JP2004093158A - Piezoelectric vibration type inertia sensor element and its manufacturing method, and laser machining apparatus - Google Patents

Piezoelectric vibration type inertia sensor element and its manufacturing method, and laser machining apparatus Download PDF

Info

Publication number
JP2004093158A
JP2004093158A JP2002250810A JP2002250810A JP2004093158A JP 2004093158 A JP2004093158 A JP 2004093158A JP 2002250810 A JP2002250810 A JP 2002250810A JP 2002250810 A JP2002250810 A JP 2002250810A JP 2004093158 A JP2004093158 A JP 2004093158A
Authority
JP
Japan
Prior art keywords
sensor element
piezoelectric vibration
vibration type
inertial sensor
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002250810A
Other languages
Japanese (ja)
Inventor
Shigeyuki Miyazaki
宮崎 茂行
Motoyasu Hanji
判治 元康
Shuichi Kono
河野 修一
Katsuhide Ibusuki
指宿 克英
Ryota Kawai
河合 良太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2002250810A priority Critical patent/JP2004093158A/en
Publication of JP2004093158A publication Critical patent/JP2004093158A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric vibration type inertia sensor element in which the mass balance of leg sections is adjusted by applying a mass change to at least one corner section at least at two leg sections of the piezoelectric vibration type inertia sensor element to remove unneeded vibration components, to provide a manufacturing method of the piezoelectric vibration type inertia sensor element for removing, with laser beams, at least one corner section of respective leg sections of the piezoelectric vibration type inertia sensor element simultaneously, and to provide a laser machining apparatus for removing minute sections by simultaneously irradiating the minute section of electronic components with a plurality of laser beams from different angles. <P>SOLUTION: The method is characterized in that, to achieve the purpose, the corner sections of respective leg sections of the piezoelectric vibration type inertia sensor element using a tuning fork type vibrator are removed, the corner sections of respective leg sections in the vibrator are removed with laser beams, and a plurality of laser beams are applied from different angles to remove the minute section. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は音叉型振動子を用いた圧電振動式慣性センサー素子及び圧電振動式慣性センサー素子の製造方法及びそのレーザー加工装置に関する。
【0002】
【従来の技術】
ウェットエッチング法により加工された音叉型振動子を用いた圧電振動式慣性センサー素子においては、水晶結晶のエッチング異方性によって図8のように圧電振動式慣性センサー素子の厚み方向、すなわちZ軸方向について非対称のエッチング残りがあらわれて、その為基部からY軸方向に突出したふたつの脚部の形状がそれぞれ互いに対称な形状をしたものが得られない。その為、図8にみられるような、厚み方向すなわちZ軸方向についてそれぞれの脚部の形状の非対称性によって音叉型振動子を用いた圧電振動式慣性センサー素子においては不要な振動成分が検出部から発生し、それが不要な信号として図7にあるような圧電振動式慣性センサー素子の検出電極に出力されてしまうという問題があった。
【0003】
上記の、図8に示すような脚部の形状の非対称性により、音叉型振動子を用いた圧電振動式慣性センサー素子で不要な振動成分が検出部から発生しそれが不要な信号として検出電極に出力されることを防止するために、本発明では圧電振動式慣性センサー素子のふたつの脚部に水晶結晶のエッチング異方性によりできた脚部の非対称な部分に除去加工をくわえてそれぞれの圧電振動式慣性センサー素子脚部の互いの質量のバランスをとることにより不要な信号が検出電極から出力されることを回避できることを見出した。
【0004】
【発明が解決しようとする課題】
しかしながら、圧電振動式慣性センサー素子のふたつの脚部の間隔は一例をあげれば約0.5mmと非常に狭く、その為圧電振動式慣性センサー素子のふたつの脚部の形状に加工をくわえてそれぞれの圧電振動式慣性センサー素子脚部の互いの質量のバランスをとるといった加工作業は極めて微細な加工であり、かつ非常に多くの工数を費やすという問題があった。
【0005】
なぜならば、ひとたび手作業で圧電振動式慣性センサー素子のふたつの脚部に水晶結晶のエッチング異方性によってできた脚部の非対称な部分に加工を行ってはその電気的な出力を測定して不要な振動成分が十分に抑制されているかを測定により確認をするといった作業を繰り返しつつ、許容できる電気的な出力が得られるまで前記の加工と測定を交互に行う必要があるからである。
【0006】
また、圧電振動式慣性センサー素子のふたつの脚部に水晶結晶のエッチング異方性によってできた脚部の非対称な部分への加工をひとつのレーザー光を用いて行う場合、微小な部分へのひとつのレーザー光の照射時において、加工の対象であるレーザー照射を行う微小な部分の延長線上の電気部品にレーザー光があたり加工を行う対象以外の電気部品にレーザー光により損傷を与えその特性を変えてしまうという問題があった。
【0007】
本発明は以上のような技術的背景のもとでなされたものであり、従がってその目的は、不要な振動成分を無くす為に圧電振動式慣性センサー素子のふたつの脚部にそれぞれ少なくとも1個所の角部に除去を加えて脚部の質量のバランスを相互に調整した圧電振動式慣性センサー素子を提供することである。
【0008】
また、同時に前記のような圧電振動式慣性センサー素子のそれぞれの脚部における少なくとも1個所の角部をレーザー光を用いて除去することを特徴とする圧電振動式慣性センサー素子の製造方法を提供することを目的とする。
【0009】
また、電子部品の微小部分をレーザー光の照射により除去するレーザー加工装置において、前記の電子部品の微小部分に複数のレーザー光を異なる角度から照射して先の電子部品の微小部分を除去することを特徴とするレーザー加工装置を提供することを目的とする。ここで複数のレーザー光とはもともとひとつのレーザー光を光学的に分離したものである。
【0010】
また、複数のレーザー光のそれぞれは加工するには不十分なエネルギーであり、複数のレーザー光が同時に照射される部分で加工が可能となるレーザー加工装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記の目的を達成するために本発明は、Y軸に平行に基部から突出した少なくとも2つの脚部を持つ音叉型振動子を用いた圧電振動式慣性センサー素子において、先の音叉型振動子のそれぞれの脚部の少なくとも1箇所の角部を除去することを特徴とする。
【0012】
また、Y軸に平行に基部から突出した少なくとも2つの脚部を持つ音叉型振動子を用いた圧電振動式慣性センサー素子の製造方法において、先の音叉型振動子のそれぞれの脚部の少なくとも1個所の角部をレーザー光を用いて除去することを特徴とする。
【0013】
また、電子部品の微小部分をレーザー光の照射により除去するレーザー加工装置において、先述の微小部分に複数のレーザー光を異なる角度から同時に照射して電子部品の微小部分を除去することを特徴とする。
【0014】
また、先の微小部分に照射される複数のそれぞれのレーザー光はひとつのレーザー光を光学的に分離したものから成ることを特徴とする。
【0015】
また、複数のレーザー光の各々は加工するには不十分なエネルギーを有し、複数のレーザー光が同時に照射される部分で加工が可能となることを特徴とする。
【0016】
【発明の実施の形態】
以下に図面を参照しながら、本発明の実施の一形態について説明する。
なお、各図においての同一の符号は同じ対象を示すものとする。
【0017】
図1は本発明の角部を除去した圧電振動式慣性センサー素子の概略の斜視図である。音叉型振動子を用いた圧電振動式慣性センサー素子においては水晶結晶のエッチング異方性により図8のように圧電振動式慣性センサー素子の厚み方向、すなわちZ軸方向について、それぞれ音叉型振動子の基部からY軸方向に突出したふたつの脚部の形状が互いに対称な形状をしたものが得られなかった。その為に図8に示すような脚部の形状の非対称性により音叉型振動子を用いた圧電振動式慣性センサー素子においては不要な振動成分が検出部から発生して図7に有るような圧電振動式慣性センサー素子の検出電極に不要な信号として出力されてしまうという問題があった。
【0018】
そこで図1及び図2のように、不要な振動成分を無くす為に圧電振動式慣性センサー素子のふたつの脚部にそれぞれ少なくとも1個所の部分的な除去を加えてそれぞれの脚部の質量のバランスをとり、純粋な振動モードになるように相互に調整する。
【0019】
圧電振動式慣性センサー素子のふたつの脚部にはそれぞれ図7のように電極が形成されて居り、この電極の電気的な出力を測定しながら除去を加えてそれぞれの脚部の質量のバランスをとり、純粋な振動モードになるように相互に調整する。
【0020】
図3は本発明の圧電振動式慣性センサー素子の脚部の角部をレーザー光を用いて除去する様子を示した圧電振動式慣性センサー素子の概略の斜視図である。図4は本発明の角部をレーザー光を用いて除去した圧電振動式慣性センサー素子をY軸方向からみた概略の側面図である。図3及び図4に示すように、それぞれの脚部の角部の少なくとも1箇所にレーザー光を照射してふたつの脚部に形成されている電極の電気的な出力を測定しながら除去を加える。
【0021】
なお、実施例では2脚の音叉振動子の例を示したが、2脚に限らず3脚や4脚の場合や、脚が平行ではない場合であっても同様の効果を奏する。
【0022】
図5は本発明の音叉型振動子のそれぞれの脚部の角部をレーザー光を用いて除去する装置の概略のブロック回路図である。検出系の電極の出力をチャージアンプ、作動アンプを通して同期検波回路に導く。一方駆動系の電極出力はI/V変換回路、90°位相器を通して先述の同期検波回路に導く。一方I/V変換回路の出力は制御用回路に導かれI/V変換回路の増幅をAGC回路によりコントロールする。作動アンプと90°位相器の双方の出力は同期検波された後平滑回路を通り位相を反転して出力Aとなる。出力Aはデジタルボルトメーターを通してデジタル信号としてCPUに入力され、CPUによりマルチビームスキャナー及びレーザー照射部をコントロールする。本ブロック回路図の構成を用いて、それぞれの脚部の角部の少なくとも1箇所にレーザー光を照射してふたつの脚部に形成されている電極の電気的な出力を測定しながら必要な除去を加えることが出来る。
【0023】
図6は本発明の音叉型振動子のそれぞれの脚部の角部を、ひとつのレーザー光を分離した複数のレーザー光を同時に用いて除去する装置の構成を示す概略図である。除去を加える音叉型振動子が搭載された圧電振動式慣性センサー素子はX−Yステージ上に載置される。X−Yステージとレーザー照射部は前述のマルチビームスキャナーによりコントロールされる。
【0024】
図6にあるようにレーザー照射部から出射するひとつのレーザー光はハーフミラーで複数のそれぞれでは加工を行うに十分ではないエネルギーを有したレーザー光に分離され、それぞれ集光レンズを通して微小な除去する部分に同時に照射される。同時に特定の波長のみ反射してその他の波長は透過させる働きをもつダイクロックミラーをレーザー光の光路に設けて除去する部分をカメラでモニターすることが出来る。圧電振動式慣性センサー素子はX−Yステージ上に載置されているので圧電振動式慣性センサー素子の位置を変化させレーザー光を走査するように除去する部分をレーザートリミングすることが出来る。
【0025】
同じく図6にあるように、レーザー照射部から出射するひとつのレーザー光はハーフミラーで複数のレーザー光に分離されて異なった角度でそれぞれ集光レンズを通して微小な除去する部分に照射され、それぞれの分離された複数のレーザー光は各々では加工を行うに十分ではないエネルギーを有したレーザー光である為、圧電振動式慣性センサー素子の加工の対象であるレーザー照射を行う音叉型振動子の除去される微小な部分の延長線上の電気部品にレーザー光があたった場合においても、分離されたそれぞれのレーザー光の照射エネルギーは充分に小さい為レーザー光により損傷を与えてその特性を変えてしまうことがない。
【0026】
【発明の効果】
本発明により圧電振動式慣性センサー素子の検出電極から出力される不要な振動成分を無くすことが出来る。
【0027】
また、本発明により圧電振動式慣性センサー素子の音叉型振動子の加工の工数を著しく短縮し、かつその歩留まりを高めることが出来る。
【0028】
【図面の簡単な説明】
【図1】本発明の、角部を除去した圧電振動式慣性センサー素子の概略の斜視図である。
【図2】本発明の、角部を除去した圧電振動式慣性センサー素子をY軸方向からみた概略の側面図である。
【図3】本発明の、角部をレーザー光を用いて除去した圧電振動式慣性センサー素子の概略の斜視図である。
【図4】本発明の、角部をレーザー光を用いて除去した圧電振動式慣性センサー素子をY軸方向からみた概略の側面図である。
【図5】本発明の、音叉型振動子のそれぞれの脚部の角部をレーザー光を用いて除去する装置の概略のブロック回路図である。
【図6】本発明の、音叉型振動子のそれぞれの脚部の角部をひとつのレーザー光を分離した複数のレーザー光を用いて除去する装置の構成を示す概略図である。
【図7】従来の圧電振動式慣性センサー素子の電極構造を示す概略の模式図である。
【図8】従来の圧電振動式慣性センサー素子をY軸方向からみた概略の側面図である。
【図9】従来の圧電振動式慣性センサー素子の概略の斜視図である。
【符号の説明】
1 基部
2 脚部
3 圧電振動式慣性センサー素子
4 角部
5 レーザー光
6 電子部品の微小部分
7 複数のレーザー光
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a piezoelectric vibration type inertial sensor element using a tuning fork type vibrator, a method for manufacturing a piezoelectric vibration type inertial sensor element, and a laser processing apparatus therefor.
[0002]
[Prior art]
In a piezoelectric vibration type inertial sensor element using a tuning fork type vibrator processed by a wet etching method, as shown in FIG. 8, the thickness direction of the piezoelectric vibration type inertial sensor element, that is, the Z-axis direction, due to the etching anisotropy of the quartz crystal. As a result, an asymmetrical etching residue appears, so that two limbs protruding from the base in the Y-axis direction are not symmetrical to each other. Therefore, as shown in FIG. 8, an unnecessary vibration component is not detected in the piezoelectric vibration type inertial sensor element using the tuning fork vibrator due to the asymmetry of the shape of each leg in the thickness direction, that is, the Z axis direction. , Which is output as an unnecessary signal to the detection electrode of the piezoelectric vibration type inertial sensor element as shown in FIG.
[0003]
Due to the asymmetry of the shape of the legs as shown in FIG. 8, an unnecessary vibration component is generated from the detection unit in the piezoelectric vibration type inertial sensor element using the tuning fork type vibrator, and the unnecessary vibration component is generated as an unnecessary signal. In the present invention, in order to prevent the output from being performed, the two legs of the piezoelectric vibration type inertial sensor element are subjected to removal processing on the asymmetrical portions of the legs formed by the etching anisotropy of the quartz crystal. It has been found that by balancing the masses of the legs of the piezoelectric vibration type inertial sensor element, unnecessary signals can be prevented from being output from the detection electrodes.
[0004]
[Problems to be solved by the invention]
However, the distance between the two legs of the piezoelectric vibratory inertial sensor element is very narrow, for example, about 0.5 mm. For this reason, the processing of the two legs of the piezoelectric vibratory inertial sensor element is performed separately. The work of balancing the masses of the legs of the piezoelectric vibration type inertial sensor element is extremely fine work, and there is a problem that a lot of man-hours are required.
[0005]
The reason is that once the two legs of the piezoelectric vibrating inertial sensor element are manually processed into the asymmetrical portions of the legs formed by the anisotropic etching of the quartz crystal, the electrical output is measured. This is because it is necessary to alternately perform the processing and the measurement until an acceptable electrical output is obtained, while repeating the operation of confirming by measurement whether unnecessary vibration components are sufficiently suppressed.
[0006]
In addition, when using a single laser beam to process the two legs of the piezoelectric vibration type inertial sensor element into the asymmetrical parts of the legs formed by the etching anisotropy of the quartz crystal, use one laser beam. When the laser beam is irradiated, the laser beam hits the electric parts on the extension of the minute part to be processed, which is the laser irradiation, and the electric parts other than the object to be processed are damaged by the laser light and the characteristics are changed. There was a problem that would.
[0007]
The present invention has been made in view of the above technical background, and accordingly, the object thereof is to provide at least two legs of a piezoelectric vibration type inertial sensor element at least in order to eliminate unnecessary vibration components. An object of the present invention is to provide a piezoelectric vibrating inertial sensor element in which the balance of the legs is mutually adjusted by removing one corner.
[0008]
Further, the present invention provides a method for manufacturing a piezoelectric vibration type inertial sensor element, wherein at least one corner of each leg of the piezoelectric vibration type inertial sensor element is removed by using a laser beam. The purpose is to:
[0009]
Further, in a laser processing apparatus that removes a minute portion of an electronic component by irradiating a laser beam, the minute portion of the electronic component is irradiated with a plurality of laser lights from different angles to remove the minute portion of the preceding electronic component. An object of the present invention is to provide a laser processing apparatus characterized by the following. Here, a plurality of laser beams is originally a single laser beam optically separated.
[0010]
It is another object of the present invention to provide a laser processing apparatus in which each of the plurality of laser beams has insufficient energy for processing, and processing can be performed in a portion where the plurality of laser beams are simultaneously irradiated.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a piezoelectric vibrating inertial sensor element using a tuning fork type vibrator having at least two legs protruding from a base parallel to the Y axis. At least one corner of each leg is removed.
[0012]
Further, in the method of manufacturing a piezoelectric vibration type inertial sensor element using a tuning fork type vibrator having at least two legs protruding from a base parallel to the Y axis, at least one of the legs of each of the preceding tuning fork type vibrators is provided. The method is characterized in that corners of a portion are removed by using a laser beam.
[0013]
Further, in a laser processing apparatus which removes a minute portion of an electronic component by irradiating a laser beam, the minute portion of the electronic component is removed by simultaneously irradiating a plurality of laser beams to the aforementioned minute portion from different angles. .
[0014]
Further, the plurality of laser beams applied to the minute portion are formed by optically separating one laser beam.
[0015]
In addition, each of the plurality of laser beams has insufficient energy for processing, and processing can be performed in a portion to which the plurality of laser beams are simultaneously irradiated.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
Note that the same reference numerals in each drawing indicate the same objects.
[0017]
FIG. 1 is a schematic perspective view of a piezoelectric vibration type inertial sensor element according to the present invention from which corners have been removed. In a piezoelectric vibration type inertial sensor element using a tuning fork type vibrator, as shown in FIG. Two limbs protruding in the Y-axis direction from the base were not symmetrical to each other. Therefore, in a piezoelectric vibration type inertial sensor element using a tuning fork type vibrator due to the asymmetry of the shape of the legs as shown in FIG. There is a problem that an unnecessary signal is output to the detection electrode of the vibrating inertial sensor element.
[0018]
Therefore, as shown in FIGS. 1 and 2, in order to eliminate unnecessary vibration components, at least one partial removal is added to each of the two legs of the piezoelectric vibration type inertial sensor element to balance the mass of each leg. And adjust each other to be a pure vibration mode.
[0019]
Electrodes are formed on the two legs of the piezoelectric vibration type inertial sensor element as shown in FIG. 7, and the electric output of the electrodes is measured and removed to balance the mass of each leg. They are mutually adjusted to be in a pure vibration mode.
[0020]
FIG. 3 is a schematic perspective view of the piezoelectric vibratory inertial sensor element showing the manner in which the corners of the legs of the piezoelectric vibratory inertial sensor element of the present invention are removed using laser light. FIG. 4 is a schematic side view of a piezoelectric vibrating inertial sensor element according to the present invention in which a corner is removed using a laser beam, as viewed from the Y-axis direction. As shown in FIGS. 3 and 4, at least one of the corners of each leg is irradiated with laser light to remove while measuring the electrical output of the electrodes formed on the two legs. .
[0021]
In the embodiment, the example of the two-leg tuning fork vibrator has been described. However, the same effect can be obtained not only for the two legs but also for the case of three or four legs or the case where the legs are not parallel.
[0022]
FIG. 5 is a schematic block circuit diagram of an apparatus for removing the corners of each leg of the tuning fork vibrator of the present invention using laser light. The output of the electrode of the detection system is led to a synchronous detection circuit through a charge amplifier and an operation amplifier. On the other hand, the electrode output of the drive system is led to the above-mentioned synchronous detection circuit through an I / V conversion circuit and a 90 ° phase shifter. On the other hand, the output of the I / V conversion circuit is led to the control circuit, and the amplification of the I / V conversion circuit is controlled by the AGC circuit. After the outputs of both the working amplifier and the 90 ° phase shifter are synchronously detected, they pass through a smoothing circuit and are inverted in phase to become an output A. The output A is input to the CPU as a digital signal through a digital voltmeter, and the CPU controls the multi-beam scanner and the laser irradiation unit. Using the configuration of this block circuit diagram, at least one of the corners of each leg is irradiated with a laser beam, and the necessary removal is performed while measuring the electrical output of the electrodes formed on the two legs. Can be added.
[0023]
FIG. 6 is a schematic view showing the configuration of an apparatus for removing a corner of each leg of a tuning fork vibrator of the present invention by simultaneously using a plurality of laser beams separated from one laser beam. A piezoelectric vibrating inertial sensor element on which a tuning fork vibrator to be removed is mounted is mounted on an XY stage. The XY stage and the laser irradiation unit are controlled by the above-described multi-beam scanner.
[0024]
As shown in FIG. 6, one laser beam emitted from the laser irradiation unit is separated by a half mirror into a plurality of laser beams each having energy that is not enough for processing, and each of them is finely removed through a condenser lens. The parts are irradiated simultaneously. At the same time, a dichroic mirror having a function of reflecting only a specific wavelength and transmitting the other wavelengths is provided in the optical path of the laser light, and a portion to be removed can be monitored by a camera. Since the piezoelectric vibrating inertial sensor element is mounted on the XY stage, it is possible to change the position of the piezoelectric vibrating inertial sensor element and perform laser trimming on a portion to be removed so as to scan with laser light.
[0025]
Similarly, as shown in FIG. 6, one laser beam emitted from the laser irradiator is split into a plurality of laser beams by a half mirror, and irradiates the portions to be minutely removed through condensing lenses at different angles, respectively. Each of the separated laser beams is a laser beam having energy that is not enough to perform processing, so the tuning fork vibrator that performs laser irradiation, which is the object of processing the piezoelectric vibration type inertial sensor element, is removed. Even when the laser beam hits an electrical component on the extension of a minute part, the irradiation energy of each separated laser beam is small enough to damage the laser beam and change its characteristics. Absent.
[0026]
【The invention's effect】
According to the present invention, unnecessary vibration components output from the detection electrodes of the piezoelectric vibration type inertial sensor element can be eliminated.
[0027]
Further, according to the present invention, the man-hour for processing the tuning fork type vibrator of the piezoelectric vibration type inertial sensor element can be significantly reduced, and the yield can be increased.
[0028]
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of a piezoelectric vibrating inertial sensor element with a corner removed according to the present invention.
FIG. 2 is a schematic side view of a piezoelectric vibration type inertial sensor element according to the present invention from which corners have been removed, as viewed from the Y-axis direction.
FIG. 3 is a schematic perspective view of a piezoelectric vibrating inertial sensor element according to the present invention in which a corner portion is removed by using a laser beam.
FIG. 4 is a schematic side view of a piezoelectric vibrating inertial sensor element according to the present invention in which a corner is removed by using a laser beam, as viewed from a Y-axis direction.
FIG. 5 is a schematic block circuit diagram of an apparatus for removing a corner of each leg of a tuning fork vibrator using laser light according to the present invention.
FIG. 6 is a schematic view showing a configuration of an apparatus for removing a corner of each leg of a tuning fork vibrator using a plurality of laser beams obtained by separating one laser beam according to the present invention.
FIG. 7 is a schematic diagram showing an electrode structure of a conventional piezoelectric vibration type inertial sensor element.
FIG. 8 is a schematic side view of a conventional piezoelectric vibration type inertial sensor element viewed from a Y-axis direction.
FIG. 9 is a schematic perspective view of a conventional piezoelectric vibration type inertial sensor element.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Base part 2 Leg part 3 Piezoelectric vibration type inertial sensor element 4 Corner part 5 Laser beam 6 Small part of electronic parts 7 Multiple laser beams

Claims (5)

Y軸に平行に基部から突出した少なくとも2つの脚部を持つ音叉型振動子を用いた圧電振動式慣性センサー素子において、
該音叉型振動子のそれぞれの脚部の少なくとも1箇所の角部に質量変化を加えて不要な振動成分を排除して質量バランスを調整されたことを特徴とする圧電振動式慣性センサー素子。
In a piezoelectric vibration type inertial sensor element using a tuning fork type vibrator having at least two legs protruding from a base parallel to the Y axis,
A piezoelectric vibratory inertial sensor element wherein a mass balance is adjusted by applying a mass change to at least one corner of each leg of the tuning fork vibrator to eliminate unnecessary vibration components.
Y軸に平行に基部から突出した少なくとも2つの脚部を持つ音叉型振動子を用いた圧電振動式慣性センサー素子の製造方法において、
該音叉型振動子のそれぞれの脚部の少なくとも1個所の角部をレーザー光を用いて除去することを特徴とする圧電振動式慣性センサー素子の製造方法。
In a method of manufacturing a piezoelectric vibration type inertial sensor element using a tuning fork vibrator having at least two legs protruding from a base parallel to a Y axis,
A method for manufacturing a piezoelectric vibration type inertial sensor element, wherein at least one corner of each leg of the tuning fork vibrator is removed using a laser beam.
電子部品の微小部分をレーザー光の照射により除去するレーザー加工装置において、
該電子部品の該微小部分に複数のレーザー光を異なる角度から同時に照射して該電子部品の該微小部分を除去することを特徴とするレーザー加工装置。
In laser processing equipment that removes small parts of electronic components by irradiating laser light,
A laser processing apparatus, wherein the minute portion of the electronic component is simultaneously irradiated with a plurality of laser beams from different angles to remove the minute portion of the electronic component.
請求項3に記載のレーザー加工装置において、
該微小部分に照射される複数のそれぞれのレーザー光はひとつのレーザー光を分離したものから成ることを特徴とするレーザー加工装置。
The laser processing apparatus according to claim 3,
A plurality of laser beams applied to the minute portion are obtained by separating one laser beam.
請求項3に記載の複数のレーザー光の各々は加工するには不十分なエネルギーを有し、複数のレーザー光が同時に照射される部分で加工が可能となるレーザー加工装置。The laser processing apparatus according to claim 3, wherein each of the plurality of laser beams has insufficient energy for processing, and processing can be performed in a portion irradiated with the plurality of laser beams simultaneously.
JP2002250810A 2002-08-29 2002-08-29 Piezoelectric vibration type inertia sensor element and its manufacturing method, and laser machining apparatus Pending JP2004093158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002250810A JP2004093158A (en) 2002-08-29 2002-08-29 Piezoelectric vibration type inertia sensor element and its manufacturing method, and laser machining apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002250810A JP2004093158A (en) 2002-08-29 2002-08-29 Piezoelectric vibration type inertia sensor element and its manufacturing method, and laser machining apparatus

Publications (1)

Publication Number Publication Date
JP2004093158A true JP2004093158A (en) 2004-03-25

Family

ID=32057546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002250810A Pending JP2004093158A (en) 2002-08-29 2002-08-29 Piezoelectric vibration type inertia sensor element and its manufacturing method, and laser machining apparatus

Country Status (1)

Country Link
JP (1) JP2004093158A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005096493A1 (en) * 2004-03-30 2005-10-13 Citizen Watch Co., Ltd. Quartz oscillator manufacturing method and quartz oscillator
WO2007117008A1 (en) 2006-04-12 2007-10-18 Panasonic Corporation Inertial force sensor
JP2008131062A (en) * 2006-11-16 2008-06-05 Nippon Dempa Kogyo Co Ltd Piezoelectric vibrator and manufacturing method thereof, and piezoelectric device
US7637159B2 (en) 2006-03-14 2009-12-29 Citizen Holdings Co., Ltd. Vibration gyro and the process of producing the same
WO2010050967A1 (en) * 2008-10-31 2010-05-06 Hewlett-Packard Development Company, L.P. Compensating frequency mismatch in gyroscopes
US8225663B2 (en) 2008-09-02 2012-07-24 Murata Manufacturing Co., Ltd. Tuning fork-type vibrator, tuning fork-type vibrator manufacturing method, and angular velocity sensor
US20130255379A1 (en) * 2012-03-29 2013-10-03 Seiko Epson Corporation Vibrating element, sensor unit, electronic apparatus, and method for manufacturing vibrating element
JP2013205027A (en) * 2012-03-27 2013-10-07 Tdk Corp Laser trimming method for gyro element
CN112756801A (en) * 2020-12-18 2021-05-07 浙江泰仑电力集团有限责任公司 Laser foreign matter removing device and method based on lens micro-vibration and steering control

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005096493A1 (en) * 2004-03-30 2008-02-21 シチズンホールディングス株式会社 Quartz crystal manufacturing method and crystal resonator
WO2005096493A1 (en) * 2004-03-30 2005-10-13 Citizen Watch Co., Ltd. Quartz oscillator manufacturing method and quartz oscillator
US7394326B2 (en) 2004-03-30 2008-07-01 Citizen Holdings Co., Ltd. Quartz oscillator manufacturing method and quartz oscillator
JP4658925B2 (en) * 2004-03-30 2011-03-23 シチズンホールディングス株式会社 Manufacturing method of crystal unit
US7637159B2 (en) 2006-03-14 2009-12-29 Citizen Holdings Co., Ltd. Vibration gyro and the process of producing the same
US8215190B2 (en) 2006-04-12 2012-07-10 Panasonic Corporation Inertial force sensor
WO2007117008A1 (en) 2006-04-12 2007-10-18 Panasonic Corporation Inertial force sensor
JP2007279001A (en) * 2006-04-12 2007-10-25 Matsushita Electric Ind Co Ltd Inertial force sensor
US8590403B2 (en) 2006-04-12 2013-11-26 Panasonic Corporation Inertial force sensor
JP2008131062A (en) * 2006-11-16 2008-06-05 Nippon Dempa Kogyo Co Ltd Piezoelectric vibrator and manufacturing method thereof, and piezoelectric device
US8225663B2 (en) 2008-09-02 2012-07-24 Murata Manufacturing Co., Ltd. Tuning fork-type vibrator, tuning fork-type vibrator manufacturing method, and angular velocity sensor
WO2010050967A1 (en) * 2008-10-31 2010-05-06 Hewlett-Packard Development Company, L.P. Compensating frequency mismatch in gyroscopes
US8733171B2 (en) 2008-10-31 2014-05-27 Hewlett-Packard Development Company, L.P. Compensating frequency mismatch in gyroscopes
JP2013205027A (en) * 2012-03-27 2013-10-07 Tdk Corp Laser trimming method for gyro element
US20130255379A1 (en) * 2012-03-29 2013-10-03 Seiko Epson Corporation Vibrating element, sensor unit, electronic apparatus, and method for manufacturing vibrating element
US9696156B2 (en) * 2012-03-29 2017-07-04 Seiko Epson Corporation Vibrating element, sensor unit, electronic apparatus, and method for manufacturing vibrating element
CN112756801A (en) * 2020-12-18 2021-05-07 浙江泰仑电力集团有限责任公司 Laser foreign matter removing device and method based on lens micro-vibration and steering control
CN112756801B (en) * 2020-12-18 2023-08-04 浙江泰仑电力集团有限责任公司 Laser foreign matter removing device and method based on lens micro-vibration and steering control

Similar Documents

Publication Publication Date Title
JP7105639B2 (en) Laser processing equipment
JP2000312985A (en) Method and device for focusing lasers
JP2004093158A (en) Piezoelectric vibration type inertia sensor element and its manufacturing method, and laser machining apparatus
US10628933B2 (en) Inspecting apparatus and laser processing apparatus
JP2019063828A (en) Laser processing device and output checking method
JP2010050499A (en) Tuning fork crystal oscillator and frequency adjustment method thereof
KR20170010027A (en) Exposure apparatus and device manufacturing method
CN109425612B (en) Wafer for inspection and method for inspecting energy distribution
JP2006007257A (en) Laser beam machining apparatus
JP2001068429A (en) Distortion correcting device for wafer
JP2007208670A (en) Method for manufacturing crystal device
JP5036175B2 (en) Synchronous timing detector for electromagnetic actuator
JP2003126982A (en) Method and device for laser beam machining
JPH05203445A (en) Cofocal type focus position detector
TW201913774A (en) Laser processing apparatus
JP2017203840A (en) Laser processing device
JPS61210902A (en) Specimen height measuring instrument
JP2019149541A (en) Laser dicing device
JP2001349715A (en) Wafer flatness measuring device and method for measuring wafer flatness
JP3429783B2 (en) Pattern exposure method and apparatus
JPH08118047A (en) Laser beam machine
JP5873742B2 (en) Laser processing equipment
JPH10282009A (en) Fine grain evaluation method and apparatus
JP2004279087A (en) Laser light irradiation device
JP2007163452A (en) Device and method for regulating leakage vibration of piezoelectric vibrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080626