JP2004092934A - Heat pump hot-water supply machine with solar system - Google Patents

Heat pump hot-water supply machine with solar system Download PDF

Info

Publication number
JP2004092934A
JP2004092934A JP2002251209A JP2002251209A JP2004092934A JP 2004092934 A JP2004092934 A JP 2004092934A JP 2002251209 A JP2002251209 A JP 2002251209A JP 2002251209 A JP2002251209 A JP 2002251209A JP 2004092934 A JP2004092934 A JP 2004092934A
Authority
JP
Japan
Prior art keywords
heat pump
pump unit
water
hot water
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002251209A
Other languages
Japanese (ja)
Other versions
JP3846385B2 (en
Inventor
Mutsuhiko Kamiya
神谷 睦彦
Shinji Yamawaki
山脇 信二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2002251209A priority Critical patent/JP3846385B2/en
Publication of JP2004092934A publication Critical patent/JP2004092934A/en
Application granted granted Critical
Publication of JP3846385B2 publication Critical patent/JP3846385B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump hot-water supply machine with a solar system capable of effectively utilizing energy and being easily controlled and having a simple structure. <P>SOLUTION: This hot-water supply machine has the solar system 3 provided with a collector 1 and a heat exchanger 2, a heat pump unit 4, and a hot-water storage tank 5. The hot-water storage tank 5 is provided with a high temperature water reflux port 7 from the heat pump unit 4 in an uppermost part 6 and the heat exchanger 2 in a lowermost part 8. It has a water feeding port 10 for the heat pump unit 4 in an intermediate part 9 of the hot-water storage tank 5 and a temperature sensor 11 in its vicinity. When the heat pump unit 4 is operated and the temperature sensor 11 detects water temperature higher than set temperature, operation of the heat pump unit 4 is stopped. Consequently, operation of the heat pump unit 4 can be controlled by a simple configuration, control of the whole system becomes easy, and use of inexpensive midnight electric power by a heat pump and effective use of solar heat energy can be achieved. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、エネルギーの有効利用を図ったソーラーシステム付きヒートポンプ式給湯機に関するものである。
【0002】
【従来の技術】
太陽熱を利用して熱媒を加熱し、加熱された熱媒を貯湯タンク内の水と熱交換して貯湯タンク内の水を加熱し、貯湯タンク内の湯を利用する一方、日々の天候や、季節による太陽熱エネルギー利用の変動に対応するため、他のエネルギー供給源との併用を図った給湯システムも種々知られており、例えば、特開2001−4230号公報には、太陽熱エネルギーと安価な深夜電力を利用した電気ヒーターとを併用した給湯システムが、開示されている。
【0003】
一方、貯湯タンクの構造等についても、エネルギー有効利用の観点から、種々の工夫がなされ、例えば、上記特開2001−4230号公報では、貯湯タンク内部を隔壁で複数の貯湯槽に分割し、得られる太陽熱エネルギーの日較変動、季節変動に対応した木目の細かな制御と管理をおこなう給湯システムが、提案されている。また、特開平5−322304号公報等に開示されるように、太陽熱エネルギーにより加温される貯湯タンクと通常の熱源により給湯を行なう給湯器を別個に備える給湯システムでは、両者の湯温を温度センサ等で検知して、前者の湯温が高いときのみ太陽熱エネルギーにより加温された湯を使用する等の細かな制御により、太陽熱エネルギーにより加温される貯湯タンクと通常の熱源により給湯を行なう給湯器との切り換えを行なう給湯システムの提案がされている。しかし、これらの給湯システムは、概して、エネルギーの有効利用を図るため、より高度で精密な制御に頼る結果、複数の貯湯槽を要する等、システム全体が、大掛かりで複雑なものとなりがちであった。
【0004】
【発明が解決しようとする課題】
本発明は、上記事由に鑑みてなされたもので、その目的とするところは、エネルギー有効利用が図れる一方、構造が、シンプルで制御の容易なソーラーシステム付きヒートポンプ式給湯機を提供することにある。
【0005】
【課題を解決するための手段】
上記課題を解決するために、請求項1に係るソーラーシステム付きヒートポンプ式給湯機にあっては、少なくとも、太陽熱エネルギーを集めるコレクターと二水式ソーラーシステム用熱交換機とを備えた二水式ソーラーシステムと、ヒートポンプユニットと、ヒートポンプユニット運転制御手段と、貯湯タンクと、を有するソーラーシステム付きヒートポンプ式給湯機であって、前記貯湯タンクが、その最上部に前記ヒートポンプユニットからの高温水還流口、最下部に前記二水式ソーラーシステム用熱交換機を備える一方、前記貯湯タンクの前記最上部と、前記最下部との中間部に、前記ヒートポンプユニットへの送水口、及び該送水口の近傍に前記ヒートポンプユニット運転制御手段に検知信号を送信可能な温度センサを有することを特徴とするものである。
【0006】
請求項2に係るソーラーシステム付きヒートポンプ式給湯機にあっては、請求項1記載のソーラーシステム付きヒートポンプ式給湯機において、前記ヒートポンプユニット運転時に、前記温度センサが、所定の設定温度より高い水温を検知すると、この検知信号に基づいて前記ヒートポンプユニット運転制御手段により、前記ヒートポンプユニットの運転を停止し得るようにしたことを特徴とするものである。
【0007】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づき説明する。なお、本発明のソーラーシステム付きヒートポンプ式給湯機は、下記の実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。ここで、図1は、本実施形態におけるソーラーシステム付きヒートポンプ式給湯機の概略を示す模式図である。
【0008】
即ち、本発明のソーラーシステム付きヒートポンプ式給湯機の典型的実施形態としては、図1に示すように、少なくとも、太陽熱エネルギーを集めるコレクター1と二水式ソーラーシステム用熱交換機2とを備えた二水式ソーラーシステム3と、ヒートポンプユニット4と、例えば、500リットルの容量を有する貯湯タンク5を一個有するものを例示できる。この場合、貯湯タンク5は、その最上部6に前記ヒートポンプユニット4から配管17bを経由して還流してくる高温水のタンク5への高温水還流口7、最下部8に前記二水式ソーラーシステム用熱交換機2を備える一方、前記貯湯タンク5の前記最上部6と、前記最下部8との中間部9に、前記ヒートポンプユニット4へ、配管17aを経由して、タンク5の水を送水するための送水口10、及び該送水口10の近傍に温度センサ11を有し、前記ヒートポンプユニット4の運転時に、前記温度センサ11が、所定の設定温度より高い水温を検知すると、この検知信号に基づいてヒートポンプユニット運転制御手段12により、前記ヒートポンプユニット4の運転を停止し得るように構成されている。
【0009】
さらに、二水式ソーラーシステム3においては、貯湯タンク5の最下部8に配設された二水式ソーラーシステム用熱交換機2において、貯湯タンク5の最下部8近傍の冷水と熱交換を終えて、冷却された熱媒体は、上部に膨張タンク13につながる分岐点14を有する配管15aを経由して、循環ポンプ16により配管15bを経由して、コレクター1に送られる。この後、コレクター1で集められた太陽熱エネルギーで再度、温められた熱媒体は、配管15cを経由して、二水式ソーラーシステム用熱交換機2に還流されることとなる。
【0010】
一方、ヒートポンプユニット4においては、上記送水口10から配管17aを経由して、ポンプ18により、貯湯タンク5の水を汲み上げ、ヒートポンプの凝縮器である熱交換器19において、熱交換して高温水とした後、配管17bを経由して上記高温水還流口7から貯湯タンク5へ還流される。このとき、ヒートポンプユニット4の熱媒体は、前記熱交換器19において、貯湯タンク5の水と熱交換して高温水とした後、自らは冷却、液化され、高圧ガスから高圧液となる。この液化した常温高圧の液は、膨張弁20により急激に減圧され、蒸発器21の中で再度熱交換され、低圧ガスへと変化する。この熱媒体が、蒸発する際に、蒸発潜熱により、大量の熱量を吸収することとなる。この後、熱媒体はコンプレッサー22で圧縮され、高温、高圧となり、貯湯タンク5から汲み上げた水と再度熱交換可能となる。
【0011】
かかる本実施形態のソーラーシステム付きヒートポンプ式給湯機は、以下のように運転される。
【0012】
▲1▼安価な深夜電力を使用して、ヒートポンプユニット4で高温に沸きあげた高温水(湯)は、配管17bを経由して貯湯タンク5に還流し、その最上部6の高温水還流口7から貯湯タンク5に戻される。一方、中間部9の送水口10から配管17aを経由して、タンク5の水が、ポンプ18により、ヒートポンプユニット4へ送水される。この場合、貯湯タンク5内部では、この高温水は、貯湯タンク5内に既に存在する低温水よりも比重が小さいため、この低温水と交じり合うことなく、貯湯タンク5内の低温水の上に積層することなる。この結果、貯湯タンク5は、その内部に隔壁等のない一缶式のものでありながら、事実上、上部の高温貯湯部26と下部の低温貯水部25の二層構造を有するタンクとして機能することとなる。
【0013】
▲2▼ポンプ18による上記循環により、ヒートポンプユニット4から還流した高温水(湯)が、貯湯タンク5の上部で充分積層し、送水口10の近傍に設けた温度センサ11が、所定の設定温度より高い水温を検知(即ち、貯湯タンク5上部の前記高温貯湯部26の下端部が降下し、温度センサ11の位置まで到達したことを検知)すると、この検知信号に基づいてヒートポンプユニット運転制御手段12により、前記ヒートポンプユニット4の運転を停止することとなる。したがって、このように、温度センサ11を、貯湯タンク5の中間部9の送水口10の近傍に配設することにより、温度センサ11の配設位置が貯湯タンク5の前記高温貯湯部26と前記低温貯水部25の境界の下限を定めることとなる。例えば、本実施形態における500リットルの容量を有する貯湯タンク5において、その最上部6から300リットルの容量に対応する位置に温度センサ11を配設すると、この場合の高温貯湯部26は、最大300リットルの容量を有し、このときの低温貯水部25の容量は、200リットルとなる。
【0014】
▲3▼上部の高温貯湯部26から、電磁混合弁23を経由して、給湯されると、最下部8近傍の給水口24から給湯量と同量の水道水が、低温貯水部25に補給される。このようにして、高温水(湯)を消費するに従い、高温貯湯部26の下端部は、貯湯タンク5内部において、上方に押し上げられる。この場合において、温度センサ11は、低温貯水部25内に入るため、このとき、温度センサ11が、所定の設定温度より低い水温を検知(即ち、貯湯タンク5上部の前記高温貯湯部26の下端部が上昇し、温度センサ11の位置を通過したことを検知)すると、この検知信号に基づいてヒートポンプユニット運転制御手段12により、前記ヒートポンプユニット4の運転を再開するように構成する実施形態も当然可能である。
【0015】
▲4▼一方、日中、二水式ソーラーシステム3において取り込んだ太陽熱エネルギーは、貯湯タンク5の最下部8に配設された二水式ソーラーシステム用熱交換機2において、貯湯タンク5の最下部8近傍の冷水を温めるのに使用され、前記低温貯水部25の水温が上昇する。この結果、ヒートポンプユニット4を運転した際、低温貯水部25より汲み上げた冷水を所定の温度(所望の湯温)まで温めるために不足分の熱エネルギーのみをヒートポンプユニット4から補償することとなるため、トータル的には、ソーラーシステム3により取り込める太陽熱エネルギーを最大限有効活用し得る一方、ヒートポンプユニット4により、安価な深夜電力を有効活用して、ソーラーシステム3により取り込める太陽熱エネルギーの日較変動、季節変動を効率的に吸収、補填できることとなる。
【0016】
このように、本発明のソーラーシステム付きヒートポンプ式給湯機は、高温水(湯)を得るに際して、ソーラーシステム3により取り込める太陽熱エネルギーを最大限有効活用する一方、その不足分の熱エネルギーを、安価な深夜電力を有効活用したヒートポンプユニット4から補償し、同時に、ソーラーシステム3により取り込める太陽熱エネルギーの日較変動、季節変動をも効率的に吸収、補填しようとするものである。
【0017】
また、貯湯タンクを一個のみ有し、事実上、温度センサ一個のみで前記ヒートポンプユニットのオン/オフ等の運転制御が容易にできるという比較的シンプルな構成を有するため、結果的に、システム全体の制御が容易にできるという特徴を有する。
【0018】
【発明の効果】
以上のように、請求項1および請求項2に係るソーラーシステム付きヒートポンプ式給湯機にあっては、少なくとも、太陽熱エネルギーを集めるコレクターと二水式ソーラーシステム用熱交換機とを備えた二水式ソーラーシステムと、ヒートポンプユニットと、貯湯タンクと、を有するソーラーシステム付きヒートポンプ式給湯機であって、前記貯湯タンクが、その最上部に前記ヒートポンプユニットからの高温水還流口、最下部に前記二水式ソーラーシステム用熱交換機を備える一方、前記貯湯タンクの前記最上部と、前記最下部との中間部に、前記ヒートポンプユニットへの送水口、及び該送水口の近傍に温度センサを有し、前記ヒートポンプユニット運転時に、前記温度センサが、所定の設定温度より高い水温を検知すると、前記ヒートポンプユニットの運転を停止し得るようにしたことを特徴とするので、前記ソーラーシステムで太陽熱エネルギーを有効活用しつつ、ヒートポンプにより、安価な深夜電力を有効活用して、上記ソーラーシステムにより取り込める太陽熱エネルギーの日較変動、季節変動を効率的に吸収、補填できるのみならず、貯湯タンクを一個のみ有し、事実上、温度センサ一個のみで前記ヒートポンプユニットの運転の停止を制御し得るという比較的シンプルな構成により、結果的に、システム全体の制御が容易にできるという優れた効果を奏する。
【図面の簡単な説明】
【図1】本実施形態におけるソーラーシステム付きヒートポンプ式給湯機の概略を示す模式図である。
【符号の説明】
1   コレクター
2   二水式ソーラーシステム用熱交換機
3   二水式ソーラーシステム
4   ヒートポンプユニット
5   貯湯タンク
6   最上部(貯湯タンク5)
7   高温水還流口
8   最下部(貯湯タンク5)
9   中間部(貯湯タンク5)
10   送水口
11   温度センサ
12   ヒートポンプユニット運転制御手段
13   膨張タンク
14   分岐点(配管15a)
15a  配管
15b  配管
15c  配管
16   循環ポンプ
17a  配管
17b  配管
18   ポンプ
19   熱交換器
20   膨張弁
21   蒸発器
22   コンプレッサー
23   電磁混合弁
24   給水口
25   低温貯水部
26   高温貯湯部
27   逃がし弁
28   減圧弁
29   給水系
30   風呂
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a heat pump type water heater with a solar system for effective use of energy.
[0002]
[Prior art]
The heat medium is heated using solar heat, the heated heat medium exchanges heat with the water in the hot water storage tank to heat the water in the hot water storage tank, and while using the hot water in the hot water storage tank, In order to cope with fluctuations in the use of solar heat energy due to seasons, various types of hot water supply systems that are used in combination with other energy supply sources are also known. For example, Japanese Patent Application Laid-Open Publication No. A hot water supply system using an electric heater that uses midnight power is disclosed.
[0003]
On the other hand, with respect to the structure of the hot water storage tank and the like, various measures are taken from the viewpoint of effective use of energy. For example, in JP-A-2001-4230, the inside of the hot water storage tank is divided into a plurality of hot water storage tanks by partition walls. There has been proposed a hot water supply system that performs fine-grained control and management of wood grain corresponding to daily and seasonal fluctuations of solar thermal energy. Further, as disclosed in Japanese Patent Application Laid-Open No. 5-322304, etc., in a hot water supply system that separately includes a hot water storage tank heated by solar thermal energy and a water heater that supplies hot water with a normal heat source, both hot water temperatures are set to the temperature. Water is supplied by a hot water storage tank heated by solar thermal energy and a normal heat source by fine control such as using hot water heated by solar thermal energy only when the former hot water temperature is detected by a sensor or the like. There has been proposed a hot water supply system that performs switching with a hot water supply device. However, these hot water supply systems generally rely on more sophisticated and precise control for effective use of energy, and as a result, the entire system tends to be large and complicated, such as requiring multiple hot water tanks. .
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a heat pump type water heater with a solar system having a simple and easy-to-control structure, while effectively utilizing energy. .
[0005]
[Means for Solving the Problems]
In order to solve the above problem, a heat pump type water heater with a solar system according to claim 1 has a two-water solar system including at least a collector for collecting solar thermal energy and a heat exchanger for a two-water solar system. A heat pump type water heater with a solar system, comprising: a heat pump unit; a heat pump unit operation control means; and a hot water storage tank, wherein the hot water storage tank has a hot water recirculation port from the heat pump unit at an uppermost portion thereof. A heat exchanger for a two-water solar system is provided at a lower portion, while a water supply port to the heat pump unit is provided at an intermediate portion between the uppermost portion and the lowermost portion of the hot water storage tank, and the heat pump is provided near the water supply port. It has a temperature sensor capable of transmitting a detection signal to the unit operation control means. It is an.
[0006]
In the heat pump water heater with a solar system according to claim 2, in the heat pump water heater with a solar system according to claim 1, the temperature sensor detects a water temperature higher than a predetermined set temperature during the operation of the heat pump unit. Upon detection, the operation of the heat pump unit can be stopped by the heat pump unit operation control means based on the detection signal.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The heat pump type water heater with a solar system of the present invention is not limited to the following embodiment, and various changes can be made without departing from the gist of the present invention. Here, FIG. 1 is a schematic diagram showing an outline of a heat pump water heater with a solar system in the present embodiment.
[0008]
That is, as a typical embodiment of a heat pump water heater with a solar system according to the present invention, as shown in FIG. 1, a heat pump water heater having at least a collector 1 for collecting solar thermal energy and a heat exchanger 2 for a two-water solar system is provided. A water solar system 3, a heat pump unit 4, and a hot water storage tank 5 having a capacity of, for example, 500 liters can be exemplified. In this case, the hot water storage tank 5 has a high-temperature water recirculation port 7 to the high-temperature water tank 5 circulating from the heat pump unit 4 via the pipe 17b at the uppermost part 6 and the two-water type solar cell at the lowermost part 8. While the system heat exchanger 2 is provided, the water in the tank 5 is supplied to the heat pump unit 4 via the pipe 17a to the intermediate portion 9 between the uppermost portion 6 and the lowermost portion 8 of the hot water storage tank 5. And a temperature sensor 11 near the water supply port 10. When the temperature sensor 11 detects a water temperature higher than a predetermined set temperature during operation of the heat pump unit 4, the detection signal The operation of the heat pump unit 4 can be stopped by the heat pump unit operation control means 12 based on the above.
[0009]
Further, in the two-water solar system 3, the heat exchange with the cold water in the vicinity of the lowermost part 8 of the hot water storage tank 5 is completed in the heat exchanger 2 for the two-water solar system arranged in the lowermost part 8 of the hot water storage tank 5. The cooled heat medium is sent to the collector 1 via a pipe 15a having a branch point 14 connected to the expansion tank 13 at an upper portion, and via a pipe 15b by a circulation pump 16. Thereafter, the heat medium heated again by the solar heat energy collected by the collector 1 is returned to the heat exchanger 2 for a two-water solar system via the pipe 15c.
[0010]
On the other hand, in the heat pump unit 4, the water in the hot water storage tank 5 is pumped up from the water supply port 10 via the pipe 17a by the pump 18, and heat is exchanged in the heat exchanger 19 which is a condenser of the heat pump. Then, the hot water is recirculated from the high-temperature water recirculation port 7 to the hot water storage tank 5 via the pipe 17b. At this time, the heat medium of the heat pump unit 4 is heat-exchanged with the water in the hot water storage tank 5 in the heat exchanger 19 to become high-temperature water, and then cooled and liquefied by itself to become a high-pressure liquid from a high-pressure gas. The liquefied room-temperature and high-pressure liquid is rapidly reduced in pressure by the expansion valve 20, heat exchanges again in the evaporator 21, and changes to a low-pressure gas. When the heat medium evaporates, a large amount of heat is absorbed by the latent heat of evaporation. Thereafter, the heat medium is compressed by the compressor 22, becomes high temperature and high pressure, and becomes heat exchangeable again with water pumped from the hot water storage tank 5.
[0011]
The heat pump water heater with the solar system of the present embodiment operates as follows.
[0012]
(1) High-temperature water (hot water) boiled to a high temperature by the heat pump unit 4 using inexpensive midnight electric power is returned to the hot-water storage tank 5 via the pipe 17b, and the high-temperature water return port at the top 6 thereof 7 returns to the hot water storage tank 5. On the other hand, the water in the tank 5 is sent to the heat pump unit 4 by the pump 18 from the water inlet 10 of the intermediate section 9 via the pipe 17a. In this case, in the hot water storage tank 5, the high-temperature water has a lower specific gravity than the low-temperature water already existing in the hot water storage tank 5. It will be laminated. As a result, while the hot water storage tank 5 is a one-can type having no partition wall or the like inside, the hot water storage tank 5 effectively functions as a tank having a two-layer structure of the upper hot water storage section 26 and the lower cold water storage section 25. It will be.
[0013]
(2) Due to the above-mentioned circulation by the pump 18, high-temperature water (hot water) refluxed from the heat pump unit 4 is sufficiently laminated on the upper part of the hot water storage tank 5, and the temperature sensor 11 provided near the water supply port 10 detects a predetermined temperature. When a higher water temperature is detected (that is, it is detected that the lower end of the high-temperature hot water storage section 26 at the top of the hot water storage tank 5 has dropped and has reached the position of the temperature sensor 11), the heat pump unit operation control means based on this detection signal. According to 12, the operation of the heat pump unit 4 is stopped. Therefore, by disposing the temperature sensor 11 in the vicinity of the water supply port 10 in the intermediate portion 9 of the hot water storage tank 5 in this way, the disposition position of the temperature sensor 11 is the same as that of the high-temperature hot water storage section 26 of the hot water storage tank 5. The lower limit of the boundary of the low-temperature water storage unit 25 will be determined. For example, in the hot water storage tank 5 having a capacity of 500 liters in the present embodiment, if the temperature sensor 11 is disposed at a position corresponding to a capacity of 300 liters from the uppermost portion 6, the high temperature hot water storage section 26 in this case will have a maximum of 300 liters. The capacity of the low-temperature water storage unit 25 at this time is 200 liters.
[0014]
(3) When hot water is supplied from the upper high-temperature hot water storage section 26 via the electromagnetic mixing valve 23, the same amount of tap water as the amount of hot water is supplied to the low-temperature water storage section 25 from the water supply port 24 near the lowermost portion 8. Is done. In this way, as hot water (hot water) is consumed, the lower end of the high-temperature hot water storage section 26 is pushed up inside the hot water storage tank 5. In this case, since the temperature sensor 11 enters the low-temperature water storage section 25, at this time, the temperature sensor 11 detects a water temperature lower than a predetermined set temperature (that is, the lower end of the high-temperature water storage section 26 above the hot water storage tank 5). In this embodiment, the heat pump unit operation control means 12 restarts the operation of the heat pump unit 4 based on the detection signal when it is detected that the unit has risen and passed the position of the temperature sensor 11). It is possible.
[0015]
{Circle around (4)} On the other hand, during the daytime, the solar thermal energy taken in the two-water solar system 3 is supplied to the lowermost part of the hot water storage tank 5 in the two-water solar system heat exchanger 2 disposed at the lowermost part 8 of the hot water storage tank 5. 8 is used to warm the cold water in the vicinity, and the water temperature of the low-temperature water storage section 25 rises. As a result, when the heat pump unit 4 is operated, only the insufficient heat energy is compensated from the heat pump unit 4 in order to warm the cold water pumped from the low-temperature water storage unit 25 to a predetermined temperature (desired hot water temperature). In total, the solar thermal energy that can be captured by the solar system 3 can be effectively used to the utmost, while the heat pump unit 4 can effectively utilize inexpensive midnight power, and the solar thermal energy that can be captured by the solar system 3 can have daily fluctuations and seasonal changes. Fluctuations can be efficiently absorbed and compensated for.
[0016]
As described above, the heat pump water heater with a solar system of the present invention, when obtaining high-temperature water (hot water), makes maximum use of the solar thermal energy that can be captured by the solar system 3 while using the insufficient thermal energy as an inexpensive heat. It compensates from the heat pump unit 4 that makes effective use of midnight power, and at the same time, efficiently absorbs and compensates for daily and seasonal variations in solar thermal energy that can be captured by the solar system 3.
[0017]
In addition, since it has a relatively simple configuration in which only one hot water storage tank is used and operation control such as turning on / off the heat pump unit can be easily performed with only one temperature sensor, the overall system It has the feature that it can be easily controlled.
[0018]
【The invention's effect】
As described above, in the heat pump water heater with a solar system according to claim 1 and claim 2, a two-water solar system including at least a collector for collecting solar thermal energy and a heat exchanger for a two-water solar system. A heat pump water heater with a solar system having a system, a heat pump unit, and a hot water storage tank, wherein the hot water storage tank has a hot water recirculation port from the heat pump unit at the top, and the two-water type at the bottom. A heat exchanger for a solar system, a water supply port to the heat pump unit at an intermediate portion between the uppermost part and the lowermost part of the hot water storage tank, and a temperature sensor near the water supply port; During operation of the unit, when the temperature sensor detects a water temperature higher than a predetermined set temperature, Since the operation of the pump unit can be stopped, the solar heat energy can be effectively utilized by the solar system while the inexpensive midnight power can be effectively utilized by the heat pump, and the solar thermal energy can be captured by the solar system. Not only can efficiently absorb and compensate for daily fluctuations and seasonal fluctuations, but also has only one hot water storage tank, and in fact, the stop of the heat pump unit can be controlled with only one temperature sensor. As a result, an excellent effect that control of the entire system can be easily performed is achieved.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an outline of a heat pump water heater with a solar system according to an embodiment.
[Explanation of symbols]
Reference Signs List 1 collector 2 heat exchanger for two-water solar system 3 two-water solar system 4 heat pump unit 5 hot water storage tank 6 top (hot water storage tank 5)
7 High-temperature water return port 8 Lowermost part (hot water storage tank 5)
9 middle part (hot water storage tank 5)
Reference Signs List 10 water supply port 11 temperature sensor 12 heat pump unit operation control means 13 expansion tank 14 branch point (pipe 15a)
15a pipe 15b pipe 15c pipe 16 circulation pump 17a pipe 17b pipe 18 pump 19 heat exchanger 20 expansion valve 21 evaporator 22 compressor 23 electromagnetic mixing valve 24 water supply port 25 low-temperature water storage section 26 high-temperature hot water storage section 27 relief valve 28 pressure reducing valve 29 water supply System 30 bath

Claims (2)

少なくとも、太陽熱エネルギーを集めるコレクターと二水式ソーラーシステム用熱交換機とを備えた二水式ソーラーシステムと、ヒートポンプユニットと、ヒートポンプユニット運転制御手段と、貯湯タンクと、を有するソーラーシステム付きヒートポンプ式給湯機であって、前記貯湯タンクが、その最上部に前記ヒートポンプユニットからの高温水還流口、最下部に前記二水式ソーラーシステム用熱交換機を備える一方、前記貯湯タンクの前記最上部と、前記最下部との中間部に、前記ヒートポンプユニットへの送水口、及び該送水口の近傍に前記ヒートポンプユニット運転制御手段に検知信号を送信可能な温度センサを有することを特徴とするソーラーシステム付きヒートポンプ式給湯機。At least a heat pump hot water supply with a solar system including a two-water solar system including a collector that collects solar thermal energy and a heat exchanger for a two-water solar system, a heat pump unit, a heat pump unit operation control unit, and a hot water storage tank. The hot water storage tank is provided with a high-temperature water recirculation port from the heat pump unit at the top, and the two-water solar system heat exchanger at the bottom, while the top of the hot water storage tank, A heat pump type with a solar system, comprising a water inlet to the heat pump unit at an intermediate part with the lowermost part, and a temperature sensor near the water inlet capable of transmitting a detection signal to the heat pump unit operation control means. Water heater. 前記ヒートポンプユニット運転時に、前記温度センサが、所定の設定温度より高い水温を検知すると、この検知信号に基づいて前記ヒートポンプユニット運転制御手段により、前記ヒートポンプユニットの運転を停止し得るようにしたことを特徴とする請求項1記載のソーラーシステム付きヒートポンプ式給湯機。During the operation of the heat pump unit, when the temperature sensor detects a water temperature higher than a predetermined set temperature, the heat pump unit operation control means can stop the operation of the heat pump unit based on the detection signal. The heat pump water heater with a solar system according to claim 1.
JP2002251209A 2002-08-29 2002-08-29 Heat pump water heater with solar system Expired - Fee Related JP3846385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002251209A JP3846385B2 (en) 2002-08-29 2002-08-29 Heat pump water heater with solar system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002251209A JP3846385B2 (en) 2002-08-29 2002-08-29 Heat pump water heater with solar system

Publications (2)

Publication Number Publication Date
JP2004092934A true JP2004092934A (en) 2004-03-25
JP3846385B2 JP3846385B2 (en) 2006-11-15

Family

ID=32057856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002251209A Expired - Fee Related JP3846385B2 (en) 2002-08-29 2002-08-29 Heat pump water heater with solar system

Country Status (1)

Country Link
JP (1) JP3846385B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011237138A (en) * 2010-05-12 2011-11-24 Yazaki Corp Absorption air conditioning hot water supply system
CN102748878A (en) * 2012-07-27 2012-10-24 刘旭 Solar energy preferential utilization linkage arrangement between a plurality of heat sources and solar system
CN103913002A (en) * 2014-03-13 2014-07-09 昆明一品阳光节能工程有限公司 Solar energy and heat pump combined hot water system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011237138A (en) * 2010-05-12 2011-11-24 Yazaki Corp Absorption air conditioning hot water supply system
CN102748878A (en) * 2012-07-27 2012-10-24 刘旭 Solar energy preferential utilization linkage arrangement between a plurality of heat sources and solar system
CN103913002A (en) * 2014-03-13 2014-07-09 昆明一品阳光节能工程有限公司 Solar energy and heat pump combined hot water system

Also Published As

Publication number Publication date
JP3846385B2 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
US8245948B2 (en) Co-generation and control method of the same
US4143642A (en) High temperature thermal storage system utilizing solar energy units
US20080022708A1 (en) Co-generation
US20080022707A1 (en) Co-generation
US9010281B2 (en) Hot water supply system
GB2503781A (en) Hybrid heat pump boiler system
CN104364582A (en) A solar energy system
CN202254480U (en) Multifunctional water-heating air-conditioning system
CN108224631A (en) A kind of data center meets an urgent need refrigeration system and its control method
US4382368A (en) Geothermal hot water system
JP4389378B2 (en) Hot water storage type heat pump water heater
JP2005147494A (en) Multi-temperature heat storage tank and heat storage system using the same
JP5528903B2 (en) Absorption type air conditioning and hot water supply system
KR101590119B1 (en) Heat pump type hot water supply system
JP2004092934A (en) Heat pump hot-water supply machine with solar system
JP6155069B2 (en) Solar water heating system
JP2007278655A (en) Heat storage type hot water supplier
JP2006308261A (en) Heat pump type hot water supplier
JP4019943B2 (en) Heat pump water heater
JP2013057435A (en) Heat supply system
JP2005083659A (en) Water heater
JPH07217915A (en) Heat/electricity jointly feeding system
JP4882478B2 (en) Regenerative water heater
CN215675393U (en) Hot water heating system and equipment based on carbon dioxide heat pump
CN108800267A (en) Electric heating phase-changing energy-storing thermal power plant unit and its variable working condition energy adjustment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees