JP2004091859A - Method for manufacturing fine metal particle - Google Patents

Method for manufacturing fine metal particle Download PDF

Info

Publication number
JP2004091859A
JP2004091859A JP2002254803A JP2002254803A JP2004091859A JP 2004091859 A JP2004091859 A JP 2004091859A JP 2002254803 A JP2002254803 A JP 2002254803A JP 2002254803 A JP2002254803 A JP 2002254803A JP 2004091859 A JP2004091859 A JP 2004091859A
Authority
JP
Japan
Prior art keywords
particle size
fine particles
particles
group
pulverization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002254803A
Other languages
Japanese (ja)
Inventor
Tamotsu Senna
仙名 保
Hiroyuki Uono
宇尾野 宏之
Houtetsu Kin
金 奉▲徹▼
Toru Fuse
布施 亨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2002254803A priority Critical patent/JP2004091859A/en
Publication of JP2004091859A publication Critical patent/JP2004091859A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To easily manufacture nano-scale fine metal particles having uniform particle size at a low cost on an industrial scale. <P>SOLUTION: Metal powder as a raw-material consisting of one or more metallic elements is subjected to a first pulverizing step where grinding and/or shearing is applied and a second pulverizing step where impact stress is applied. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、金属粉末の微細化の技術に係り、特に、機械的な粉砕処理によりナノサイズの金属微粒子を大量に製造する方法に関する。
【0002】
【従来の技術】
従来、金属の微粒子を得る手法としては、気相法(CVD、スパッタリング、レーザーアブレーション)、メカノケミカル法、溶液法(ゾルゲル法、共沈法、無電解めっき法)、機械的粉砕による方法等が挙げられる。
【0003】
これらの中でも、機械的な粉砕により金属粉末を微細化する技術は、大量の金属微粒子を安価且つ簡便に製造できることから、工業的に広く用いられている。
【0004】
【発明が解決しようとする課題】
ところが、従来の機械的粉砕による金属微粒子の製造法では、粉砕で一時的に生じた微細な金属粒子(ナノ一次粒子)が、静電引力により互いに引き付けられて凝集するため、種々の大きさの塊(凝集塊)を形成してしまう。このため、最終的に得られる金属微粒子は、平均粒径や粒度分布がナノ一次粒子よりも大きくなってしまい、その微細化・均質化には限界があった。従って、(粉砕時間や粉砕時の力の強さなど)粉砕の条件を調整した場合でも、平均粒径や粒度分布が一定値以下の、十分に微細且つ均質な金属微粒子を得ることは困難である。
【0005】
例えば、T. D. Shen, et al., J. Mater. Res. 10 [1] 139−148 (1995) では、Si粒子を高エネルギーミルで粉砕することによりSi微粒子を製造する方法が報告されているが、得られるSi粒子の平均粒径は略0.5μm(略500nm)が限界であり、その粒度分布も非常に大きい。
【0006】
一方、上述の気相法、メカノケミカル法、溶液法等の手法を用いれば、より微細で粒径の揃った金属微粒子を得ることは可能であるが、これらの方法ではコストがかかる上に大量生産も困難であり、工業的生産には不向きであった。
【0007】
以上の背景から、工業的規模で安価且つ簡便に、粒径の揃ったナノスケールの金属微粒子を製造できる技術が強く望まれてきた。
【0008】
本発明は、上記の実情に鑑みてなされたものであり、その目的は、工業的規模で安価且つ簡便に、粒径の揃ったナノスケールの金属微粒子を製造できる方法を提供することに存する。
【0009】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するため鋭意検討した結果、原料となる金属粉末に対して特定の条件を満たす二種類の粉砕処理を施すことにより、工業的規模で安価且つ簡便に、平均粒径が略150nm以下で、且つ粒径が揃ったナノスケールの金属微粒子を製造できることを見出し、本発明を完成させた。
【0010】
即ち、本発明の要旨は、一又は二以上の金属元素からなる原料金属粉末に、磨砕及び/又はせん断が加わる第1粉砕工程と、衝撃応力が加わる第2粉砕工程とを施すことを特徴とする、金属微粒子の製造方法に存する。
【0011】
【発明の実施の形態】
以下、本発明につき、更に詳細に説明する。
本発明は、一又は二以上の金属元素からなる原料金属粉末に、磨砕及び/又はせん断が加わる第1粉砕工程と、衝撃応力が加わる第2粉砕工程という二種類の工程から成る粉砕処理を施して、金属微粒子を製造するものである。
【0012】
・原料金属粉末:
原料金属粉末は、一種又は二種以上の金属元素からなる粉末である。金属元素の種類に特に制限は無いが、Ia族、IIa族、遷移金属(IIIa族〜VIIIa族)、Ib族、IIb族、IIIb族、IVb族、Vb族に属する元素からなる群より選ばれる元素が好ましく、中でも、遷移金属、Ib族、IIb族、IIIb族、IVb族、Vb族に属する元素がより好ましい。具体的には、Ca,K,Mg,Ti,V,Mn,Fe,Si,Co,Ni,Cu,Zn,Al,Ga,Ge,Sb,Sn,Bi,Pb,Ag,Au,Inがより好ましく、Mg,Ti,Ni,Cu,Fe,Si,Al,Ge,Sb,Sn,Agが更に好ましく、Si,Cuが特に好ましい。また、金属元素の種類の数及び組み合わせについても特に制限は無く、上記元素群より任意に選ばれた一の金属元素単体の粉末でも、上記元素群より任意の組み合わせで選ばれた二以上の金属元素の混合粉末(各々の金属元素単体の粉末の混合物)でもよい。原料金属粉末の平均粒径は、通常100μm以下、好ましくは50μm以下、更に好ましくは20μm以下である。下限は特に制限されないが、通常0.2μm以上、好ましくは0.4μm以上である。
【0013】
・粉砕処理:
従来の機械的粉砕による金属微粒子の製造法では、上述の様に、粉砕で一時的に生じた微細な金属粒子(ナノ一次粒子)が、静電引力により互いに引き付けられて凝集するため、実際に得られる生成物はナノ一次粒子の凝集塊(複数のナノ一次粒子の集合体。ナノ一次粒子凝集体)を含む粉体となってしまう。よって、(粉砕の時間や粉砕時に加える力の強さ等の)粉砕条件を調整した場合でも、一定値以下の平均粒径及び粒度分布を有する、極めて微細且つ均一な金属微粒子を得ることは困難であった。
【0014】
そこで、本発明では、磨砕及び/又はせん断が加わる第1粉砕工程(従来の機械的粉砕と同様の工程)に加えて、更に、第1粉砕工程とは条件の異なる、衝撃応力が加わる第2粉砕工程を施す。原料金属粉末を第1粉砕工程によってナノ一次粒子まで粉砕した後、その生成物に含まれるナノ一次粒子の凝集塊を第2粉砕工程によって解砕することにより、均一に近い粒度分布を持つナノサイズの金属微粒子を得ることができる。従って、第1粉砕工程は原料金属粉末をナノ一次粒子まで至らしめる程度の強い粉砕処理である必要があるのに対して、第2粉砕工程は凝集したナノ一次粒子をバラバラに解砕するのに足りる程度の弱い粉砕処理が望ましい。
【0015】
第1粉砕工程は、磨砕及び/又はせん断が加わる粉砕工程であれば、その種類は特に制限されない。ここで、磨砕とは、機械的処理により物体を磨り潰して細かくする操作であり、せん断とは、機械的処理により物体を物体に対して水平方向に切断する操作である。磨砕及び/又はせん断によって、原料金属粉末には圧縮・せん断応力が加わり、確実にナノ一次粒子まで粉砕されることになる。なお、この圧縮・せん断応力に伴うものであれば、後述の衝撃応力が同時に加わっても良い。
【0016】
本工程の磨砕及び/又はせん断は、原料金属粉末が確実にナノ一次粒子まで粉砕される様に、原料金属粉末に対してある程度強い力が加わる条件の下で実施することが好ましい。具体的には、原料金属粉末に加わる圧縮・せん断応力(圧縮・せん断力)が、好ましくは1G〜500G、より好ましくは10G〜500G(G:重力加速度)となるような条件で実施する。
【0017】
本工程で使用する装置は、磨砕及び/又はせん断を実施できる粉砕機であれば特に制限されないが、上記範囲の強さの圧縮・せん断応力が原料金属粉末に加わる様な条件で磨砕及び/又はせん断を実施できる粉砕機であることが好ましい。使用可能な粉砕機としては、ロール式粉砕機、媒体式粉砕機、気流式粉砕機、せん断・磨砕式粉砕機等が例示される。ロール式粉砕機の具体例としては、ロール回転型、ローラー転動型が挙げられる。媒体式粉砕機は、容器駆動型と媒体攪拌型とに大別され、前者の具体例としては転動ミル、振動ミル、遊星ミル、遠心流動層型ミルが、後者の具体例としては塔型、攪拌層型、流通管型、アニュラー型が挙げられる。気流式粉砕機の具体例としては、衝突型、粒子磨砕型が挙げられる。せん断・磨砕式粉砕機の具体例としては、圧縮せん断型、高速回転せん断型、高速回転磨砕型が挙げられる。上記例示の中でも、せん断・磨砕式粉砕機が好ましく、圧縮せん断型のものが特に好ましい。
【0018】
なお、回転運動によって粉砕を行なう粉砕機を用いる場合、原料金属粉末に加わる圧縮・せん断応力を上記範囲内とするためには、通常100rpm以上、好ましくは1000rpm以上、また、通常20000rpm以下、好ましくは3000rpm以下の回転速度で粉砕を行なうのが良い。
【0019】
本工程は、通常10分以上、好ましくは30分以上、更に好ましくは1時間以上、また、通常5時間以下、好ましくは3時間以下、更に好ましくは2時間以下の範囲で実施する。
【0020】
第2粉砕工程は、衝撃応力が加わる粉砕工程であれば、その種類は特に制限されない。ここで、衝撃応力とは、固体に高速回転するハンマーなどの衝突によって与えられる力である。本工程では、比較的弱い力の衝撃応力を選択的に加えることにより、ナノ一次粒子の凝集塊を解砕することを趣旨とする。従って、前述の圧縮・せん断応力を伴うことは可能な限り避けることが好ましい。本工程において加える衝撃応力の強さは特に制限されないが、ナノ一次粒子の凝集塊を解砕できる程度の強さであることが好ましい。
【0021】
本工程で使用する装置は、原料金属粉末に衝撃応力を加えることができる粉砕機であれば特に制限されないが、上記範囲の強さの衝撃応力を加えることができる粉砕機であることが好ましい。使用可能な粉砕機としては、高速回転衝撃式粉砕機が例示され、その具体例としては、ハンマー型、回転円盤型、軸流型、アニュラー型が挙げられる。
【0022】
本工程を実現するためには、通常100rpm以上、好ましくは5000rpm以上、また、通常20000rpm以下の回転速度で粉砕を行なうのが良い。
【0023】
本工程は、通常5秒以上、好ましくは10秒以上、更に好ましくは15秒以上、また、通常1時間以下、好ましくは30分以下、更に好ましくは10分以下の範囲で実施する。
【0024】
なお、上記の第1及び第2の各粉砕工程は、それぞれ一種の粉砕方式や粉砕機を用いて実施しても良く、二種以上の粉砕方式や粉砕機を任意に組み合わせて実施してもよい。また、各粉砕工程をそれぞれ一段で実施してもよく、複数段に分けて実施しても良い。後者の場合、同一の粉砕条件の下で複数段の実施を行なっても良いが、上に規定した条件を満たすのであれば、各段毎に異なる粉砕条件を設定して実施しても良い。また、何れの粉砕工程も、粉砕機のみならず、混練機、整粒機等を適用して実施することも可能である。
【0025】
・前処理、後処理、中間処理:
なお、上記の第1粉砕工程及び第2粉砕工程の各々において、その前処理、中間処理、後処理として、必要に応じて各種の処理を実施しても良い。この様な処理の例としては、熱処理、冷却処理、材料添加処理、凝集抑制剤添加処理、乾燥処理、分級処理、整粒処理等が挙げられる。また、上述の第1粉砕工程の趣旨より、第1粉砕工程の前処理、中間処理、後処理として、第2粉砕工程の条件に該当する様な衝撃応力を伴う軽い粉砕処理を施しても良い。
【0026】
上記凝集抑制剤としては、特に制限はないが、金属塩や金属ハロゲン化物が挙げられる。
金属塩としては、硫酸塩、硝酸塩、アンモニウム塩、酢酸塩等が挙げられるが、中でも溶媒除去又は熱処理により容易に除去できるものが好ましい。
金属ハロゲン化物としては、塩素化物、臭素化物、ヨウ素化物等が挙げられるが、より入手が容易で扱い易い点で、塩素化物が好ましい。
【0027】
中でも、
I.25℃で固体であるもの、及び、
II.▲1▼気体若しくは昇華温度が400K以上、2500K以下、又は、
▲2▼水溶性で、且つ、25℃の水に対する溶解度w[飽和水溶液100g中の質量(g)の割合]が10重量%以上100重量%以下であるものが好ましい。
【0028】
具体的には、NaCl、LiCl、KCl、NaBr、LiBr、KBr、MgCl、MgBr、BaCl、BaBr、AgCl、ZnCl、AlCl、CuCl、SnCl、MnCl、FeCl、NiCl、FeBr、CuBr、SnBr等が挙げられる。
【0029】
これらの中でも好ましいのは、水で容易に除去可能という点で、NaCl、LiClである。凝集抑制剤は、処理後、溶媒洗浄、熱処理等で除去することができる。
【0030】
・得られる金属粉末:
本発明により得られるナノ一次粒子は、その平均粒径が通常10nm以上、好ましくは50nm以上、また、通常200nm以下、好ましくは150nm以下と極めて小さい上に、その粒度分布が狭く、粒径が揃っている。なお、本明細書において粒度分布が狭いとは、例えば、全粒子に対する割合が25%、50%、75%に当たる粒径をそれぞれD25、D50、D75として、W=(D75−D25)/D50を計算した場合に、Wが通常0.1以上、好ましくは、0.1以上、また、通常1.6以下、好ましくは1.0以下の範囲にあることを指す。
【0031】
【実施例】
以下、本発明を実施例により更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
【0032】
[実施例−1]
原料金属粉末として平均粒径6μmのSi粉末40gを用い、第1粉砕工程として、マルチリング媒体型超微粉砕機(株式会社奈良機械製作所製:マイクロスMIC−0)により、2000回転で3時間にわたって乾式粉砕(窒素流量100cc/min.)を行なった。その結果、平均粒径0.35μmのSi粒子(ナノ一次粒子)を得た。
【0033】
続いて、このSi粒子に対し、第2粉砕工程として、サンプルミル(株式会社奈良機械製作所製)により約10秒間、連続粉砕(回転速度:16000rpm)を行なった。更に250μmの仕切り網を通して、Si微粒子を得た。
【0034】
得られたSi微粒子を水に分散し、レーザー回折粒度分布計(model SALD−2000J 島津製作所製)を使用して、10分間にわたって超音波処理を行なった後、超音波処理しながらレーザー照射時間10秒の条件で粒度測定を行なった。得られた実施例−1のSi微粒子の粒度分布図を図1に示す(横軸:Particle size(粒径)、棒グラフ縦軸:Volume fraction(体積分率)、折れ線グラフ縦軸:Cumulative volume percent(累積体積率))。Si微粒子の平均粒径は130nmで、狭い粒度分布を有していた。また、走査型電子顕微鏡(FE−SEM;Model S−4700、日立製)を用いて撮影した、実施例−1のSi微粒子の電子顕微鏡写真を図2に示す。観察の結果、ナノ一次粒子の凝集体は見られなかった。
【0035】
[実施例−2]
実施例−1と同様の原料金属粉末に、実施例−1と同様の第1粉砕工程を施して得られたSi粒子(ナノ一次粒子)に対して、更に第2粉砕工程として、実施例−1と同様のサンプルミルを使用して、バッチ式で30分にわたって乾式粉砕を行ない、Si微粒子を得た。
【0036】
実施例−1と同様の条件で測定した、実施例−2のSi微粒子の粒度分布図を図3に示す(横軸:Particle size(粒径)、棒グラフ縦軸:Volume fraction(体積分率)、折れ線グラフ縦軸:Cumulative volume percent(累積体積率))。Si微粒子の平均粒径は140nmで、狭い粒度分布を有していた。また、実施例−1と同様の条件で撮影した、実施例−2のSi微粒子の電子顕微鏡写真を図4に示す。観察の結果、ナノ一次粒子の凝集体は見られなかった。
【0037】
[実施例−3]
実施例−1と同様の原料金属粉末に、処理時間を1時間とした他は実施例−1と同様の第1粉砕工程を施して得られたSi粒子(ナノ一次粒子)に対して、更に第2粉砕工程として、実施例−1と同様のサンプルミルを使用して、連続式で10秒にわたって乾式粉砕を行ない、Si微粒子を得た。
【0038】
実施例−1と同様の条件で、実施例−3のSi微粒子の粒度分布を測定したところ、Si微粒子の平均粒径は130nmであった。また、実施例−1と同様の条件で、実施例−3のSi微粒子の電子顕微鏡写真を撮影したところ、ナノ一次粒子の凝集体は観察されなかった。
【0039】
[実施例−4]
実施例−1と同様の原料金属粉末に、処理時間を6時間とした他は実施例−1と同様の第1粉砕工程を施して得られたSi粒子(ナノ一次粒子)に対して、更に実施例−3と同様の第2粉砕工程を施し、Si微粒子を得た。
【0040】
実施例−1と同様の条件で、実施例−4のSi微粒子の粒度分布を測定したところ、Si微粒子の平均粒径は115nmであった。また、実施例−1と同様の条件で、実施例−4のSi微粒子の電子顕微鏡写真を撮影したところ、ナノ一次粒子の凝集体は観察されなかった。
【0041】
[比較例−1]
実施例−1と同様の原料金属粉末に、実施例−1と同様の第1粉砕工程を施して得られたSi粒子を用いた。
【0042】
実施例−1と同様の条件で測定した、比較例−1のSi粒子の粒度分布図を図5に示す(横軸:Particle size(粒径)、棒グラフ縦軸:Volume fraction(体積分率)、折れ線グラフ縦軸:Cumulative volume percent(累積体積率))
。Si微粒子の平均粒径は350nmであった。また、実施例−1と同様の条件で撮影した、比較例−1のSi微粒子の電子顕微鏡写真を図6に示す。観察の結果、凝集粒子が見られた。
【0043】
[比較例−2]
原料金属粉末として平均粒径6μmのSi粉末50gを用い、第1粉砕工程として、実施例−1と同様のマルチリング媒体型超微粉砕機を用いて、2000回転で3時間にわたって湿式粉砕(エチルアルコール:200ml)を行ない、Si粒子を得た。
【0044】
実施例−1と同様の条件で、比較例−2のSi粒子の粒度分布を測定したところ、Si粒子の平均粒径は0.8μmであった。また、実施例−1と同様の条件で、比較例−2のSi微粒子の電子顕微鏡写真を撮影したところ、凝集粒子が観察された。
【0045】
[比較例−3]
原料金属粉末として平均粒径6μmのSiを用い、第1粉砕工程を実施せず、第2粉砕工程として、サンプルミルを用いて、連続粉砕でSi粉末を乾式粉砕(窒素流量100cc/min.)した。
【0046】
実施例−1と同様の条件で測定した、比較例−3のSi粒子の粒度分布図を図7に示す(横軸:Particle size(粒径)、棒グラフ縦軸:Volume fraction(体積分率)、折れ線グラフ縦軸:Cumulative volume percent(累積体積率))
。Si粒子の平均粒径は500nmであった。また、実施例−1と同様の条件で撮影した、比較例−3のSi微粒子の電子顕微鏡写真を図8に示す。観察の結果、凝集粒子が見られた。
【0047】
[比較例−4]
実施例−1と同様の原料金属粉末に、処理時間を1時間とした他は実施例−1と同様の第1粉砕工程を施して得られたSi粒子を用いた。
【0048】
実施例−1と同様の条件で、比較例−4のSi粒子の粒度分布を測定したところ、Si粒子の平均粒径は0.9μmであった。また、実施例−1と同様の条件で、比較例−4のSi微粒子の電子顕微鏡写真を撮影したところ、凝集粒子が観察された。この場合、従来の粉砕時間と比べて、より短時間でナノ一次粒子が生成していると思われるが、凝集しているために平均粒径は大きいものになっていた。
【0049】
[比較例−5]
実施例−1と同様の原料金属粉末に、処理時間を6時間とした他は実施例−1と同様の第1粉砕工程を施して得られたSi粒子を用いた。
【0050】
実施例−1と同様の条件で、比較例−4のSi粒子の粒度分布を測定したところ、Si粒子の平均粒径は130nmで、広い粒度分布を有していた。また、実施例−1と同様の条件で、比較例−5のSi微粒子の電子顕微鏡写真を撮影したところ、凝集粒子が観察された。したがって、第1粉砕工程の6時間処理で、十分に小さい粒子が得られるが、粒度分布が広く、かつ処理時間が極めて長いので、工業的実施には適さない。
【0051】
実施例−1〜実施例−4、及び比較例−1〜比較例−5で得られたSi粒子の平均粒径を以下の表1に示す。
【0052】
【表1】

Figure 2004091859
【0053】
【発明の効果】
本発明によれば、磨砕及び/又はせん断が加わる第1粉砕工程によって原料金属粉末をナノ一次粒子に粉砕した上で、凝集したナノ一次粒子を衝撃応力が加わる第2粉砕工程によって解砕しているので、工業的規模で安価且つ簡便に、平均粒径が略150nm以下の、粒径の揃ったナノスケールの金属微粒子を製造することが可能となる。
【図面の簡単な説明】
【図1】実施例−1のSi微粒子の粒度分布図である。
【図2】実施例−1のSi微粒子の電子顕微鏡写真である。
【図3】実施例−2のSi微粒子の粒度分布図である。
【図4】実施例−2のSi微粒子の電子顕微鏡写真である。
【図5】比較例−1のSi微粒子の粒度分布図である。
【図6】比較例−1のSi微粒子の電子顕微鏡写真である。
【図7】比較例−3のSi微粒子の粒度分布図である。
【図8】比較例−3のSi微粒子の電子顕微鏡写真である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a technique for miniaturizing metal powder, and more particularly to a method for producing a large amount of nano-sized metal fine particles by mechanical pulverization.
[0002]
[Prior art]
Conventionally, methods for obtaining metal fine particles include a gas phase method (CVD, sputtering, laser ablation), a mechanochemical method, a solution method (sol-gel method, coprecipitation method, electroless plating method), a method by mechanical pulverization, and the like. No.
[0003]
Among these, the technique of making metal powder fine by mechanical pulverization is widely used industrially because a large amount of metal fine particles can be produced easily at low cost.
[0004]
[Problems to be solved by the invention]
However, in the conventional method for producing metal fine particles by mechanical pulverization, fine metal particles (nano-primary particles) temporarily generated by pulverization are attracted to each other by electrostatic attraction and aggregate, so that various sizes of metal particles are obtained. Lumps (agglomerates) are formed. For this reason, the finally obtained metal fine particles have an average particle size and a particle size distribution larger than those of the nano primary particles, and there is a limit in miniaturization and homogenization. Therefore, it is difficult to obtain sufficiently fine and uniform fine metal particles having an average particle size and a particle size distribution of a certain value or less even when the conditions of the grinding (such as the grinding time and the strength of the grinding force) are adjusted. is there.
[0005]
For example, T. D. Shen, et al. J. et al. Mater. Res. 10 [1] 139-148 (1995) reports a method for producing Si fine particles by pulverizing Si particles with a high-energy mill. The average particle diameter of the obtained Si particles is approximately 0.5 μm ( (About 500 nm) is the limit, and its particle size distribution is also very large.
[0006]
On the other hand, it is possible to obtain finer metal particles with a uniform particle size by using the above-described methods such as the gas phase method, the mechanochemical method, and the solution method, but these methods are costly and require a large amount. Production was also difficult and unsuitable for industrial production.
[0007]
In view of the above background, there has been a strong demand for a technology capable of producing nanoscale metal fine particles having a uniform particle size easily and inexpensively on an industrial scale.
[0008]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method capable of producing nanoscale metal fine particles having a uniform particle size on an industrial scale at low cost and easily.
[0009]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, by performing two types of pulverization processing that satisfies specific conditions on a metal powder as a raw material, inexpensively and easily on an industrial scale, The inventors have found that nanoscale metal fine particles having an average particle size of about 150 nm or less and having a uniform particle size can be produced, and the present invention has been completed.
[0010]
That is, the gist of the present invention is characterized in that a raw material powder composed of one or more metal elements is subjected to a first pulverizing step in which grinding and / or shearing is applied and a second pulverizing step in which impact stress is applied. In the method for producing metal fine particles.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail.
The present invention relates to a pulverization process comprising two types of processes, a first pulverization process in which grinding and / or shear is applied to a raw metal powder composed of one or more metal elements, and a second pulverization process in which impact stress is applied. To produce metal fine particles.
[0012]
-Raw metal powder:
The raw metal powder is a powder composed of one or more metal elements. The kind of the metal element is not particularly limited, but is selected from the group consisting of elements belonging to Group Ia, Group IIa, transition metals (Groups IIIa to VIIIa), Group Ib, Group IIb, Group IIIb, Group IVb and Group Vb. Elements are preferable, and among them, elements belonging to transition metals, groups Ib, IIb, IIIb, IVb, and Vb are more preferable. Specifically, Ca, K, Mg, Ti, V, Mn, Fe, Si, Co, Ni, Cu, Zn, Al, Ga, Ge, Sb, Sn, Bi, Pb, Ag, Au, and In are more. Preferably, Mg, Ti, Ni, Cu, Fe, Si, Al, Ge, Sb, Sn, and Ag are more preferable, and Si and Cu are particularly preferable. Also, there is no particular limitation on the number and combination of types of metal elements, even a single metal element powder arbitrarily selected from the above element group, two or more metals selected in any combination from the above element group A mixed powder of elements (a mixture of powders of individual metal elements) may be used. The average particle size of the raw metal powder is usually 100 μm or less, preferably 50 μm or less, more preferably 20 μm or less. The lower limit is not particularly limited, but is usually 0.2 μm or more, preferably 0.4 μm or more.
[0013]
・ Pulverization processing:
In the conventional method of producing metal fine particles by mechanical pulverization, as described above, fine metal particles (nano-primary particles) temporarily generated by pulverization are attracted to each other by electrostatic attraction and aggregate, so that they are actually aggregated. The resulting product is a powder containing an aggregate of nano-primary particles (an aggregate of a plurality of nano-primary particles; an aggregate of nano-primary particles). Therefore, it is difficult to obtain extremely fine and uniform metal fine particles having an average particle size and a particle size distribution equal to or less than a certain value even when the grinding conditions (such as the grinding time and the strength of the force applied during the grinding) are adjusted. Met.
[0014]
Therefore, in the present invention, in addition to the first pulverizing step (the same step as the conventional mechanical pulverization) to which grinding and / or shearing is applied, the first pulverizing step is different from the first pulverizing step in that impact stress is applied. 2. Perform a grinding step. After the raw metal powder is pulverized to nano-primary particles by the first pulverization step, the aggregates of the nano-primary particles contained in the product are pulverized by the second pulverization step to obtain a nano-size having a nearly uniform particle size distribution. Can be obtained. Therefore, while the first pulverizing step needs to be a strong pulverizing treatment to bring the raw material metal powder to the nano primary particles, the second pulverizing step needs to separate the aggregated nano primary particles into pieces. A sufficiently weak grinding treatment is desirable.
[0015]
The type of the first pulverizing step is not particularly limited as long as it is a pulverizing step to which grinding and / or shearing is applied. Here, grinding refers to an operation of grinding an object by mechanical processing to make it finer, and shearing refers to an operation of cutting an object in a horizontal direction with respect to the object by mechanical processing. By the grinding and / or shearing, a compressive / shear stress is applied to the raw metal powder, and the raw metal powder is reliably ground to the nano primary particles. In addition, as long as it is accompanied by the compressive / shear stress, an impact stress described later may be simultaneously applied.
[0016]
The grinding and / or shearing in this step is preferably performed under the condition that a certain strong force is applied to the raw metal powder so that the raw metal powder is surely pulverized to the nano primary particles. Specifically, it is carried out under such conditions that the compression / shear stress (compression / shear force) applied to the raw metal powder is preferably 1 G to 500 G, more preferably 10 G to 500 G (G: gravitational acceleration).
[0017]
The apparatus used in this step is not particularly limited as long as it is a pulverizer capable of performing grinding and / or shearing. However, grinding and / or shearing under conditions such that compressive / shear stress having a strength within the above range is applied to the raw metal powder. It is preferably a pulverizer capable of performing shearing. Examples of usable pulverizers include a roll pulverizer, a medium pulverizer, an air-flow pulverizer, and a shear / grinding pulverizer. Specific examples of the roll-type pulverizer include a roll rotating type and a roller rolling type. Medium-type pulverizers are roughly classified into container-driven type and medium-stirring type. Rolling mills, vibrating mills, planetary mills, and centrifugal fluidized bed mills are examples of the former, and tower types are examples of the latter. , Stirred bed type, flow tube type and annular type. Specific examples of the air flow type pulverizer include a collision type and a particle grinding type. Specific examples of the shearing / milling type pulverizer include a compression shearing type, a high-speed rotary shearing type, and a high-speed rotary grinding type. Among the above examples, a shearing / grinding type pulverizer is preferable, and a compression shearing type pulverizer is particularly preferable.
[0018]
In the case of using a pulverizer that performs pulverization by rotational motion, in order to keep the compressive / shear stress applied to the raw metal powder within the above range, usually 100 rpm or more, preferably 1000 rpm or more, and usually 20,000 rpm or less, preferably Pulverization is preferably performed at a rotation speed of 3000 rpm or less.
[0019]
This step is generally carried out for 10 minutes or more, preferably 30 minutes or more, more preferably 1 hour or more, and usually 5 hours or less, preferably 3 hours or less, more preferably 2 hours or less.
[0020]
The type of the second pulverizing step is not particularly limited as long as it is a pulverizing step to which an impact stress is applied. Here, the impact stress is a force given by impact of a hammer or the like rotating at high speed on a solid. In the present step, the purpose is to disintegrate the aggregates of the nano primary particles by selectively applying a relatively weak impact stress. Therefore, it is preferable to avoid the above-mentioned compressive / shear stress as much as possible. Although the strength of the impact stress applied in this step is not particularly limited, it is preferable that the strength is such that the aggregate of the nano primary particles can be broken.
[0021]
The apparatus used in this step is not particularly limited as long as it can apply an impact stress to the raw metal powder, but is preferably a pulverizer capable of applying an impact stress in the above range. Examples of the crusher that can be used include a high-speed rotary impact crusher, and specific examples thereof include a hammer type, a rotating disk type, an axial flow type, and an annular type.
[0022]
In order to realize this step, it is preferable to carry out pulverization at a rotation speed of usually 100 rpm or more, preferably 5000 rpm or more, and usually 20,000 rpm or less.
[0023]
This step is carried out usually for 5 seconds or more, preferably 10 seconds or more, more preferably 15 seconds or more, and usually for 1 hour or less, preferably 30 minutes or less, more preferably 10 minutes or less.
[0024]
The first and second pulverization steps may be performed using a single type of pulverization method or a pulverizer, or may be performed by arbitrarily combining two or more types of pulverization methods or pulverizers. Good. Further, each pulverizing step may be performed in one stage, or may be performed in a plurality of stages. In the latter case, the grinding may be carried out in a plurality of stages under the same grinding conditions. However, if the conditions specified above are satisfied, different grinding conditions may be set for each stage. In addition, any of the pulverization steps can be performed by applying not only a pulverizer but also a kneader, a granulator, or the like.
[0025]
・ Pre-processing, post-processing, intermediate processing:
In each of the first pulverizing step and the second pulverizing step, various kinds of processing may be performed as necessary as pre-processing, intermediate processing, and post-processing. Examples of such treatment include heat treatment, cooling treatment, material addition treatment, aggregation inhibitor addition treatment, drying treatment, classification treatment, sizing treatment and the like. Further, for the purpose of the first pulverizing step, as a pre-treatment, an intermediate treatment, and a post-treatment of the first pulverizing step, a light pulverizing treatment with impact stress corresponding to the condition of the second pulverizing step may be performed. .
[0026]
The aggregation inhibitor is not particularly limited, and examples thereof include metal salts and metal halides.
Examples of the metal salt include a sulfate, a nitrate, an ammonium salt, an acetate, and the like. Among them, those that can be easily removed by solvent removal or heat treatment are preferable.
Examples of the metal halide include a chlorinated compound, a brominated compound, and an iodized compound, and a chlorinated compound is preferable because it is more easily available and easily handled.
[0027]
Among them,
I. Being solid at 25 ° C., and
II. (1) Gas or sublimation temperature is 400K or more and 2500K or less, or
{Circle around (2)} those which are water-soluble and have a solubility w in water at 25 ° C. (the ratio of mass (g) in 100 g of saturated aqueous solution) of 10% by weight or more and 100% by weight or less.
[0028]
Specifically, NaCl, LiCl, KCl, NaBr, LiBr, KBr, MgCl, MgBr, BaCl 2 , BaBr 2 , AgCl, ZnCl 2 , AlCl 3 , CuCl 2 , SnCl, MnCl, FeCl 3 , NiCl 2 , FeBr 2 , CuBr, SnBr 2 and the like.
[0029]
Among them, NaCl and LiCl are preferable in that they can be easily removed with water. After the treatment, the aggregation inhibitor can be removed by solvent washing, heat treatment, or the like.
[0030]
-The resulting metal powder:
The nano primary particles obtained by the present invention have an average particle size of usually at least 10 nm, preferably at least 50 nm, and usually at most 200 nm, preferably at most 150 nm, and have a narrow particle size distribution and uniform particle size. ing. In the present specification, the narrow particle size distribution means that, for example, the particle sizes corresponding to 25%, 50%, and 75% of the total particles are D 25 , D 50 , and D 75 , respectively, and W = (D 75 −D when calculating the 25) / D 50, W is 0.1 or more, preferably, 0.1 or more and usually 1.6 or less, preferably refers to a range of 1.0 or less.
[0031]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the following examples as long as the gist is not exceeded.
[0032]
[Example-1]
40 g of Si powder having an average particle size of 6 μm was used as a raw metal powder, and as a first pulverization step, a multi-ring medium type ultra-fine pulverizer (Micros MIC-0 manufactured by Nara Machinery Co., Ltd.) was used for 3 hours at 2000 revolutions. For dry grinding (nitrogen flow rate 100 cc / min.). As a result, Si particles (nano primary particles) having an average particle size of 0.35 μm were obtained.
[0033]
Subsequently, the Si particles were continuously pulverized (rotational speed: 16000 rpm) for about 10 seconds by a sample mill (manufactured by Nara Machinery Co., Ltd.) as a second pulverization step. Further, Si fine particles were obtained through a 250 μm partition net.
[0034]
The obtained Si fine particles were dispersed in water, and subjected to ultrasonic treatment for 10 minutes using a laser diffraction particle size distribution analyzer (model SALD-2000J manufactured by Shimadzu Corporation). The particle size was measured under the condition of seconds. A particle size distribution diagram of the obtained Si fine particles of Example-1 is shown in FIG. 1 (horizontal axis: Particle size (particle diameter), bar graph vertical axis: Volume fraction (volume fraction), line graph vertical axis: Cumulative volume percentage) (Cumulative volume ratio)). The average particle size of the Si fine particles was 130 nm, and had a narrow particle size distribution. FIG. 2 shows an electron micrograph of the Si fine particles of Example 1, taken using a scanning electron microscope (FE-SEM; Model S-4700, manufactured by Hitachi). As a result of observation, no aggregate of the nano primary particles was observed.
[0035]
[Example-2]
The same raw material metal powder as in Example-1 was subjected to the same first pulverization step as in Example-1, and Si particles (nano primary particles) obtained were further subjected to a second pulverization step. Using the same sample mill as in Example 1, dry grinding was performed in a batch system for 30 minutes to obtain Si fine particles.
[0036]
FIG. 3 shows a particle size distribution chart of the Si fine particles of Example-2 measured under the same conditions as in Example-1 (horizontal axis: Particle size (particle diameter), bar graph vertical axis: Volume fraction (volume fraction)) , Line graph vertical axis: Cumulative volume percentage (cumulative volume percentage)). The average particle size of the Si fine particles was 140 nm, and had a narrow particle size distribution. FIG. 4 shows an electron micrograph of the Si fine particles of Example-2, taken under the same conditions as in Example-1. As a result of observation, no aggregate of the nano primary particles was observed.
[0037]
[Example-3]
Si particles (nano-primary particles) obtained by subjecting the same raw metal powder as in Example-1 to the first pulverizing step as in Example-1 except that the treatment time was set to 1 hour, In the second pulverization step, dry pulverization was performed continuously for 10 seconds using the same sample mill as in Example 1 to obtain Si fine particles.
[0038]
When the particle size distribution of the Si fine particles of Example-3 was measured under the same conditions as in Example-1, the average particle size of the Si fine particles was 130 nm. An electron micrograph of the Si fine particles of Example 3 was taken under the same conditions as in Example 1, and no aggregate of nano primary particles was observed.
[0039]
[Example-4]
Si particles (nano primary particles) obtained by subjecting the same raw metal powder as in Example-1 to the first pulverizing step as in Example-1 except that the treatment time was set to 6 hours, The same second pulverization step as in Example-3 was performed to obtain Si fine particles.
[0040]
When the particle size distribution of the Si fine particles of Example-4 was measured under the same conditions as in Example-1, the average particle size of the Si fine particles was 115 nm. An electron micrograph of the Si fine particles of Example-4 was taken under the same conditions as in Example-1, and no aggregate of nano primary particles was observed.
[0041]
[Comparative Example-1]
Si particles obtained by subjecting the same raw metal powder as in Example-1 to the same first pulverization step as in Example-1 were used.
[0042]
FIG. 5 shows a particle size distribution diagram of the Si particles of Comparative Example 1 measured under the same conditions as in Example-1 (horizontal axis: Particle size (particle diameter), bar graph vertical axis: Volume fraction (volume fraction)) , Line graph vertical axis: Cumulative volume percentage (cumulative volume percentage))
. The average particle size of the Si fine particles was 350 nm. FIG. 6 shows an electron micrograph of the Si fine particles of Comparative Example 1, taken under the same conditions as in Example-1. As a result of observation, aggregated particles were observed.
[0043]
[Comparative Example-2]
50 g of Si powder having an average particle diameter of 6 μm was used as a raw metal powder, and wet pulverization (ethyl) was performed at 2,000 rpm for 3 hours using the same multi-ring medium type ultra-fine pulverizer as in Example 1 as a first pulverization step. (Alcohol: 200 ml) to obtain Si particles.
[0044]
When the particle size distribution of the Si particles of Comparative Example 2 was measured under the same conditions as in Example 1, the average particle size of the Si particles was 0.8 μm. An electron micrograph of the Si fine particles of Comparative Example 2 was taken under the same conditions as in Example 1, and aggregated particles were observed.
[0045]
[Comparative Example-3]
Using Si having an average particle diameter of 6 μm as a raw metal powder, the first pulverizing step is not performed, and as the second pulverizing step, the Si powder is dry-pulverized by continuous pulverization using a sample mill (nitrogen flow rate 100 cc / min.). did.
[0046]
FIG. 7 shows a particle size distribution diagram of the Si particles of Comparative Example-3 measured under the same conditions as in Example-1 (horizontal axis: Particle size (particle diameter), bar graph vertical axis: Volume fraction (volume fraction)) , Line graph vertical axis: Cumulative volume percentage (cumulative volume percentage))
. The average particle size of the Si particles was 500 nm. FIG. 8 shows an electron micrograph of the Si fine particles of Comparative Example-3, taken under the same conditions as in Example-1. As a result of observation, aggregated particles were observed.
[0047]
[Comparative Example-4]
Si particles obtained by subjecting the same raw metal powder as in Example-1 to the same first pulverization step as in Example-1 except that the treatment time was set to 1 hour were used.
[0048]
When the particle size distribution of the Si particles of Comparative Example-4 was measured under the same conditions as in Example-1, the average particle size of the Si particles was 0.9 μm. When an electron micrograph of the Si fine particles of Comparative Example-4 was taken under the same conditions as in Example-1, aggregated particles were observed. In this case, it is considered that the nano-primary particles are generated in a shorter time than the conventional pulverization time, but the average particle diameter is large due to aggregation.
[0049]
[Comparative Example-5]
Si particles obtained by subjecting the same raw metal powder as in Example-1 to the same first pulverization step as in Example-1 except that the treatment time was set to 6 hours were used.
[0050]
When the particle size distribution of the Si particles of Comparative Example-4 was measured under the same conditions as in Example-1, the average particle size of the Si particles was 130 nm and had a wide particle size distribution. An electron micrograph of the Si fine particles of Comparative Example-5 was taken under the same conditions as in Example-1, and aggregated particles were observed. Therefore, although sufficiently small particles can be obtained by the 6-hour treatment in the first pulverizing step, the particle size distribution is wide and the treatment time is extremely long, so that it is not suitable for industrial practice.
[0051]
Table 1 below shows the average particle size of the Si particles obtained in Example-1 to Example-4 and Comparative Example-1 to Comparative Example-5.
[0052]
[Table 1]
Figure 2004091859
[0053]
【The invention's effect】
According to the present invention, the raw metal powder is pulverized into nano-primary particles by a first pulverization step in which grinding and / or shearing is applied, and then the aggregated nano-primary particles are pulverized in a second pulverization step in which impact stress is applied. Therefore, it is possible to produce nanoscale metal fine particles having an average particle diameter of about 150 nm or less and having a uniform particle diameter easily and inexpensively on an industrial scale.
[Brief description of the drawings]
FIG. 1 is a particle size distribution diagram of Si fine particles of Example-1.
FIG. 2 is an electron micrograph of Si fine particles of Example-1.
FIG. 3 is a particle size distribution diagram of Si fine particles of Example-2.
FIG. 4 is an electron micrograph of Si fine particles of Example-2.
FIG. 5 is a particle size distribution diagram of Si fine particles of Comparative Example-1.
FIG. 6 is an electron micrograph of Si fine particles of Comparative Example-1.
FIG. 7 is a particle size distribution diagram of Si fine particles of Comparative Example-3.
FIG. 8 is an electron micrograph of Si fine particles of Comparative Example-3.

Claims (5)

一又は二以上の金属元素からなる原料金属粉末に、磨砕及び/又はせん断が加わる第1粉砕工程と、衝撃応力が加わる第2粉砕工程とを施すことを特徴とする、金属微粒子の製造方法。A method for producing metal fine particles, comprising subjecting a raw metal powder comprising one or more metal elements to a first pulverizing step in which grinding and / or shearing is applied and a second pulverizing step in which impact stress is applied. . 該第1粉砕工程を、10G以上、500G以下の圧縮・せん断応力(G:重力加速度)が加わる条件で行なうことを特徴とする、請求項1記載の金属微粒子の製造方法。The method for producing metal fine particles according to claim 1, wherein the first pulverizing step is performed under a condition where a compressive / shear stress (G: gravitational acceleration) of 10 G or more and 500 G or less is applied. 該第2粉砕工程を、100rpm以上、20000rpm以下の回転速度の下で行なうことを特徴とする、請求項1又は請求項2に記載の金属微粒子の製造方法。The method according to claim 1 or 2, wherein the second pulverizing step is performed at a rotation speed of 100 rpm or more and 20000 rpm or less. 前記原料金属粉末の平均粒径が、0.2μm以上、100μm以下であることを特徴とする、請求項1〜3の何れか一項に記載の金属微粒子の製造方法。The method for producing metal fine particles according to any one of claims 1 to 3, wherein an average particle size of the raw metal powder is 0.2 µm or more and 100 µm or less. 前記原料金属粉末が、Ia族、IIa族、遷移金属(IIIa族〜VIIIa族)、Ib族、IIb族、IIIb族、IVb族、Vb族に属する元素からなる群より選ばれる一種の金属元素単体の粉末、又は、二種以上の金属元素の混合粉末であることを特徴とする、請求項1〜4の何れか一項に記載の金属微粒子の製造方法。A kind of a single metal element selected from the group consisting of elements belonging to Group Ia, Group IIa, transition metals (Groups IIIa to VIIIa), Group Ib, Group IIb, Group IIIb, Group IVb and Group Vb; The method for producing metal fine particles according to any one of claims 1 to 4, characterized in that the powder is a powder of (1) or a mixed powder of two or more metal elements.
JP2002254803A 2002-08-30 2002-08-30 Method for manufacturing fine metal particle Pending JP2004091859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002254803A JP2004091859A (en) 2002-08-30 2002-08-30 Method for manufacturing fine metal particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002254803A JP2004091859A (en) 2002-08-30 2002-08-30 Method for manufacturing fine metal particle

Publications (1)

Publication Number Publication Date
JP2004091859A true JP2004091859A (en) 2004-03-25

Family

ID=32060484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002254803A Pending JP2004091859A (en) 2002-08-30 2002-08-30 Method for manufacturing fine metal particle

Country Status (1)

Country Link
JP (1) JP2004091859A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008022495A1 (en) * 2006-08-17 2008-02-28 Huimin Wang Method for preparing nanometer metal powder
CN100455385C (en) * 2007-01-25 2009-01-28 哈尔滨工程大学 Preparation method of micrometer grade NiMnCa magnetic memory alloy grain
TWI558458B (en) * 2011-03-16 2016-11-21 日清製粉集團本社股份有限公司 Fabricating method of powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008022495A1 (en) * 2006-08-17 2008-02-28 Huimin Wang Method for preparing nanometer metal powder
CN100455385C (en) * 2007-01-25 2009-01-28 哈尔滨工程大学 Preparation method of micrometer grade NiMnCa magnetic memory alloy grain
TWI558458B (en) * 2011-03-16 2016-11-21 日清製粉集團本社股份有限公司 Fabricating method of powder

Similar Documents

Publication Publication Date Title
KR101327973B1 (en) Process for producing flaky silver powder and flaky silver powder produced by the process
JPS58189307A (en) Manufacture of mechanical alloyed powder
CN110510614A (en) A kind of preparation method of superfine tungsten carbide powder
WO2019065956A1 (en) Method for producing aluminum hydroxide-coated silicon carbide particle powder and method for producing dispersion containing said powder and dispersion medium
JP2004068111A (en) Silver coated flake copper powder and method for manufacturing silver coated flake copper powder and conductive paste using silver coated flake copper powder
US7235118B2 (en) Process for agglomeration and densification of nanometer sized particles
WO2011004887A1 (en) High purity molybdenum powder and production method for same
JP2004091859A (en) Method for manufacturing fine metal particle
JP2010135140A (en) Flaky metal fine powder of conductive paint, and manufacturing method thereof
CN109485046B (en) Tungsten carbide powder and preparation method thereof
JP2003238135A (en) Method for manufacturing spheroidal graphite particle
JP4092568B2 (en) Method for producing fine powder silicon or silicon compound
JP2022548686A (en) Composite powder with iron-based particles coated with graphene material
JP2019516656A (en) Coagulation of fine particles of titanium-containing materials
JP2005097677A (en) Method for manufacturing copper particulate and copper particulate dispersion liquid
JP2018035424A (en) Manufacturing method of silver powder and silver powder
JP2004143474A (en) Method for producing metal composite particulate
JPH11140511A (en) Production of monodispersed metal fine particle powder
JPWO2004062837A1 (en) Magnesium composite powder and method for producing the same, magnesium-based composite material and method for producing the same
JP2005076058A (en) Method for manufacturing flaky metal powder
WO2021090918A1 (en) Powder material
JP2021123745A (en) Method for producing powder material
EP2758357B1 (en) Method for producing spherical hard material powder
JP5650632B2 (en) Method for producing fine, low bulk density metallic nickel powder
JPWO2020071335A1 (en) Method for producing metal particle composition and metal particle composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050329

A977 Report on retrieval

Effective date: 20061127

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080129