JP2004093160A - Thermal flowmeter - Google Patents

Thermal flowmeter Download PDF

Info

Publication number
JP2004093160A
JP2004093160A JP2002250816A JP2002250816A JP2004093160A JP 2004093160 A JP2004093160 A JP 2004093160A JP 2002250816 A JP2002250816 A JP 2002250816A JP 2002250816 A JP2002250816 A JP 2002250816A JP 2004093160 A JP2004093160 A JP 2004093160A
Authority
JP
Japan
Prior art keywords
flow
flow rate
sensor
sensors
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002250816A
Other languages
Japanese (ja)
Other versions
JP3966462B2 (en
Inventor
Toshinobu Fujita
藤田 俊宣
Katsusuke Shimada
島田 勝介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2002250816A priority Critical patent/JP3966462B2/en
Publication of JP2004093160A publication Critical patent/JP2004093160A/en
Application granted granted Critical
Publication of JP3966462B2 publication Critical patent/JP3966462B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal flowmeter in a simple configuration for effectively preventing the adhesion of dust or the like onto the surface of a flow sensor and for maintaining the measurement precision for a long time. <P>SOLUTION: The thermal flowmeter has a flow rate measurement means for measuring the flow rate of fluid that flows back the channel by selectively using a plurality of flow sensors that are assembled into a specific channel such as a low-speed flow sensor, and a high-speed flow sensor. In the thermal flowmeter, the heater element of each flow sensor is simultaneously subjected to heat generation drive regardless of whether the flow sensor is a flow sensor especially used for measuring a flow rate or not, and the natural convection of fluid (gas) by a heat flow is induced to prevent the adhesion of dirt contained in the fluid onto the sensor element surface. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、常に安定に流量計測を行い得る熱式流量計に関する。
【0002】
【関連する背景技術】
ガスメータ等として用いられる流量計は、例えば図3に示すような熱式流量センサを用いて所定の流体通路(ガス引込管)を通流する流体(ガス)の流量を求め、この流量を積算することで、例えば1ヶ月毎の流体通流量(ガス使用量)を求めように構成される。
【0003】
ちなみに上記熱式流量センサは、基本的にはシリコン基台B上に設けた発熱抵抗体からなるヒータ素子Rhを間にして、流体の通流方向Fに測温抵抗体からなる一対の温度センサRu,Rdを設けた素子構造を有する。そして上記ヒータ素子Rhから発せられる熱の拡散度合い(温度分布)が前記流体の通流によって変化することを利用し、前記温度センサRu,Rdの熱による抵抗値変化から前記流体の流量Qを検出する如く構成される。尚、図中Rrは、前記ヒータ素子Rhから離れた位置に設けられた測温抵抗体からなる温度センサであって、周囲温度の計測に用いられる。
【0004】
また最近ではこの種の熱式流量センサを複数個用い、これらの各流量センサによりそれぞれ計測される流量を平均化することでその計測精度を高めたり、或いは低流量域計測用の低速流量センサと高流量域計測用の高速流量センサと選択的に用いることでその計測精度を高めることが行われている。
【0005】
【発明が解決しようとする課題】
しかしながら上述した熱式流量センサを長期に亘って使用している際、センサ表面に付着するゴミ等によってその検出感度が低下することが否めない。この検出感度の低下は流量計測精度の低下の要因となるもので、前述したように、例えば1ヶ月毎の流体通流量(ガス使用量)を求める上で問題となる。そこで従来より、専ら、前記熱式流量センサが設けられる流路(配管)の上流側に金網等のフィルタを設ける等の対策を講じている。しかしこのようなフィルタを設けても、センサ表面へのゴミ等の付着を防止するには限界がある。
【0006】
本発明はこのような事情を考慮してなされたもので、その目的は、流量センサの表面へのゴミ等の付着を効果的に防止し、その計測精度を長期に亘って維持することのできる簡易な構成の熱式流量計を提供することにある。
【0007】
【課題を解決するための手段】
上述した目的を達成するべく本発明に係る熱式流量計は、熱式流量センサが備えるヒータ素子を発熱駆動した際、これによって生じる熱流により流体(ガス)中に含まれるゴミ等のセンサ素子表面への付着が生じ難いと言う現象に着目したもので、
所定の流路に組み込まれた複数の流量センサ、例えば低流量域計測用の低速流量センサと高流量域計測用の高速流量センサとを選択的に用いて前記流路を通流する流体の流量を計測する流量計測手段を備えた熱式流量計において、特に流量計測に用いる流量センサであるか否かに拘わらず、上記各流量センサのヒータ素子を同時に発熱駆動するようにしたことを特徴としている。
【0008】
即ち、本発明に係る熱式流量計は、ガス引込管等の所定の流路に組み込まれた複数の熱式流量センサのヒータ素子のそれぞれを、その熱式流量センサを用いて流量計測を行うか否かに拘わらず発熱駆動することで各熱式流量センサの表面に熱流による自然対流を生起し、これによって流体(ガス)中に含まれるゴミ等のセンサ素子表面への付着を防止することで、その計測精度を長期に亘って維持するようにしたことを特徴としている。
【0009】
【発明の実施の形態】
以下、図面を参照して本発明の一実施形態に係る熱式流量計について説明する。
図1はこの実施形態に係る熱式流量計の要部概略構成図で、10,20は前述した図3に示す素子構造を有する熱式流量センサである。ちなみにこれらの熱式流量センサ10,20は、ヒータ素子Rhと温度センサRu,Rdとの離間距離L1を短く設定した高流量域計測用の高速流量センサ10と、上記離間距離L2を長く設定した低流量域計測用の低速流量センサ20とからなる。
【0010】
この実施形態に係る熱式流量計は、上述した2種類の高速流量センサ10と低速流量センサ20とをガス引き込み管等の流体通流路にそれぞれ設けてなり、該流体通路を通流する流体(ガス)の流量に応じて上記各流量センサ10,20を択一的に用いて流量計測を行うように構成される。
その制御装置としてのCPU(演算処理装置)30は、前記各流量センサ10,20のヒータ駆動回路11,21を所定の計測周期毎に同時に駆動する制御部31と、前記各流量センサ10,20の検出回路12,22を介してそれぞれ検出されるセンサ出力Vout1,Vout2を選択的に取り込むスイッチ(セレクタ)32とを備える。このスイッチ32は、流量に応じてセンサ選択手段33により動作制御されるもので、流量が多い(高速)場合には高速流量センサ10を選択し、流量が少ない(低速)場合には低速流量センサ20を選択する。
【0011】
このようにしてスイッチ33を介して選択的に取り込まれる前記流量センサ10,20からのセンサ出力Vout1,Vout2は流量算出手段34に与えられ、前記制御部31による流量センサ10,20の駆動に同期して上記センサ出力Vout1,Vout2に相当する流量Qが算出される。このようにして求められる流量Qが前記センサ選択手段33に与えられて、前記流量センサ10,20の選択制御に用いられる。
【0012】
即ち、上述した如く構成された熱式流量計において前記制御部31は、例えば図2に示すように2つの流量センサ10,20の各ヒータ素子Rhをそれぞれ発熱駆動するヒータ駆動信号H1,H2を同時に出力すると共に、上記流量センサ10,20からそれぞれ出力されるセンサ出力Vout1,Vout2を選択的に用いて流量Qを計測する為のサンプリング信号S1,S2を上記ヒータ駆動信号H1,H2に同期して選択的に出力している。そして流量算出手段34においては上記サンプリング信号S1,S2に従って、高速流量センサ10から出力されるセンサ出力Vout1を用いて流量Qを算出し、或いは低速流量センサ20から出力されるセンサ出力Vout2を用いて流量Qを算出するものとなっている。
【0013】
尚、ここではヒータ駆動信号H1,H2に同期したサンプリング信号S1,S2により、ヒータ素子Rhを発熱駆動する直前のセンサ出力と、ヒータ素子Rhの発熱が安定した時点でのセンサ出力とをそれぞれ求めるものとなっている。このようにしてヒータ素子Rhのオン/オフ状態でのセンサ出力をそれぞれ求めることで、流量センサ10,20のゼロ点補正を行った高精度な流量測定が実現されている。
【0014】
かくして上述した如く構成された熱式流量計によれば、複数の熱式流量センサ10,20を選択的に用いて流量計測を行う場合であっても、これらの熱式流量センサ10,20のヒータ素子Rhを同時に発熱駆動するので、各熱式流量センサ10,20の表面に熱流による流体(ガス)の自然対流を生起して該流体(ガス)に含まれるゴミ等のセンサ素子表面への付着を効果的に防止することができる。特に流量に応じて一方の流量センサ10(20)だけを定期的に用いて流量計測するような場合であっても、他方の流量センサ20(10)のヒータ素子Rhも同時に発熱駆動されるので、流量計測に用いられていない他方の流量センサ20(10)の表面にゴミが付着するような不具合を招来することがない。
【0015】
従って簡易にして効果的に複数の流量センサ10,20の表面を常に清浄に保つことができるので、長期間に亘って安定して信頼性の高い流量計測を行うことが可能となる。しかも定期的にガス引込管等から複数の流量センサ10,20を取り外してその表面を清掃する等の作業が不要なので、そのメインテナンスの簡素化を図り得る等の実用上多大なる効果が奏せられる。
【0016】
尚、本発明は上述した実施形態に限定されるものではない。ここでは2つの流量センサを備えた熱式流量計を例に説明したが、流量計に組み込む流量センサの数は特に限定されるものではない。要は、本発明はその要旨を逸脱しない範囲で種々変形して実施することができる。
【0017】
【発明の効果】
以上説明したように本発明によれば、熱式流量センサが備えるヒータ素子を発熱駆動することにより流体(ガス)中に含まれるゴミ等のセンサ素子表面への付着が生じ難いと言う現象を有効に活用して、複数の流量センサを選択的に用いて流量計測する場合においても、これらの各流量センサのヒータ素子を同時に発熱駆動するので、センサ素子表面へのゴミに付着を効果的に防止し、その計測精度を長期に亘って維持することのできる簡易な構成の熱式流量計を実現することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る熱式流量計の要部概略構成図。
【図2】複数の流量センサにおけるヒータ素子の発熱駆動タイミングと、上記流量センサを選択的に用いた流量計測タイミングとの関係を示す図。
【図3】熱式流量センサの概略的な素子構造を示す図。
【符号の説明】
10 高速流量センサ
20 低速流量センサ
31 制御部
32 スイッチ
33 センサ選択手段
34 流量算出手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thermal flow meter that can always stably measure a flow rate.
[0002]
[Related background art]
A flow meter used as a gas meter or the like obtains a flow rate of a fluid (gas) flowing through a predetermined fluid passage (gas inlet pipe) using a thermal flow rate sensor as shown in FIG. 3, for example, and integrates this flow rate. Thus, for example, it is configured to obtain the fluid flow rate (gas usage amount) every month.
[0003]
Incidentally, the thermal type flow sensor is basically composed of a pair of temperature sensors composed of a temperature measuring resistor in a flow direction F of a fluid with a heater element Rh composed of a heating resistor provided on a silicon base B interposed therebetween. It has an element structure provided with Ru and Rd. Using the fact that the degree of diffusion (temperature distribution) of the heat generated from the heater element Rh changes due to the flow of the fluid, the flow rate Q of the fluid is detected from the change in the resistance value of the temperature sensors Ru and Rd due to the heat. It is configured so that Incidentally, Rr in the drawing is a temperature sensor comprising a temperature measuring resistor provided at a position distant from the heater element Rh, and is used for measuring the ambient temperature.
[0004]
Recently, a plurality of thermal flow sensors of this type have been used, and the flow rate measured by each of these flow sensors has been averaged to improve the measurement accuracy. The measurement accuracy has been improved by selectively using a high-speed flow sensor for measuring a high flow area.
[0005]
[Problems to be solved by the invention]
However, when the above-described thermal type flow sensor is used for a long period of time, it is unavoidable that the detection sensitivity is reduced due to dust or the like adhering to the sensor surface. This decrease in detection sensitivity causes a decrease in flow rate measurement accuracy, and as described above, poses a problem in obtaining, for example, a fluid flow rate (gas usage amount) every month. Therefore, conventionally, measures such as providing a filter such as a wire mesh upstream of a flow path (pipe) in which the thermal flow sensor is provided have been taken exclusively. However, even if such a filter is provided, there is a limit in preventing dust or the like from adhering to the sensor surface.
[0006]
The present invention has been made in view of such circumstances, and an object of the present invention is to effectively prevent dust and the like from adhering to the surface of a flow sensor and to maintain the measurement accuracy for a long time. An object of the present invention is to provide a thermal flow meter having a simple configuration.
[0007]
[Means for Solving the Problems]
In order to achieve the above-described object, a thermal flow meter according to the present invention has a sensor element surface such as dust contained in a fluid (gas) due to a heat flow generated when a heater element included in a thermal flow sensor is driven to generate heat. Focusing on the phenomenon that adhesion to hardly occurs,
A plurality of flow sensors incorporated in a predetermined flow path, for example, a flow rate of a fluid flowing through the flow path by selectively using a low flow rate sensor for measuring a low flow rate range and a high speed flow rate sensor for measuring a high flow rate range In the thermal type flow meter provided with a flow rate measuring means for measuring the flow rate, particularly, regardless of whether the flow rate sensor is used for flow rate measurement, the heater elements of the respective flow rate sensors are driven to generate heat simultaneously. I have.
[0008]
That is, the thermal type flow meter according to the present invention measures the flow rate of each of the heater elements of a plurality of thermal type flow sensors incorporated in a predetermined flow path such as a gas suction pipe using the thermal type flow sensor. Regardless of whether or not it is driven by heat, natural convection is generated by the heat flow on the surface of each thermal type flow sensor, thereby preventing dust or the like contained in the fluid (gas) from adhering to the sensor element surface. Thus, the measurement accuracy is maintained for a long period of time.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a thermal flowmeter according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a main portion of a thermal flow meter according to this embodiment. Reference numerals 10 and 20 denote thermal flow sensors having the above-described element structure shown in FIG. Incidentally, in these thermal type flow sensors 10, 20, the high-speed flow rate sensor 10 for measuring a high flow rate region in which the distance L1 between the heater element Rh and the temperature sensors Ru, Rd is set short, and the distance L2 is set long. A low flow rate sensor 20 for measuring a low flow rate region.
[0010]
The thermal flow meter according to this embodiment is provided with the two types of high-speed flow sensor 10 and the low-speed flow sensor 20 described above in a fluid passage such as a gas inlet pipe, and the fluid flowing through the fluid passage. The flow rate is measured by using one of the flow rate sensors 10 and 20 in accordance with the flow rate of (gas).
A CPU (arithmetic processing unit) 30 as a control device includes a control unit 31 that simultaneously drives the heater drive circuits 11 and 21 of the flow rate sensors 10 and 20 at predetermined measurement cycles, and a control unit 31 that controls the flow rate sensors 10 and 20. And a switch (selector) 32 for selectively taking in the sensor outputs Vout1 and Vout2 detected through the detection circuits 12 and 22, respectively. The operation of the switch 32 is controlled by the sensor selecting means 33 according to the flow rate. The switch 32 selects the high-speed flow sensor 10 when the flow rate is high (high speed), and selects the low-speed flow rate sensor when the flow rate is low (low speed). Select 20.
[0011]
The sensor outputs Vout1 and Vout2 from the flow sensors 10 and 20 selectively taken in through the switch 33 in this manner are supplied to the flow rate calculating means 34, and are synchronized with the driving of the flow sensors 10 and 20 by the control unit 31. Then, the flow rate Q corresponding to the sensor outputs Vout1 and Vout2 is calculated. The flow rate Q obtained in this way is given to the sensor selection means 33 and used for selection control of the flow sensors 10 and 20.
[0012]
That is, in the thermal type flow meter configured as described above, the control unit 31 generates heater drive signals H1 and H2 for driving the respective heater elements Rh of the two flow sensors 10 and 20 to generate heat, as shown in FIG. 2, for example. At the same time, the sampling signals S1 and S2 for measuring the flow rate Q by selectively using the sensor outputs Vout1 and Vout2 output from the flow rate sensors 10 and 20, respectively, are synchronized with the heater drive signals H1 and H2. Output selectively. Then, the flow rate calculating means 34 calculates the flow rate Q using the sensor output Vout1 output from the high-speed flow sensor 10 or uses the sensor output Vout2 output from the low-speed flow sensor 20 according to the sampling signals S1 and S2. The flow rate Q is calculated.
[0013]
Here, the sensor output immediately before the heater element Rh is driven to generate heat and the sensor output at the time when the heat generation of the heater element Rh is stabilized are obtained from the sampling signals S1 and S2 synchronized with the heater drive signals H1 and H2, respectively. It has become something. By obtaining sensor outputs in the on / off state of the heater element Rh in this way, high-precision flow measurement with zero correction of the flow sensors 10 and 20 is realized.
[0014]
Thus, according to the thermal type flow meter configured as described above, even when the flow rate measurement is performed using the plurality of thermal type flow sensors 10 and 20 selectively, the thermal type flow sensors 10 and 20 may be used. Since the heater elements Rh are simultaneously driven to generate heat, a natural convection of the fluid (gas) due to the heat flow is generated on the surface of each of the thermal flow sensors 10 and 20 so that dust or the like contained in the fluid (gas) is applied to the sensor element surface. Adhesion can be effectively prevented. In particular, even when the flow rate is measured using only one of the flow rate sensors 10 (20) periodically according to the flow rate, the heater element Rh of the other flow rate sensor 20 (10) is also driven to generate heat. In addition, there is no problem that dust adheres to the surface of the other flow sensor 20 (10) that is not used for flow measurement.
[0015]
Therefore, the surfaces of the plurality of flow sensors 10 and 20 can be kept simple and effective at all times, so that stable and reliable flow measurement can be performed over a long period of time. In addition, since there is no need to periodically remove the plurality of flow sensors 10 and 20 from the gas inlet pipe and clean the surfaces thereof, it is possible to achieve a great effect in practical use such as simplified maintenance. .
[0016]
Note that the present invention is not limited to the above-described embodiment. Here, a thermal type flow meter provided with two flow sensors has been described as an example, but the number of flow sensors incorporated in the flow meter is not particularly limited. In short, the present invention can be implemented with various modifications without departing from the scope of the invention.
[0017]
【The invention's effect】
As described above, according to the present invention, the phenomenon that dust or the like contained in a fluid (gas) hardly adheres to the sensor element surface by driving the heater element of the thermal flow sensor to generate heat is effective. In the case of measuring the flow rate by using multiple flow rate sensors selectively, the heater elements of each of these flow rate sensors are simultaneously driven to generate heat, effectively preventing dust from adhering to the sensor element surface. However, it is possible to realize a thermal flow meter having a simple configuration capable of maintaining the measurement accuracy for a long period of time.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a main part of a thermal flow meter according to an embodiment of the present invention.
FIG. 2 is a diagram showing a relationship between heat generation drive timings of heater elements in a plurality of flow sensors and flow measurement timings selectively using the flow sensors.
FIG. 3 is a diagram showing a schematic element structure of a thermal flow sensor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 High-speed flow sensor 20 Low-speed flow sensor 31 Control part 32 Switch 33 Sensor selection means 34 Flow rate calculation means

Claims (2)

ヒータ素子と、このヒータ素子を間にして流体の通流方向にそれぞれ設けられた第1および第2の温度センサとを備えてなり、所定の流路に組み込まれた複数の流量センサと、
これらの各流量センサのヒータ素子を同時に発熱駆動するヒータ駆動手段と、前記流量センサの出力を選択的に取り込んで前記流路を通流する流体の流量を計測する流量計測手段と
を備えたことを特徴とする熱式流量計。
A plurality of flow sensors each including a heater element, and first and second temperature sensors provided in the flow direction of the fluid with the heater element interposed therebetween;
Heater drive means for simultaneously driving the heater elements of these flow sensors to generate heat; and flow rate measuring means for selectively taking in the output of the flow sensor and measuring the flow rate of the fluid flowing through the flow path. A thermal flow meter characterized by the following.
前記複数の流量センサは、低流量域計測用の低速流量センサおよび高流量域計測用の高速流量センサからなる請求項1に記載の熱式流量計。The thermal flow meter according to claim 1, wherein the plurality of flow sensors include a low flow rate sensor for measuring a low flow rate range and a high speed flow rate sensor for measuring a high flow rate range.
JP2002250816A 2002-08-29 2002-08-29 Thermal flow meter Expired - Fee Related JP3966462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002250816A JP3966462B2 (en) 2002-08-29 2002-08-29 Thermal flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002250816A JP3966462B2 (en) 2002-08-29 2002-08-29 Thermal flow meter

Publications (2)

Publication Number Publication Date
JP2004093160A true JP2004093160A (en) 2004-03-25
JP3966462B2 JP3966462B2 (en) 2007-08-29

Family

ID=32057550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002250816A Expired - Fee Related JP3966462B2 (en) 2002-08-29 2002-08-29 Thermal flow meter

Country Status (1)

Country Link
JP (1) JP3966462B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110646017A (en) * 2018-06-26 2020-01-03 美蓓亚三美株式会社 Fluid sensor device and method for detecting failure of fluid sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11258022A (en) * 1998-03-09 1999-09-24 Tokyo Gas Co Ltd Gas meter
JP2002162280A (en) * 2000-11-24 2002-06-07 Tokyo Gas Co Ltd Gas measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11258022A (en) * 1998-03-09 1999-09-24 Tokyo Gas Co Ltd Gas meter
JP2002162280A (en) * 2000-11-24 2002-06-07 Tokyo Gas Co Ltd Gas measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110646017A (en) * 2018-06-26 2020-01-03 美蓓亚三美株式会社 Fluid sensor device and method for detecting failure of fluid sensor

Also Published As

Publication number Publication date
JP3966462B2 (en) 2007-08-29

Similar Documents

Publication Publication Date Title
US7908096B2 (en) Integrated micromachined thermal mass flow sensor and methods of making the same
JP5209232B2 (en) Thermal flow meter
JP2631481B2 (en) Mass flow meter and its measurement method
JP4906357B2 (en) Flowmeter
EP1992917A3 (en) Thermal flowmeter
US5817932A (en) Intake air flow measuring apparatus for internal combustion engine
JP2004093180A (en) Thermal flowmeter
JP5454603B2 (en) Flow measuring device
JP3955747B2 (en) Flow measuring device
WO2003029759A1 (en) Flow rate measuring instrument
JP3966462B2 (en) Thermal flow meter
JP3726261B2 (en) Thermal flow meter
JP3791596B2 (en) Thermal flow meter
JP2004093174A (en) Flowmeter
JP3758033B2 (en) Thermal flow meter
JP3734025B2 (en) Thermal flow meter
JP4688252B2 (en) Ultrasonic flow meter
JP2004093173A (en) Integrating flowmeter
JP3802222B2 (en) Thermal flow sensor
JP4551416B2 (en) Flow measuring device
JP4269047B2 (en) Integrated flow meter
JP2004093161A (en) Flowmeter
JPH085426A (en) Flow meter
JP2006275540A (en) Abnormality detection device of air flow measuring device, and engine control system
JPH08247807A (en) Flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070509

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20070524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3966462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140608

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees