JP2004090850A - Structure for rolling stock - Google Patents

Structure for rolling stock Download PDF

Info

Publication number
JP2004090850A
JP2004090850A JP2002257460A JP2002257460A JP2004090850A JP 2004090850 A JP2004090850 A JP 2004090850A JP 2002257460 A JP2002257460 A JP 2002257460A JP 2002257460 A JP2002257460 A JP 2002257460A JP 2004090850 A JP2004090850 A JP 2004090850A
Authority
JP
Japan
Prior art keywords
thickness
railway vehicle
roof
cross
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002257460A
Other languages
Japanese (ja)
Other versions
JP4166061B2 (en
Inventor
Yoshitomo Watanabe
渡辺 慶知
Akihiko Torii
鳥居 昭彦
Ryuta Kawai
河合 竜太
Shuji Nakamura
中村 修二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sharyo Ltd
Central Japan Railway Co
Original Assignee
Nippon Sharyo Ltd
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sharyo Ltd, Central Japan Railway Co filed Critical Nippon Sharyo Ltd
Priority to JP2002257460A priority Critical patent/JP4166061B2/en
Publication of JP2004090850A publication Critical patent/JP2004090850A/en
Application granted granted Critical
Publication of JP4166061B2 publication Critical patent/JP4166061B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Landscapes

  • Body Structure For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure for a rolling stock whose weight reduction and high rigidity can be realized. <P>SOLUTION: In the structure 10 for the rolling stock, a side structure 2 and a roof structure 3 are separately or integrally manufactured by connecting a plurality of hollow members 5 coupling an outside face plate 6 and an inside face plate 7 with an intermediate plate 8, and jointed by installing the roof structure 3 on the side structure 2 vertically provided on a base frame 4, or installing the one integrally manufacturing the side structure 3 and the roof structure 3 on the base frame 4. An outline M of the vehicle body is fixedly kept, and the position of the cross sectional normal direction of the inside face plate 7 is changed based on the stress generated at each part of the structure. The thickness W1, W2 of the structure is made to be thick at the portion (the central position 3 of the structure shoulder 14 or the roof structure 3) having large stress, and the thickness W3 of the structure is made to be thin at the portion (the portion 3b located between the central position 3a of the roof structure 3 and the structure shoulder 14) having small stress. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、中空形材で構成される鉄道車両用構体に関するものである。
【0002】
【従来の技術】
従来より、図9に示すように、鉄道車両用構体100は、台枠101と、台枠101に溶接されて長手方向に対して左右の面を形成する側構体102と、側構体102に載せて溶接される屋根構体103と、車体長手方向に対して両端を閉鎖する面を形成する妻構体104とを有している。台枠101の車端寄には連結器109が固設され、他の鉄道車両用構体100とを連結可能になっている。
【0003】
鉄道車両用構体100には、乗員や積載する機器などの重量に基づく垂直荷重や、走行時の前後荷重などが作用し、それらの荷重に耐えうる所定の強度と剛性が必要とされる反面、走行速度の高速化に伴って軽量化が要求されている。そのため、近年の鉄道車両用構体100では、側構体102と屋根構体103に複数の中空形材105を周方向に溶接したものを使用することにより軽量化を図りながら構体の剛性と強度を確保している(例えば、特許文献1参照)。
【0004】
中空形材105は、図10に示すように、所定幅の外側面板106と内側面板107とを中板108で連結するよう押出成形で成形したものである。中空形材105を使用して中空構造の鉄道車両用構体100を構成する場合には、外側面板106と内側面板107とで形成される構体断面方向の厚さ(以下、「構体厚」という。)A、外側面板106の板厚B、内側面板107の板厚C、中板の配置及び板厚Dが設計パラメータとされている。
【0005】
鉄道車両用構体100は、図11に示すように、側構体102と屋根構体103の構体厚Aが一様の厚さに設定されている。側構体102と屋根構体103とが結合する構体肩部114は、最大応力が発生することが経験的に知られているので、側構体102と屋根構体103の構体厚Aより厚くされている(例えば、特許文献2参照)。こうして決定された構体厚分布の状態で、構体に負荷される荷重に対し、所定の強度及び剛性を確保するために、鉄道車両用構体100では、中板108を配置し、外側面板106の板厚B、内側面板107の板厚C及び中板108の板厚Dをそれぞれ変化させている(例えば、特許文献3参照)。
【0006】
【特許文献1】
特許第2784279号明細書(第3頁、第1図、第2図参照。)。
【特許文献2】
特許第2669535号明細書(第4頁、第5図参照。)。
【特許文献3】
特許第3069037号明細書(第4頁、第1図、第2図参照。)。
【0007】
【発明が解決しようとする課題】
しかしながら、従来の鉄道車両用構体100は、垂直荷重や前後荷重に対しては外側面板106の板厚Bと内側面板107の板厚Cとを変化させることのみで対応しても、大きな重量増とはならないのに対し、気密荷重では、構体断面方向に力が加えられるので、外側面板106の板厚Bと内側面板107の板厚Cとを変えるだけでは、構体の剛性と強度の確保と軽量化とを十分に実現できない問題があった。
【0008】
つまり、鉄道車両用構体100は客室空間の気密性が確保されており、トンネルに突入する時に、客室内の気圧とトンネル内の空気圧との間に生ずる差圧により、構体断面周方向の力と構体の長手方向を回転軸とする曲げモーメントによる応力が、側構体102と屋根構体103の各部に発生し、構体断面方向に大きな変形が生じる。車両が使用される期間に負荷されるこの荷重の大きさと回数を精確に知ることは難しいが、これまでの計測等から強度基準として材料の耐力に安全率を乗じた値や疲労限の値を適用し、外側面板106の板厚B及び内側面板107の板厚Cを決定している。
【0009】
しかしながら、外側面板106の板厚Bと内側面板107の板厚Cとを変化させるだけでは、所定の強度及び剛性を確保しつつ、大幅な軽量化を図ることは困難であった。すなわち、構体断面周方向の力に対しては、外側面板106の板厚Bと内側面板107の板厚Cを変化させることで対応が可能であるが、構体の長手方向を回転軸とする曲げモーメントに対して外側面板106の板厚Bと内側面板107の板厚Cを変化させることだけで対応することは効率が悪く、重量増を招くことになっていた。
【0010】
そこで本発明は、かかる課題を解決すべく、構体の軽量化と高剛性化とを同時に実現できる鉄道車両用構体を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記課題を解決するため、本願請求項1に記載する発明は、外側面板と内側面板とを中板で連結した中空形材を複数接続して側構体と屋根構体とを別々に製作して、台枠上に立設した側構体の上に屋根構体を載せて結合し、あるいは、側構体と屋根構体とを一体として製作し、台枠に載せて結合した鉄道車両用構体において、外側面板の断面方向位置により決定される車体外形線を一定とし、内側面板の断面方向位置を構体各部で発生する応力に基づいて変化させ、外側面板と内側面板とで形成される構体断面方向の厚さを応力の大きい部位では厚く、応力の小さい部位では薄くすることを特徴とする。
【0012】
すなわち、鉄道車両用構体は客室空間の気密性が確保されており、トンネルに突入する時に、客室内の気圧とトンネル内の気圧との間に生ずる差圧により、構体断面周方向の力と構体の長手方向を回転軸とする曲げモーメントとによる応力が、構体各部に発生する。鉄道車両用構体は、応力が大きい部位においては、内側面板を外側面板から離れる方向に成形することにより構体断面方向の厚さ(以下、「構体厚」という。)を厚くして変形を抑える一方、応力が小さい部位においては、内側面板を外側面板側に近づける方向に成形することにより構体厚を薄くしている。これにより、構体各部で必要な剛性と強度を確保することができる。従って、鉄道車両用構体は、側構体と屋根構体とを一様な構体厚にせず、応力に基づいて側構体と屋根構体の構体厚を構体各部で変化させることにより、構体の軽量化と高剛性化とを同時に実現することができる。
【0013】
また、請求項2に記載する発明は、請求項1に記載の発明において、屋根構体と側構体とを結合する構体肩部付近の構体断面方向の厚さが、側構体と屋根構体の全体を平均した構体断面方向の厚さよりも厚いことを特徴とする。
すなわち、鉄道車両用構体は、側構体が台枠に固定されているため、例えば、外向きの等分布荷重が作用したときに、屋根構体と側構体とが外側に膨らもうとするので、曲率の大きい構体肩部に大きな曲げモーメントが発生する。構体肩部付近は、構体厚が側構体と屋根構体の構体厚全体を平均した構体厚(以下、平均構体厚」という。)より厚く設定されているので、上記曲げモーメントに対する剛性と強度が十分確保されている。従って、鉄道車両用構体では、屋根構体の変形を抑えることができ、構体全体の変形量を小さくすることができる。
【0014】
また、請求項3に記載の発明は、請求項1又は請求項2に記載の発明において、構体肩部は、側構体及び屋根構体を構成する曲線よりも曲率の大きい曲線で側構体と屋根構体とを結合したものであって、側構体が台枠に固定される固定部を除いて、側構体と屋根構体の中で構体断面方向の厚さを最も厚くする部位を有し、構体断面方向の厚さを最も厚くする部位は、構体断面において屋根構体の中心位置又は構体の最大高さ位置から水平方向に第1直線を描き、構体の最大幅位置から垂直方向に第2直線を描き、第1直線と第2直線とが交差する点を第3点として規定し、外側面板によって形成される車体外形線のうち構体肩部を形成する曲線の中心点を第4点として規定し、第3点と第4点とを結んで第5直線を描き、第5直線が車体外形線と交差する点を第6点として規定したときに、第6点が位置する部位であることを特徴とする。
【0015】
また、請求項4に記載の発明は、請求項3に記載の発明において、構体肩部は、内側面板によって形成される基準線である車体内形線が、第5直線上に規定した第7点を中心点とする曲線で形成されていることを特徴とする。
また、請求項5に記載の発明は、請求項3又は請求項4に記載の発明において、構体断面方向の厚さを最も厚くする部位では、構体断面方向の厚さが、側構体と屋根構体の全体を平均した構体断面方向の厚さの1.5〜1.6倍の厚さで形成されていることを特徴とする。
【0016】
鉄道車両用構体は、最大幅位置を通る垂直線と、最大高さ位置を通る水平線によって構成される門型の領域内に曲線を用いて車体外形線を決定し、側構体と屋根構体とを配置している。側構体と屋根構体とが結合する構体肩部は、一般的に曲率が大きいため、断面方向に曲げようとする大きな力が作用し、構体肩部付近の応力値が大きくなる。従って、車体外形線に基づいて、屋根構体の中心位置から水平方向に第1直線を描き、構体最大幅位置から垂直方向に第2直線を描くことによって門型を形成し、第1直線と第2直線とが交差する第3点に相当する位置を車体外形線上に何らかの方法で投影することができれば、鉄道車両用構体の中で応力値が高くなるおおよその部位を求めることができる。
【0017】
かかる観点より、第1直線と第2直線とが交差する点である第3点は、車体外形線のうち構体肩部を形成する曲線の中心点である第4点と第5直線で結ばれ、第5直線が車体外形線と公差する点である第6点が求められる。第6点は、第3点が車体外形線上に移動したものと考えられるため、第6点が位置する部位の構体厚を構体のうちで最も厚く形成すればよいことになる。こうした傾向は、車体外形線が異なる数種類の鉄道車両用構体の形状を最適化した場合にも認められ、側構体の固定部を除いて構体の中で最も構体厚を厚くする部位を車体外形線のみから導出することが可能であると考えられる。
【0018】
そして、第6点が位置する部位の構体厚を最も厚くするためには、第5直線上に規定した第7点を中心点とする曲線で構体肩部の車体内形線を形成することが、必要十分である。
第7点は、第6点が位置する部位の構体厚が、側構体と屋根構体の平均構体厚の1.5〜1.6倍となるように構体肩部の車体内形線を描くべく、第5直線上に規定される。ここで、第6点が位置する部位の構体厚を平均構体厚の1.5〜1.6倍にしたのは、平均構体厚の1.5倍未満にすると構体の剛性が不足する一方、平均構体厚の1.6倍より大きくすると、剛性が過剰になるとともに客室空間を不必要に狭めることになるからである。
【0019】
従って、鉄道車両用構体は、側構体の固定部を除いて、構体の中で最も構体厚を厚くする部位や形状などを車体外形線から簡単に決定することができる。また、このようにして決定した構体厚分布を基に中空構造を構成し、面板を配置すれば、面板板厚を極度に増す必要がなくなるので、構体の軽量化を実現できるとともに、構体各部の剛性を最適なものとすることができる。
【0020】
また、請求項6に記載する発明は、請求項1乃至請求項5の何れか1つに記載の発明において、屋根構体の構体幅方向の中心位置における構体断面方向の厚さが、側構体と屋根構体の全体を平均した構体断面方向の厚さより厚いことを特徴とする。
すなわち、屋根構体は、例えば気密荷重を受けたときに、構体幅方向の中心位置が上下方向に変形しようとするが、屋根構体における構体幅方向の中心位置が平均構体厚より厚く形成されて構体の剛性が高められているため、屋根構体の変形が抑えられ、構体全体の変形量を小さくすることができる。
【0021】
また、請求項7に記載の発明は、請求項1乃至請求項6の何れか1つに記載の発明において、屋根構体の構体幅方向の中心位置における構体断面方向の厚さが、側構体と屋根構体の全体を平均した構体断面方向の厚さの1.1〜1.2倍の厚さであることを特徴とする。
すなわち、屋根構体は、中心位置の構体厚が平均構体厚の1.1〜1.2倍になるように、中心位置の車体内形線を形成する。このように屋根構体の中心位置の構体厚を平均構体厚の1.1〜1.2倍にするのは、平均構体厚の1.1倍未満にすると、構体の剛性が不足する一方、平均構体厚の1.2倍より大きくすると、剛性が過剰になるとともに客室空間を不必要に狭めることになるからである。従って、鉄道車両用構体は、屋根構体中央における剛性を適正なものとすることができる。
【0022】
また、請求項8に記載の発明は、請求項1乃至請求項7の何れか1つに記載の発明において、屋根構体の中心位置と構体肩部との間に構体断面の中で構体断面方向の厚さが最も薄い部位を設けたことを特徴とする。
すなわち、この部位では、曲げモーメントがゼロ又は非常に小さいため、構体厚を薄くしても構体の変形が増加しない。構体を薄くすることで、軽量化とともに、客室空間を僅かでも広くすることが可能となる。
【0023】
また、請求項9に記載の発明は、請求項8に記載の発明において、構体肩部の構体断面方向の厚さが最も厚い部位と、屋根構体の中心位置と構体肩部との間に設けた構体断面方向の厚さが最も薄い部位と、屋根構体の中心位置とをなめらかに結んで車体内形線を形成することを特徴とする。
すなわち、側構体と屋根構体における構体厚の変化率が小さいため、構体の変形も滑らかになり、構体各部に生ずる応力を従来のものより均一なものに近づけることができると共に応力値及び変形量を小さくすることができる。
【0024】
【発明の実施の形態】
次に、本発明の鉄道車両用構体に係る実施の形態について図面を参照しながら説明する。図1は、鉄道車両用構体10の側構体2と屋根構体3の断面図である。
本実施の形態の鉄道車両用構体10は、図9に示す従来技術のものと同様、側構体2と屋根構体3がアルミニウム合金製の中空形材5を周方向に複数溶接して構成されたものであるが、図1に示すように、側構体2と屋根構体3の構体断面方向の厚さ、すなわち構体厚A(図10参照)を構体各部で生じる応力に基づいて変化させている点で、側構体102と屋根構体103を一様の構体厚Aにする従来のものと相違している。
【0025】
図2は、鉄道車両用構体の形状を最適化する際に使用されるコンピュータ30のブロック図である。
鉄道車両用構体10は、初期形状の鉄道車両用構体をコンピュータ30を用いて最適化されている。コンピュータ30は、種々の演算や制御等を行うCPU31に入出力装置32や記憶装置33などが接続されている。入出力装置32は、データ等を入力したり、演算結果などを出力するものである。また、記憶装置33は、入出力装置32から入力された情報、CPUが演算した演算結果、鉄道車両用構体の形状を最適化するためのプログラムなどを記憶するものである。
【0026】
鉄道車両用構体の形状を最適化するためのプログラムは、鉄道車両用構体の初期形状(初期値として与えられる構体厚Aなど)と当該領域に与えられた境界条件(負荷荷重、拘束条件など)によって発生するひずみ、応力に関し、連続体力学における平均コンプライアンス(Φ)と呼ばれる次式の数1を考え、平均コンプライアンスが与えられた制約条件(体積、部分的な構体厚Aの固定、構体厚Aの最小値など)のもとで最小化された状態を最適であるとしている。εはひずみ、Dは応力−ひずみの関係式、Ωは検討対象の領域である。
【0027】
【数1】

Figure 2004090850
【0028】
こうした平均コンプライアンスの最小化に関しては、例えば、日本機械学会論文集(A編)60巻578号(1994−10)第144〜150頁に掲載する「線形弾性問題における領域最適化解析」に詳細に記載されている。その概要は以下の通りである。
「線形弾性問題における領域最適化解析」は、線形弾性体の領域形状を設計変数にした領域最適化問題を連続体のままで定式化しておいて、分布系の最適化理論を適用することによって導出される領域変動の支配方程式を基礎にして領域最適化問題にアプローチしている。数値解析法は、支配方程式を解くための方法として定式化され、その1つの方法として力法が提案されている。力法は、領域変動の支配方程式を線形弾性問題の境界値問題に置き換えて解くために、有限要素法などを利用することができる。また、支配方程式に現れる形状勾配関数も有限要素法などを利用して解析することができる。そこで、「線形弾性問題における領域最適化解析」は、平均コンプライアンスの最小化問題を定式化し、それに対する最適性基準と最適化基準に基づいて算出される形状勾配関数を明らかにした上で、形状勾配関数を用いた力法を線形弾性体の領域問題に適用している。
【0029】
鉄道車両用構体の形状を最適化するプログラムは、上記「線形弾性問題における領域最適化解析」を適用したものであり、初期形状の鉄道車両用構体を有限な要素に分割し、形状勾配関数の演算結果が収束するまで、つまり、数1に示す平均コンプライアンスが最小になるまで初期形状の鉄道車両用構体の形状を変化させることにより、鉄道車両用構体の形状を最適化している。図3は、鉄道車両用構体の形状を最適化するプログラムのフローチャートである。図4は、鉄道車両用構体の一部を有限要素に分割した概念図である。
【0030】
コンピュータ30のCPU31は、記憶手段33から鉄道車両用構体の形状を最適化するプログラムを読み出し、図3のステップ1(以下、「S1」いう。)において、初期形状解析モデル(有限要素法)を入出力装置32に入力する。
【0031】
次に、図3のS2において強度解析を行う。強度解析は、コンピュータ30のCPU31が初期形状解析モデルを読み出し、それに基づいて変位量と発生応力を算出して行う。
【0032】
次に、S3において、感度解析を行う。感度解析では、数2に示す形状勾配関数Gを演算する。
【0033】
【数2】
Figure 2004090850
【0034】
この数2に示す形状勾配関数Gは、図4に示す各要素Eの境界面上に分布する法線方向を向いたベクトル関数である。ここで、式に現れる変数の値は、S2の強度解析の解析結果から得られるものであり、fは物体力、eは弾性テンソル、uは変位、ΛはLagrange定数である。
【0035】
そして、図3のS4において、収束判定を行う。収束判定は、感度解析を実行して得られた感度が十分小さいか否かで判断される。感度が十分小さいと判断した場合には(S4:YES)、処理を終了する。一方、感度が十分小さくないと判断した場合には(S4:NO)、S5へ進み、形状変更における制約条件が入力されているか否かを判断する。制約条件が入力されていると判断した場合(S5:YES)には、そのままS7へ進む。
【0036】
一方、制約条件が入力されていないと判断した場合(S5:NO)には、S6において、制約条件として形状の変更を許さない点、移動方向の制約、体積(三次元の問題)又は面積(二次元の問題)を入出力装置32から入力して記憶装置33に記憶させてから、S7へ進む。そして、S7において、初期形状の鉄道車両用構体の形状を変更したら、S3以降の処理を再度繰り返す。
【0037】
こうした鉄道車両用構体の形状を最適化するプログラムは、以下のように動作する。
コンピュータ30の入出力装置32に初期形状解析モデルを入力する(図3のS1)。具体的には、例えば、図4に示すように、初期形状の鉄道車両用構体全体を有限な要素Eに分割し、各要素Eの節点●に座標データを付け、例えば、4個の節点●(i〜l)を一組にする旨の有限要素法の要素情報を入力する。また、例えば、構体厚Aの初期値を50mmに設定し、鉄道車両用構体の材料特性としてアルミニウム合金のヤング率とポアソン比を入力する。また、例えば、強度解析などを行う際に利用される境界条件として拘束条件と荷重条件を入力する。拘束条件としては、台枠側梁に相当する側構体の固定部を固定すること、及び、鉄道車両用構体の構体幅方向の中心線に対称条件を加えることを入力する。ここで、対称条件を加えるのは、演算量を減らして、演算時間を短縮するためである。また、荷重条件としては、気密荷重を想定して外向きに等分布荷重を与えることを入力する。
【0038】
そして、初期形状解析モデルのアルミニウム合金のヤング率・ポアソン比などに基づいて強度解析を行ったら、初期形状解析モデルと強度解析結果とに基づいて形状勾配関数Gを求める(図3のS2、S3)。収束判定において感度が十分に小さくない場合、すなわち、形状勾配関数Gが急激な勾配を有する場合には、制約条件が入力されているか否かを判断し、制約条件が入力されていない場合には、制約条件を入力してから形状を変更する(図3のS4:NO、S5:NO、S6、S7)。
【0039】
具体的には、収束判定において感度が十分に小さくなっておらず、制約条件が入力されていない場合には、例えば、中空形材5の外側面板6(図10参照)から40mmの厚さに位置する節点●の移動を許さないこと、各要素Eの節点(図4参照)をx方向のみに(一次元的に)移動させること、外側面板6と内側面板7で囲まれる面積を初期形状と同一にすることなどといった制約条件を入力する(図3のS4:NO、S5:NO、S6)。ここで、中空形材5の外側面板6(図10参照)から40mmの厚さを固定するのは、構体各部において最低限の剛性及び強度を確保するために、構体厚Aが40mm以下になることを回避するためである。また、各要素Eの節点(図4参照)をx方向のみに(一次元的に)移動させるのは、各要素Eを構体断面方向に伸縮させるためである。
【0040】
そして、入力した制約条件と形状勾配関数Gの演算結果に基づいて初期形状の鉄道車両用構体の形状を変更する(図3のS7)。具体的には、例えば、形状勾配関数Gが局部的に大きい場合は、その形状勾配関数Gが大きい部分について、側構体及び屋根構体の外側から40mmの節点●を移動させないことや、節点●の移動方向をx方向に限定することなどの制約条件に基づいて、側構体及び屋根構体の内側から10mm以内の部分における要素Eの節点●を内向きに移動させ、要素Eの大きさを大きくする。また、外側面板6と内側面板7との間の面積が一定である制約条件があるので、形状勾配関数Gが小さい部分について、側構体及び屋根構体の内側から10mm以内の部分における要素Eの節点●を外向きに移動させ、要素Eの大きさを小さくする。こうして移動させた節点●の座標データを書き換える。これにより、節点●が内側に移動したところでは構体厚Aが厚くなり、節点●が外側に移動したところでは構体厚Aが薄くなるため、鉄道車両用構体の形状が変更される。鉄道車両用構体の形状を変更したら、S3以降の処理を再度繰り返す。これら一連の処理は、収束判定において感度が十分小さいと判断されるまで自動的に行われる。
【0041】
そして、収束判定において感度がこれ以上小さくならないと判断された場合、すなわち、形状勾配関数Gの値が前回計算より小さくならない場合には、処理を終了し(図3のS4:YES)、図1に示すように最適化された鉄道車両用構体10を入出力装置32に出力する。
【0042】
図1の鉄道車両用構体10は、側構体2と屋根構体3の構体厚Aが構体各部で変化している。側構体2と屋根構体3が結合する部分(以下、「構体肩部」という。)14の構体厚W1は、側構体2を台枠4に固定するための固定部2aを除いて、構体のうちで最も厚く形成されている。そして、側構体2では、中央付近の構体厚W4が薄く形成されている。また、屋根構体3では、構体幅方向の中心位置3aにおける構体厚W2が厚く形成され、構体中心部3aと構体肩部14との間の構体厚W3が薄く形成されている。
【0043】
そして、発明者は、車体外形線Mの異なる数種類の鉄道車両用構体について上記プログラムを実行して形状を最適化したところ、車両デザインすなわち車体外形線Mに基づいて車体内形線N1を決定することにより鉄道車両用構体の形状を最適化できることを確認した。
【0044】
鉄道車両用構体10は、最大幅位置を通る垂直線と、最大高さ位置を通る水平線によって構成される門型の領域内に曲線を用いて車体外形線Mを決定し、側構体2と屋根構体3を配置している。構体肩部14は、一般的に曲率が大きくなるため、断面方向に曲げようとする大きな力を受け、応力値が大きくなる。従って、車体外形線Mに基づいて、屋根構体3の中心位置3aから水平方向に第1直線L1を描き、構体最大幅位置から垂直方向に第2直線L2を描くことによって門型を形成し、第1直線L1と第2直線L2とが交差する第3点P3に相当する位置を車体外形線M上に何らかの方法で投影することができれば、鉄道車両用構体10の中で最も応力値が高くなるおおよその部位を求めることができる。
【0045】
かかる観点より、第1直線L1と第2直線L2とが公差する第3点P3は、車体外形線Mのうち構体肩部14を形成する曲線の中心点である第4点P4と第5直線L5で結ばれ、第5直線L5が車体外形線Mと公差する点である第6点P6が求められる。この第6点P6は、第3点P3が車体外形線M上に投影されたものと考えられるため、鉄道車両構体10は、固定部2aを除いて、第6点が位置する部位の構体厚W1を構体のうちで最も厚くすればよいことになる。
【0046】
そして、第6点P6が位置する部位の構体厚W1を最も厚くするためには、第5直線L5上に規定した第7点P7を中心点とする半径r2の曲線で構体肩部14の車体内形線N1を形成することが、必要十分である。
半径r2は、構体肩部14における車体外形線Mの半径r1を1.1倍した値から80mmを差し引くことにより、簡単に決定することができる。ここで、関係式の係数を1.1としたのは、構体肩部14の構体厚分布を最適なものとするためである。すなわち、係数を1.1より大きくすると、最大構体厚W1となる部位以外の構体肩部14の構体厚Aが不足し、剛性不足になる一方、係数を1.1より小さくすると、最大構体厚W1となる部位の剛性が、最大構体厚W1となる部位以外の構体肩部14と比べて剛性不足となるからである。また、関係式の80mmは、構体厚Aを調整するための調整項であり、調整項を80mmにした理由は、上記関係式の係数選択における理由と全く同じである。すなわち、調整項を80mmより大きくすると、最大構体厚W1となる部位以外の構体肩部14の構体厚Aが不足し、剛性不足になる一方、調整項を80mmより小さくすると、最大構体厚W1となる部位の剛性が、最大構体厚W1となる部位以外の構体肩部14と比べて剛性不足となるからである。
【0047】
第7点P7は、構体厚W1が側構体2と屋根構体3の構体厚A全体を平均した平均構体厚の1.5〜1.6倍になるように半径r2の曲線を描くべく、第5直線L5上に規定される。ここで、構体厚W1を平均構体厚の1.5〜1.6倍にしたのは、平均構体厚の1.5倍未満にすると、構体の剛性が不足する一方、平均構体厚の1.6倍より大きくすると、剛性が過剰になるとともに客室空間を不必要に狭めることになるからである。
【0048】
本実施の形態では、構体肩部14の車体外形線Mに係る半径r1は400mmであり、これを半径r2を算出する関係式(半径r2(mm)=半径r1(mm)×1.1倍−80(mm))にあてはめると、半径r2は360mmになる。本実施の形態の平均構体厚は52.8mmであるから、構体肩部14の構体厚W1が平均構体厚の1.5〜1.6倍すなわち79.20〜84.48mmになるように第7点P7を第5直線L5上に規定し、半径r2(360mm)の曲線を描いて構体肩部14の形状を決定する。本実施の形態では、構体肩部14の構体厚W1が平均構体厚の1.54倍である81.05mmになるように第7点P7を規定している。
【0049】
また、側構体2は、鉄道車両用構体10の最大幅位置を含む範囲R2で構体厚W4を薄くする。すなわち、側構体2の下端部から構体厚W1が位置する構体肩部14までの距離に対して下端部からおおよそ7分の3〜7分の5の範囲R2における構体厚W4を構体のうちで最も薄くする。当該部位を薄くできるのは、気密荷重によって側構体2を変形させようとする力と、屋根構体3が変形しようとする時に側構体2に伝えられる力とが互いに逆向きであるために打ち消し合うことになるためであると推定される。
本実施の形態では、構体厚W4が40mmになるように、最大幅位置を含む一定の範囲R2における車体内形線N1を形成している。
【0050】
一方、屋根構体3は、中心位置3aの構体厚W2を厚く、中心位置3aと構体厚W1が位置する構体肩部14との間の構体厚W3を薄くする。すなわち、屋根構体3は、中心位置3aの構体厚W2が平均構体厚の1.1〜1.2倍になるように中心位置3aの車体内形線N1を形成する。このように構体厚W2を平均構体厚の1.1〜1.2倍にするのは、平均構体厚の1.1倍未満にすると、構体の剛性が不足する一方、平均構体厚の1.2倍より大きくすると、剛性が過剰になるとともに客室空間を不必要に狭めることになるからである。
本実施の形態では、平均構体厚が52.8mmであるから、屋根構体3の中心位置3aの構体厚W2を58.0〜63.3mmにすることが望ましい。よって、本実施の形態では、屋根構体3の中心位置3aの構体厚W2が平均構体厚の1.16倍である61mmになるように、中心位置3aの車体内形線N1を決定している。
【0051】
また、屋根構体3は、構体厚W2が位置する中心位置3aから構体厚W1が位置する構体肩部14までの距離に対して中心位置3aからおおよそ3分の1〜2分の1の範囲R1における構体厚W3を構体のうちで最も薄くする。このように構体厚W3を設ける位置に一定の範囲R1を設けるのは、屋根構体3の中心位置3aで発生する曲げモーメントと構体肩部14で発生する曲げモーメントの方向が逆向きであり、屋根構体3のうち曲げモーメントがゼロとなる位置を中心として構体厚W3を配置するのであるが、この位置は、車体外形線Mによって変動するためである。当該位置の構体厚W3を最も薄くするのは、前述の通り、曲げモーメントがゼロ又は非常に小さいために曲げ剛性を大きくする必要がないからである。
本実施の形態では、構体厚W2が位置する中心位置3aから構体厚W1が位置する構体肩部14までの距離に対して屋根構体3の中心位置3aから2分の1程度の部位3bにおける構体厚W3が40mmになるように、屋根構体3の部位3bにおける車体内形線N1を決定している。
【0052】
こうして、側構体2と屋根構体3において構体厚Aを厚くする部位と薄くする部位とを決定したら、隣り合う部位同士をなめらかに結んで鉄道車両用構体10全体の車体内形線N1を形成する。これにより、鉄道車両用構体の形状を短時間で最適化することが可能になる。
【0053】
続いて、鉄道車両用構体10の作用について説明する。
鉄道車両用構体10は、例えば、トンネルに突入したときに、トンネル内の空気圧と鉄道車両用構体10の客室空間内の気圧との間に生じる差圧により、構体断面方向の力と構体長手方向を回転軸とする曲げモーメントとによる応力が構体各部に発生する。特に、側構体2と屋根構体3とが連結する構体肩部14と、屋根構体3の中心位置3aでは、応力が大きくなりやすい。
【0054】
鉄道車両用構体10は、構体肩部14の構体厚W1を側構体2の固定部2aを除いた構体のうちで最も厚くすることにより構体の剛性と強度を高めており、これによって、屋根構体3と側構体2の変形を抑えることができる。また、屋根構体3は、例えば、気密荷重を受けた時に、構体幅方向の中心位置3aが大きく上下方向に変形しようとするが、構体幅方向の中心位置3aにおいて構体厚W2を平均構体厚より厚くして屋根構体3の剛性と強度を高めているので、屋根構体3の中心位置3aにおける変形が抑えられる。また、結果として、その他の屋根構体3の変形量も抑えることができる。
【0055】
こうした鉄道車両用構体10は、構体各部に発生する応力の大きさに対応して構体厚Aが分布しているため、応力分布を従来のものより均一なものに近づけることが可能であり、変形も滑らかである。
【0056】
上記構成と作用を有する図1に示す鉄道車両用構体10の形状を図11に示す鉄道車両用構体100の形状と比較すると、以下の共通点と相違点が認められる。
図1の鉄道車両用構体10と図11の鉄道車両用構体100とは、車体外形線Mが同一で、構体肩部14,114の構体厚W1,W5を厚くしている点で共通する。
【0057】
しかし、図1の鉄道車両用構体10と図11の鉄道車両用構体100とは、形状の決定方法が本質的に相違している。すなわち、図11の鉄道車両用構体100は、一様の構体厚Aで形成された側構体102と屋根構体103とをフィレットを生成する形で構体肩部114の車体内形線N2を形成している。そのため、構体肩部114の車体内形線N2は、曲線で形成されているものの、曲線の中心点である第8点P8が、構体の最大高さ位置から水平に描いた第1直線L1と、構体の最大幅位置から垂直に描いた第2直線L2とが公差する第3点P3を、車体外形線Mのうち構体肩部114を形成する曲線の中心点である第4点P4と結ぶ第5直線L5上に位置していない。よって、図11の鉄道車両用構体100は、形状の決定方法の相違により、図1の鉄道車両用構体10と形状が僅かに異なっている。
【0058】
こうした形状の僅かな相違は、図1の鉄道車両用構体10と図11の鉄道車両用構体100の変位や応力に大きな影響を及ぼしている。図5は、従来の鉄道車両用構体100の変位図である。図6は、最適化された鉄道車両用構体10の変位図である。
この変位に係る解析では、鉄道車両用構体10,100に対して外向きに0.001kPaの等分布荷重を与えている。
【0059】
この解析の結果、図11の鉄道車両用構体100と図1の鉄道車両用構体10は、図5及び図6に示すように外向きに膨らむように変形するが、最大変位量が異なる。図11の鉄道車両用構体100は、図5に示すように、屋根構体103の中心位置103aにおける最大変位量が約2.14mmであるのに対して、図1の鉄道車両用構体10は、図6に示すように、屋根構体3の中心位置3aの変位量が約1.48mmであり、図1の鉄道車両用構体10の最大変位量が図11の鉄道車両用構体100の最大変位量の約70%程度である。これは、図1に示す鉄道車両用構体10は、構体厚Aを構体各部で変化させたことにより、構体肩部14と屋根構体3の中心位置3aの変形を図11の鉄道車両用構体100より効率的に抑えることができることを示している。
【0060】
また、図7は、従来の鉄道車両用構体100の側構体102と屋根構体103の最大応力を示す応力図であり、図8は、最適化された鉄道車両用構体10の側構体2と屋根構体3の最大応力を示す応力図である。
この応力に係る解析では、鉄道車両用構体10,100の外側に0.001kPaの等分布荷重を与えている。
【0061】
この解析の結果、図11の鉄道車両用構体100は、図7に示すように、構体各部で発生する応力値がまだらである。そして、屋根構体103の中心位置103aと、構体肩部114の構体厚W5が位置する部位から側構体102側にずれた部位では、車体内形線N2と車体外形線M付近において応力が大きくなっており、特に、構体厚W5が位置する部位から側構体102側にずれた部位の車体内形線N2付近Z1では、最大応力値81.634MPaを示している。
【0062】
それに対して、図1の鉄道車両用構体10では、図8に示すように、構体内部で発生する応力値が構体各部でより均一に近くなっている。そして、屋根構体3の中心位置3aと構体肩部14では、車体外形線Mと車体内形線N1付近において応力が大きくなっており、特に、構体肩部14の構体厚W1が位置する部位の車体内形線N1付近Z2では、最大応力値45.962MPaを示している。
【0063】
よって、図1に示す鉄道車両用構体10は、最大応力が発生する部位Z2と構体厚W1が位置する部位とが一致する一方、図11の鉄道車両用構体100は、最大応力が発生する部位Z1と構体厚W5が位置する部位とがずれている。また、図1に示す鉄道車両用構体10の最大応力値は、図11に示す鉄道車両用構体100の最大応力値の約55%程度に減少している。これは、図1に示す鉄道車両用構体10において構体厚W1を設けた部位と構体肩部14の形状が、図11鉄道車両用構体100より適切であることを示している。
また、図1の鉄道車両用構体10は、側構体2の一定の範囲R2における構体厚W4と屋根構体3の部位3bにおける構体厚W3が、図11の鉄道車両用構体100の側構体102と屋根構体103の構体厚Aより薄いにもかかわらず、図11の鉄道車両用構体100と同程度の応力を維持している。これは、図1の鉄道車両用構体10は、応力が小さい部位の構体厚W3,W4を薄くしたことにより側構体2と屋根構体3をしなやかに変形させ、構体各部に応力を分散させていることを示している。
【0064】
以上詳細に説明したように、本実施の形態の鉄道車両用構体10によれば、外側面板6と内側面板7とを中板8で連結した中空形材5を複数接続して側構体2と屋根構体3とを別々に製作して、台枠4上に立設した側構体2の上に屋根構体3を載せて結合し、あるいは、側構体2と屋根構体3とを一体として製作し、台枠4に載せて結合したものであって(図9及び図10参照)、車体外形線Mを一定とし、内側面板7の断面法線方向位置を構体各部で発生する応力に基づいて変化させ、応力が大きい位置では構体厚Aを厚く、応力が小さい位置では構体厚Aを薄くしているので、(図1参照)、構体の軽量化と高剛性化とを同時に実現することができる。
【0065】
また、本実施の形態の鉄道車両用構体10によれば、モーメントによる応力が大きくなる構体肩部14と屋根構体3の中心位置3aとを平均構体厚より厚くしたので(図1参照)、側構体2と屋根構体3の変形を抑えるとともに、構体全体においても変形量を小さくすることができる。
【0066】
また、本実施の形態の鉄道車両用構体10によれば、構体肩部14は側構体2と屋根構体3とを側構体2および屋根構体3を構成する曲線よりも曲率の大きい曲線で結合したものであって、側構体2が台枠4に固定される固定部2aを除いて、側構体2と屋根構体3の中で構体厚Aを最も厚くする部位を有し、構体厚Aを最も厚くする部位は、屋根構体3の中心位置3aから水平方向に第1直線L1を描き、側構体2の最大幅位置から垂直方向に第2直線L2を描き、第1直線L1と第2直線L2とが交差する点を第3点P3として規定し、外側面板6によって形成される車体外形線Mのうち構体肩部14を形成する曲線の中心点を第4点P4として規定し、第3点P3と第4点P4とを結んで第5直線L5を描き、第5直線L5が車体外形線Mと交差する点を第6点P6として規定したときに、その第6点P6が位置する部位であるので(図1参照)、側構体2の固定部2aを除いて構体厚Aを最も厚くする部位を車体外形線Mから簡単に求めることができる。
そして、構体肩部14を形成する車体内形線N1は、第5直線L5上に第7点P7を設け、車体外形線Mの半径r1に基づいて決定される半径r2の曲線であるので(図1参照)、構体肩部14の形状を簡単に決定することができる。
【0067】
また、本実施の形態の鉄道車両用構体10によれば、構体肩部14の構体厚W1を平均構体厚の1.5〜1.6倍の厚さにするとともに(図1参照)、屋根構体3の中央位置における構体厚W2を平均構体厚の1.1〜1.2倍の厚さにすることで(図1参照)、構体の剛性を適正なものとしている。
【0068】
また、本実施の形態の鉄道車両用構体10によれば、屋根構体3の中心位置3aと構体肩部14との間に構体断面の中で構体厚W3が最も薄い部位3bを設けたので(図1参照)、軽量化とともに、客室空間を僅かでも広くすることにも貢献できる。
【0069】
さらに、本実施の形態の鉄道車両用構体10によれば、構体肩部14の構体厚W1が位置する部位、屋根構体3の中心位置3aと構体肩部14との間に設けた構体厚W3が位置する部位3b、屋根構体3の中心位置3aなどをなめらかに結んで車体内形線N1を形成しているので(図1参照)、構体各部に応力を分散させて(図8参照)、図11に示す従来の鉄道車両用構体100より構体全体の変位量を小さくすることができる(図6参照)。
【0070】
なお、本発明は、実施形態のものに限定されるわけではなく、その趣旨を逸脱しない範囲で様々な変更が可能であることはいうまでもない。
【0071】
【発明の効果】
従って、本発明の鉄道車両用構体は、外側面板と内側面板とを中板で連結した中空形材を複数接続して側構体と屋根構体とを別々に製作して、台枠上に立設した側構体の上に屋根構体を載せて結合し、あるいは、側構体と屋根構体とを一体として製作し、台枠に載せて結合したものにおいて、外側面板の断面方向位置により決定される車体外形線を一定とし、内側面板の断面方向位置を構体各部で発生する応力に基づいて変化させ、外側面板と内側面板とで形成される構体断面方向の厚さを応力の大きい部位では厚く、応力の小さい部位では薄くしているので、構体の軽量化と高剛性化とを同時に実現することができる。
【図面の簡単な説明】
【図1】発明の実施の形態において、鉄道車両用構体の側構体と屋根構体の断面図である。
【図2】同じく、鉄道車両用構体の形状を最適化する際に使用されるコンピュータのブロック図である。
【図3】同じく、鉄道車両用構体の形状を最適化するプログラムのフローチャートである。
【図4】同じく、鉄道車両用構体の一部を有限要素に分割した概念図である。
【図5】同じく、従来の鉄道車両用構体の側構体と屋根構体の変位図である。
【図6】同じく、最適化された鉄道車両用構体の側構体と屋根構体の変位図である。
【図7】同じく、従来の鉄道車両用構体の側構体と屋根構体の最大応力を示す応力図である。
【図8】同じく、最適化された鉄道車両用構体の側構体と屋根構体の最大応力を示す応力図である。
【図9】鉄道車両用構体の外観斜視図である。
【図10】中空形材の拡大断面図である。
【図11】同じく、従来の鉄道車両用構体の側構体と屋根構体の断面図である。
【符号の説明】
2 側構体
2a 固定部
3 屋根構体
3a 中心位置
3b 部位
4 台枠
5 中空形材
6 外側面板
7 内側面板
8 中板
10 鉄道車両用構体
14 構体肩部
A  構体厚
W1 構体厚
W2 構体厚
W3 構体厚
W4 構体厚
M  車体外形線
N1 車体内形線[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a railway vehicle structure formed of a hollow profile.
[0002]
[Prior art]
Conventionally, as shown in FIG. 9, a railway vehicle structure 100 is mounted on an underframe 101, a side structure 102 welded to the underframe 101 to form left and right surfaces in the longitudinal direction, and a side structure 102. A roof structure 103 to be welded by welding, and an end structure 104 forming a surface closing both ends in the longitudinal direction of the vehicle body. A coupler 109 is fixedly provided near the vehicle end of the underframe 101, and can be connected to another railway vehicle structure 100.
[0003]
On the railway vehicle structure 100, a vertical load based on the weight of the occupant and the equipment to be loaded and the like, a front-rear load during running, etc. are applied, and a predetermined strength and rigidity capable of withstanding those loads are required, As the traveling speed increases, weight reduction is required. Therefore, in the recent railway vehicle structure 100, the rigidity and strength of the structure are ensured while reducing the weight by using a plurality of hollow members 105 welded in the circumferential direction to the side structure 102 and the roof structure 103. (For example, see Patent Document 1).
[0004]
As shown in FIG. 10, the hollow profile member 105 is formed by extrusion molding so that an outer side plate 106 and an inner side plate 107 having a predetermined width are connected by a middle plate 108. In the case where the hollow railroad structure 105 is used to form the hollow railway vehicle structure 100, the thickness in the cross-sectional direction of the structure formed by the outer surface plate 106 and the inner surface plate 107 (hereinafter, referred to as “structure thickness”). A) The thickness B of the outer side plate 106, the thickness C of the inner side plate 107, the arrangement of the middle plate, and the thickness D are design parameters.
[0005]
As shown in FIG. 11, in the railway vehicle structure 100, the structure thickness A of the side structure 102 and the roof structure 103 is set to a uniform thickness. Since it is empirically known that a maximum stress is generated, the structure shoulder 114 at which the side structure 102 and the roof structure 103 are joined is made thicker than the structure thickness A of the side structure 102 and the roof structure 103 ( For example, see Patent Document 2). In the state of the structure thickness distribution determined in this way, in order to ensure a predetermined strength and rigidity against the load applied to the structure, the railcar structure 100 has a middle plate 108 disposed therein, and a plate of the outer face plate 106. The thickness B, the thickness C of the inner surface plate 107, and the thickness D of the middle plate 108 are changed (for example, see Patent Document 3).
[0006]
[Patent Document 1]
Japanese Patent No. 2784279 (see page 3, FIG. 1 and FIG. 2).
[Patent Document 2]
Japanese Patent No. 2669535 (see page 4, FIG. 5).
[Patent Document 3]
Japanese Patent No. 3069037 (see page 4, FIG. 1, FIG. 2).
[0007]
[Problems to be solved by the invention]
However, the conventional railcar structure 100 requires a large weight increase even when the vertical load and the front-rear load are dealt with only by changing the thickness B of the outer side plate 106 and the thickness C of the inner side plate 107. On the other hand, in the case of the hermetic load, a force is applied in the cross-sectional direction of the structure. Therefore, by simply changing the thickness B of the outer side plate 106 and the thickness C of the inner side plate 107, the rigidity and strength of the structure can be secured. There is a problem that weight reduction cannot be sufficiently realized.
[0008]
In other words, the railcar structure 100 has airtightness in the cabin space, and when entering the tunnel, the force in the circumferential direction of the structure cross-section is generated by the differential pressure generated between the air pressure in the cabin and the air pressure in the tunnel. A stress due to a bending moment with the longitudinal direction of the structure as a rotation axis is generated in each part of the side structure 102 and the roof structure 103, and large deformation occurs in the structure cross-sectional direction. It is difficult to know the magnitude and number of times this load is applied during the period in which the vehicle is used. The thickness B of the outer side plate 106 and the thickness C of the inner side plate 107 are determined by applying this method.
[0009]
However, it has been difficult to achieve a significant reduction in weight while securing predetermined strength and rigidity only by changing the thickness B of the outer side plate 106 and the thickness C of the inner side plate 107. In other words, the force in the circumferential direction of the cross-section of the structure can be dealt with by changing the thickness B of the outer surface plate 106 and the thickness C of the inner surface plate 107, but the bending with the longitudinal direction of the structure as the rotation axis. It is inefficient to respond to the moment only by changing the plate thickness B of the outer side plate 106 and the plate thickness C of the inner side plate 107, resulting in an increase in weight.
[0010]
Accordingly, an object of the present invention is to provide a railway vehicle structure capable of simultaneously realizing a lighter structure and a higher rigidity of the structure in order to solve such a problem.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the invention described in claim 1 of the present application is to separately manufacture a side structure and a roof structure by connecting a plurality of hollow members connected to an outer surface plate and an inner surface plate by a middle plate, The roof structure is mounted on the side structure standing on the underframe and combined, or the side structure and the roof structure are integrally manufactured, and the railcar structure connected to the underframe is combined with the outer surface plate. The body outline determined by the cross-sectional direction position is fixed, the cross-sectional position of the inner surface plate is changed based on the stress generated in each part of the structure, and the thickness in the structure cross-sectional direction formed by the outer surface plate and the inner surface plate is changed. It is characterized in that it is made thicker in a portion having a large stress and thinner in a portion having a small stress.
[0012]
In other words, the railcar structure has air-tightness in the cabin space, and when entering the tunnel, the differential pressure generated between the air pressure in the cabin and the air pressure in the tunnel causes the force in the circumferential direction of the cross-section of the structure to increase. A stress due to a bending moment having the longitudinal direction as a rotation axis is generated in each part of the structure. In a railway vehicle structure, in a portion where stress is large, the inner surface plate is formed in a direction away from the outer surface plate to increase the thickness in the structure cross-sectional direction (hereinafter, referred to as “structure thickness”) while suppressing deformation. On the other hand, in a portion where the stress is small, the thickness of the structure is reduced by forming the inner side plate closer to the outer side plate. Thereby, the required rigidity and strength can be secured in each part of the structure. Therefore, in the railway vehicle structure, the side structure and the roof structure are not made to have a uniform structure thickness, and the structure thickness of the side structure and the roof structure is changed at each part of the structure based on the stress, so that the structure is reduced in weight and height. Rigidity can be realized at the same time.
[0013]
According to a second aspect of the present invention, in the first aspect of the present invention, the thickness in the cross-sectional direction of the structure near the shoulder of the structure connecting the roof structure and the side structure is equal to the entirety of the side structure and the roof structure. It is characterized in that it is thicker than the average thickness in the sectional direction of the structure.
That is, since the side structure is fixed to the underframe, the roof structure and the side structure try to expand outward, for example, when an outward uniformly distributed load is applied, A large bending moment is generated at the shoulder of the structure having a large curvature. In the vicinity of the structure shoulder, the structure thickness is set to be larger than the structure thickness obtained by averaging the entire structure thickness of the side structure and the roof structure (hereinafter referred to as “average structure thickness”). Is secured. Therefore, in the railway vehicle structure, the deformation of the roof structure can be suppressed, and the amount of deformation of the entire structure can be reduced.
[0014]
According to a third aspect of the present invention, in the first or second aspect of the present invention, the structural body shoulder is a curve having a larger curvature than a curve constituting the side structural body and the roof structural body. Having a portion where the thickness of the side structure and the roof structure in the cross-sectional direction is the largest in the side structure and the roof structure, excluding a fixing portion where the side structure is fixed to the underframe; In the section where the thickness of the structure is to be the largest, a first straight line is drawn horizontally from the center position of the roof structure or the maximum height position of the structure in the structure cross section, and a second straight line is drawn vertically from the maximum width position of the structure, A point at which the first straight line intersects with the second straight line is defined as a third point, and a center point of a curve forming a structural shoulder in a body outline formed by the outer face plate is defined as a fourth point. Draw a fifth straight line by connecting the three points and the fourth point, and the fifth straight line is The point of intersection when defined as a 6-point and, wherein the points 6 are site located.
[0015]
According to a fourth aspect of the present invention, in the third aspect of the present invention, the structural body shoulder has a seventh shape in which a vehicle body internal shape line, which is a reference line formed by the inner side surface plate, is defined on a fifth straight line. It is characterized by being formed by a curve centered on a point.
According to a fifth aspect of the present invention, in the third aspect or the fourth aspect of the present invention, at the portion where the thickness in the structural section direction is the largest, the thickness in the structural section direction is the side structure and the roof structure. Are formed in a thickness of 1.5 to 1.6 times the average thickness of the entire structure in the sectional direction of the structure.
[0016]
The railway vehicle structure determines the vehicle body outline using a curve in a gate-shaped area formed by a vertical line passing through the maximum width position and a horizontal line passing through the maximum height position, and the side structure and the roof structure Are placed. Since the shoulder of the structure where the side structure and the roof structure are coupled generally has a large curvature, a large force acting to bend in the cross-sectional direction acts, and the stress value near the shoulder of the structure increases. Therefore, based on the vehicle body outline, a first straight line is drawn in the horizontal direction from the center position of the roof structure, and a second straight line is drawn in the vertical direction from the maximum width position of the roof structure to form a gate shape. If a position corresponding to the third point where the two straight lines intersect can be projected on the vehicle body outline by any method, it is possible to obtain an approximate part where the stress value becomes high in the railway vehicle structure.
[0017]
From this point of view, the third point, which is the point where the first straight line and the second straight line intersect, is connected to the fourth point, which is the center point of the curve forming the shoulder of the structural body, by the fifth straight line. The sixth point, which is the point at which the fifth straight line makes a tolerance with the vehicle body outline, is determined. Since the sixth point is considered to have moved on the vehicle body outline, the structure thickness of the portion where the sixth point is located should be formed to be the thickest among the structures. This tendency is also observed when the shapes of several types of railway vehicle structures with different body outlines are optimized, and the part where the body thickness is the thickest in the body, except for the fixed part of the side structure, is defined as the body outline. It is thought that it is possible to derive from only.
[0018]
In order to maximize the thickness of the structure at the position where the sixth point is located, the in-vehicle shape line of the structure shoulder is formed by a curve centered on the seventh point defined on the fifth straight line. It is necessary and sufficient.
The seventh point is to draw an in-vehicle shape line of the shoulder of the structure so that the structure thickness of the portion where the sixth point is located is 1.5 to 1.6 times the average structure thickness of the side structure and the roof structure. , On the fifth straight line. Here, the reason why the structure thickness at the portion where the sixth point is located is set to 1.5 to 1.6 times the average structure thickness is that if the average structure thickness is less than 1.5 times, the rigidity of the structure is insufficient. If the average body thickness is larger than 1.6 times, the rigidity becomes excessive and the cabin space is unnecessarily narrowed.
[0019]
Therefore, in the structure for a railway vehicle, a portion, a shape, and the like of the structure having the largest structure thickness can be easily determined from the outer shape of the vehicle body, excluding the fixing portion of the side structure. In addition, if the hollow structure is configured based on the structure thickness distribution determined in this way and the face plate is arranged, it is not necessary to extremely increase the thickness of the face plate, so that the structure can be reduced in weight and each part of the structure can be realized. The rigidity can be optimized.
[0020]
According to a sixth aspect of the present invention, in the invention according to any one of the first to fifth aspects, the thickness of the roof structure in the cross-sectional direction at a center position in the width direction of the structure is different from that of the side structure. It is characterized in that it is thicker than the average thickness of the entire roof structure in the cross-sectional direction of the structure.
That is, for example, when a roof structure is subjected to an airtight load, the center position in the structure width direction tends to deform in the vertical direction, but the center position in the structure width direction of the roof structure is formed to be thicker than the average structure thickness. Since the rigidity of the roof structure is increased, the deformation of the roof structure is suppressed, and the amount of deformation of the entire structure can be reduced.
[0021]
According to a seventh aspect of the present invention, in the invention according to any one of the first to sixth aspects, the thickness of the roof structure in the structure cross-sectional direction at the center position in the structure width direction is different from that of the side structure. The thickness of the roof structure is 1.1 to 1.2 times the average thickness of the entire roof structure in the sectional direction.
That is, in the roof structure, the in-vehicle shape line at the center position is formed such that the structure thickness at the center position is 1.1 to 1.2 times the average body thickness. In this way, the structure thickness at the center position of the roof structure is set to 1.1 to 1.2 times the average structure thickness. When the structure thickness is less than 1.1 times the average structure thickness, the rigidity of the structure is insufficient while the average structure thickness is insufficient. If the thickness is larger than 1.2 times the structure thickness, the rigidity becomes excessive and the cabin space is unnecessarily narrowed. Therefore, the railcar structure can have appropriate rigidity at the center of the roof structure.
[0022]
The invention according to claim 8 is the invention according to any one of claims 1 to 7, wherein a cross-sectional direction of the structure in the cross-section of the structure is between the center position of the roof structure and the shoulder of the structure. Characterized in that a portion having the smallest thickness is provided.
That is, since the bending moment is zero or very small at this portion, the deformation of the structure does not increase even if the structure thickness is reduced. By making the structure thinner, it becomes possible to make the cabin space slightly larger as well as to reduce the weight.
[0023]
According to a ninth aspect of the present invention, in the invention according to the eighth aspect, the portion is provided between the center portion of the roof structure and the center position of the roof structure and the structure shoulder portion. And the center portion of the roof structure is smoothly connected to the portion having the smallest thickness in the cross-sectional direction of the structure to form a vehicle interior line.
That is, since the change rate of the structure thickness between the side structure and the roof structure is small, the deformation of the structure is also smooth, and the stress generated in each part of the structure can be made closer to a uniform one than the conventional one, and the stress value and the amount of deformation can be reduced. Can be smaller.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the railway vehicle structure of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a side structure 2 and a roof structure 3 of a railway vehicle structure 10.
The railcar structure 10 according to the present embodiment has a side structure 2 and a roof structure 3 formed by welding a plurality of aluminum alloy hollow profiles 5 in the circumferential direction, similarly to the conventional structure shown in FIG. 9. However, as shown in FIG. 1, the thickness of the side structure 2 and the roof structure 3 in the structure cross-sectional direction, that is, the structure thickness A (see FIG. 10) is changed based on the stress generated in each part of the structure. This is different from the conventional structure in which the side structure 102 and the roof structure 103 have a uniform structure thickness A.
[0025]
FIG. 2 is a block diagram of the computer 30 used when optimizing the shape of the railway vehicle structure.
The railway vehicle structure 10 is obtained by optimizing a railway vehicle structure having an initial shape using a computer 30. In the computer 30, an input / output device 32, a storage device 33, and the like are connected to a CPU 31 that performs various calculations and controls. The input / output device 32 is for inputting data and the like, and outputting calculation results and the like. In addition, the storage device 33 stores information input from the input / output device 32, a calculation result calculated by the CPU, a program for optimizing the shape of the railway vehicle structure, and the like.
[0026]
The program for optimizing the shape of the railcar structure includes the initial shape of the railcar structure (such as the structure thickness A given as an initial value) and the boundary conditions (load load, constraint conditions, etc.) given to the area. Considering the following equation (1) called average compliance (Φ) in continuum mechanics, regarding the strain and stress generated by the continuum mechanics, the constraints given the average compliance (volume, fixed partial body thickness A, body thickness A Are minimized under the condition of the minimum value of the above. ε is a strain, D is a stress-strain relational expression, and Ω is a region to be studied.
[0027]
(Equation 1)
Figure 2004090850
[0028]
The minimization of the average compliance is described in detail in, for example, “Region Optimization Analysis in Linear Elasticity Problem” published in Transactions of the Japan Society of Mechanical Engineers, Vol. 60, No. 578 (1994-10), pp. 144-150. Has been described. The outline is as follows.
"Region optimization analysis in linear elasticity problem" is based on formulating the domain optimization problem with the domain shape of linear elastic body as a design variable as a continuum and applying the optimization theory of the distribution system. We approach the domain optimization problem based on the derived governing equations of the domain variation. The numerical analysis method is formulated as a method for solving a governing equation, and a force method has been proposed as one of the methods. In the force method, a finite element method or the like can be used to solve the governing equation of the domain fluctuation by replacing the governing equation with the boundary value problem of the linear elasticity problem. Also, the shape gradient function appearing in the governing equation can be analyzed by using the finite element method or the like. Therefore, "Area Optimization Analysis for Linear Elasticity Problem" formulates the minimization problem of average compliance, clarifies the optimality criterion and the shape gradient function calculated based on the optimization criterion, and then calculates the shape The force method using the gradient function is applied to the domain problem of a linear elastic body.
[0029]
The program for optimizing the shape of the railway vehicle structure is based on the above “Region Optimization Analysis in Linear Elasticity Problem”, which divides the railway vehicle structure of the initial shape into finite elements and calculates the shape gradient function. The shape of the railway vehicle structure is optimized by changing the shape of the railway vehicle structure in the initial shape until the calculation result converges, that is, until the average compliance shown in Expression 1 is minimized. FIG. 3 is a flowchart of a program for optimizing the shape of the railway vehicle structure. FIG. 4 is a conceptual diagram in which a part of the railway vehicle structure is divided into finite elements.
[0030]
The CPU 31 of the computer 30 reads a program for optimizing the shape of the railway vehicle structure from the storage means 33, and in step 1 (hereinafter, referred to as “S1”) in FIG. 3, generates an initial shape analysis model (finite element method). Input to the input / output device 32.
[0031]
Next, strength analysis is performed in S2 of FIG. The strength analysis is performed by the CPU 31 of the computer 30 reading out the initial shape analysis model and calculating the displacement amount and the generated stress based on the model.
[0032]
Next, in S3, a sensitivity analysis is performed. In the sensitivity analysis, a shape gradient function G shown in Expression 2 is calculated.
[0033]
(Equation 2)
Figure 2004090850
[0034]
The shape gradient function G shown in Expression 2 is a vector function oriented in the normal direction distributed on the boundary surface of each element E shown in FIG. Here, the values of the variables appearing in the equation are obtained from the analysis result of the strength analysis in S2, f is the body force, e is the elastic tensor, u is the displacement, and Λ is the Lagrange constant.
[0035]
Then, in S4 of FIG. 3, convergence determination is performed. The convergence determination is made based on whether or not the sensitivity obtained by executing the sensitivity analysis is sufficiently small. If it is determined that the sensitivity is sufficiently low (S4: YES), the process ends. On the other hand, if it is determined that the sensitivity is not sufficiently low (S4: NO), the process proceeds to S5, and it is determined whether or not a constraint condition for shape change has been input. If it is determined that the constraint condition has been input (S5: YES), the process directly proceeds to S7.
[0036]
On the other hand, when it is determined that the constraint condition has not been input (S5: NO), in S6, a point where the shape cannot be changed, a constraint on the moving direction, a volume (three-dimensional problem) or an area ( After inputting the two-dimensional problem) from the input / output device 32 and storing it in the storage device 33, the process proceeds to S7. Then, when the shape of the railway vehicle structure having the initial shape is changed in S7, the processes in S3 and thereafter are repeated again.
[0037]
The program for optimizing the shape of the railway vehicle structure operates as follows.
The initial shape analysis model is input to the input / output device 32 of the computer 30 (S1 in FIG. 3). Specifically, for example, as shown in FIG. 4, the entire railway vehicle structure having the initial shape is divided into finite elements E, and coordinate data is attached to nodes ● of each element E. For example, four nodes ● Input the element information of the finite element method to make (i to l) a set. Further, for example, the initial value of the structure thickness A is set to 50 mm, and the Young's modulus and Poisson's ratio of the aluminum alloy are input as the material characteristics of the structure for a railway vehicle. In addition, for example, a constraint condition and a load condition are input as boundary conditions used when performing strength analysis or the like. As the constraint condition, it is input that the fixed portion of the side structure corresponding to the underframe side beam is fixed, and that a symmetry condition is added to the center line of the railcar structure in the width direction of the structure. Here, the reason for adding the symmetry condition is to reduce the amount of calculation and shorten the calculation time. In addition, as the load condition, it is input that an evenly distributed load is given outward assuming an airtight load.
[0038]
Then, when strength analysis is performed based on the Young's modulus, Poisson's ratio, etc. of the aluminum alloy in the initial shape analysis model, a shape gradient function G is obtained based on the initial shape analysis model and the strength analysis result (S2, S3 in FIG. 3). ). When the sensitivity is not sufficiently small in the convergence determination, that is, when the shape gradient function G has a steep gradient, it is determined whether or not a constraint is input. The shape is changed after inputting the constraint conditions (S4: NO, S5: NO, S6, S7 in FIG. 3).
[0039]
Specifically, in the convergence determination, when the sensitivity is not sufficiently small and no constraint condition is input, for example, a thickness of 40 mm from the outer face plate 6 (see FIG. 10) of the hollow profile 5 is used. The movement of the located node ● is not allowed, the node (see FIG. 4) of each element E is moved only in the x direction (one-dimensionally), and the area surrounded by the outer side plate 6 and the inner side plate 7 is set to the initial shape. (S4: NO, S5: NO, S6 in FIG. 3). Here, the thickness of 40 mm is fixed from the outer side plate 6 (see FIG. 10) of the hollow profile 5 in order to ensure the minimum rigidity and strength in each part of the structure, so that the structure thickness A is 40 mm or less. This is to avoid that. Further, the reason why the node (see FIG. 4) of each element E is moved only in the x direction (one-dimensionally) is to expand and contract each element E in the cross-sectional direction of the structure.
[0040]
Then, the shape of the railway vehicle structure having the initial shape is changed based on the input constraints and the calculation result of the shape gradient function G (S7 in FIG. 3). Specifically, for example, when the shape gradient function G is locally large, for a portion where the shape gradient function G is large, the node ● of 40 mm is not moved from the outside of the side structure and the roof structure, Based on constraints such as restricting the moving direction to the x direction, the node ● of the element E in a portion within 10 mm from the inside of the side structure and the roof structure is moved inward to increase the size of the element E. . In addition, since there is a constraint condition that the area between the outer side plate 6 and the inner side plate 7 is constant, a node of the element E in a portion within 10 mm from the inside of the side structure and the roof structure in a portion where the shape gradient function G is small. Is moved outward to reduce the size of the element E. The coordinate data of the node ● thus moved is rewritten. As a result, the structure thickness A increases when the node ● moves inward, and the structure thickness A decreases when the node ● moves outward, so that the shape of the railway vehicle structure is changed. After the shape of the railway vehicle structure is changed, the processes from S3 onward are repeated again. These series of processes are automatically performed until the convergence determination determines that the sensitivity is sufficiently small.
[0041]
Then, when it is determined in the convergence determination that the sensitivity does not decrease any more, that is, when the value of the shape gradient function G does not become smaller than the previous calculation, the process ends (S4 in FIG. 3: YES), and FIG. Then, the optimized railway vehicle structure 10 is output to the input / output device 32 as shown in FIG.
[0042]
In the railway vehicle structure 10 of FIG. 1, the structure thickness A of the side structure 2 and the roof structure 3 varies in each part of the structure. The structure thickness W1 of a portion (hereinafter, referred to as a "structure shoulder") 14 where the side structure 2 and the roof structure 3 are joined is the same as the structure thickness except for the fixing portion 2a for fixing the side structure 2 to the underframe 4. It is the thickest among them. In the side structure 2, the structure thickness W4 near the center is formed thin. In the roof structure 3, the structure thickness W2 at the center position 3a in the structure width direction is formed thick, and the structure thickness W3 between the structure center portion 3a and the structure shoulder 14 is formed thin.
[0043]
The inventor has executed the above-described program to optimize the shapes of several types of railway vehicle structures having different vehicle body outlines M, and determined the vehicle interior shape line N1 based on the vehicle design, that is, the vehicle body outline M. It was confirmed that the shape of the railway vehicle structure could be optimized.
[0044]
The railcar structure 10 determines a vehicle body outline M using a curve in a gate-shaped area formed by a vertical line passing through the maximum width position and a horizontal line passing through the maximum height position, and the side structure 2 and the roof are determined. Structure 3 is arranged. Since the structural shoulder 14 generally has a large curvature, it receives a large force to bend in the cross-sectional direction, and the stress value increases. Therefore, based on the vehicle body outline M, the first straight line L1 is drawn in the horizontal direction from the center position 3a of the roof structure 3, and the second straight line L2 is drawn in the vertical direction from the maximum width position of the roof structure 3, thereby forming a gate shape. If the position corresponding to the third point P3 where the first straight line L1 and the second straight line L2 intersect can be projected on the vehicle body outline M by any method, the highest stress value is obtained in the railway vehicle structure 10. An approximate part can be obtained.
[0045]
From this point of view, the third point P3 at which the first straight line L1 and the second straight line L2 make a tolerance is the fourth point P4, which is the center point of the curve forming the structural shoulder portion 14 of the vehicle body outline M, and the fifth straight line P5. A sixth point P6, which is a point where the fifth straight line L5 is connected to the vehicle body outline M by L5, is obtained. Since it is considered that the sixth point P6 is obtained by projecting the third point P3 on the vehicle body outline M, the railcar structure 10 has the structure thickness of the portion where the sixth point is located except for the fixing portion 2a. What is necessary is to make W1 the thickest among the structures.
[0046]
Then, in order to make the structure thickness W1 at the position where the sixth point P6 is the largest, the car of the structure shoulder portion 14 is formed by a curve having a radius r2 centered on the seventh point P7 defined on the fifth straight line L5. It is necessary and sufficient to form the body shape line N1.
The radius r2 can be easily determined by subtracting 80 mm from a value obtained by multiplying the radius r1 of the vehicle body outline M at the structural shoulder 14 by 1.1. Here, the reason why the coefficient of the relational expression is set to 1.1 is to optimize the structure thickness distribution of the structure shoulder 14. That is, if the coefficient is larger than 1.1, the structure thickness A of the structural shoulder portion 14 other than the portion where the maximum body thickness W1 is obtained becomes insufficient, resulting in insufficient rigidity. This is because the rigidity of the portion that becomes W1 is insufficient in rigidity compared with the structural shoulder portions 14 other than the portion that becomes the maximum structural thickness W1. Further, 80 mm in the relational expression is an adjustment term for adjusting the structure thickness A, and the reason why the adjustment term is set to 80 mm is exactly the same as the reason for selecting the coefficient in the above relational expression. That is, when the adjustment term is larger than 80 mm, the structure thickness A of the structural shoulder portion 14 other than the part where the maximum body thickness W1 is obtained becomes insufficient and rigidity becomes insufficient. On the other hand, when the adjustment term is made smaller than 80 mm, the maximum body thickness W1 is reduced. This is because the rigidity of the portion becomes insufficient compared with the structural shoulder portions 14 other than the portion having the maximum structural thickness W1.
[0047]
The seventh point P7 draws a curve of the radius r2 so that the structure thickness W1 becomes 1.5 to 1.6 times the average structure thickness obtained by averaging the entire structure thickness A of the side structure 2 and the roof structure 3. It is defined on five straight lines L5. Here, the reason why the structure thickness W1 is set to 1.5 to 1.6 times the average structure thickness is that when the structure thickness is less than 1.5 times the average structure thickness, the rigidity of the structure is insufficient, while the average structure thickness is 1. If it is larger than six times, the rigidity becomes excessive and the cabin space is unnecessarily narrowed.
[0048]
In the present embodiment, the radius r1 of the structural body shoulder portion 14 relating to the vehicle body outline M is 400 mm, which is calculated by a relational expression for calculating the radius r2 (radius r2 (mm) = radius r1 (mm) × 1.1 times). Applying to (−80 (mm)), the radius r2 is 360 mm. Since the average structure thickness of the present embodiment is 52.8 mm, the structure thickness W1 of the structure shoulder 14 is 1.5 to 1.6 times the average structure thickness, that is, 79.20 to 84.48 mm. Seven points P7 are defined on the fifth straight line L5, and the shape of the shoulder 14 is determined by drawing a curve with a radius r2 (360 mm). In the present embodiment, the seventh point P7 is defined so that the structural thickness W1 of the structural shoulder 14 is 81.05 mm, which is 1.54 times the average structural thickness.
[0049]
The side structure 2 reduces the structure thickness W4 in a range R2 including the maximum width position of the railcar structure 10. That is, with respect to the distance from the lower end of the side structure 2 to the structure shoulder 14 at which the structure thickness W1 is located, the structure thickness W4 in the range R2 of about 3/7 to 5/7 from the lower end is selected from the structures. Make it thinnest. The portion can be made thinner because the force for deforming the side structure 2 due to the airtight load and the force transmitted to the side structure 2 when the roof structure 3 is about to deform are opposite to each other. It is presumed that this is the case.
In the present embodiment, the in-vehicle shape line N1 in a certain range R2 including the maximum width position is formed so that the structure thickness W4 becomes 40 mm.
[0050]
On the other hand, in the roof structure 3, the structure thickness W2 at the center position 3a is increased, and the structure thickness W3 between the center position 3a and the structure shoulder 14 at which the structure thickness W1 is located is reduced. That is, the roof structure 3 forms the in-vehicle shape line N1 at the center position 3a such that the structure thickness W2 at the center position 3a is 1.1 to 1.2 times the average structure thickness. As described above, when the structure thickness W2 is set to 1.1 to 1.2 times the average structure thickness, when the average structure thickness is set to less than 1.1 times, the rigidity of the structure is insufficient, while the average structure thickness is 1. If it is larger than twice, the rigidity becomes excessive and the cabin space is unnecessarily narrowed.
In the present embodiment, since the average structure thickness is 52.8 mm, it is desirable that the structure thickness W2 at the center position 3a of the roof structure 3 be 58.0 to 63.3 mm. Therefore, in the present embodiment, the in-vehicle shape line N1 at the center position 3a is determined so that the structure thickness W2 at the center position 3a of the roof structure 3 is 61 mm, which is 1.16 times the average structure thickness. .
[0051]
Further, the roof structure 3 has a range R1 that is approximately one third to one half of the distance from the center position 3a to the distance from the center position 3a where the structure thickness W2 is located to the structure shoulder portion 14 where the body thickness W1 is located. Is made the thinnest among the structures. The reason why the fixed range R1 is provided at the position where the structure thickness W3 is provided is that the direction of the bending moment generated at the center position 3a of the roof structure 3 and the direction of the bending moment generated at the structure shoulder 14 are opposite to each other. The structure thickness W3 is arranged around a position where the bending moment becomes zero in the structure 3, because the position fluctuates depending on the vehicle outline M. The reason why the structure thickness W3 at the position is the thinnest is that the bending moment is zero or very small, so that it is not necessary to increase the bending rigidity.
In the present embodiment, the structure at a portion 3b that is about half the distance from the center position 3a of the roof structure 3 to the structure shoulder 14 at which the structure thickness W1 is located from the center position 3a at which the structure thickness W2 is located. The in-vehicle shape line N1 at the site 3b of the roof structure 3 is determined so that the thickness W3 becomes 40 mm.
[0052]
In this way, when the part where the structure thickness A is increased and the part where the structure thickness A is reduced in the side structure 2 and the roof structure 3 are determined, the adjacent parts are smoothly connected to form the in-vehicle shape line N1 of the entire railway vehicle structure 10. . This makes it possible to optimize the shape of the railway vehicle structure in a short time.
[0053]
Next, the operation of the railway vehicle structure 10 will be described.
For example, when the railway vehicle structure 10 enters a tunnel, the force in the sectional direction of the structure and the longitudinal force of the structure are generated by a differential pressure generated between the air pressure in the tunnel and the air pressure in the cabin space of the railway vehicle structure 10. A stress due to a bending moment having a direction as a rotation axis is generated in each part of the structure. In particular, the stress is likely to be large at the structure shoulder 14 where the side structure 2 and the roof structure 3 are connected and at the center position 3 a of the roof structure 3.
[0054]
In the railway vehicle structure 10, the rigidity and strength of the structure are increased by making the structure thickness W1 of the structure shoulder portion 14 the thickest among the structures excluding the fixing portion 2a of the side structure 2, thereby increasing the roof structure. 3 and the side structure 2 can be suppressed from being deformed. Further, for example, when the roof structure 3 receives an airtight load, the center position 3a in the structure width direction tends to be greatly deformed in the vertical direction, but the structure thickness W2 is larger than the average structure thickness at the center position 3a in the structure width direction. Since the thickness and the rigidity and strength of the roof structure 3 are increased, deformation at the center position 3a of the roof structure 3 is suppressed. In addition, as a result, the amount of deformation of the other roof structures 3 can be suppressed.
[0055]
In such a railway vehicle structure 10, since the structure thickness A is distributed according to the magnitude of the stress generated in each part of the structure, it is possible to make the stress distribution closer to a uniform one than in the conventional structure, and to deform. Is also smooth.
[0056]
Comparing the shape of the railway vehicle structure 10 shown in FIG. 1 having the above configuration and operation with that of the railway vehicle structure 100 shown in FIG. 11, the following common points and differences are recognized.
The railway vehicle structure 10 of FIG. 1 and the railway vehicle structure 100 of FIG. 11 are common in that the vehicle body outline M is the same and the body thicknesses W1 and W5 of the body shoulders 14 and 114 are increased.
[0057]
However, the railway vehicle structure 10 of FIG. 1 and the railway vehicle structure 100 of FIG. 11 are essentially different in the method of determining the shape. That is, in the railway vehicle structure 100 of FIG. 11, the side structure 102 and the roof structure 103 formed with the uniform structure thickness A form a fillet to form the vehicle body internal line N2 of the structure shoulder 114. ing. Therefore, although the in-vehicle shape line N2 of the structure shoulder 114 is formed by a curve, the eighth point P8, which is the center point of the curve, is the same as the first straight line L1 drawn horizontally from the maximum height position of the structure. A third point P3, at which the second straight line L2 drawn perpendicularly from the maximum width position of the structure makes a tolerance, is connected to a fourth point P4 which is the center point of the curve forming the structure shoulder 114 in the vehicle body outline M. It is not located on the fifth straight line L5. Therefore, the shape of the railway vehicle structure 100 of FIG. 11 is slightly different from that of the railway vehicle structure 10 of FIG. 1 due to the difference in the shape determination method.
[0058]
Such a slight difference in the shape greatly affects the displacement and stress of the railway vehicle structure 10 of FIG. 1 and the railway vehicle structure 100 of FIG. FIG. 5 is a displacement diagram of a conventional railway vehicle structure 100. FIG. FIG. 6 is a displacement diagram of the optimized railway vehicle structure 10.
In the analysis relating to the displacement, a uniform distribution load of 0.001 kPa is applied outward to the railway vehicle structures 10 and 100.
[0059]
As a result of this analysis, the railway vehicle structure 100 of FIG. 11 and the railway vehicle structure 10 of FIG. 1 are deformed so as to expand outward as shown in FIG. 5 and FIG. 6, but have different maximum displacement amounts. As shown in FIG. 5, the railway vehicle structure 100 of FIG. 11 has a maximum displacement of about 2.14 mm at the center position 103a of the roof structure 103, whereas the railway vehicle structure 10 of FIG. As shown in FIG. 6, the displacement amount of the center position 3a of the roof structure 3 is about 1.48 mm, and the maximum displacement amount of the railway vehicle structure 10 of FIG. 1 is the maximum displacement amount of the railway vehicle structure 100 of FIG. About 70% of This is because, in the railway vehicle structure 10 shown in FIG. 1, the deformation of the structure shoulder 14 and the center position 3 a of the roof structure 3 is changed by changing the structure thickness A in each part of the structure. This indicates that it can be suppressed more efficiently.
[0060]
FIG. 7 is a stress diagram showing the maximum stress of the side structure 102 and the roof structure 103 of the conventional railway vehicle structure 100, and FIG. 8 is a diagram illustrating the optimized side structure 2 and the roof structure of the railway vehicle structure 10. It is a stress figure showing the maximum stress of structure 3.
In the analysis related to this stress, a uniform load of 0.001 kPa is applied to the outside of the railway vehicle structures 10 and 100.
[0061]
As a result of this analysis, as shown in FIG. 7, the railway vehicle structure 100 shown in FIG. 11 has a speckled stress value generated in each part of the structure. Then, at the center position 103a of the roof structure 103 and at a position shifted toward the side structure 102 from the position where the structure thickness W5 of the structure shoulder portion 114 is located, the stress increases near the vehicle interior line N2 and the vehicle outline M. In particular, a maximum stress value of 81.634 MPa is shown in the vicinity Z1 of the vehicle body shape line N2 at a position shifted toward the side structure 102 from the position where the structure thickness W5 is located.
[0062]
On the other hand, in the railway vehicle structure 10 of FIG. 1, as shown in FIG. 8, the stress value generated inside the structure is more uniform in each part of the structure. At the center position 3a of the roof structure 3 and the shoulder 14 of the body, the stress is large in the vicinity of the vehicle body outline M and the vehicle body inner shape line N1, and in particular, at the part where the body thickness W1 of the body shoulder 14 is located. A maximum stress value of 45.962 MPa is shown near Z2 near the vehicle interior line N1.
[0063]
Therefore, in the railway vehicle structure 10 shown in FIG. 1, the region Z2 where the maximum stress occurs and the region where the structure thickness W1 is located match, while the railway vehicle structure 100 in FIG. Z1 is shifted from the position where the structural thickness W5 is located. Further, the maximum stress value of the railway vehicle structure 10 shown in FIG. 1 is reduced to about 55% of the maximum stress value of the railway vehicle structure 100 shown in FIG. This indicates that the portion provided with the structure thickness W1 and the shape of the structure shoulder 14 in the railway vehicle structure 10 shown in FIG. 1 are more appropriate than the railway vehicle structure 100 in FIG.
Further, the structure 10 for a railway vehicle in FIG. 1 has a structure thickness W4 in a certain range R2 of the side structure 2 and a structure thickness W3 in a portion 3b of the roof structure 3 that are different from those in the side structure 102 of the structure 100 for a railway vehicle in FIG. Despite being thinner than the structure thickness A of the roof structure 103, the same level of stress as the railway vehicle structure 100 of FIG. 11 is maintained. This is because, in the railway vehicle structure 10 of FIG. 1, the side structures 2 and the roof structure 3 are gently deformed by reducing the structure thicknesses W3 and W4 of the portion where the stress is small, thereby dispersing the stress in each part of the structure. It is shown that.
[0064]
As described in detail above, according to the railway vehicle structure 10 of the present embodiment, a plurality of hollow members 5 in which the outer side plate 6 and the inner side plate 7 are connected by the middle plate 8 are connected to each other to form the side structure 2. The roof structure 3 and the roof structure 3 are separately manufactured, and the roof structure 3 is mounted on the side structure 2 erected on the underframe 4 and joined together, or the side structure 2 and the roof structure 3 are integrally manufactured. It is mounted on the underframe 4 and connected (see FIGS. 9 and 10), and the outer shape line M of the vehicle body is kept constant, and the position of the inner surface plate 7 in the direction of the normal to the cross section is changed based on the stress generated in each part of the structure. Since the structure thickness A is large at a position where the stress is large, and the structure thickness A is small at a position where the stress is small (see FIG. 1), it is possible to simultaneously achieve a reduction in the weight of the structure and an increase in rigidity.
[0065]
Further, according to the railway vehicle structure 10 of the present embodiment, the structure shoulder portion 14 at which the stress due to the moment is large and the center position 3a of the roof structure 3 are thicker than the average structure thickness (see FIG. 1). The deformation of the structure 2 and the roof structure 3 can be suppressed, and the amount of deformation of the entire structure can be reduced.
[0066]
Further, according to the railway vehicle structure 10 of the present embodiment, the structure shoulder 14 connects the side structure 2 and the roof structure 3 with a curve having a larger curvature than the curves forming the side structure 2 and the roof structure 3. Except for the fixing portion 2a where the side structure 2 is fixed to the underframe 4, the side structure 2 and the roof structure 3 have a portion where the structure thickness A is the largest, and the structure thickness A is the largest. The part to be thickened draws a first straight line L1 in the horizontal direction from the center position 3a of the roof structure 3, draws a second straight line L2 in the vertical direction from the maximum width position of the side structure 2, and draws the first straight line L1 and the second straight line L2. Is defined as a third point P3, and the center point of the curve forming the structural body shoulder portion 14 of the vehicle body outline M formed by the outer face plate 6 is defined as a fourth point P4. A fifth straight line L5 is drawn by connecting P3 and the fourth point P4, and the fifth straight line L5 is the outer shape of the vehicle body. When a point that intersects with M is defined as a sixth point P6, the sixth point P6 is located (see FIG. 1), so that the structure thickness A is the largest except for the fixing portion 2a of the side structure 2. The part to be performed can be easily obtained from the vehicle outline M.
And, since the in-vehicle shape line N1 forming the structural body shoulder portion 14 has the seventh point P7 on the fifth straight line L5 and is a curve having a radius r2 determined based on the radius r1 of the vehicle body outline M ( The shape of the structural shoulder 14 can be easily determined.
[0067]
Further, according to the railway vehicle structure 10 of the present embodiment, the structure thickness W1 of the structure shoulder portion 14 is set to be 1.5 to 1.6 times the average structure thickness (see FIG. 1), and the roof is provided. By making the structure thickness W2 at the center position of the structure 3 1.1 to 1.2 times the average structure thickness (see FIG. 1), the rigidity of the structure is made appropriate.
[0068]
Further, according to the railway vehicle structure 10 of the present embodiment, the portion 3b having the thinnest structure thickness W3 in the structure cross section is provided between the center position 3a of the roof structure 3 and the structure shoulder portion 14 ( In addition to reducing the weight, it can contribute to making the cabin space slightly larger.
[0069]
Furthermore, according to the railway vehicle structure 10 of the present embodiment, the structure thickness W3 provided between the center position 3a of the roof structure 3 and the structure shoulder 14 at the site where the structure thickness W1 of the structure shoulder 14 is located. 3b, the center position 3a of the roof structure 3 and the like are smoothly connected to form the vehicle interior line N1 (see FIG. 1), so that stress is distributed to each part of the structure (see FIG. 8). The displacement amount of the entire structure can be smaller than that of the conventional railway vehicle structure 100 shown in FIG. 11 (see FIG. 6).
[0070]
The present invention is not limited to the embodiment, and it goes without saying that various changes can be made without departing from the gist of the present invention.
[0071]
【The invention's effect】
Therefore, the railway vehicle structure of the present invention is characterized in that the side structure and the roof structure are separately manufactured by connecting a plurality of hollow members in which the outer side plate and the inner side plate are connected by the middle plate, and are erected on the underframe. Body structure determined by the cross-sectional position of the outer face plate in which the roof structure is mounted on the joined side structure and joined, or the side structure and the roof structure are integrally manufactured and mounted on the underframe The line is constant, and the cross-sectional position of the inner surface plate is changed based on the stress generated in each part of the structure. Since the small portions are made thinner, it is possible to simultaneously achieve a reduction in the weight of the structure and an increase in rigidity.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a side structure and a roof structure of a railway vehicle structure according to an embodiment of the present invention.
FIG. 2 is a block diagram of a computer used when optimizing the shape of a railway vehicle structure.
FIG. 3 is a flowchart of a program for optimizing the shape of a railway vehicle structure.
FIG. 4 is a conceptual diagram in which a part of a railway vehicle structure is divided into finite elements.
FIG. 5 is a displacement diagram of a side structure and a roof structure of a conventional railway vehicle structure.
FIG. 6 is also a displacement diagram of an optimized side structure and a roof structure of a railway vehicle structure.
FIG. 7 is a stress diagram showing the maximum stress of a side structure and a roof structure of a conventional railway vehicle structure.
FIG. 8 is a stress diagram showing the optimized maximum stresses of the side structure and the roof structure of the railway vehicle structure.
FIG. 9 is an external perspective view of a railway vehicle structure.
FIG. 10 is an enlarged sectional view of a hollow profile.
FIG. 11 is a sectional view of a side structure and a roof structure of a conventional railway vehicle structure.
[Explanation of symbols]
2 side structure
2a Fixed part
3 roof structure
3a center position
3b site
4 frame
5 Hollow profiles
6 Outer side plate
7 Inside surface plate
8 Middle plate
10 Structures for railway vehicles
14 Structure shoulder
A Structure thickness
W1 Structure thickness
W2 Structure thickness
W3 Structure thickness
W4 Structure thickness
M Body outline
N1 body shape line

Claims (9)

外側面板と内側面板とを中板で連結した中空形材を複数接続して側構体と屋根構体とを別々に製作して、台枠上に立設した前記側構体の上に前記屋根構体を載せて結合し、あるいは、前記側構体と前記屋根構体とを一体として製作し、台枠に載せて結合した鉄道車両用構体において、
前記外側面板の断面方向位置により決定される車体外形線を一定とし、前記内側面板の断面方向位置を構体各部で発生する応力に基づいて変化させ、前記外側面板と前記内側面板とで形成される構体断面方向の厚さを応力の大きい部位では厚く、応力の小さい部位では薄くすることを特徴とする鉄道車両用構体。
The outer side plate and the inner side plate are connected to each other by hollow plates connected by the middle plate to separately produce a side structure and a roof structure, and the roof structure is placed on the side structure standing on an underframe. Mounted and combined, or, in a railcar structure manufactured integrally with the side structure and the roof structure and mounted on an underframe,
The outer shape plate determined by the cross-sectional position of the outer face plate is made constant, and the cross-sectional position of the inner face plate is changed based on the stress generated in each part of the structure to be formed by the outer face plate and the inner face plate. A structure for a railway vehicle, wherein a thickness in a cross-sectional direction of the structure is thick at a portion having a large stress and thin at a portion having a small stress.
請求項1に記載する鉄道車両用構体において、
前記屋根構体と前記側構体とを結合する構体肩部付近の構体断面方向の厚さが、前記側構体と前記屋根構体の全体を平均した構体断面方向の厚さよりも厚いことを特徴とする鉄道車両用構体。
The railway vehicle structure according to claim 1,
A railway characterized in that a thickness in a cross-sectional direction of a structure near a shoulder of a structure connecting the roof structure and the side structure is thicker than a thickness in a cross-sectional direction of the whole of the side structure and the roof structure as an average. Vehicle structure.
請求項1又は請求項2に記載する鉄道車両用構体において、
前記構体肩部は、前記側構体及び前記屋根構体を構成する曲線よりも曲率の大きい曲線で前記側構体と前記屋根構体とを結合したものであって、前記側構体が前記台枠に固定される固定部を除いて、前記側構体と前記屋根構体の中で前記構体断面方向の厚さを最も厚くする部位を有し、
前記構体断面方向の厚さを最も厚くする部位は、
構体断面において屋根構体の中心位置又は構体の最大高さ位置から水平方向に第1直線を描き、
構体の最大幅位置から垂直方向に第2直線を描き、
前記第1直線と前記第2直線とが交差する点を第3点として規定し、
前記外側面板によって形成される車体外形線のうち前記構体肩部を形成する曲線の中心点を第4点として規定し、
前記第3点と前記第4点とを結んで第5直線を描き、
前記第5直線が前記車体外形線と交差する点を第6点として規定したときに、
前記第6点が位置する部位であることを特徴とする鉄道車両用構体。
The railway vehicle structure according to claim 1 or 2,
The structure shoulder is a combination of the side structure and the roof structure with a curve having a larger curvature than the curve forming the side structure and the roof structure, and the side structure is fixed to the underframe. Excluding the fixing portion, the portion having the largest thickness in the cross-sectional direction of the structure in the side structure and the roof structure,
The site where the thickness in the sectional direction of the structure is the largest,
Draw a first straight line in the horizontal direction from the center position of the roof structure or the maximum height position of the structure in the structure cross section,
Draw a second straight line vertically from the maximum width position of the structure,
A point at which the first straight line and the second straight line intersect is defined as a third point,
A center point of a curve forming the structural body shoulder portion of the vehicle body outline formed by the outer face plate is defined as a fourth point,
Draw a fifth straight line connecting the third point and the fourth point,
When a point at which the fifth straight line intersects the vehicle body outline is defined as a sixth point,
A structure for a railway vehicle, wherein the sixth point is located.
請求項3に記載する鉄道車両用構体において、
前記構体肩部は、前記内側面板によって形成される基準線である車体内形線が、前記第5直線上に規定した第7点を中心点とする曲線で形成されていることを特徴とする鉄道車両用構体。
The railway vehicle structure according to claim 3,
The structural body shoulder portion is characterized in that a vehicle interior shape line, which is a reference line formed by the inner side surface plate, is formed by a curve centered on a seventh point defined on the fifth straight line. Structure for railway vehicles.
請求項3又は請求項4に記載する鉄道車両用構体において、
前記構体断面方向の厚さを最も厚くする部位では、構体断面方向の厚さが、前記側構体と前記屋根構体の全体を平均した構体断面方向の厚さの1.5〜1.6倍の厚さで形成されていることを特徴とする鉄道車両用構体。
The railway vehicle structure according to claim 3 or 4,
At the site where the thickness in the structure cross-section direction is the largest, the thickness in the structure cross-section direction is 1.5 to 1.6 times the thickness in the structure cross-section direction that averages the entire side structure and the roof structure. A railway vehicle structure characterized by being formed with a thickness.
請求項1乃至請求項5の何れか1つに記載する鉄道車両用構体において、
前記屋根構体の構体幅方向の中心位置における構体断面方向の厚さが、前記側構体と前記屋根構体の全体を平均した構体断面方向の厚さより厚いことを特徴とする鉄道車両用構体。
The railway vehicle structure according to any one of claims 1 to 5,
A structure for a railway vehicle, wherein a thickness of the roof structure in a structure cross-sectional direction at a center position in a structure width direction is larger than a thickness of the side structure and the roof structure in the structure cross-section direction as a whole.
請求項1乃至請求項6の何れか1つに記載する鉄道車両用構体において、
前記屋根構体の構体幅方向の中心位置における構体断面方向の厚さが、側構体と屋根構体の全体を平均した構体断面方向の厚さの1.1〜1.2倍の厚さであることを特徴とする鉄道車両用構体。
The railway vehicle structure according to any one of claims 1 to 6,
The thickness of the roof structure in the structure cross-section direction at the center position in the structure width direction is 1.1 to 1.2 times the thickness of the side structure and the roof structure in the structure cross-section direction averaged over the entirety. A railway vehicle structure characterized by the above-mentioned.
請求項1乃至請求項7の何れか1つに記載する鉄道車両用構体において、
前記屋根構体の中心位置と前記構体肩部との間に前記構体断面の中で構体断面方向の厚さが最も薄い部位を設けたことを特徴とする鉄道車両用構体。
The railway vehicle structure according to any one of claims 1 to 7,
A structure for a railway vehicle, wherein a portion having the smallest thickness in the cross-sectional direction in the cross-section of the structure is provided between a center position of the roof structure and a shoulder of the structure.
請求項8に記載する鉄道車両用構体において、
前記構体肩部の構体断面方向の厚さが最も厚い部位と、前記屋根構体の中心位置と前記構体肩部との間に設けた構体断面方向の厚さが最も薄い部位と、前記屋根構体の中心位置とをなめらかに結んで車体内形線を形成することを特徴とする鉄道車両用構体。
The railway vehicle structure according to claim 8,
A portion where the thickness of the structure shoulder in the cross-section direction is the largest, a portion where the thickness in the cross-section direction of the roof provided between the center position of the roof structure and the structure shoulder is the thinnest, A structure for a railway vehicle, wherein a body shape line is formed by smoothly connecting to a center position.
JP2002257460A 2002-09-03 2002-09-03 Railcar structures Expired - Lifetime JP4166061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002257460A JP4166061B2 (en) 2002-09-03 2002-09-03 Railcar structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002257460A JP4166061B2 (en) 2002-09-03 2002-09-03 Railcar structures

Publications (2)

Publication Number Publication Date
JP2004090850A true JP2004090850A (en) 2004-03-25
JP4166061B2 JP4166061B2 (en) 2008-10-15

Family

ID=32062358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002257460A Expired - Lifetime JP4166061B2 (en) 2002-09-03 2002-09-03 Railcar structures

Country Status (1)

Country Link
JP (1) JP4166061B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006082676A (en) * 2004-09-16 2006-03-30 Nippon Sharyo Seizo Kaisha Ltd Body of railroad car
JP2015039989A (en) * 2013-08-22 2015-03-02 日本車輌製造株式会社 Railway vehicle body structure
US11370462B2 (en) 2017-09-26 2022-06-28 Kawasaki Jukogyo Kabushiki Kaisha Railcar bodyshell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006082676A (en) * 2004-09-16 2006-03-30 Nippon Sharyo Seizo Kaisha Ltd Body of railroad car
JP2015039989A (en) * 2013-08-22 2015-03-02 日本車輌製造株式会社 Railway vehicle body structure
US11370462B2 (en) 2017-09-26 2022-06-28 Kawasaki Jukogyo Kabushiki Kaisha Railcar bodyshell

Also Published As

Publication number Publication date
JP4166061B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
JP4723057B2 (en) Product shape design method and pneumatic tire designed using the same
US10363973B2 (en) Vehicle framework structure
EP0642916B1 (en) Design method for a pneumatic tire
JP6123951B2 (en) Blank shape determination method, blank manufacturing method, press molding method, press molded product manufacturing method, computer program, and recording medium
CN109094496B (en) Bumper reinforcement and method of manufacturing a bumper reinforcement
JP4166061B2 (en) Railcar structures
Park et al. Development of a fiber-reinforced plastic armrest frame for weight-reduced automobiles
JPWO2013094691A1 (en) Front floor panel
JP6780212B2 (en) Monoframe structural analysis tool and monoframe design method
Qattawi et al. Design analysis for origami-based folded sheet metal parts
JP4009123B2 (en) Method and program for determining the shape of a railway vehicle structure
JP2005266894A (en) Mold design support system and method, and program for supporting mold designing
TWI687332B (en) Railway vehicle structure
JP2012081878A (en) Manufacturing method for cross member
JP3958760B2 (en) Railcar structures
JP2007261583A (en) Manufacturing method of vehicle structural body for railway vehicle
JP6510449B2 (en) Rail vehicle manufacturing method
CN112507410B (en) Method and device for generating rail Liang Tuzhi
CN110077289B (en) Vehicle seat fixing structure
CN218021827U (en) Vehicle body longitudinal beam and vehicle
WO2023092622A1 (en) Maglev vehicle interlayer design method and system, and electronic device
CN111400814B (en) Method for determining connection point of frame middle structure
JP2008056182A (en) Structure for reinforcing vehicle body
CN114880875B (en) Locomotive body first-order vertical bending frequency estimation method
JP7282638B2 (en) pillar structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050303

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080729

R150 Certificate of patent or registration of utility model

Ref document number: 4166061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term