出を精密に行うことができるガスセンサ素子を提供することができる。
【0012】
【発明の実施の形態】
本発明(請求項1)において,上記特定ガスとしては,例えば,NOx,CO,HC等がある。
また,上記両電極間に流れる微弱電流は,例えば10μA以下の電流をいう。また,上記被測定ガス側電極に接続された導電性リード部は,その全部がPt−Auを含有していてもよく,一部がPt−Auを含有していてもよい。
また,上記導電性リード部の全部又は一部は,Pt−Auのみによって構成されていてもよいし,Pt−Auとセラミック成分とからなるサーメット材料により構成されていてもよい。
【0013】
また,上記Pt−AuにおけるAuの含有量は1〜20wt%であることが好ましい(請求項2)。
この場合には,被測定ガス側電極への酸素ガスの流入を一層抑制することができる。
上記Auの含有量が1wt%未満の場合には,被測定ガス側電極への酸素ガスの流入を充分に抑制することができないおそれがある。一方,上記含有量が20wt%を超える場合には,Auの熱膨張率が大いいことにより,Pt−Auリードの熱膨張が大きくなり,導電性リードと下地との間の剥離を確実に抑制することが困難となるおそれがある。
【0014】
また,上記特定ガスはNOxとすることができる(請求項3)。
この場合には,自動車の排ガス中等に含有される有害なNOxの濃度を正確に検出することができるガスセンサ素子を得ることができる。
【0015】
【実施例】
本発明の実施例にかかるガスセンサ素子につき,図1〜図3を用いて説明する。
本例のガスセンサ素子1は,図1〜図3に示すごとく,被測定ガスを導入する被測定ガス室(第2被測定ガス室122)と,上記被測定ガス中の特定ガスの濃度を検出するセンサセル4とを有する。
【0016】
上記センサセル4は,第1固体電解質板11と該第1固体電解質板11の表裏に設けた一対の電極41,42とよりなり,両電極間に流れる微弱電流を利用して上記特定ガスの濃度の検出を行うよう構成されている。
上記電極41,42は導電性リード部411,421を介してガスセンサ素子1の外部に露出した端子412,422と電気的に導通している。
【0017】
上記一対の電極のうち上記第2被測定ガス室122に面した被測定ガス側電極42に接続された上記導電性リード部421は,その少なくとも一部がPt−Auを含有する。本例においては,上記被測定ガス側電極42に接続された導電性リード部421は,その全体がPt−Auを含有する。
また,上記Pt−AuにおけるAuの含有量,即ち導電性リード部421に含有するPt−Au合金に対するAuの含有率は1〜20wt%である。
【0018】
また,上記特定ガスはNOxであり,上記ガスセンサ素子1は,例えば自動車の排ガス中のNOxを検出するために用いられる。
また,上記両電極41,42間に流れる微弱電流は,例えば10μA以下の電流をいう。
【0019】
以下,詳細に説明する。
図1〜図3に示すごとく,本例のガスセンサ素子1は,積層された第1固体電解質板11,被測定ガス室用のスペーサー12,第2固体電解質板13,大気室用のスペーサ14,セラミックヒータ19よりなる。
そして,ガスセンサ素子1は,第1及び第2被測定ガス室121,122と第1及び第2の大気室140,160を備え,第1被測定ガス室121に対して酸素ガスをポンピングするポンプセル2,第2被測定ガス室122の酸素濃度を監視するモニタセル3,第2被測定ガス室122のNOx濃度を検知するセンサセル4を有する。
【0020】
第1及び第2固体電解質板11,13,スペーサー12との間に第1及び第2被測定ガス室121,122がある。図1,図2に示すごとく,第1被測定ガス室121は,第1固体電解質板11に設けた導入穴110で外部に連通し,第1被測定ガス室121と第2被測定ガス室122との間を連通する拡散通路120がある。
また,本例のガスセンサ素子1は,上記第1固体電解質板11の導入穴110を覆う多孔質拡散層17を有し,該多孔質拡散層17と隣接して,第2大気室160を形成するスペーサー161及び絶縁板162を有する。
【0021】
また,第2固体電解質板13,スペーサー14,セラミックヒータ19との間に基準ガスとなる大気を導入する第1大気室140がある。
上記セラミックヒータ19は,ヒータ基板191と該ヒータ基板191上に設けた発熱体190,該発熱体190を覆う被覆板192とよりなる。
そして,上記第1及び第2の固体電解質板11,13はジルコニアセラミック,その他は絶縁性のアルミナセラミックよりなる。
図2に示すごとく,発熱体190に対する給電は,発熱体190に一体的に形成されたリード部195,スルーホール193,端子部194を介して行われる。
【0022】
上記ポンプセル2は,図1,図2に示すごとく,第2固体電解質板13に設けた第1被測定ガス室121と対面する第1ポンプ電極21,第1大気室140と対面する第2ポンプ電極22とよりなる。両電極21,22は電源251及び電流計252を備えたポンプ回路25に接続する。
【0023】
上記モニタセル3は,図2,図3に示すごとく,第1固体電解質板11に設けた第2被測定ガス室122と対面する第2モニタ電極32,第2大気室160と対面する第1モニタ電極31とよりなる。両電極31,32は電源351及び電流計352を備えたモニタ回路35に接続する。
【0024】
上記センサセル4は,図1〜図3に示すごとく,第1固体電解質板11に設けた第2被測定ガス室122と対面する被測定ガス側電極42,第2大気室160と対面する基準電極41とよりなる。両電極41,42は電源451及び電流計452を備えたセンサ回路45に接続する。
そして,モニタセル3でポンプセル2の動作を制御するため,電流計352から電源251にむかうフィードバック回路(図示略)がある。
【0025】
そして,第1ポンプ電極21,第2モニタ電極32はNOxに対して不活性なPt−Au電極よりなる。Auの含有率は3wt%である。上記センサセル4の被測定ガス側電極42はNOxに対して活性なPt−Rh電極よりなる。その他の電極22,31,41はPt−Rh電極である。Rhの含有率は20wt%である。また,被測定ガス側電極42はAuを0.2wt%添加する。
【0026】
また,図1,図2に示すごとく,上記センサセル4における両電極41,42は,導電性リード部411,421を介して,外部の端子412,422に電気的に接続されている。また,上記導電性リード部411,421は,上記第1固体電解質板11,スペーサ161,絶縁板162に形成したスルーホール181,182を通して,上記電極41,42と上記端子412,422とをそれぞれ接続している。
【0027】
また,図2に示すごとく,上記モニタセル3における両電極31,32も同様に,導電性リード部311,321を介して,外部の端子312,322に電気的に接続されている。また,上記導電性リード部311,321は,上記第1固体電解質板11,スペーサ161,絶縁板162に形成したスルーホール183,184を通して,上記電極31,32と上記端子312,322とをそれぞれ接続している。
【0028】
また,上記ポンプセル2における両電極21,22も同様に,導電性リード部211,221を介して,外部の端子215,225に電気的に接続されている。また,上記導電性リード部211,221は,上記第2固体電解質板13,スペーサ14,ヒータ基板191,被覆板192に形成したスルーホール185,186を通して,上記電極21,22と上記端子215,225とをそれぞれ接続している。
【0029】
次に,本例の作用効果につき説明する。
上記センサセル4における特定ガス濃度の検出は,被測定ガス側電極42上で特定ガスを分解し,発生した酸素イオン電流に基づいて行う。それ故,外部に露出した端子422から,導電性リード部421を通じて上記被測定ガス側電極42へ外部の酸素ガスが流入すると,これにより酸素イオン電流が発生し,上記特定ガス濃度の正確な検出を妨げるおそれがある。
【0030】
上記のごとく,本例のガスセンサ素子1においては,上記導電性リード部421はPt−Auを含有する。そのため,上記導電性リード部421は,緻密な結晶構造により形成される。これにより,ガスセンサ素子1の外部に露出した端子422から,酸素ガスが上記導電性リード部421を介して上記被測定ガス側電極に流入することを抑制することができる。
それ故,上記センサセル4に発生するオフセット電流を低減して,特定ガスの濃度の検出を精密に行うことができる。
【0031】
また,上記Pt−AuにおけるAuの含有量は1〜20wt%であるため,被測定ガス側電極42への酸素ガスの流入を一層抑制することができる。
【0032】
以上のごとく,本例によれば,オフセット電流を低減し,特定ガスの濃度の検出を精密に行うことができるガスセンサ素子を提供することができる。
【0033】
(実施例2)
本例においては,図4に示すごとく,本発明のガスセンサ素子に発生するオフセット電流の値を測定し,従来品と比較した。
本発明品としては,実施例1において示したものを用いた。
一方,従来品としては,導電性リード部にAuを含有させず,Ptによって構成したものを用いた。
測定の結果,図4に示すごとく,従来品においてはオフセット電流は,約0.95μAであったのに対し,本発明品におけるオフセット電流は約0.2μAと極めて小さかった。
これにより,実施例1にかかるガスセンサ素子は,オフセット電流を極めて小さくすることができることが分かった。
【0034】
(実施例3)
本例においては,図5に示すごとく,ガスセンサ素子におけるオフセット電流の大きさの,導電性リード部のAu含有量依存性を調査した。
即ち,導電性リード部におけるPt−Au中のAu含有量がそれぞれ,0,0.5,1,2,5,10wt%となる6種類の試料を作製し,各試料につきオフセット電流を測定した。
【0035】
図5に示すごとく,Au含有量が1wt%未満となると,オフセット電流が大きくなることが分かる。
また,Auが20wt%を超えると熱膨張が大きくなり,導電性リードの剥離,断線の発生を抑制することが困難となるおそれがある。
かかる観点から,Au含有量は,1〜20wt%とすることが好ましいことが分かる。
【0036】
(実施例4)
本例のガスセンサ素子1は,図6に示すごとく,第1と第2の被測定ガス室520,540が第1と第2の固体電解質板51,55等の積層方向に位置するよう構成する。なお,図6においては,導電性リード部は省略してあるが,センサセル4は,実施例1と同様にPt−Auを含有する導電性リード部を有する。図7〜図9(実施例5,6)においても同様である。
本例のガスセンサ素子1は,第1固体電解質板51,スペーサー52,第2固体電解質板53,スペーサー54,第3固体電解質板55,スペーサー56,セラミックヒータ19を積層構成してなる。
【0037】
第1固体電解質板51と第2固体電解質板53とスペーサー52との間に第1被測定ガス室520が,第2固体電解質板53と第3固体電解質板55とスペーサー54との間に第2被測定ガス室540が,第3固体電解質板55とスペーサー56とセラミックヒータ19との間に大気室550がある。
【0038】
第1固体電解質板51に設けた導入穴510から第1被測定ガス室520に対し被測定ガスを導入する。多孔質拡散層17は導入穴510を覆うように第1固体電解質板51に対し積層する。第1と第2の被測定ガス室520,540との間は拡散通路530により連通される。
【0039】
そして,ポンプセル2の第1ポンプ電極21は第1被測定ガス室520と対面し,第2ポンプ電極22は拡散抵抗層17を通じて素子の外部雰囲気に曝される。第1及び第2のポンプ電極21,22は第1固体電解質板51に設ける。
センサセル4の第2被測定ガス室540と対面する被測定ガス側電極42と大気室550と対面する基準電極41とは,第3固体電解質板55に設ける。モニタセル3における,上記第2被測定ガス室540と対面する第2モニタ電極32と,大気室550と対面する第1モニタ電極31とは,第3固体電解質板55に設ける。
【0040】
そして,ポンプセル2のポンプ電極21,22は電源251及び電流計252を備えたポンプ回路25に接続する。モニタセル3の電極31,32は電圧計356を備えたモニタ回路35に接続する。センサセル4の電極41,42は電源451及び電流計452を備えたセンサ回路45に接続する。
そして,モニタセル3でポンプセル2の動作を制御するため,電圧計356から電源251にむかうフィードバック回路255がある。
【0041】
そして,第1ポンプ電極21,第2モニタ電極32はNOxに対して不活性なPt−Au電極よりなる。被測定ガス側電極42はNOxに対して活性なPt−Rh電極よりなる。その他の電極22,31,41はPt−Rh電極である。また,被測定ガス側電極42はAuを0.2wt%添加する。
その他,実施例1と同様の構成を有し,同様の作用効果を有する。
【0042】
なお,図7に示すように,モニタセル3を第1固体電解質板51に設けることもできる。また,ポンプセル2の第2ポンプ電極22とモニタセル3の第1モニタ電極31とは一体化することができる。
【0043】
(実施例5)
本例のガスセンサ素子1は,図8に示すごとく,センサセル4とモニタセル3を直列に接続した構成を有する。
本例のガスセンサ素子1は,スペーサー61,第1固体電解質板62,スペーサー63,第2固体電解質板64,スペーサー65,セラミックヒータ19を積層構成してなる。
スペーサー61と第1固体電解質板62との間に第1大気室610が,第1固体電解質板62とスペーサー63,第2固体電解質板64との間に第1及び第2の被測定ガス室631,632が,第2固体電解質板64とスペーサー65,ヒータ19との間に第2大気室650がある。
【0044】
第1固体電解質板62に設けた導入穴620から第1被測定ガス室631に対し被測定ガスを導入する。多孔質拡散層17は導入穴620を覆うように第1固体電解質板62に対し積層する。第1と第2の被測定ガス室631,632との間は拡散通路630により連通される。
【0045】
そして,ポンプセル2の第1ポンプ電極21は第1被測定ガス室631と対面し,第2ポンプ電極22は第2大気室650と対面する。第1及び第2のポンプ電極21,22は第2固体電解質板64に設ける。
センサセル4の第2被測定ガス室632と対面する被測定ガス側電極42と第1大気室610と対面する基準電極41とは,第1固体電解質板62に設ける。モニタセル3における,上記第2被測定ガス室632と対面する第2モニタ電極32と,大気室610と対面する第1モニタ電極31とは,第1固体電解質板62に設ける。
【0046】
そして,ポンプセル2のポンプ電極21,22は電源251及び電流計252を備えたポンプ回路25に接続する。モニタセル3の電極31,32は電源351,電流計352を備えたモニタ回路35に接続する。センサセル4の電極41,42は電源451及び電流計452を備えたセンサ回路45に接続する。
そして,ポンプセル2の動作を制御するため,電流計252から電源251にむかうフィードバック回路255がある。
【0047】
そして,第1ポンプ電極21,第2モニタ電極32はNOxに対して不活性なPt−Au電極よりなる。被測定ガス側電極42はNOxに対して活性なPt−Rh電極よりなる。その他の電極22,31,41はPt−Rh電極である。また,被測定ガス側電極42はAuを0.2wt%添加する。
その他,実施例1と同様の構成を有し,同様の作用効果を有する。
【0048】
また,図示した構成のほか,ポンプセル2を第1固体電解質板62に設け,センサセル4やモニタセル3を第2固体電解質板64に設ける構成でもよい。
【0049】
(実施例6)
本例は,図9に示すごとく,実施例1と同じ構成のガスセンサ素子1であるが,モニタセルを持たない2セル式の素子である。
そして,ポンプセル2はポンプ回路25に設けた電流計252から電源251に向かうフィードバック回路255がある。
その他,実施例1と同様の構成を有し,同様の作用効果を有する。
【0050】
また,図示した構成のほか,ポンプセル2を第1固体電解質板11に設け,センサセル4やモニタセル3を第2固体電解質板13に設ける構成でもよい。
【図面の簡単な説明】
【図1】実施例1における,ガスセンサ素子の断面説明図。
【図2】実施例1における,ガスセンサ素子の斜視展開図。
【図3】実施例1における,ガスセンサ素子の横断面説明図(図1のA−A矢視断面図)。
【図4】実施例2における,オフセット電流の測定結果を示す線図。
【図5】実施例3における,導電性リード部におけるAu含有量とオフセット電流との関係を示す線図。
【図6】実施例4における,積層方向に被測定ガス室が並んだ構成のガスセンサ素子を示す断面説明図。
【図7】実施例4における,図6とは異なる,積層方向に被測定ガス室が並んだ構成のガスセンサ素子を示す断面説明図。
【図8】実施例5における,モニタセルとセンサセルとが直列に並んだ構成のガスセンサ素子を示す断面説明図。
【図9】実施例6における,センサセルとポンプセルのみよりなるガスセンサ素子の断面説明図。
【符号の説明】
1...ガスセンサ素子,
11...第1固体電解質板,
121...第1被測定ガス室,
122...第2被測定ガス室,
140...大気室,
2...ポンプセル,
3...モニタセル,
4...センサセル,
41...基準電極,
42...被測定ガス側電極,
411,421...導電性リード部,
412,422...端子,
[0001]
【Technical field】
The present invention relates to a gas sensor element that is installed in an exhaust system or the like of an internal combustion engine and measures a NOx concentration or the like in exhaust gas.
[0002]
[Prior art]
As a gas sensor element that is installed in an exhaust system of an automobile engine and is used for a gas sensor that measures NOx concentration, oxygen concentration in an exhaust gas, and an air-fuel ratio of an engine combustion chamber, an element having the following configuration is known.
This gas sensor element includes a pump cell that pumps oxygen into the gas chamber to be measured and a sensor cell that measures the concentration of NOx introduced into the gas chamber to be measured.
[0003]
The sensor cell for measuring the NOx concentration consists of a solid electrolyte plate and a pair of electrodes provided on the solid electrolyte plate, one electrode facing the gas chamber to be measured, and the other electrode introduced an atmosphere serving as a reference gas Facing the air chamber. As the electrode facing the gas chamber to be measured, an electrode active for NOx is used.
The pump cell includes a solid electrolyte plate and a pair of pump electrodes provided on the solid electrolyte plate, and one pump electrode faces the gas chamber to be measured. An electrode inert to NOx is used as the electrode on the measured gas side.
[0004]
The measurement of the NOx concentration in the sensor cell is performed based on the generated oxygen ion current by decomposing NOx on the measured gas side electrode. Therefore, the oxygen concentration in the gas chamber to be measured must be very low or in a steady state.
Therefore, the oxygen concentration in the gas chamber to be measured is adjusted using a pump cell.
And the electrode in the said sensor cell is connected to the terminal for connecting with a sensor circuit in the exterior of a gas sensor element through a conductive lead part.
[0005]
[Problems to be solved]
However, the conductive lead portion is made of Pt, and this Pt lead has many gaps between Pt particles or between Pt and ZrO 2 . For this reason, oxygen gas outside the gas sensor element may flow into the electrode on the measured gas chamber side through the conductive lead portion. Oxygen gas that reaches the electrode is decomposed at the electrode to generate an oxygen ion current.
[0006]
Therefore, even when NOx is not actually present in the gas chamber to be measured, an output current generated in the sensor cell, that is, an offset current flows.
Since the detection of the NOx concentration is a weak current flowing through the sensor cell, even a slight offset current can affect the detection of the NOx concentration. For this reason, it has been difficult to accurately detect the NOx concentration.
[0007]
The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a gas sensor element that can reduce an offset current and accurately detect a concentration of a specific gas.
[0008]
[Means for solving problems]
The present invention relates to a gas sensor element having a measured gas chamber for introducing a measured gas and a sensor cell for detecting the concentration of a specific gas in the measured gas.
The sensor cell includes a solid electrolyte plate and a pair of electrodes provided on the front and back of the solid electrolyte plate, and is configured to detect the concentration of the specific gas using a weak current flowing between the two electrodes.
The electrode is electrically connected to a terminal exposed to the outside of the gas sensor element through the conductive lead portion,
Of the pair of electrodes, the conductive lead portion connected to the measured gas side electrode facing the measured gas chamber has at least a part thereof containing Pt—Au in the gas sensor element. (Claim 1).
[0009]
Next, the effects of the present invention will be described.
Detection of the specific gas concentration in the sensor cell is performed based on the generated oxygen ion current by decomposing the specific gas on the measured gas side electrode. Therefore, if external oxygen gas flows into the measured gas side electrode from the terminal exposed to the outside through the conductive lead portion, an oxygen ion current may be generated thereby preventing accurate detection of the specific gas concentration. There is.
[0010]
As described above, in the gas sensor element of the present invention, at least a part of the conductive lead portion contains Pt—Au. Therefore, at least a part of the conductive lead portion is formed with a dense crystal structure. The reason why Pt—Au is dense is not clear, but since the melting point of Au is lower than the temperature at the time of element firing, a small amount of Au released at the conductive lead portion made of Pt—Au melts, and Pt—Au To fill in the gaps that occur between Therefore, it is thought that it becomes a dense lead portion that is difficult for gas to pass through.
Thereby, it can suppress that oxygen gas flows in into the said to-be-measured gas side electrode from the terminal exposed outside the gas sensor element via the said electroconductive lead part.
Therefore, the offset current generated in the sensor cell can be reduced and the concentration of the specific gas can be accurately detected.
[0011]
As described above, according to the present invention, it is possible to provide a gas sensor element that can reduce the offset current and accurately detect the concentration of a specific gas.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention (Claim 1), examples of the specific gas include NOx, CO, and HC.
The weak current flowing between the two electrodes is, for example, a current of 10 μA or less. In addition, the conductive lead portion connected to the measurement gas side electrode may entirely contain Pt—Au, or a part thereof may contain Pt—Au.
Further, all or part of the conductive lead portion may be made of only Pt—Au, or may be made of a cermet material made of Pt—Au and a ceramic component.
[0013]
Further, the Au content in the Pt—Au is preferably 1 to 20 wt% (claim 2).
In this case, the inflow of oxygen gas to the measured gas side electrode can be further suppressed.
When the content of Au is less than 1 wt%, there is a possibility that the inflow of oxygen gas to the measurement gas side electrode cannot be sufficiently suppressed. On the other hand, when the content exceeds 20 wt%, the thermal expansion coefficient of Au is large, so that the thermal expansion of the Pt-Au lead increases, and the peeling between the conductive lead and the base is surely suppressed. May be difficult to do.
[0014]
The specific gas may be NOx (Claim 3).
In this case, a gas sensor element that can accurately detect the concentration of harmful NOx contained in the exhaust gas of an automobile or the like can be obtained.
[0015]
【Example】
A gas sensor element according to an embodiment of the present invention will be described with reference to FIGS.
As shown in FIGS. 1 to 3, the gas sensor element 1 of the present example detects a gas chamber to be measured (second gas chamber 122) into which the gas to be measured is introduced and the concentration of the specific gas in the gas to be measured. Sensor cell 4.
[0016]
The sensor cell 4 is composed of a first solid electrolyte plate 11 and a pair of electrodes 41 and 42 provided on the front and back of the first solid electrolyte plate 11, and the concentration of the specific gas using a weak current flowing between both electrodes. It is comprised so that it may detect.
The electrodes 41 and 42 are electrically connected to terminals 412 and 422 exposed to the outside of the gas sensor element 1 through conductive lead portions 411 and 421.
[0017]
Among the pair of electrodes, at least a part of the conductive lead portion 421 connected to the measured gas side electrode 42 facing the second measured gas chamber 122 contains Pt—Au. In this example, the entire conductive lead portion 421 connected to the measured gas side electrode 42 contains Pt—Au.
The Au content in the Pt—Au, that is, the Au content relative to the Pt—Au alloy contained in the conductive lead portion 421 is 1 to 20 wt%.
[0018]
The specific gas is NOx, and the gas sensor element 1 is used, for example, to detect NOx in the exhaust gas of an automobile.
The weak current flowing between the electrodes 41 and 42 is, for example, a current of 10 μA or less.
[0019]
This will be described in detail below.
As shown in FIGS. 1 to 3, the gas sensor element 1 of this example includes a stacked first solid electrolyte plate 11, a spacer 12 for a gas chamber to be measured, a second solid electrolyte plate 13, a spacer 14 for an atmospheric chamber, It consists of a ceramic heater 19.
The gas sensor element 1 includes first and second measured gas chambers 121 and 122 and first and second atmospheric chambers 140 and 160, and is a pump cell that pumps oxygen gas to the first measured gas chamber 121. 2, a monitor cell 3 for monitoring the oxygen concentration in the second measured gas chamber 122, and a sensor cell 4 for detecting the NOx concentration in the second measured gas chamber 122.
[0020]
Between the first and second solid electrolyte plates 11 and 13 and the spacer 12, there are first and second measured gas chambers 121 and 122. As shown in FIGS. 1 and 2, the first measured gas chamber 121 communicates with the outside through an introduction hole 110 provided in the first solid electrolyte plate 11, and the first measured gas chamber 121 and the second measured gas chamber There is a diffusion passage 120 communicating with 122.
Further, the gas sensor element 1 of the present example has a porous diffusion layer 17 that covers the introduction hole 110 of the first solid electrolyte plate 11, and a second atmospheric chamber 160 is formed adjacent to the porous diffusion layer 17. Spacer 161 and insulating plate 162.
[0021]
In addition, a first atmospheric chamber 140 for introducing an atmosphere serving as a reference gas is provided between the second solid electrolyte plate 13, the spacer 14, and the ceramic heater 19.
The ceramic heater 19 includes a heater substrate 191, a heating element 190 provided on the heater substrate 191, and a cover plate 192 that covers the heating element 190.
The first and second solid electrolyte plates 11 and 13 are made of zirconia ceramic, and the others are made of insulating alumina ceramic.
As shown in FIG. 2, power is supplied to the heating element 190 through a lead portion 195, a through hole 193, and a terminal portion 194 that are integrally formed with the heating element 190.
[0022]
As shown in FIGS. 1 and 2, the pump cell 2 includes a first pump electrode 21 facing the first gas chamber 121 to be measured and a second pump facing the first atmospheric chamber 140 provided on the second solid electrolyte plate 13. It consists of an electrode 22. Both electrodes 21 and 22 are connected to a pump circuit 25 having a power source 251 and an ammeter 252.
[0023]
As shown in FIGS. 2 and 3, the monitor cell 3 includes a second monitor electrode 32 facing the second measured gas chamber 122 provided on the first solid electrolyte plate 11 and a first monitor facing the second atmospheric chamber 160. It consists of an electrode 31. Both electrodes 31 and 32 are connected to a monitor circuit 35 having a power source 351 and an ammeter 352.
[0024]
As shown in FIGS. 1 to 3, the sensor cell 4 includes a measured gas side electrode 42 facing the second measured gas chamber 122 provided on the first solid electrolyte plate 11 and a reference electrode facing the second atmospheric chamber 160. 41. Both electrodes 41 and 42 are connected to a sensor circuit 45 having a power source 451 and an ammeter 452.
In order to control the operation of the pump cell 2 by the monitor cell 3, there is a feedback circuit (not shown) from the ammeter 352 to the power source 251.
[0025]
The first pump electrode 21 and the second monitor electrode 32 are Pt—Au electrodes that are inactive with respect to NOx. The Au content is 3 wt%. The measured gas side electrode 42 of the sensor cell 4 is a Pt—Rh electrode active against NOx. The other electrodes 22, 31, 41 are Pt-Rh electrodes. The content of Rh is 20 wt%. Further, 0.2 wt% of Au is added to the measured gas side electrode 42.
[0026]
As shown in FIGS. 1 and 2, both electrodes 41 and 42 in the sensor cell 4 are electrically connected to external terminals 412 and 422 through conductive lead portions 411 and 421. The conductive lead portions 411 and 421 connect the electrodes 41 and 42 and the terminals 412 and 422 through through holes 181 and 182 formed in the first solid electrolyte plate 11, the spacer 161 and the insulating plate 162, respectively. Connected.
[0027]
Further, as shown in FIG. 2, both electrodes 31 and 32 in the monitor cell 3 are also electrically connected to external terminals 312 and 322 via conductive lead portions 311 and 321 in the same manner. The conductive lead portions 311 and 321 connect the electrodes 31 and 32 and the terminals 312 and 322 through through holes 183 and 184 formed in the first solid electrolyte plate 11, the spacer 161 and the insulating plate 162, respectively. Connected.
[0028]
Similarly, both electrodes 21 and 22 in the pump cell 2 are electrically connected to external terminals 215 and 225 via conductive lead portions 211 and 221, respectively. The conductive lead portions 211 and 221 pass through the electrodes 21 and 22 and the terminals 215 and 185 through through holes 185 and 186 formed in the second solid electrolyte plate 13, the spacer 14, the heater substrate 191 and the cover plate 192. 225 are connected to each other.
[0029]
Next, the effect of this example will be described.
The detection of the specific gas concentration in the sensor cell 4 is performed based on the generated oxygen ion current by decomposing the specific gas on the measured gas side electrode 42. Therefore, when an external oxygen gas flows from the terminal 422 exposed to the outside to the measured gas side electrode 42 through the conductive lead portion 421, an oxygen ion current is generated thereby, and the specific gas concentration is accurately detected. May interfere.
[0030]
As described above, in the gas sensor element 1 of this example, the conductive lead portion 421 contains Pt—Au. Therefore, the conductive lead portion 421 is formed with a dense crystal structure. Thereby, oxygen gas can be prevented from flowing into the measured gas side electrode from the terminal 422 exposed to the outside of the gas sensor element 1 through the conductive lead portion 421.
Therefore, the offset current generated in the sensor cell 4 can be reduced and the concentration of the specific gas can be accurately detected.
[0031]
Further, since the Au content in the Pt—Au is 1 to 20 wt%, it is possible to further suppress the inflow of oxygen gas to the measured gas side electrode 42.
[0032]
As described above, according to this example, it is possible to provide a gas sensor element that can reduce the offset current and accurately detect the concentration of a specific gas.
[0033]
(Example 2)
In this example, as shown in FIG. 4, the value of the offset current generated in the gas sensor element of the present invention was measured and compared with the conventional product.
As the product of the present invention, the one shown in Example 1 was used.
On the other hand, as a conventional product, a conductive lead portion made of Pt without containing Au was used.
As a result of the measurement, as shown in FIG. 4, the offset current in the conventional product was about 0.95 μA, whereas the offset current in the product of the present invention was extremely small, about 0.2 μA.
Accordingly, it was found that the gas sensor element according to Example 1 can extremely reduce the offset current.
[0034]
(Example 3)
In this example, as shown in FIG. 5, the dependency of the offset current in the gas sensor element on the Au content in the conductive lead portion was investigated.
That is, six types of samples in which the Au content in Pt-Au in the conductive lead part was 0, 0.5, 1, 2, 5, 10 wt% were prepared, and the offset current was measured for each sample. .
[0035]
As shown in FIG. 5, it can be seen that the offset current increases when the Au content is less than 1 wt%.
On the other hand, if Au exceeds 20 wt%, thermal expansion increases, and it may be difficult to suppress the peeling of the conductive leads and the occurrence of disconnection.
From this point of view, it is understood that the Au content is preferably 1 to 20 wt%.
[0036]
Example 4
As shown in FIG. 6, the gas sensor element 1 of the present example is configured such that the first and second measured gas chambers 520 and 540 are positioned in the stacking direction of the first and second solid electrolyte plates 51 and 55 and the like. . In FIG. 6, although the conductive lead portion is omitted, the sensor cell 4 has a conductive lead portion containing Pt—Au as in the first embodiment. The same applies to FIGS. 7 to 9 (Examples 5 and 6).
The gas sensor element 1 of this example is formed by laminating a first solid electrolyte plate 51, a spacer 52, a second solid electrolyte plate 53, a spacer 54, a third solid electrolyte plate 55, a spacer 56, and a ceramic heater 19.
[0037]
A first measured gas chamber 520 is provided between the first solid electrolyte plate 51, the second solid electrolyte plate 53 and the spacer 52, and a first measured gas chamber 520 is provided between the second solid electrolyte plate 53, the third solid electrolyte plate 55 and the spacer 54. 2 The gas chamber 540 to be measured has an atmospheric chamber 550 between the third solid electrolyte plate 55, the spacer 56 and the ceramic heater 19.
[0038]
A measurement gas is introduced into the first measurement gas chamber 520 through an introduction hole 510 provided in the first solid electrolyte plate 51. The porous diffusion layer 17 is laminated on the first solid electrolyte plate 51 so as to cover the introduction hole 510. The first and second measured gas chambers 520 and 540 are communicated with each other through a diffusion passage 530.
[0039]
The first pump electrode 21 of the pump cell 2 faces the first measured gas chamber 520, and the second pump electrode 22 is exposed to the external atmosphere of the element through the diffusion resistance layer 17. The first and second pump electrodes 21 and 22 are provided on the first solid electrolyte plate 51.
The measured gas side electrode 42 facing the second measured gas chamber 540 of the sensor cell 4 and the reference electrode 41 facing the atmospheric chamber 550 are provided on the third solid electrolyte plate 55. The second monitor electrode 32 facing the second measured gas chamber 540 and the first monitor electrode 31 facing the atmospheric chamber 550 in the monitor cell 3 are provided on the third solid electrolyte plate 55.
[0040]
The pump electrodes 21 and 22 of the pump cell 2 are connected to a pump circuit 25 including a power source 251 and an ammeter 252. The electrodes 31 and 32 of the monitor cell 3 are connected to a monitor circuit 35 having a voltmeter 356. The electrodes 41 and 42 of the sensor cell 4 are connected to a sensor circuit 45 including a power source 451 and an ammeter 452.
In order to control the operation of the pump cell 2 by the monitor cell 3, there is a feedback circuit 255 from the voltmeter 356 to the power source 251.
[0041]
The first pump electrode 21 and the second monitor electrode 32 are Pt—Au electrodes that are inactive with respect to NOx. The measured gas side electrode 42 is composed of a Pt—Rh electrode active against NOx. The other electrodes 22, 31, 41 are Pt-Rh electrodes. Further, 0.2 wt% of Au is added to the measured gas side electrode 42.
In addition, it has the same configuration as that of the first embodiment and has the same functions and effects.
[0042]
In addition, as shown in FIG. 7, the monitor cell 3 can be provided on the first solid electrolyte plate 51. Further, the second pump electrode 22 of the pump cell 2 and the first monitor electrode 31 of the monitor cell 3 can be integrated.
[0043]
(Example 5)
The gas sensor element 1 of this example has a configuration in which a sensor cell 4 and a monitor cell 3 are connected in series as shown in FIG.
The gas sensor element 1 of this example is formed by laminating a spacer 61, a first solid electrolyte plate 62, a spacer 63, a second solid electrolyte plate 64, a spacer 65, and a ceramic heater 19.
A first atmospheric chamber 610 is provided between the spacer 61 and the first solid electrolyte plate 62, and first and second gas chambers to be measured are provided between the first solid electrolyte plate 62 and the spacer 63 and the second solid electrolyte plate 64. 632 and 632 between the second solid electrolyte plate 64, the spacer 65, and the heater 19 are the second atmospheric chambers 650.
[0044]
A gas to be measured is introduced into the first gas chamber to be measured 631 from an introduction hole 620 provided in the first solid electrolyte plate 62. The porous diffusion layer 17 is laminated on the first solid electrolyte plate 62 so as to cover the introduction hole 620. The first and second measured gas chambers 631 and 632 are communicated with each other by a diffusion passage 630.
[0045]
The first pump electrode 21 of the pump cell 2 faces the first measured gas chamber 631, and the second pump electrode 22 faces the second atmospheric chamber 650. The first and second pump electrodes 21 and 22 are provided on the second solid electrolyte plate 64.
The measured gas side electrode 42 facing the second measured gas chamber 632 of the sensor cell 4 and the reference electrode 41 facing the first atmospheric chamber 610 are provided on the first solid electrolyte plate 62. In the monitor cell 3, the second monitor electrode 32 facing the second measured gas chamber 632 and the first monitor electrode 31 facing the atmospheric chamber 610 are provided on the first solid electrolyte plate 62.
[0046]
The pump electrodes 21 and 22 of the pump cell 2 are connected to a pump circuit 25 including a power source 251 and an ammeter 252. The electrodes 31 and 32 of the monitor cell 3 are connected to a monitor circuit 35 having a power source 351 and an ammeter 352. The electrodes 41 and 42 of the sensor cell 4 are connected to a sensor circuit 45 including a power source 451 and an ammeter 452.
In order to control the operation of the pump cell 2, there is a feedback circuit 255 from the ammeter 252 to the power source 251.
[0047]
The first pump electrode 21 and the second monitor electrode 32 are Pt—Au electrodes that are inactive with respect to NOx. The measured gas side electrode 42 is composed of a Pt—Rh electrode active against NOx. The other electrodes 22, 31, 41 are Pt-Rh electrodes. Further, 0.2 wt% of Au is added to the measured gas side electrode 42.
In addition, it has the same configuration as that of the first embodiment and has the same functions and effects.
[0048]
In addition to the illustrated configuration, the pump cell 2 may be provided on the first solid electrolyte plate 62, and the sensor cell 4 and the monitor cell 3 may be provided on the second solid electrolyte plate 64.
[0049]
(Example 6)
As shown in FIG. 9, the present example is a gas sensor element 1 having the same configuration as that of the first embodiment, but is a two-cell type element having no monitor cell.
The pump cell 2 has a feedback circuit 255 from the ammeter 252 provided in the pump circuit 25 to the power source 251.
In addition, it has the same configuration as that of the first embodiment and has the same functions and effects.
[0050]
In addition to the illustrated configuration, the pump cell 2 may be provided on the first solid electrolyte plate 11 and the sensor cell 4 and the monitor cell 3 may be provided on the second solid electrolyte plate 13.
[Brief description of the drawings]
1 is a cross-sectional explanatory view of a gas sensor element in Example 1. FIG.
2 is a perspective development view of a gas sensor element in Embodiment 1. FIG.
3 is a cross-sectional explanatory view of a gas sensor element in Example 1 (a cross-sectional view taken along line AA in FIG. 1).
4 is a diagram showing a measurement result of an offset current in Example 2. FIG.
5 is a diagram showing the relationship between the Au content in the conductive lead portion and the offset current in Example 3. FIG.
6 is a cross-sectional explanatory view showing a gas sensor element having a configuration in which gas chambers to be measured are arranged in the stacking direction in Example 4. FIG.
7 is a cross-sectional explanatory view showing a gas sensor element having a configuration in which gas chambers to be measured are arranged in the stacking direction, different from FIG.
8 is an explanatory cross-sectional view showing a gas sensor element having a configuration in which monitor cells and sensor cells are arranged in series in Example 5. FIG.
9 is a cross-sectional explanatory view of a gas sensor element including only a sensor cell and a pump cell in Example 6. FIG.
[Explanation of symbols]
1. . . Gas sensor element,
11. . . A first solid electrolyte plate,
121. . . First gas chamber to be measured,
122. . . Second gas chamber to be measured,
140. . . Atmospheric chamber,
2. . . Pump cell,
3. . . Monitor cell,
4). . . Sensor cell,
41. . . Reference electrode,
42. . . Measured gas side electrode,
411, 421. . . Conductive leads,
412 422. . . Terminal,

Claims (3)

被測定ガスを導入する被測定ガス室と,上記被測定ガス中の特定ガスの濃度を検出するセンサセルとを有するガスセンサ素子において,
上記センサセルは,固体電解質板と該固体電解質板の表裏に設けた一対の電極とよりなり,両電極間に流れる微弱電流を利用して上記特定ガスの濃度の検出を行うよう構成されており,
上記電極は導電性リード部を介してガスセンサ素子の外部に露出した端子と電気的に導通し,
上記一対の電極のうち上記被測定ガス室に面した被測定ガス側電極に接続された上記導電性リード部は,その少なくとも一部がPt−Auを含有することを特徴とするガスセンサ素子。
In a gas sensor element having a measured gas chamber for introducing a measured gas and a sensor cell for detecting the concentration of a specific gas in the measured gas,
The sensor cell includes a solid electrolyte plate and a pair of electrodes provided on the front and back of the solid electrolyte plate, and is configured to detect the concentration of the specific gas using a weak current flowing between the two electrodes.
The electrode is electrically connected to a terminal exposed to the outside of the gas sensor element through the conductive lead portion,
The gas sensor element characterized in that at least a part of the conductive lead portion connected to the measured gas side electrode facing the measured gas chamber of the pair of electrodes contains Pt-Au.
請求項1において,上記Pt−AuにおけるAuの含有量は1〜20wt%であることを特徴とするガスセンサ素子。2. The gas sensor element according to claim 1, wherein the content of Au in the Pt—Au is 1 to 20 wt%. 請求項1または2において,上記特定ガスはNOxであることを特徴とするガスセンサ素子。3. The gas sensor element according to claim 1, wherein the specific gas is NOx.
JP2002251335A 2002-08-29 2002-08-29 Gas sensor element Expired - Fee Related JP4037220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002251335A JP4037220B2 (en) 2002-08-29 2002-08-29 Gas sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002251335A JP4037220B2 (en) 2002-08-29 2002-08-29 Gas sensor element

Publications (2)

Publication Number Publication Date
JP2004093199A true JP2004093199A (en) 2004-03-25
JP4037220B2 JP4037220B2 (en) 2008-01-23

Family

ID=32057946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002251335A Expired - Fee Related JP4037220B2 (en) 2002-08-29 2002-08-29 Gas sensor element

Country Status (1)

Country Link
JP (1) JP4037220B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007107996A (en) * 2005-10-13 2007-04-26 Denso Corp Gas sensor element
JP2008046112A (en) * 2006-07-18 2008-02-28 Ngk Spark Plug Co Ltd Gas sensor and its manufacturing method
JP2009115776A (en) * 2007-07-11 2009-05-28 Ngk Spark Plug Co Ltd Ammonia gas sensor
US8133432B2 (en) * 2008-05-28 2012-03-13 Ishifuku Metal Industry Co., Ltd. Conductive material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007107996A (en) * 2005-10-13 2007-04-26 Denso Corp Gas sensor element
JP2008046112A (en) * 2006-07-18 2008-02-28 Ngk Spark Plug Co Ltd Gas sensor and its manufacturing method
JP2009115776A (en) * 2007-07-11 2009-05-28 Ngk Spark Plug Co Ltd Ammonia gas sensor
US8133432B2 (en) * 2008-05-28 2012-03-13 Ishifuku Metal Industry Co., Ltd. Conductive material

Also Published As

Publication number Publication date
JP4037220B2 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
JP3876506B2 (en) Gas concentration measuring method and composite gas sensor
US5763763A (en) Method and sensing device for measuring predetermined gas component in measurement gas
JP2000321238A (en) Gas sensor
JP2000028576A (en) Gas sensor and nitrogen oxide sensor
JPH0473101B2 (en)
JPS61147155A (en) Electrochemical device
JP3587290B2 (en) NOx gas sensor
JP3993122B2 (en) Gas sensor element and method for measuring hydrogen-containing gas
US20040069629A1 (en) Gas sensing element
US6346178B1 (en) Simplified wide range air fuel ratio sensor
JP2004037100A (en) Gas sensor element
JP4037220B2 (en) Gas sensor element
JP2003083936A (en) Gas sensor element
JP2002139468A (en) Gas sensor
JP3916945B2 (en) Gas sensor element
JP4625261B2 (en) Sensor element of gas sensor
JP2004157063A (en) Gas sensor element and its manufacturing method
JP2002195978A (en) Gas detector element and gas sensing device using it
JPH11166911A (en) Air-fuel ratio sensor
JP2004151017A (en) Multilayer gas sensing element
JPH11237366A (en) Gas sensor
JP4563601B2 (en) Composite laminated sensor element
JP2002328112A (en) Gas sensor element
JP2004205357A (en) Detection method of gas concentration
JPH10253585A (en) Gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071031

R150 Certificate of patent or registration of utility model

Ref document number: 4037220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees