JP2004092942A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2004092942A
JP2004092942A JP2002251568A JP2002251568A JP2004092942A JP 2004092942 A JP2004092942 A JP 2004092942A JP 2002251568 A JP2002251568 A JP 2002251568A JP 2002251568 A JP2002251568 A JP 2002251568A JP 2004092942 A JP2004092942 A JP 2004092942A
Authority
JP
Japan
Prior art keywords
flat tube
fluid
heat exchanger
fins
corrugated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002251568A
Other languages
Japanese (ja)
Inventor
Masahiro Shitaya
下谷 昌宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002251568A priority Critical patent/JP2004092942A/en
Priority to US10/649,223 priority patent/US20040069472A1/en
Publication of JP2004092942A publication Critical patent/JP2004092942A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/24Arrangements for promoting turbulent flow of heat-exchange media, e.g. by plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0316Assemblies of conduits in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0391Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits a single plate being bent to form one or more conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/06Tubular elements of cross-section which is non-circular crimped or corrugated in cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0085Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0091Radiators
    • F28D2021/0094Radiators for recooling the engine coolant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0091Radiators
    • F28D2021/0096Radiators for space heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/16Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes extruded

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Fluid Mechanics (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To outstandingly improve a heat exchange efficiency as compared with a conventional heat exchanger in a heat exchanger having a plurality of flat tubes and a large number of fins connecting them. <P>SOLUTION: A corrugated body surface 12 is formed on an outer side of the flat tubes in which a first fluid flows and a meandering flow passage for a second fluid is formed by the fins 5. The second fluid collides to the corrugated body surface 12 of the flat tube 2 by the meandering flow passage when the second fluid flows along the fins 5 to become a turbulent flow. Since the turbulent flow is contacted with the surfaces of the flat tubes 2 and front and back surfaces of the fins 5, thick boundary layers are not formed on those surfaces and heat transmission is promoted. Therefore, a heat exchange efficiency between the first fluid such as warm water flowing in the flat tubes 2 and the second fluid such as air flowing the outside is outstandingly enhanced. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、自動車に使用される内燃機関の冷却水のための放熱用ラジエータ、空調装置の暖房用ヒータコア(加熱器)、冷房用のコンデンサ(凝縮器)或いはエバポレータ(蒸発器)のような熱交換器に関するものである。
【0002】
【従来の技術】
従来の自動車用空調装置において、高温となる内燃機関用の冷却水を利用して車室内の空気を加熱する熱交換器であるヒータコア41の一例の要部構造が図4に示されている。このヒータコア41の全体構成は、本発明の実施例として後に詳細に説明する図2と概ね同様な外観を呈する。従来のヒータコア41においては、アルミニウムの材料を押し出し成形の方法によって扁平な管状に成形した複数本の扁平なチューブ42を、所定の間隔をおいて縦に平行に配列させて、それらのチューブ42の上端に共通の上部タンクを接合すると共に、下端に共通の下部タンクを接合して冷却水通路を形成し、隣接する扁平チューブ42の間に挟み込むように、アルミニウムの薄い板材を波形に折り曲げたコルゲートフィン43を取り付けて、蝋付けによって接合することにより空気通路を形成している。
【0003】
このような構成の従来型ヒータコア41においても、コルゲートフィン43と空気流との間の熱交換を促進するために、コルゲートフィン43に切り起こしを加えて例えば短冊形等の多数のルーバ44を形成する場合があるが、扁平なチューブ42の表面は平坦であり、コルゲートフィン43でもルーバ44を形成することができない部分45は平坦であるから、コルゲートフィン43の一部にルーバ44を形成しただけでは、扁平チューブ42の外表面と、チューブ42の外部を流れる空気流との間の熱交換効率は殆ど改善されないという問題がある。
【0004】
また、図5に示した別の従来型ヒータコア48では、扁平チューブ42の平坦な面に多数の窪みからなるディンプル46を形成するとか、複数個の突条からなるリブを形成するというようなことも行われているが、ディンプル46や突条の内部は空気の流れのない領域になるので必ずしも有効とは限らないし、扁平チューブ42の表面でもコルゲートフィン43の屈曲部47と接合される部分では、接合のための蝋材がディンプル46等を埋めるので、そのような部分ではディンプル46等が空気と扁平チューブ42の間の伝熱性能を向上させることはなく、扁平チューブ42の壁面と、その内部を流れる冷却水(温水)との間の伝熱性能を高めるために役立つ程度である。
【0005】
【発明が解決しようとする課題】
本発明は、従来技術におけるこのような問題に着目して、ラジエータ、ヒータコア、コンデンサ或いはエバポレータのような熱交換器において、内部を冷却水(温水)のような第1の流体が流れる扁平チューブに取り付けられたフィンと、それに接触して流れる空気のような第2の流体との間の熱交換効率を高めるだけでなく、新規な手段を講じることによって、内部を第1の流体が流れる扁平なチューブそのものの外表面と、その外部を流れる第2の流体との間の直接的な熱交換効率をも高めて、第1の流体と第2の流体との間の熱交換効率を従来よりも大幅に改善することを目的としている。
【0006】
【課題を解決するための手段】
本発明は、この課題を解決するための手段として、特許請求の範囲の請求項1に記載された熱交換器を提供する。
【0007】
本発明の熱交換器においては、内側に第1の流体のための流路を形成する複数本の扁平チューブの外表面が波形をなしていることによって、扁平チューブの外側を流れる第2の流体のための流路が波形に蛇行していると共に、蛇行する流路に板状のフィンが設けられているので、例えば空気のような第2の流体が扁平チューブの外側を流れる時に、扁平チューブの波形の外側面に激しく衝突し、撹乱されて乱流となり、蛇行する流路を板状のフィンに沿って流れる。そのために、扁平チューブの表面には、第2の流体の層流が流れる時のような厚い境界層が形成されないので、扁平チューブと第2の流体との間の直接的な熱交換の効率が著しく向上する。言うまでもなく、板状のフィンと第2の流体との間の熱交換効率も、第2の流体が乱流となっているために高くなるから、結果として、第1の流体と第2の流体との間の熱交換効率が改善される。
【0008】
扁平チューブは、波形をつけた板材を管状に曲げることによって形成することができるし、対になった2枚の波板を組み合わせてそれらの間に形成することもできる。これらの場合には、内部に補強用のプレートを装着することができる。
また、扁平チューブは、内部に第1の流体の流路が形成されるように、押し出し成形によって製作してもよい。
【0009】
板状のフィンは、その長手方向が、扁平チューブの長手方向に対して実質的に垂直になるように配置すると、扁平チューブの内部を流れる第1の流体と、扁平チューブの外側をフィンに沿って流れる第2の流体のそれぞれの方向が直交すると共に、扁平チューブの波形の腹面によって形成される第2の流体のための蛇行する流路の撹乱作用が最も強められるので、熱交換器としての効率を最も高くすることができる。
【0010】
板状のフィンは、それの長手方向の終端において折り返すように、細長いリボン状の板材を屈曲して形成することができる。それによって、多段のフィンを一連のものとして製作し、一体的に支持することができる。
【0011】
また、板状のフィンが複数個、多段の棚のように、脚部を介して繋がっているフィン組立体を構成することもできる。この場合には、隣接する脚部の間に第2の流体が通過する窓穴開口を形成するとよい。フィン組立体は、単に1枚の板材から、第2の流体のための窓穴を打ち抜くと共に、それによって形成される脚部とフィンとの間を折り曲げることによって、一体的に形成することができる。
【0012】
板状のフィンは、蝋付け等の方法で、扁平チューブの外側面に形成される波形の腹面の頂部或いは底部に接合することができる。前述のフィン組立体を構成する場合に、その脚部と、扁平チューブの外側面に形成される波形の腹面の頂部或いは底部とを接合すると、接合が容易になるだけでなく、第2の流体を通過させる窓穴が塞がれないし、熱交換器全体の機械的強度も高くなる。
【0013】
【発明の実施の形態】
次に、添付の図面を参照しながら、本発明の好適な実施例を詳細に説明する。
本発明の熱交換器の第1実施例として、図1から図3に自動車に搭載される空調装置用のヒータコア1の構成及び作動を例示する。ヒータコア1は、図示しない自動車用の空調装置において内燃機関の冷却水(温水)によって車室内の空気を加熱するために使用される。図1は第1実施例のヒータコア1の特徴部分である要部を切断して拡大して示したもので、その部分を含む全体構成が図2に例示されており、要部の作動状態が図3に示されている。
【0014】
図1に示すように、第1実施例のヒータコア1においては、扁平なチューブ2を、薄いアルミニウムの板状材料をプレス加工によって所定の表面形状を有する管状に曲げて、図示しない長手方向の継ぎ目を蝋付けによって接合することにより製作する。このようにして製作された扁平なチューブ2を複数本、所定の間隔をおいて平行に縦に配列させて、それらのチューブ2の上端に共通の入口タンク3を接合すると共に、それらのチューブ2の下端に共通の出口タンク4を接合している。
【0015】
そして、図示実施例の場合には、入口タンク(上部タンク)3に設けられた温水の入口へ入口パイプ6を取り付けると共に、出口タンク(下部タンク)4に設けられた温水の出口へ出口パイプ7を取り付けている。
【0016】
一定の高さにおいて扁平チューブ2を切断して示す図1から明らかなように、扁平チューブ2の断面形状は、両端の円弧9を平行な2本の直線によって結ぶような形状ではなく、両端の円弧9を、実質的に同じ形で並行する2本の波線によって結ぶような形状となっている。従って、それぞれの扁平チューブ2は長手方向と直角な方向に波打つ腹面(波形の腹面12という)を有する。波形の腹面12は扁平チューブ2の長手方向に延びる波の頂部10と底部11を形成する。
【0017】
そして、隣接する扁平チューブ2の間に挟み込むように、アルミニウムの薄い板材を幅の狭いリボン状に裁断して、幅に比べて振幅の大きい波形に折り曲げたフィン5を取り付けて、フィン5と扁平チューブ2との接触部分を蝋付けによって接合している。扁平チューブ2の腹面12が波打っているので、図示実施例のようにフィン5が一定の幅を有するリボン状のものである場合には、扁平チューブ2とフィン5との接合部分は長い線状にはならず、扁平チューブ2の波形の腹面12の頂部10或いは底部11における点或いは短い線状になる。
【0018】
更に、必須のものではないが、第1実施例のヒータコア1においては、腹面12が波打っている扁平チューブ2の内部へ補強のためのプレート8を挿入して固定している。プレート8としてはアルミニウム板等を使用することができる。プレート8がその両端縁において扁平チューブ2の端部の円弧面9の一部に内接すると共に、その表面及び裏面において扁平チューブ2の波形の腹面の頂部10及び底部11と接触するようにすれば、扁平チューブ2の内部に温水等の圧力が作用した時に、最も効果的に扁平チューブ2の変形を防止することができる。
【0019】
なお、第1実施例のヒータコア1においては、扁平チューブ2と入口タンク3及び出口タンク4、フィン5、補強用のプレート8等は全て蝋付けによって接合される。そのために、これらの部品の材料には予め蝋材が被覆されていて、部品を組み立てた後に炉の中で加熱することにより、蝋材が溶融、固化して、各部品が一体的に接合される。
【0020】
図示していないが、入口タンク3及び出口タンク4の一方或いは双方の長手方向の中間に隔壁を設けて、それらの内部を複数個の部分に区画してもよい。それによって、温水が入口タンク(上部タンク)3及び出口タンク(下部タンク)4の間を折り返して流れるようになる。隔壁の数とそれが設けられる位置によって温水の流れ方が変わるので、それに応じて入口パイプ6及び出口パイプ7を上部タンク3及び下部タンク4のいずれに設けるかということが決まる。従って、本発明においては、上部タンク3又は下部タンク4のいずれか一方に入口パイプ6及び出口パイプ7の双方を設ける場合もあり得る。
【0021】
第1実施例のヒータコア1において入口タンク3及び4に隔壁が設けられない場合には、図示しない内燃機関から供給される高温の冷却水(温水)が入口パイプ6から入口タンク3内へ流入し、入口タンク3の全域において全ての扁平チューブ2へ分配され、それらの扁平チューブ2を通過して出口タンク4まで流下する。出口タンク4へ集められた放熱済みの温水は出口パイプ7から図示しない内燃機関の冷却水套へ戻る。このようにして入口タンク3へ供給された高温の温水は、扁平チューブ2を流れる間に扁平チューブ2やフィン5の隙間を通って流れる空気流へ熱を与える。本発明においては、扁平チューブ2の内部を流れる温水のような流体を一般的に「第1の流体」と呼ぶと共に、扁平チューブ2の外部を流れる空気のような流体を一般的に「第2の流体」と呼んでいる。
【0022】
このように、第1実施例のヒータコア1においては、扁平チューブ2をプレス加工によって製造する際に、扁平チューブ2の外側の腹面12に波形が形成されている点に特徴がある。従って、図2に示す入口パイプ6を通って入口タンク3内の空間へ流入した温水(第1の流体)が複数本の扁平チューブ2へ分岐して流入し、温水の有する熱が扁平チューブ2の表面と、その一部に取り付けられた板状のフィン5の表面から、それらの表面に接触して流れる空気(第2の流体)へ与えられることによって熱交換が行なわれる時に、板状のフィン5に沿って扁平チューブ2の間を流れる空気(第2の流体)は、図3に示したように、扁平チューブ2の波形の腹面12によって案内されて蛇行する流れを形成すると共に流れが撹乱される。
【0023】
空気が扁平チューブ2の波形の腹面12に沿って蛇行して流れることにより、空気が扁平チューブ2の表面に繰り返して衝突するのと、空気の流れが扁平チューブ2の波形の腹面12によって撹乱されて細かな渦を巻く乱流となるために、もし扁平チューブ2の表面が平坦な場合には空気の流れが層流となってチューブの表面に形成される筈の空気の厚い境界層が形成されなくなる(境界層がきわめて薄くなる)ので、伝熱作用が促進されて、温水と空気との間の熱交換効率が著しく向上する。
【0024】
このように、第2の流体である空気が扁平チューブ2の波形の腹面12に沿って蛇行するように流れるので、このような流れを阻害しないように、フィン5としては全体に細長くて、途中に折り返し部等がなく、空気の流れを扁平チューブ2の長手方向とは直角の方向に導くことができるものがよい。第1実施例のフィン5のように波形に屈曲しているものでも、扁平チューブ2の側縁部に近い位置において反対方向に折り返す形状のものを使用することが望ましい。
【0025】
図6に本発明の熱交換器の第2実施例としてのヒータコア21の要部を示す。
第2実施例において温水の流路となる扁平チューブ22は、アルミニウム等からなる2枚の波板23及び24を組み合わせると共にそれらを接合することによって、それらの波板23及び24の間に断面形が三日月形に近い形状の流体通路を構成する扁平チューブ22が複数本ずつ組になって形成される。このような波板23,24の対は必要な数だけ積層されるが、波板23,24の各対の間に多段の棚か、或いはフレームのような形状のフィン組立体25が配置されて、隣接する波板23,24との接触部分において接合される。
【0026】
第2実施例におけるフィン組立体25は、上下方向に所定の間隔を置いて平行に配置される幅の狭い多数の平板からなる棚板状のフィン26と、上下関係にある複数個のフィン26を連結するために、それぞれのフィン26の幅方向の前縁部又は後縁部から上下方向に垂直に立ち上がる(或いは垂下する)多数の脚部27とからなっている。棚板状の多数のフィン26とそれらを連結する多数の脚部27からなるフィン組立体25は、単に1枚のアルミニウム板材から多数の窓穴28を打ち抜くと共に、段を形成するようにフィン26に対して脚部27を折り曲げることによって製作することができる。
【0027】
この際に、前述の扁平チューブ22を形成する波板23及び24の頂部又は底部が脚部27に接触して蝋付けの際に蝋材によって接合されるように、波板24の波長と、隣接する脚部27の間隔寸法を一致させると、ヒータコア21全体が強固なフレーム構造となる。なお、図示していないが、対になった波板23及び24の間に平板状のプレートを挟んで、それらを蝋材によって接合することにより扁平チューブ22を形成することもできる。この場合に挟み込まれるプレートは扁平チューブ22の機械的強度を高める作用をする。
【0028】
第2実施例のヒータコア21はこのような構造を有するから、第1の流体である温水を図示しない上部タンクから多数の扁平チューブ22を通して図示しない下部タンクへ縦方向の矢印のように流下させると共に、第2の流体である空気を横方向の矢印のようにフィン26に沿って流入させると、空気は波板23及び24の波形の腹面に案内されて、窓穴28を通過するように波形を描いて流れる。
それによって、第1実施例の場合と同様に、空気流が波板23及び24の表面に激しく衝突して乱流となるので、波板23及び24の表面にできる筈の空気の厚い境界層が剥離して、波板23,24によって隔てられた温水と空気の間において高い効率で熱交換が行われる。
【0029】
図7に本発明の熱交換器の第3実施例としてのヒータコア31の要部を示す。
第3実施例のヒータコア31は全体として第1実施例のヒータコア1に類似しているが、第1実施例に比べて第3実施例の特徴は、扁平チューブ32がアルミニウムの押し出し成形によって製作されていることである。しかし、扁平チューブ32が全体として波形になっていること、温水の流路33が、断面形状が円形ではあるが複数本形成されていること、第1実施例におけるフィン5と同様な屈曲した板材からなるフィン34が隣接する扁平チューブ32の間に接合されること等は同じである。
【0030】
第3実施例の扁平チューブ32は押し出し成形によって製作されるために、機械的強度が高くなる代わりに、温水の流路33から見た肉厚は第1実施例の扁平チューブ2のそれよりも若干厚くなる。それによって、僅かに熱交換効率が低くなるが、第3実施例のヒータコア31は実質的に第1実施例のヒータコア1と同様な作用効果を奏する。
【0031】
図1に示す第1実施例のヒータコア1の要部について、参考として、具体的な寸法を図8に例示する。車両用の空調装置におけるヒータコアの場合には、各部分の寸法がそれぞれ図示のように小さい値になる。
【0032】
なお、図示実施例の熱交換器は全てヒータコアとなっているが、本発明はヒータコアに限らず、内燃機関の冷却水放熱用のラジエータや、空調装置の冷房用コンデンサ或いはエバポレータ等の熱交換器として実施することができることは明らかである。
【図面の簡単な説明】
【図1】第1実施例のヒータコアの要部を切断し拡大して示す斜視図である。
【図2】第1実施例によって代表される本発明の熱交換器の実施例としてのヒータコアの全体構成を例示する斜視図である。
【図3】第1実施例のヒータコアの要部における作動状態を示す斜視図である。
【図4】従来のヒータコアの要部を切断し拡大して示す斜視図である。
【図5】従来の他のヒータコアの要部を切断し拡大して示す斜視図である。
【図6】第2実施例のヒータコアの要部を切断し拡大して示す斜視図である。
【図7】第3実施例のヒータコアの要部を切断し拡大して示す斜視図である。
【図8】第1実施例のヒータコアの要部について具体的寸法を例示した斜視図である。
【符号の説明】
1…ヒータコア(第1実施例)
2…扁平チューブ
8…補強用のプレート
9…円弧部
10…頂部
11…底部
12…波形の腹面
21…ヒータコア(第2実施例)
22…扁平チューブ
23,24…波板
25…フィン組立体
26…フィン
27…脚部
28…窓穴
31…ヒータコア(第3実施例)
32…扁平チューブ
33…温水の流路
34…フィン
41…従来型のヒータコア
48…別の従来型のヒータコア
42…扁平チューブ
43…フィン
44…ルーバ
46…ディンプル
47…フィンの屈曲部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat radiation radiator for cooling water of an internal combustion engine used for an automobile, a heating core for an air conditioner (heater), a condenser for cooling (condenser), or a heat source such as an evaporator (evaporator). It concerns the exchanger.
[0002]
[Prior art]
FIG. 4 shows a main structure of an example of a heater core 41 which is a heat exchanger that heats air in a vehicle cabin by using a high-temperature cooling water for an internal combustion engine in a conventional automotive air conditioner. The overall configuration of the heater core 41 has substantially the same appearance as that of FIG. 2 described later in detail as an embodiment of the present invention. In the conventional heater core 41, a plurality of flat tubes 42 formed by pressing an aluminum material into a flat tube by a method of extrusion molding are arranged vertically and parallel at a predetermined interval, and the tubes 42 A common upper tank is joined to the upper end, and a common lower tank is joined to the lower end to form a cooling water passage, and a thin aluminum corrugated corrugated sheet is sandwiched between adjacent flat tubes 42. The air passage is formed by attaching fins 43 and joining them by brazing.
[0003]
Also in the conventional heater core 41 having such a configuration, in order to promote heat exchange between the corrugated fins 43 and the airflow, the corrugated fins 43 are cut and raised to form a large number of louvers 44 having, for example, a strip shape. However, since the flat tube 42 has a flat surface and the corrugated fin 43 cannot form the louver 44 even with the corrugated fin 43, the louver 44 is formed only on a part of the corrugated fin 43. In this case, there is a problem that the heat exchange efficiency between the outer surface of the flat tube 42 and the airflow flowing outside the tube 42 is hardly improved.
[0004]
Further, in another conventional heater core 48 shown in FIG. 5, a dimple 46 composed of a large number of depressions is formed on a flat surface of the flat tube 42, or a rib composed of a plurality of protrusions is formed. However, the inside of the dimple 46 or the ridge is not always effective because it is a region where air does not flow. Since the brazing filler metal fills the dimples 46 and the like, the dimples 46 and the like do not improve the heat transfer performance between the air and the flat tube 42 in such a portion. This is a degree that is useful for improving the heat transfer performance between cooling water (hot water) flowing inside.
[0005]
[Problems to be solved by the invention]
The present invention focuses on such a problem in the prior art, and in a heat exchanger such as a radiator, a heater core, a condenser or an evaporator, the inside of the flat tube through which a first fluid such as cooling water (hot water) flows. In addition to increasing the efficiency of heat exchange between the attached fins and a second fluid, such as air flowing in contact therewith, by taking new measures, the flat fluid through which the first fluid flows The direct heat exchange efficiency between the outer surface of the tube itself and the second fluid flowing outside the tube is also increased, and the heat exchange efficiency between the first fluid and the second fluid is increased as compared with the conventional case. It is intended to improve significantly.
[0006]
[Means for Solving the Problems]
The present invention provides a heat exchanger according to claim 1 as a means for solving this problem.
[0007]
In the heat exchanger of the present invention, since the outer surfaces of the plurality of flat tubes forming the flow path for the first fluid on the inside are corrugated, the second fluid flowing outside the flat tubes is formed. Is meandering in a waveform, and the meandering channel is provided with plate-like fins. For example, when the second fluid such as air flows outside the flat tube, the flat tube Violently collides with the outer surface of the corrugation, and is turbulent to become turbulent, and flows along the meandering channel along the plate-like fin. For this reason, since a thick boundary layer is not formed on the surface of the flat tube as when the laminar flow of the second fluid flows, the efficiency of direct heat exchange between the flat tube and the second fluid is reduced. Significantly improved. Needless to say, the heat exchange efficiency between the plate-shaped fins and the second fluid is also increased due to the turbulent flow of the second fluid, and as a result, the first fluid and the second fluid are increased. The heat exchange efficiency between the two is improved.
[0008]
The flat tube can be formed by bending a corrugated plate into a tubular shape, or can be formed between two pairs of corrugated plates in combination. In these cases, a reinforcing plate can be mounted inside.
Further, the flat tube may be manufactured by extrusion so that a flow path of the first fluid is formed inside.
[0009]
When the plate-shaped fins are arranged so that the longitudinal direction thereof is substantially perpendicular to the longitudinal direction of the flat tube, the first fluid flowing inside the flat tube and the outer side of the flat tube follow the fin. Since the respective directions of the flowing second fluids are orthogonal to each other and the disturbance effect of the meandering flow path for the second fluid formed by the corrugated abdominal surface of the flat tube is maximized, Efficiency can be maximized.
[0010]
The plate-like fin can be formed by bending an elongated ribbon-like plate so as to be folded at the longitudinal end thereof. Thereby, the multi-stage fins can be manufactured as a series and supported integrally.
[0011]
Further, a fin assembly in which a plurality of plate-like fins are connected via legs, such as a multi-stage shelf, may be provided. In this case, a window hole opening through which the second fluid passes may be formed between adjacent legs. The fin assembly can be integrally formed by simply punching out a window for the second fluid from one piece of plate and bending between the fin and the fin formed thereby. .
[0012]
The plate-like fins can be joined to the top or bottom of the corrugated abdominal surface formed on the outer surface of the flat tube by a method such as brazing. In the case of configuring the above-mentioned fin assembly, if the legs are joined to the top or bottom of the corrugated abdominal surface formed on the outer surface of the flat tube, not only the joining becomes easy but also the second fluid The window hole through which the heat is passed is not closed, and the mechanical strength of the entire heat exchanger is increased.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
As a first embodiment of the heat exchanger of the present invention, the configuration and operation of a heater core 1 for an air conditioner mounted on an automobile are illustrated in FIGS. The heater core 1 is used to heat the air in the passenger compartment by cooling water (hot water) of the internal combustion engine in an automotive air conditioner (not shown). FIG. 1 is an enlarged view of a main part which is a characteristic part of the heater core 1 according to the first embodiment, and FIG. 2 shows an overall configuration including the part. This is shown in FIG.
[0014]
As shown in FIG. 1, in a heater core 1 according to a first embodiment, a flat tube 2 is formed by pressing a thin aluminum plate-like material into a tube having a predetermined surface shape by press working to form a longitudinal seam (not shown). Is manufactured by joining by brazing. A plurality of the flat tubes 2 manufactured as described above are arranged vertically in parallel at predetermined intervals, and a common inlet tank 3 is joined to the upper ends of the tubes 2. A common outlet tank 4 is joined to the lower end of the tank.
[0015]
In the illustrated embodiment, the inlet pipe 6 is attached to the inlet of the hot water provided in the inlet tank (upper tank) 3 and the outlet pipe 7 is connected to the outlet of the hot water provided in the outlet tank (lower tank) 4. Is installed.
[0016]
As is clear from FIG. 1 showing the flat tube 2 cut at a certain height, the cross-sectional shape of the flat tube 2 is not a shape connecting the arcs 9 at both ends by two parallel straight lines, but is a shape at both ends. The arc 9 has a shape that is connected by two wavy lines that are parallel in substantially the same shape. Accordingly, each flat tube 2 has an abdominal surface waving in a direction perpendicular to the longitudinal direction (referred to as a corrugated abdominal surface 12). The corrugated abdominal surface 12 forms the top 10 and the bottom 11 of the wave extending in the longitudinal direction of the flat tube 2.
[0017]
Then, a thin aluminum plate is cut into a narrow ribbon shape so as to be sandwiched between the adjacent flat tubes 2, and the fins 5 bent into a waveform having a larger amplitude than the width are attached, and the flat fins 5 and the flat fins 5 are attached. The contact portion with the tube 2 is joined by brazing. Since the abdominal surface 12 of the flat tube 2 is wavy, when the fin 5 is a ribbon having a certain width as in the illustrated embodiment, the joining portion between the flat tube 2 and the fin 5 is a long line. It does not have a shape but a point or a short linear shape at the top 10 or the bottom 11 of the abdominal surface 12 of the waveform of the flat tube 2.
[0018]
Further, although not essential, in the heater core 1 of the first embodiment, a plate 8 for reinforcement is inserted and fixed inside the flat tube 2 whose abdominal surface 12 is wavy. As the plate 8, an aluminum plate or the like can be used. The plate 8 is inscribed at both ends at a part of the arc surface 9 at the end of the flat tube 2, and is in contact with the top 10 and the bottom 11 of the corrugated abdominal surface of the flat tube 2 on the front and back surfaces. When a pressure such as hot water acts on the inside of the flat tube 2, the flat tube 2 can be most effectively prevented from being deformed.
[0019]
In the heater core 1 of the first embodiment, the flat tube 2, the inlet tank 3, the outlet tank 4, the fins 5, the reinforcing plate 8, and the like are all joined by brazing. Therefore, the material of these parts is coated with a brazing material in advance, and after the parts are assembled and heated in a furnace, the brazing material is melted and solidified, and the parts are integrally joined. You.
[0020]
Although not shown, a partition may be provided in the middle of one or both of the inlet tank 3 and the outlet tank 4 in the longitudinal direction, and the inside thereof may be divided into a plurality of portions. As a result, the hot water turns back and flows between the inlet tank (upper tank) 3 and the outlet tank (lower tank) 4. Since the flow of hot water changes depending on the number of partitions and the positions where the partitions are provided, it is determined whether the inlet pipe 6 and the outlet pipe 7 are provided in the upper tank 3 or the lower tank 4 accordingly. Therefore, in the present invention, both the inlet pipe 6 and the outlet pipe 7 may be provided in either the upper tank 3 or the lower tank 4.
[0021]
When the partition walls are not provided in the inlet tanks 3 and 4 in the heater core 1 of the first embodiment, high-temperature cooling water (warm water) supplied from an internal combustion engine (not shown) flows from the inlet pipe 6 into the inlet tank 3. Is distributed to all the flat tubes 2 in the whole area of the inlet tank 3, and flows down to the outlet tank 4 through the flat tubes 2. The radiated hot water collected in the outlet tank 4 returns from the outlet pipe 7 to a cooling water jacket (not shown) of the internal combustion engine. The high-temperature hot water supplied to the inlet tank 3 in this manner gives heat to the airflow flowing through the gap between the flat tube 2 and the fin 5 while flowing through the flat tube 2. In the present invention, a fluid such as warm water flowing inside the flat tube 2 is generally referred to as a “first fluid”, and a fluid such as air flowing outside the flat tube 2 is generally referred to as a “first fluid”. Of the fluid. "
[0022]
As described above, the heater core 1 of the first embodiment is characterized in that when the flat tube 2 is manufactured by press working, a waveform is formed on the outer abdominal surface 12 of the flat tube 2. Therefore, the hot water (first fluid) flowing into the space in the inlet tank 3 through the inlet pipe 6 shown in FIG. 2 branches into the plurality of flat tubes 2 and flows therein, and the heat of the hot water is transferred to the flat tubes 2. When heat exchange is performed by applying the air (second fluid) from the surface of the fin 5 and the surface of the plate-like fin 5 attached to a part thereof to the air flowing therethrough, The air (second fluid) flowing between the flat tubes 2 along the fins 5 forms a meandering flow while being guided by the corrugated abdominal surface 12 of the flat tube 2 as shown in FIG. Be disturbed.
[0023]
When the air flows meandering along the wavy surface 12 of the flat tube 2, the air repeatedly collides with the surface of the flat tube 2, and the air flow is disturbed by the wavy surface 12 of the flat tube 2. If the surface of the flat tube 2 is flat, the flow of air becomes laminar and a thick boundary layer of air, which should be formed on the surface of the tube, is formed because the turbulent flow forms a fine vortex. Since the heat transfer is no longer performed (the boundary layer becomes extremely thin), the heat transfer action is promoted, and the heat exchange efficiency between hot water and air is significantly improved.
[0024]
As described above, since the air as the second fluid flows in a meandering manner along the corrugated abdominal surface 12 of the flat tube 2, the fins 5 are slender as a whole so as not to obstruct such a flow. It is preferable that there is no folded portion or the like, and that the air flow can be guided in a direction perpendicular to the longitudinal direction of the flat tube 2. Even the fins 5 which are bent in a corrugated manner like the fins 5 of the first embodiment, it is desirable to use the fins 5 which are folded in the opposite direction at a position near the side edge of the flat tube 2.
[0025]
FIG. 6 shows a main part of a heater core 21 as a second embodiment of the heat exchanger of the present invention.
In the second embodiment, a flat tube 22 serving as a hot water flow path is formed by combining two corrugated plates 23 and 24 made of aluminum or the like and joining them to form a sectional shape between the corrugated plates 23 and 24. Are formed in groups of a plurality of flat tubes 22 constituting a fluid passage having a shape close to a crescent shape. A required number of such pairs of corrugated plates 23 and 24 are stacked, and a multi-stage shelf or a fin assembly 25 shaped like a frame is arranged between each pair of corrugated plates 23 and 24. Thus, they are joined at the contact portions with the adjacent corrugated plates 23 and 24.
[0026]
The fin assembly 25 according to the second embodiment includes a shelf-shaped fin 26 composed of a number of narrow flat plates arranged in parallel at a predetermined interval in the vertical direction, and a plurality of fins 26 In order to connect the fins 26, the fins 26 have a large number of legs 27 vertically rising (or hanging) vertically from the front edge or the rear edge in the width direction. A fin assembly 25 composed of a number of fins 26 in the form of a shelf and a number of legs 27 connecting the fins 26 simply punches out a number of window holes 28 from a single aluminum plate and forms fins 26 so as to form a step. Can be manufactured by bending the leg 27.
[0027]
At this time, the wavelength of the corrugated sheet 24 is set so that the top or bottom of the corrugated sheets 23 and 24 forming the flat tube 22 comes into contact with the legs 27 and is joined by a brazing material at the time of brazing. When the distance between the adjacent legs 27 is matched, the entire heater core 21 has a strong frame structure. Although not shown, the flat tube 22 can also be formed by sandwiching a flat plate between the pair of corrugated plates 23 and 24 and joining them with a brazing material. The plate sandwiched in this case acts to increase the mechanical strength of the flat tube 22.
[0028]
Since the heater core 21 of the second embodiment has such a structure, the first fluid, that is, the hot water flows down from the upper tank (not shown) to the lower tank (not shown) through a number of flat tubes 22 as shown by a vertical arrow. When air, which is the second fluid, flows along the fins 26 as indicated by horizontal arrows, the air is guided by the corrugated abdominal surfaces of the corrugated plates 23 and 24 so as to pass through the window holes 28. Draw and flow.
As a result, similarly to the case of the first embodiment, since the air flow violently collides with the surfaces of the corrugated plates 23 and 24 and becomes turbulent, a thick boundary layer of air that should be formed on the surfaces of the corrugated plates 23 and 24 is formed. Is peeled off, and heat exchange is performed with high efficiency between the hot water and the air separated by the corrugated plates 23 and 24.
[0029]
FIG. 7 shows a main part of a heater core 31 as a third embodiment of the heat exchanger according to the present invention.
The heater core 31 of the third embodiment is similar to the heater core 1 of the first embodiment as a whole, but the feature of the third embodiment is that the flat tube 32 is manufactured by extruding aluminum. That is. However, the flat tube 32 is corrugated as a whole, the flow path 33 of the hot water is formed in a plurality of sections although the cross-sectional shape is circular, and the bent plate material similar to the fin 5 in the first embodiment is used. It is the same that the fins 34 made of are joined between the adjacent flat tubes 32.
[0030]
Since the flat tube 32 of the third embodiment is manufactured by extrusion molding, instead of increasing the mechanical strength, the thickness viewed from the hot water flow path 33 is larger than that of the flat tube 2 of the first embodiment. It becomes slightly thicker. This slightly lowers the heat exchange efficiency, but the heater core 31 of the third embodiment has substantially the same operation and effect as the heater core 1 of the first embodiment.
[0031]
FIG. 8 illustrates specific dimensions of the main parts of the heater core 1 of the first embodiment shown in FIG. 1 for reference. In the case of a heater core in an air conditioner for a vehicle, the dimensions of each part are small as shown in the figure.
[0032]
Although the heat exchangers of the illustrated embodiments are all heater cores, the present invention is not limited to heater cores, and radiators for radiating cooling water of an internal combustion engine, heat exchangers for cooling condensers or evaporators of air conditioners, etc. Obviously, it can be implemented as
[Brief description of the drawings]
FIG. 1 is a perspective view illustrating a main part of a heater core according to a first embodiment, cut away and enlarged.
FIG. 2 is a perspective view illustrating the overall configuration of a heater core as an embodiment of the heat exchanger of the present invention represented by the first embodiment.
FIG. 3 is a perspective view showing an operation state of a main part of the heater core of the first embodiment.
FIG. 4 is a perspective view showing a main part of a conventional heater core, which is cut and enlarged.
FIG. 5 is a perspective view showing a main part of another conventional heater core, cut away and enlarged.
FIG. 6 is a perspective view showing a main part of a heater core according to a second embodiment, cut and enlarged.
FIG. 7 is a perspective view illustrating a main part of a heater core according to a third embodiment, cut away and enlarged.
FIG. 8 is a perspective view illustrating specific dimensions of a main part of the heater core of the first embodiment.
[Explanation of symbols]
1. Heater core (first embodiment)
2 Flat tube 8 Reinforcement plate 9 Arc 10 Top 11 Bottom 12 Corrugated abdominal surface 21 Heater core (second embodiment)
22 Flat tubes 23 and 24 Corrugated plate 25 Fin assembly 26 Fin 27 Leg 28 Window 31 Heater core (third embodiment)
32 flat tube 33 hot water flow path 34 fin 41 conventional heater core 48 another conventional heater core 42 flat tube 43 fin 44 louver 46 dimple 47 bending part of fin

Claims (10)

内側に第1の流体のための流路を形成する複数本の扁平チューブの外側面が波形をなしていることによって、前記扁平チューブの外側を流れる第2の流体のための流路が波形に蛇行していると共に、第2の流体のための流路となる前記扁平チューブの外側に第2の流体を案内する板状のフィンが設けられていることを特徴とする熱交換器。Since the outer surfaces of the plurality of flat tubes forming the flow path for the first fluid on the inside have a waveform, the flow path for the second fluid flowing outside the flat tube has a waveform. A heat exchanger, which is meandering and provided with plate-like fins for guiding the second fluid outside the flat tube serving as a flow path for the second fluid. 請求項1において、前記扁平チューブが、波形をつけた板材を管状に曲げて、継ぎ目を接合することによって製作されていることを特徴とする熱交換器。The heat exchanger according to claim 1, wherein the flat tube is manufactured by bending a corrugated plate into a tubular shape and joining seams. 請求項1において、前記扁平チューブが、対になった波板を接合することによって形成されていることを特徴とする熱交換器。The heat exchanger according to claim 1, wherein the flat tubes are formed by joining a pair of corrugated sheets. 請求項1ないし3のいずれかにおいて、前記扁平チューブの内部に補強用のプレートが装着されていることを特徴とする熱交換器。4. The heat exchanger according to claim 1, wherein a reinforcing plate is mounted inside the flat tube. 請求項1において、前記扁平チューブが、内部に第1の流体の流路が形成されるように、押し出し成形によって製作されていることを特徴とする熱交換器。The heat exchanger according to claim 1, wherein the flat tube is manufactured by extrusion so that a flow path of the first fluid is formed inside. 請求項1ないし5のいずれかにおいて、前記板状のフィンの長手方向が、前記扁平チューブの長手方向に対して実質的に垂直になっていることを特徴とする熱交換器。The heat exchanger according to any one of claims 1 to 5, wherein a longitudinal direction of the plate-shaped fin is substantially perpendicular to a longitudinal direction of the flat tube. 請求項6において、前記板状のフィンが、それの長手方向の終端において折り返すように屈曲していることを特徴とする熱交換器。The heat exchanger according to claim 6, wherein the plate-like fin is bent so as to be folded at a longitudinal end thereof. 請求項6において、前記板状のフィンが複数個、多段の棚のように脚部を介して繋がってフィン組立体を構成していることを特徴とする熱交換器。7. The heat exchanger according to claim 6, wherein a plurality of the plate-like fins are connected via legs like a multi-stage shelf to form a fin assembly. 請求項1ないし8のいずれかにおいて、前記フィンが、前記扁平チューブの外側面に形成される波形の腹面の頂部或いは底部に接合されていることを特徴とする熱交換器。The heat exchanger according to claim 1, wherein the fin is joined to a top or a bottom of a corrugated abdominal surface formed on an outer surface of the flat tube. 請求項8において、前記フィン組立体の前記脚部が、前記扁平チューブの外側面に形成される波形の腹面の頂部或いは底部に接合されていると共に、前記脚部によって第2の流体が通過する窓穴が形成されていることを特徴とする熱交換器。9. The fin assembly according to claim 8, wherein the leg portion of the fin assembly is joined to a top or a bottom of a corrugated abdominal surface formed on an outer surface of the flat tube, and the second fluid passes through the leg portion. A heat exchanger having a window hole.
JP2002251568A 2002-08-29 2002-08-29 Heat exchanger Pending JP2004092942A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002251568A JP2004092942A (en) 2002-08-29 2002-08-29 Heat exchanger
US10/649,223 US20040069472A1 (en) 2002-08-29 2003-08-26 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002251568A JP2004092942A (en) 2002-08-29 2002-08-29 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2004092942A true JP2004092942A (en) 2004-03-25

Family

ID=32058123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002251568A Pending JP2004092942A (en) 2002-08-29 2002-08-29 Heat exchanger

Country Status (2)

Country Link
US (1) US20040069472A1 (en)
JP (1) JP2004092942A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261615A (en) * 2007-03-16 2008-10-30 Mitsubishi Electric Corp Heat exchanger, heat exchange device, refrigerator and air conditioner
JP2008292054A (en) * 2007-05-24 2008-12-04 Denso Corp Ebullient cooling device
JP4835807B2 (en) * 2009-05-22 2011-12-14 トヨタ自動車株式会社 Heat exchanger and manufacturing method thereof
JP2012524236A (en) * 2009-04-20 2012-10-11 キョントン ナビエン カンパニー リミテッド Heat exchanger
CN104864758A (en) * 2015-06-10 2015-08-26 纳百川控股有限公司 Pipeline heat exchanger and heat exchanger
EP2962055A4 (en) * 2013-03-01 2016-10-26 Sapa As Fin solution related to micro channel based heat exchanger
JPWO2017056250A1 (en) * 2015-09-30 2018-04-26 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus including the same
CN113237077A (en) * 2021-04-09 2021-08-10 代少东 Condensation heat exchanger structure
CN113396305A (en) * 2019-02-01 2021-09-14 翰昂汽车零部件有限公司 PTC heater

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060162910A1 (en) * 2005-01-24 2006-07-27 International Mezzo Technologies, Inc. Heat exchanger assembly
DE102007008535A1 (en) * 2007-02-21 2008-08-28 Modine Manufacturing Co., Racine Heat exchanger network, manufacturing process and roller mill
DE102007023361A1 (en) * 2007-05-18 2008-11-20 Modine Manufacturing Co., Racine Heat exchanger core, manufacturing process, roller mill
US20100115771A1 (en) * 2008-11-10 2010-05-13 Mark Johnson Heat exchanger, heat exchanger tubes and method
JP5499957B2 (en) * 2009-07-24 2014-05-21 株式会社デンソー Heat exchanger
DE202010010187U1 (en) * 2010-07-14 2010-10-14 Erbslöh Aluminium Gmbh Hollow profile for heat exchangers
PL222892B1 (en) * 2012-12-12 2016-09-30 Aic Spółka Z Ograniczoną Odpowiedzialnością Method for developing the surface of the heat exchange in the heat exchanger and the heat exchanger package with the heat-exchange surface
EP2971604B1 (en) 2013-03-15 2020-06-10 Rolls-Royce North American Technologies, Inc. Heat exchanger integrated with a gas turbine engine and adaptive flow control
CN105890399A (en) * 2014-10-31 2016-08-24 丹佛斯微通道换热器(嘉兴)有限公司 Heat exchanger
CN104842740B (en) * 2014-12-19 2017-11-03 北汽福田汽车股份有限公司 A kind of rear air-conditioner controller, control system, control method and corresponding vehicle
CN106524782A (en) * 2016-12-30 2017-03-22 广东申菱环境系统股份有限公司 Immersive liquid-cooled module heat exchanger and manufacturing method thereof
JP6396533B1 (en) * 2017-04-26 2018-09-26 レノボ・シンガポール・プライベート・リミテッド Plate-type heat transport device, electronic apparatus, and plate-type heat transport device manufacturing method
CN109210964A (en) * 2018-09-30 2019-01-15 珠海格力电器股份有限公司 A kind of heat exchanger and the air-conditioning comprising it
US11306979B2 (en) * 2018-12-05 2022-04-19 Hamilton Sundstrand Corporation Heat exchanger riblet and turbulator features for improved manufacturability and performance
US11098962B2 (en) * 2019-02-22 2021-08-24 Forum Us, Inc. Finless heat exchanger apparatus and methods

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1294435A (en) * 1917-09-12 1919-02-18 Fedders Mfg Co Inc Radiator.
US1401918A (en) * 1919-11-07 1921-12-27 Frank A Neveu Radiator
US1421546A (en) * 1920-04-28 1922-07-04 David O Parkin Radiator
US1893521A (en) * 1929-11-20 1933-01-10 Modine Mfg Co Tube for heat exchange devices
US2061100A (en) * 1935-05-01 1936-11-17 Oscar C Palmer Radiator core
US4488593A (en) * 1982-09-10 1984-12-18 D. Mulock-Bentley And Associates (Proprietary) Limited Heat exchanger
EP1172626A3 (en) * 2000-07-14 2003-11-26 Joma-Polytec Kunststofftechnik GmbH Use of a heat exchanger

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261615A (en) * 2007-03-16 2008-10-30 Mitsubishi Electric Corp Heat exchanger, heat exchange device, refrigerator and air conditioner
JP2008292054A (en) * 2007-05-24 2008-12-04 Denso Corp Ebullient cooling device
JP2012524236A (en) * 2009-04-20 2012-10-11 キョントン ナビエン カンパニー リミテッド Heat exchanger
US9250021B2 (en) 2009-04-20 2016-02-02 Kyungdong Navien Co., Ltd. Heat exchanger
JP4835807B2 (en) * 2009-05-22 2011-12-14 トヨタ自動車株式会社 Heat exchanger and manufacturing method thereof
US8365409B2 (en) 2009-05-22 2013-02-05 Toyota Jidosha Kabushiki Kaisha Heat exchanger and method of manufacturing the same
EP2962055A4 (en) * 2013-03-01 2016-10-26 Sapa As Fin solution related to micro channel based heat exchanger
CN104864758A (en) * 2015-06-10 2015-08-26 纳百川控股有限公司 Pipeline heat exchanger and heat exchanger
JPWO2017056250A1 (en) * 2015-09-30 2018-04-26 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus including the same
CN113396305A (en) * 2019-02-01 2021-09-14 翰昂汽车零部件有限公司 PTC heater
CN113396305B (en) * 2019-02-01 2023-09-01 翰昂汽车零部件有限公司 PTC heater
CN113237077A (en) * 2021-04-09 2021-08-10 代少东 Condensation heat exchanger structure

Also Published As

Publication number Publication date
US20040069472A1 (en) 2004-04-15

Similar Documents

Publication Publication Date Title
JP2004092942A (en) Heat exchanger
JP4122578B2 (en) Heat exchanger
CN100513976C (en) Heat exchanger tube having strengthening deformations
JP2006322698A (en) Heat exchanger
JP4143966B2 (en) Flat tube for EGR cooler
JP2005532522A (en) Baffle type surface cooling heat exchanger
JPH05196383A (en) Corrugated fin type heat-exchanger
JP2000346582A (en) Heat exchanger
JP2004144460A (en) Heat exchanger
JP2007178015A (en) Heat exchanger
US6530424B2 (en) Clip on manifold heat exchanger
JP3965901B2 (en) Evaporator
JPS58221390A (en) Heat exchanger
JP3870865B2 (en) Heat exchanger
JP2528121B2 (en) Heat exchanger
JP2006138503A (en) Heat exchanger
JP2004263881A (en) Heat transfer fin, heat exchanger, evaporator and condenser for car air conditioner
JP3048614B2 (en) Heat exchanger
JP3403544B2 (en) Heat exchanger
JP2002048491A (en) Heat exchanger for cooling
JPH0976734A (en) On-vehicle condenser
JPH109787A (en) Plate fin type heat exchanger
JPH06129734A (en) Heat exchanger
JPH07324884A (en) Corrugated fin for heat exchanger
JPH10227582A (en) Heat exchanger