JP2004088525A - Instantaneous response amplifier circuit - Google Patents

Instantaneous response amplifier circuit Download PDF

Info

Publication number
JP2004088525A
JP2004088525A JP2002247949A JP2002247949A JP2004088525A JP 2004088525 A JP2004088525 A JP 2004088525A JP 2002247949 A JP2002247949 A JP 2002247949A JP 2002247949 A JP2002247949 A JP 2002247949A JP 2004088525 A JP2004088525 A JP 2004088525A
Authority
JP
Japan
Prior art keywords
circuit
amplifier circuit
differential
input
average value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002247949A
Other languages
Japanese (ja)
Other versions
JP3881293B2 (en
Inventor
Shunji Kimura
木村 俊二
Akira Okada
岡田 顕
Jun Endo
遠藤 潤
Yasuhiro Suzuki
鈴木 安弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002247949A priority Critical patent/JP3881293B2/en
Publication of JP2004088525A publication Critical patent/JP2004088525A/en
Application granted granted Critical
Publication of JP3881293B2 publication Critical patent/JP3881293B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Amplifiers (AREA)
  • Optical Communication System (AREA)
  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an instantaneous response amplifier circuit which does not require a potential holding circuit and eliminates instability or noise increase in circuit operations caused by DC coupling. <P>SOLUTION: The amplifier circuit has an average value detecting circuit 13A having a time constant about from several bits of bit width of an input signal to dozens of bits and a differential amplitude limit amplifier circuit 12A, an output terminal of the average value detecting circuit 13A is connected to one of differential input terminals of the differential amplitude limit amplifier circuit 12A to configure a basic amplification stage with an input terminal of the average value detecting circuit 13A and the other input terminal of the differential amplitude limit amplifier circuit 12A as an input terminal couple and with differential output terminals of the differential amplitude limit amplifier circuit 12A as an output terminal couple, and two basic amplification stages are cascade connected. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、光パケット信号等の間欠的に受信される光信号に瞬時に応答し、歪みの少ない良好な増幅信号を差動出力する瞬時応答増幅回路に関する。
【0002】
【従来の技術】
光パケット信号などを取り扱う光ネットワークでは、パケット毎に異なる光強度の信号が受信されるため、受信器には信号を等化増幅する増幅回路が必要になる。光信号を受光するフォトダイオードなどの受光素子は、一般に1チャネルにつき1つしか使用されないので、フォトダイオードの出力する電流信号を電圧信号に変換するインピーダンス変換増幅回路には、入出力が単一のシングルエンド型増幅回路が用いられている。しかしながら増幅回路の動作安定性の向上、論理回路とのインターフェイスの整合性向上などを目的として、インピーダンス変換増幅回路よりも後段の増幅段には差動型の回路構成が使用されるようになった。
【0003】
差動増幅回路が正常に動作するには、インピーダンス変換増幅回路の出力が接続されていない側の入力端子に、入力される信号の中間レベルの参照電位を与える必要があり、この参照電位が中間レベルからずれた場合には、出力信号の振幅低下やデューティ変動などの歪みが発生し、信号の品質が低下してしまう。すなわち、瞬時応答増幅回路は受信した光強度の異なるパケット信号から、瞬時に最適な参照電位を抽出し、良好な差動信号を出力する機能を有する必要がある。
【0004】
図13に、従来の典型的な瞬時応答増幅回路の例を示す。図13において、1は入力端子、2は差動増幅回路、3は最高電位保持回路、4は最低電位保持回路、5、5’は同値の抵抗、6,7は差動増幅回路の入力端子、8,9は差動増幅回路の出力端子、10,11はリセット信号入力端子を示す。
【0005】
インピーダンス変換増幅回路の出力信号は、入力端子1から差動増幅回路2の入力端子6に入力される。一方、入力端子1で分岐された信号は、最高電位保持回路3と最低電位保持回路4に入力され、瞬時に信号の最高電位と最低電位が抽出、保持される。保持された最高電位と最低電位から2個の抵抗5、5’による分割によって中間電位を作り出し、差動増幅回路2の入力端子7に入力することにより、良好な差動出力を得ることができる。
【0006】
【発明が解決しようとする課題】
従来の瞬時応答増幅回路は、前述したように高速な電位保持回路を必要とするが、一般に電位保持回路は容量への電荷蓄積により電位を保持する構成をとるので、高速な応答性能を持たせる場合には非常に小さな容量で構成することになり、保持力の低下が生じるという課題があった。また電位保持回路を用いる構成では、次のパケット信号が入力されるまでに保持電位をリセットする必要があり、システムの構成が複雑になるという課題があった。
【0007】
さらに、従来の瞬時応答増幅回路は、その動作原理から、インピーダンス変換増幅回路の出力端子と瞬時応答増幅回路の入力端子1を直流結合する必要がある。これは、結合容量を用いて接続した場合、結合容量の過渡現象によって信号の中間レベルが時間とともに大きく変動してしまうためである。このため増幅器の直流利得が増加し、動作の安定性が失われたり、低周波雑音が増加したりするという課題があった。
【0008】
本発明の目的は、電位保持回路を不要にして上記した課題を解決した瞬時応答増幅回路を提供することである。
【0009】
【課題を解決するための手段】
請求項1にかかる発明は、入力信号のビット幅数ビット分から数十ビット分程度の時定数を有する平均値検出回路と、差動型振幅制限増幅回路とを有し、前記平均値検出回路の出力端子を前記差動型振幅制限増幅回路の差動入力端子の一方の入力端子に接続し、前記平均値検出回路の入力端子と前記差動型振幅制限増幅回路の他方の入力端子を入力端子対とし、前記差動型振幅制限増幅回路の差動出力端子を出力端子対とした基本増幅段を構成し、該基本増幅段を2段縦続接続したことを特徴とする瞬時応答増幅回路とした。
【0010】
請求項2にかかる発明は、請求項1に記載の瞬時応答増幅回路において、前記差動型振幅制限増幅回路の信号入力経路に電圧振幅を調整する電圧振幅調整回路を挿入したことを特徴とする瞬時応答増幅回路とした。
【0011】
請求項3にかかる発明は、請求項2に記載の瞬時応答増幅回路において、前記電圧振幅調整回路は、前記差動型振幅制限増幅回路の前記平均値検出回路が接続された側と反対側の入力端子に入力する信号の振幅を低減させる回路であることを特徴とする瞬時応答増幅回路とした。
【0012】
請求項4にかかる発明は、請求項2に記載の瞬時応答増幅回路において、前記電圧振幅調整回路は、前記差動型振幅制限増幅回路の前記平均値検出回路が接続された側の入力端子に入力する信号の最低電位を引き上げる回路であることを特徴とする瞬時応答増幅回路とした。
【0013】
請求項5にかかる発明は、請求項1乃至4のいずれか1つに記載の瞬時応答増幅回路において、瞬時応答増幅回路の入力部又は前記基本増幅段間のいずれか一方もしくは両方を結合容量を用いて接続したことを特徴とする瞬時応答増幅回路とした。
【0014】
【発明の実施の形態】
本発明は、差動型振幅制限増幅回路の差動入力端子の一方に入力信号のビット幅数ビット分から数十ビット分程度の時定数を有する平均値検出回路を接続した基本増幅段を構成し、その基本増幅段を2段縦続接続することで、平均値検出回路の高速動作による波形歪みを補償し、適正な差動出力信号が得られるようにするものである。
【0015】
この結果、本発明では従来に比べて電位保持回路を必要としないので、高速な電位保持回路構成上の問題を回避でき、かつシステム構成上リセットを必要としない瞬時応答増幅回路を実現することができる。また、本発明は瞬時応答増幅回路の入力部もしくは基本増幅段間を容量結合しても有効であるため、直流結合による回路動作の不安定性や雑音の増加のない瞬時応答増幅回路を実現することができる。
【0016】
[第1の実施形態]
図1は第1の実施形態の瞬時応答増幅回路を示すブロック図である。図1において、1は入力端子、12A,12Bは差動型振幅制限増幅回路、13A,13Bは時定数が信号のビット幅数ビット分から数十ビット分程度に設定された平均値検出回路、14,15は1段目の差動型振幅制限増幅回路12Aの入力端子、16,17は1段目の差動型振幅制限増幅回路12Aの出力端子、18,19は2段目の差動型振幅制限増幅回路12Bの入力端子、20,21は2段目の差動型振幅制限増幅回路12Bの出力端子、22,23は差動出力端子、24,25は電源もしくは電気的接地、26は第1の基本増幅段、27は第2の基本増幅段を示す。
【0017】
図2に図1で示した平均値検出回路13A,13Bの具体例を示す。図2において、28は抵抗、29は容量、30は入力端子、31は出力端子を示す。
【0018】
図3に図1に示した第1の実施形態の瞬時応答増幅回路の動作波形を示す。図3において、(a)は1段目の差動型振幅制限増幅回路12Aの入力信号波形図、(b)は2段目の差動型振幅制限増幅回路12Bの入力信号波形図、(c)は差動出力端子22,23の差動出力信号波形図、(d)は差動出力信号波形のパケット先頭部分拡大図、(e)は差動出力信号波形のパケット信号中央部分拡大図、(f)は差動出力信号波形の連続符号後の交番信号部分拡大図、14’、15’、18’、19’、22’、23’は図1の14、15,18,19,22,23で示した端子の電圧波形を示す。
【0019】
入力端子1から入力された電圧信号14’は、1段目の差動型振幅制限増幅回路12Aの入力端子14に入力されると同時に平均値検出回路13Aに入力され、その出力電圧信号15’は1段目の差動型振幅制限増幅回路12Aの入力端子15に入力される。ここで、平均値検出回路13Aの時定数は信号のビット幅数ビット分から数十ビット分程度に設定されており、信号入力開始からその時定数程度の時間で瞬時に平均値を検出することができる。
【0020】
しかしながら、図3の1段目の差動型振幅制限増幅回路12Aの入力端子15の電圧波形15’からも明らかなように、高速に応答する平均値検出回路13Aは信号の符号にある程度反応してしまう。これは特に連続符号が入力された場合に顕著であり、平均値検出回路13Aの出力電位は”1”連続の場合は高電位側に、”0”連続の場合は低電位側に引き寄せられてしまう。この平均値検出回路13Aの高速動作は、差動型振幅制限増幅回路12Aの参照電位に必要以上の変動を与えてしまうしまうため、振幅制隈増幅回路12Aの出力波形に歪みやデューティ変動を生じさせてしまう。
【0021】
そこで、本発明では2段目の差動型振幅制限増幅回路12Bと平均値検出回路13Bを用いて、この歪みやデューティ変動を補償している。以下に2段目の基本増幅段27での動作を説明する。1段目の差動型振幅制限増幅回路12Aの出力端子16,17から出力された信号は、上記に示した歪みやデューティ変動が生じた波形となってはいるが、差動型振幅制限増幅回路12Aの振幅制限機能が有効な入力信号振幅範囲の信号であれば、出力波形の振幅は一定値に制限されて出力される。このため出力端子17の出力信号を2段目の平均値検出回路13Bに入力した場合、1段目の差動型振幅制限増幅回路12Aの入力端子15に入力された参照電位波形の電圧15’を上下反転させた波形とほぼ等しい波形の電圧19’が出力される。この波形の電圧19’を2段目の差動型振幅制限増幅回路12Bの入力端子19に入力し、2段目の差動型振幅制限増幅回路12Bの入力電圧18’に対する参照電位として差動増幅動作をさせると、1段目の差動型振幅制限増幅回路12Aで生じた歪みやデューティ変動のほぼ逆の歪みやデューティ変動を生じさせることができるため、2段目の差動型振幅制限増幅回路12Bの差動出力電圧22’,23’は歪みやデューティ変動の少ない良好な波形となる。
【0022】
図3の(d)〜(f)に差動出力電圧22’,23’の波形を拡大して示す。パケット先頭部分(d)、パケット信号中央部分(e)、連続符号後の交番連続符号部分(f)などにおいても、歪みやデューティ変動の少ない良好な波形が得られることがわかる。
【0023】
[第2の実施形態]
図4に第2の実施形態の瞬時応答増幅回路を示す。図1と同じものには同じ符号を付けた。この実施形態では、2段目の平均値検出回路13Bを1段目の差動型振幅制限増幅回路12Aの出力端子16と2段目の差動型振幅制限増幅回路12Bの入力端子18の間に挿入したものを示している。出力端子16の出力信号を2段目の平均値検出回路13Bに入力すると、その出力は1段目の平均値検出回路13Aの出力信号とほぼ等しい波形となる。この波形を2段目の差動型振幅制限増幅回路12Bの入力端子18に入力し、もう一方の入力端子19には1段目の差動型振幅制限増幅回路12Aの出力端子17から出力される反転出力信号を入力することにより、第1の実施形態と同様の効果が得られる。
【0024】
このように、本発明の瞬時応答増幅回路では、差動端子対の一方であればどちら側に平均値検出回路が挿入されていても有効であり、全ての基本増幅段で任意に選択できる。
【0025】
[第3の実施形態]
図5に第3の実施形態の瞬時応答増幅回路を示す。図5において、図1におけるものと同じものには同じ符号を付けた。32A,32Bは電圧振幅調整回路を示す。図6にこの電圧振幅調整回路32A,32Bの具体例を示す。図6において、33は抵抗、34は入力端子、35は出力端子を示す。
【0026】
本発明の瞬時応答増幅回路ではその動作原理から明らかなように、平均値検出回路の出力する参照電位の変動幅が、平均値検出回路の出力端子が接続されていない側の差動型振幅制限増幅回路の入力端子に入力される信号の振幅内に入っていなければならない。平均値検出回路の出力電位幅は、平均値検出回路の入出力間インピーダンスと差動型振幅制限増幅回路の入力インピーダンスの比で決まり、平均値検出回路の入出力間インピーダンスが差動型振幅制限増幅回路の入力インピーダンスに対して無視できないほど大きい場合には、出力電位幅が低下するとともに、差動型振幅制限増幅回路の入力端子の直流電位に応じて、出力する参照電位全体が上下にシフトする。このシフトにより平均値検出回路の出力最低電位が、平均値検出回路の出力端子が接続されていない側の差動型振幅制限増幅回路の入力端子に入力される信号の最低電位を下回った場合には、正常動作ができなくなる。
【0027】
図6に示した電圧振幅調整回路32A,32Bは抵抗33からなり、抵抗値は図2に示した平均値検出回路13A,13Bの抵抗28と同じ値とする。これを図5に示すように、平均値検出回路13A,13Bが接続されていない側に接続することにより、差動型振幅制限増幅回路12A,12Bに入力される信号の振幅を平均値検出回路13A,13Bの出力する参照電位変動幅に合わせることができる。
【0028】
[第4の実施形態]
図7に第4の実施形態の瞬時応答増幅回路を示す。図7において、図1と同じものには同じ符号を付けた。36A,36Bはもう一つの電圧振幅調整回路、37,38は電源もしくは電気的接地を示す。図8に、もう一つの電圧振幅調整回路36A,36Bの具体例を示す。図8において、39,40は抵抗、41は入力端子、42は出力端子を示す。
【0029】
本実施形態では、電圧振幅調整回路36A,36Bの電源もしくは電気的接地37,38に信号の最低電位レベルより高い電位を与えることで、平均値検出回路13A,13Bに入力される信号の最低電位を引き上げ、出力する参照電位の最低電位を上げることができる。また、電圧振幅調整回路36A,36B内の抵抗39により、電圧振幅調整回路36A,36Bの出力信号は電位幅が低下するため、差動型振幅制限増幅回路の入力端子14,18に入力される信号の振幅内に入れることが容易となる。ただし、平均値検出回路13A,13Bによる出力電位幅の低下が充分な場合には、抵抗39は短絡としても良い。
【0030】
[第5の実施形態]
図9に第5の実施形態の瞬時応答増幅回路を示す。図9において、図5、図7と同じものには同じ符号を付けた。43,44は電源もしくは電気的接地を示す。図5における電圧振幅調整回路32A,32Bと図7で説明したのと同じもう一つの電圧振幅調整回路36A、36A’、36B、36B’を共存させた例で、回路設計の自由度を高めることができる。
【0031】
図5と図7では、電圧振幅調整回路32A,32Bやもう一つの電圧振幅調整回路36A,36Bを全ての基本増幅段に使用した例を示したが、必ずしも全ての基本増幅段に使用する必要はなく、少なくとも1つの基本増幅段に使用すれば効果が得られる。図7におけるもう一つの電圧振幅調整回路36A,36Bは図9のように基本増幅段の入力端子対の両方に使用しても良い。
【0032】
また図7と図9では、もう一つの電圧振幅調整回路36A,36A’,36B,36B’を平均値検出回路13A,13Bや電圧振幅調整回路32A,32Bの入力端子側に接続した例を示したが、平均値検出回路13A,13Bや電圧振幅調整回路32A,32Bと差動型振幅制限増幅回路12A,12Bの間に挿入しても同じ効果が得られる。
【0033】
さらに図9では、もう一つの電圧振幅調整回路36A,36A’,36B,36B’を全ての基本増幅段の差動入力端子対部分に挿入した例を示したが、必ずしも全ての入力端子に対して使用する必要はなく、少なくとも電圧振幅調整回路36A,36Bのどちらか一方が挿入されていれば同じ効果が得られる。
【0034】
[第6の実施形態]
図10に第6の実施形態の瞬時応答増幅回路を示す。図10において、図1と同じものには同じ符号を付けた。45A,45A’,45B,45B’は結合容量、46A,46A’,46B,46B’はバイアス回路、47〜50は電源もしくは電気的接地を示す。図11にバイアス回路46A,46A’,46B,46B’の具体例を示す。図11において、51はインダクタ、52は入力端子、53は出力端子を示す。
【0035】
図12に図10に示した瞬時応答増幅回路の動作波形を示す。図中の記号は図3と同様のものを示し、14’,15’18’,19’,22’,23’は図10の14,15,18,19,22,23で示した端子の電圧波形を示す。結合容量45A,45A’,45B,45B’と基本増幅段26,27の入力インピーダンスによる時定数を平均値検出回路13A,13Bの時定数より十分大きく設計すれば、平均値検出回路13A,13Bは結合容量45A,45A’,45B,45B’の過渡現象による信号の中間電位の変動に対して追随できるので、1段目の基本増幅段26の平均値検出回路13Aは正常に参照電位を発生し、問題なく動作する。
【0036】
ここで、1段目の差動型振幅制限増幅回路12Aの入力端子14,15にバイアス回路46A,46A’を通じて同じ電位が与えられている場合には、待機時(無信号状態)や平均値検出回路13Aの時定数以上の長さの連続符号が入力された際などに、1段目の基本増幅段26の出力電位は差動型振幅制限増幅回路12Aの中間電位に引き寄せられる。この動作により、パケットの先頭部分や連続符号後のデータ入力に対し、1段目の基本増幅段26の出力は振幅が半分程度となってしまう(図12(b))。1段目の基本増幅段26の出力信号は差動信号であるので、基本増幅段間の容量結合は2段目の基本増幅段27の差動入力信号の中間電位間を大きく引き離すことになるが、先頭部分の振幅が小さいことからこの効果が補償(緩和)されることとなり、若干パケット先頭部分や連続符号後に歪みやデューティ変動が残るものの、基本的には直流結合時と同様に動作させることができる(図12(d)〜(f))。
【0037】
図10では便宜上、瞬時応答増幅回路の入力部と基本増幅段間の両方を容量結合した例を示したが、どちらか一方でも良い。差動型振幅制限増幅回路12A,12Bの平均値検出回路13A,13Bが接続されていない側の入力端子には、本発明の第3の実施形態(図5)と同様に電圧振幅調整回路32A,32Bを使用しても良い。また、バイアス回路46A,46A’,46B,46B’は図9におけるもう一つの電圧振幅調整回路36A,36A’,36B,36B’と同様に平均値検出回路13A,13Bや電圧振幅調整回路32A,32Bと差動型振幅制限増幅回路12A,12Bの間に挿入しても良い。さらに、バイアス回路46A,46A’,46B,46B’は抵抗やもう一つの電圧振幅調整回路36A,36A’,36B,36B’で代用しても良く、回路の入出力間でインピーダンス整合が必要な場合には、インピーダンス整合回路を用いてバイアスを供給しても良い。差動型振幅制限増幅回路12A,12Bの内部にインピーダンス整合回路が内蔵されている場合や、部分的に直流結合されている場合は、バイアス回路46A,46A’,46B,46B’が必ずしも全ての入力部に接続されている必要はない。
【0038】
[その他の実施形態]
以上説明した第1〜第6の実施形態の瞬時応答増幅回路において、入力端子1は便宜上入力端子対として2個に分けて表現されているが、入力端子対間を短絡し、1つの入力端子としても良い。また、第1〜第6の実施形態において、瞬時応答増幅回路の入力部、もしくは基本増幅段26,27間でインピーダンス整合を必要とするときは、インピーダンス整合回路を使用してよい。
【0039】
第3〜第6の実施形態の瞬時応答増幅回路では、便宜上全ての基本増幅段で差動型振幅制限増幅回路12A,12Bの入力端子15,19側に平均値検出回路13A,13Bを接続した例を示したが、図4に示した第2の実施形態と同様の理由で差動端子対の一方であればどちら側に平均値検出回路13A,13Bが挿入されていても有効であり、全ての基本増幅段で任意に選択できる。
【0040】
さらに、図2に示した平均値検出回路13A,13B、図6で示した電圧振幅調整回路32A,32B、図8で示したもう一つの電圧振幅調整回路36A,36B、図11で示したバイアス回路46A,46A’,46B,46B’は同様の機能を提供するかぎり任意の回路構成で有効である。また全ての回路図内で複数箇所使用されている添字A,B,A’,B’で区別された同一数字の回路ブロックは、同様の機能を提供するかぎり厳密に同じ回路構成である必要はない。
【0041】
【発明の効果】
以上説明したように、本発明の瞬時応答増幅回路は従来に比べて電位保持回路を必要としないので、高速な電位保持回路構成上の問題を回避でき、かつシステム構成上リセットを必要としない。また、本発明は基本増幅段間を容量結合しても有効であるため、直流結合による回路動作の不安定性や雑音の増加のない瞬時応答増幅回路を実現することができる。
【図面の簡単な説明】
【図1】第1の実施形態の瞬時応答増幅回路のブロック図である。
【図2】図1における平均値検出回路の具体例の回路図である。
【図3】図1の瞬時応答増幅回路の動作波形を示す図で、(a)は1段目の差動型振幅制限増幅回路の入力信号波形図、(b)は2段目の差動型振幅制限増幅回路の入力信号波形図、(c)は差動出力信号波形図、(d)は差動出力信号波形のパケット先頭部分拡大図、(e)は差動出力信号波形のパケット信号中央部分拡大図、(f)は差動出力信号波形の連続符号後の交番信号部分拡大図である。
【図4】第2の実施形態の瞬時応答増幅回路のブロック図である。
【図5】第3の実施形態の瞬時応答増幅回路のブロック図である。
【図6】図5における電圧振幅調整回路の具体例の回路図である。
【図7】第4の実施形態の瞬時応答増幅回路のブロック図である。
【図8】図7における電圧振幅調整回路の具体例の回路図である。
【図9】第5の実施形態の瞬時応答増幅回路のブロック図である。
【図10】第6の実施形態の瞬時応答増幅回路のブロック図である。
【図11】図10におけるバイアス回路の具体例の回路図である。
【図12】図10の瞬時応答増幅回路の動作波形を示す図で、(a)は1段目の差動型振幅制限増幅回路の入力信号波形図、(b)は2段目の差動型振幅制限増幅回路の入力信号波形図、(c)は差動出力信号波形図、(d)は差動出力信号波形のパケット先頭部分拡大図、(e)は差動出力信号波形のパケット信号中央部分拡大図、(f)は差動出力信号波形の連続符号後の交番信号部分拡大図である。
【図13】従来の瞬時応答増幅回路のブロック図である。
【符号の説明】
1:入力端子
2:差動増幅回路
3:最高電位保持回路
4:最低電位保持回路
5、5’:抵抗
6,7:差動増幅回路の入力端子
8,9:差動増幅回路の出力端子
10,11:リセット信号入力端子
12A,12B:差動型振幅制限増幅回路
13A,13B:平均値検出回路
14,15:1段目の差動型振幅制限増幅回路12Aの入力端子
14’,15’:端子14,15の電圧波形
16,17:1段目の差動型振幅制限増幅回路12Aの出力端子
18,19:2段目の差動型振幅制限増幅回路12Bの入力端子
18’,19’:端子18,19の電圧波形
20,21:2段目の差動型振幅制増幅幅回路12Bの出力端子
22,23:差動出力端子
22’,23’:端子22,23の電圧波形
24,25:電源もしくは電気的接地
26:第1の基本増幅段
27:第2の基本増幅段
28:抵抗
29:容量
30:平均値検出回路の入力端子
31:平均値検出回路の出力端子
32A,32B:電圧振幅調整回路
33:抵抗
34:電圧振幅調整回路の入力端子
35:電圧振幅調整回路の出力端子
36A,36A’,36B,36B’:もう一つの電圧振幅調整回路
37,38:電源もしくは電気的接地
39,40:抵抗
41:もう一つの電圧振幅調整回路の入力端子
42:もう一つの電圧振幅調整回路の出力端子
43,44:電源もしくは電気的接地
45A,45A’,45B,45B’:結合容量
46A,46A’,46B,46B’:バイアス回路
47〜50:電源もしくは電気的接地
51:インダクタ
52:バイアス回路の入力端子
53:バイアス回路の出力端子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an instantaneous response amplifier circuit that instantaneously responds to an intermittently received optical signal such as an optical packet signal and differentially outputs a good amplified signal with little distortion.
[0002]
[Prior art]
In an optical network that handles an optical packet signal or the like, since a signal having a different light intensity is received for each packet, a receiver requires an amplifier circuit for equalizing and amplifying the signal. Generally, only one light receiving element such as a photodiode for receiving an optical signal is used per channel. Therefore, an impedance conversion amplifier circuit that converts a current signal output from the photodiode into a voltage signal has a single input / output. A single-ended amplifier circuit is used. However, for the purpose of improving the operation stability of the amplifier circuit and improving the consistency of the interface with the logic circuit, a differential circuit configuration has been used in the amplifier stage subsequent to the impedance conversion amplifier circuit. .
[0003]
In order for the differential amplifier circuit to operate normally, it is necessary to apply an intermediate level reference potential of the input signal to the input terminal to which the output of the impedance conversion amplifier circuit is not connected. If the level deviates from the level, distortion such as a decrease in the amplitude of the output signal or a fluctuation in the duty occurs, and the quality of the signal deteriorates. That is, the instantaneous response amplifier circuit needs to have a function of instantly extracting an optimum reference potential from the received packet signals having different light intensities and outputting a good differential signal.
[0004]
FIG. 13 shows an example of a conventional typical instantaneous response amplifier circuit. In FIG. 13, 1 is an input terminal, 2 is a differential amplifier circuit, 3 is a highest potential holding circuit, 4 is a lowest potential holding circuit, 5 and 5 'are resistors having the same value, and 6 and 7 are input terminals of the differential amplifier circuit. , 8, and 9 indicate output terminals of the differential amplifier circuit, and 10 and 11 indicate reset signal input terminals.
[0005]
The output signal of the impedance conversion amplifier circuit is input from the input terminal 1 to the input terminal 6 of the differential amplifier circuit 2. On the other hand, the signal branched at the input terminal 1 is input to the highest potential holding circuit 3 and the lowest potential holding circuit 4, and the highest potential and the lowest potential of the signal are instantaneously extracted and held. A good differential output can be obtained by generating an intermediate potential from the held highest potential and the lowest potential by dividing the two resistors 5, 5 'and inputting the intermediate potential to the input terminal 7 of the differential amplifier circuit 2. .
[0006]
[Problems to be solved by the invention]
The conventional instantaneous response amplifier circuit requires a high-speed potential holding circuit as described above. However, since the potential holding circuit generally has a configuration in which a potential is held by accumulating electric charges in a capacitor, a high-speed response performance is provided. In such a case, a very small capacity is required, and there is a problem that the holding force is reduced. Further, in the configuration using the potential holding circuit, it is necessary to reset the held potential before the next packet signal is input, and there is a problem that the configuration of the system becomes complicated.
[0007]
Further, in the conventional instantaneous response amplifying circuit, it is necessary to DC-couple the output terminal of the impedance conversion amplifying circuit and the input terminal 1 of the instantaneous response amplifying circuit from the principle of operation. This is because when connection is made using a coupling capacitance, the intermediate level of the signal greatly fluctuates with time due to a transient phenomenon of the coupling capacitance. For this reason, there has been a problem that the DC gain of the amplifier is increased, operation stability is lost, and low-frequency noise is increased.
[0008]
SUMMARY OF THE INVENTION An object of the present invention is to provide an instantaneous response amplifying circuit which solves the above-mentioned problem without using a potential holding circuit.
[0009]
[Means for Solving the Problems]
The invention according to claim 1 has an average value detection circuit having a time constant of about several bits to several tens of bits of a bit width of an input signal, and a differential type amplitude limiting amplifier circuit. An output terminal is connected to one input terminal of a differential input terminal of the differential type amplitude limiting amplifier circuit, and an input terminal of the average value detecting circuit and the other input terminal of the differential type amplitude limiting amplifier circuit are input terminals. The instantaneous response amplification circuit is characterized in that a basic amplification stage is configured as a pair, and a differential output terminal of the differential type amplitude limiting amplifier circuit is used as an output terminal pair, and the two basic amplification stages are cascaded. .
[0010]
According to a second aspect of the present invention, in the instant response amplifying circuit according to the first aspect, a voltage amplitude adjusting circuit for adjusting a voltage amplitude is inserted in a signal input path of the differential type amplitude limiting amplifier circuit. An instant response amplifier circuit was used.
[0011]
According to a third aspect of the present invention, in the instantaneous response amplifier circuit according to the second aspect, the voltage amplitude adjustment circuit is provided on a side of the differential type amplitude limiting amplifier circuit opposite to a side to which the average value detection circuit is connected. An instantaneous response amplifying circuit characterized in that it is a circuit for reducing the amplitude of a signal input to an input terminal.
[0012]
According to a fourth aspect of the present invention, in the instant response amplifying circuit according to the second aspect, the voltage amplitude adjusting circuit is connected to an input terminal of the differential type amplitude limiting amplifier circuit on the side where the average value detecting circuit is connected. The instant response amplifier circuit is a circuit for raising the lowest potential of the input signal.
[0013]
According to a fifth aspect of the present invention, in the instantaneous response amplifying circuit according to any one of the first to fourth aspects, one or both of the input section of the instantaneous response amplifying circuit and the basic amplifying stage has a coupling capacitance. And an instantaneous response amplifier circuit characterized by being connected by using the same.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention constitutes a basic amplification stage in which an average value detection circuit having a time constant of several bits to several tens of bits of an input signal is connected to one of differential input terminals of a differential type amplitude limiting amplifier circuit. By cascade-connecting the two basic amplification stages, waveform distortion due to high-speed operation of the average value detection circuit is compensated, and an appropriate differential output signal can be obtained.
[0015]
As a result, the present invention does not require a potential holding circuit as compared with the related art, so that it is possible to avoid a problem in a high-speed potential holding circuit configuration and to realize an instantaneous response amplifier circuit that does not require reset in a system configuration. it can. Further, since the present invention is effective even when the input portion of the instantaneous response amplifier circuit or the basic amplifier stage is capacitively coupled, it is possible to realize an instantaneous response amplifier circuit without instability of circuit operation and increase in noise due to DC coupling. Can be.
[0016]
[First Embodiment]
FIG. 1 is a block diagram showing an instantaneous response amplifier circuit according to the first embodiment. In FIG. 1, 1 is an input terminal, 12A and 12B are differential-type amplitude limiting amplifier circuits, 13A and 13B are average value detection circuits whose time constants are set to several bits to several tens of bits, and 14 , 15 are input terminals of the first-stage differential amplitude limiting amplifier circuit 12A, 16 and 17 are output terminals of the first-stage differential amplitude limiting amplifier circuit 12A, and 18 and 19 are second-stage differential amplitude limiting amplifier circuits. Input terminals of the amplitude limiting amplifier circuit 12B, 20 and 21 are output terminals of the second-stage differential type amplitude limiting amplifier circuit 12B, 22 and 23 are differential output terminals, 24 and 25 are power supply or electrical ground, and 26 is A first basic amplification stage 27 indicates a second basic amplification stage.
[0017]
FIG. 2 shows a specific example of the average value detection circuits 13A and 13B shown in FIG. In FIG. 2, 28 is a resistor, 29 is a capacitor, 30 is an input terminal, and 31 is an output terminal.
[0018]
FIG. 3 shows operation waveforms of the instantaneous response amplifier circuit of the first embodiment shown in FIG. 3A shows an input signal waveform diagram of the first-stage differential amplitude limiting amplifier circuit 12A, FIG. 3B shows an input signal waveform diagram of the second-stage differential amplitude limiting amplifier circuit 12B, and FIG. ) Is a differential output signal waveform diagram of the differential output terminals 22 and 23, (d) is an enlarged view of a packet head portion of the differential output signal waveform, (e) is an enlarged view of a packet signal central portion of the differential output signal waveform, (F) is an enlarged view of a portion of the alternating signal after the continuous sign of the differential output signal waveform, and 14 ', 15', 18 ', 19', 22 ', and 23' are 14, 15, 18, 19, 22 in FIG. , 23 show the voltage waveforms at the terminals.
[0019]
The voltage signal 14 'input from the input terminal 1 is input to the input terminal 14 of the first-stage differential type amplitude limiting amplifier circuit 12A and at the same time to the average value detection circuit 13A, and its output voltage signal 15'. Is input to the input terminal 15 of the first-stage differential amplitude limiting amplifier circuit 12A. Here, the time constant of the average value detection circuit 13A is set to about several bits to several tens of bits for the bit width of the signal, and the average value can be instantaneously detected in about the time constant from the start of signal input. .
[0020]
However, as is apparent from the voltage waveform 15 'at the input terminal 15 of the first-stage differential type amplitude limiting amplifier circuit 12A in FIG. 3, the fast-responding average value detection circuit 13A responds to the sign of the signal to some extent. Would. This is particularly remarkable when a continuous code is input, and the output potential of the average value detection circuit 13A is drawn to the high potential side when "1" is continuous and to the low potential side when "0" is continuous. I will. The high-speed operation of the average value detection circuit 13A causes an undesired fluctuation in the reference potential of the differential type amplitude limiting amplifier circuit 12A, and thus causes distortion and duty fluctuation in the output waveform of the amplitude suppression amplifier circuit 12A. Let me do it.
[0021]
Therefore, in the present invention, the distortion and the duty fluctuation are compensated by using the second-stage differential amplitude limiting amplifier circuit 12B and the average value detection circuit 13B. The operation of the second basic amplification stage 27 will be described below. The signals output from the output terminals 16 and 17 of the first-stage differential-type amplitude limiting amplifier circuit 12A have the waveforms in which the distortion and the duty fluctuation described above have occurred. If the amplitude limiting function of the circuit 12A is a signal within an effective input signal amplitude range, the amplitude of the output waveform is limited to a constant value and output. Therefore, when the output signal of the output terminal 17 is input to the average value detection circuit 13B of the second stage, the voltage 15 'of the reference potential waveform input to the input terminal 15 of the differential amplitude limiting amplifier circuit 12A of the first stage. A voltage 19 'having a waveform substantially equal to the waveform obtained by inverting the vertical direction is output. The voltage 19 'having this waveform is input to the input terminal 19 of the second-stage differential amplitude limiting amplifier circuit 12B, and the differential voltage is applied as a reference potential to the input voltage 18' of the second-stage differential amplitude limiting amplifier circuit 12B. When the amplification operation is performed, the distortion and the duty fluctuation substantially opposite to the distortion and the duty fluctuation generated in the first-stage differential amplitude limiting amplifier circuit 12A can be generated. The differential output voltages 22 'and 23' of the amplifier circuit 12B have good waveforms with little distortion and fluctuation in duty.
[0022]
3 (d) to 3 (f) show enlarged waveforms of the differential output voltages 22 'and 23'. It can be seen that good waveforms with little distortion and duty fluctuation can be obtained also in the packet head part (d), the packet signal central part (e), the alternating continuous code part (f) after the continuous code, and the like.
[0023]
[Second embodiment]
FIG. 4 shows an instantaneous response amplifier circuit according to the second embodiment. The same components as those in FIG. 1 are denoted by the same reference numerals. In this embodiment, the second-stage average value detection circuit 13B is connected between the output terminal 16 of the first-stage differential amplitude limiting amplifier circuit 12A and the input terminal 18 of the second-stage differential amplitude limiting amplifier circuit 12B. Shows what was inserted in the. When the output signal of the output terminal 16 is input to the second-stage average value detection circuit 13B, the output has a waveform substantially equal to the output signal of the first-stage average value detection circuit 13A. This waveform is input to the input terminal 18 of the second-stage differential amplitude limiting amplifier circuit 12B, and the other input terminal 19 is output from the output terminal 17 of the first-stage differential amplitude limiting amplifier circuit 12A. By inputting the inverted output signal, the same effect as in the first embodiment can be obtained.
[0024]
As described above, the instantaneous response amplifying circuit of the present invention is effective regardless of whether the average value detecting circuit is inserted on either side of the differential terminal pair, and can be arbitrarily selected in all the basic amplifying stages.
[0025]
[Third Embodiment]
FIG. 5 shows an instantaneous response amplifier circuit according to the third embodiment. In FIG. 5, the same components as those in FIG. 1 are denoted by the same reference numerals. 32A and 32B indicate voltage amplitude adjustment circuits. FIG. 6 shows a specific example of the voltage amplitude adjusting circuits 32A and 32B. In FIG. 6, 33 is a resistor, 34 is an input terminal, and 35 is an output terminal.
[0026]
As is clear from the principle of operation of the instantaneous response amplifier circuit of the present invention, the fluctuation range of the reference potential output from the average value detection circuit is limited by the differential amplitude limit on the side to which the output terminal of the average value detection circuit is not connected. It must be within the amplitude of the signal input to the input terminal of the amplifier circuit. The output potential width of the average value detection circuit is determined by the ratio between the input / output impedance of the average value detection circuit and the input impedance of the differential amplitude limiting amplifier circuit. If the input impedance of the amplifier circuit is not negligible, the output potential width decreases and the entire output reference potential shifts up and down according to the DC potential of the input terminal of the differential amplitude limiting amplifier circuit. I do. When this shift causes the output minimum potential of the average value detection circuit to fall below the minimum potential of the signal input to the input terminal of the differential type amplitude limiting amplifier circuit on the side to which the output terminal of the average value detection circuit is not connected. Cannot operate normally.
[0027]
The voltage amplitude adjusting circuits 32A and 32B shown in FIG. 6 are composed of resistors 33, and have the same resistance value as the resistance 28 of the average value detecting circuits 13A and 13B shown in FIG. By connecting this to the side where the average value detection circuits 13A and 13B are not connected as shown in FIG. 5, the amplitude of the signal input to the differential type amplitude limiting amplifier circuits 12A and 12B can be reduced. It can be adjusted to the reference potential fluctuation width output from 13A and 13B.
[0028]
[Fourth embodiment]
FIG. 7 shows an instantaneous response amplifier circuit according to the fourth embodiment. 7, the same components as those in FIG. 1 are denoted by the same reference numerals. 36A and 36B denote another voltage amplitude adjusting circuit, and 37 and 38 denote a power supply or an electrical ground. FIG. 8 shows a specific example of another voltage amplitude adjustment circuit 36A, 36B. 8, 39 and 40 are resistors, 41 is an input terminal, and 42 is an output terminal.
[0029]
In the present embodiment, by applying a potential higher than the lowest potential level of the signal to the power supply or the electrical ground 37, 38 of the voltage amplitude adjusting circuits 36A, 36B, the lowest potential of the signal input to the average value detection circuits 13A, 13B is provided. And the minimum potential of the output reference potential can be raised. Further, since the potential width of the output signals of the voltage amplitude adjustment circuits 36A and 36B is reduced by the resistors 39 in the voltage amplitude adjustment circuits 36A and 36B, the output signals are input to the input terminals 14 and 18 of the differential type amplitude limiting amplifier circuit. It is easy to fit within the amplitude of the signal. However, when the average value detection circuits 13A and 13B sufficiently reduce the output potential width, the resistor 39 may be short-circuited.
[0030]
[Fifth Embodiment]
FIG. 9 shows an instantaneous response amplifier circuit according to the fifth embodiment. 9, the same components as those in FIGS. 5 and 7 are denoted by the same reference numerals. Reference numerals 43 and 44 indicate a power supply or an electrical ground. An example in which the voltage amplitude adjustment circuits 32A, 32B in FIG. 5 and another voltage amplitude adjustment circuit 36A, 36A ', 36B, 36B' as described with reference to FIG. Can be.
[0031]
FIGS. 5 and 7 show an example in which the voltage amplitude adjustment circuits 32A and 32B and another voltage amplitude adjustment circuit 36A and 36B are used in all the basic amplification stages. However, if it is used for at least one basic amplification stage, an effect can be obtained. The other voltage amplitude adjusting circuits 36A and 36B in FIG. 7 may be used for both input terminal pairs of the basic amplification stage as shown in FIG.
[0032]
FIGS. 7 and 9 show an example in which another voltage amplitude adjustment circuit 36A, 36A ', 36B, 36B' is connected to the input terminals of the average value detection circuits 13A, 13B and the voltage amplitude adjustment circuits 32A, 32B. However, the same effect can be obtained by inserting between the average value detection circuits 13A and 13B and the voltage amplitude adjustment circuits 32A and 32B and the differential amplitude limiting amplifier circuits 12A and 12B.
[0033]
Further, FIG. 9 shows an example in which another voltage amplitude adjusting circuit 36A, 36A ', 36B, 36B' is inserted into the differential input terminal pair of all the basic amplification stages. The same effect can be obtained if at least one of the voltage amplitude adjusting circuits 36A and 36B is inserted.
[0034]
[Sixth Embodiment]
FIG. 10 shows an instantaneous response amplifier circuit according to the sixth embodiment. 10, the same components as those in FIG. 1 are denoted by the same reference numerals. 45A, 45A ', 45B, 45B' denote coupling capacitances, 46A, 46A ', 46B, 46B' denote bias circuits, and 47-50 denote power supplies or electrical grounds. FIG. 11 shows a specific example of the bias circuits 46A, 46A ', 46B, 46B'. 11, 51 indicates an inductor, 52 indicates an input terminal, and 53 indicates an output terminal.
[0035]
FIG. 12 shows operation waveforms of the instantaneous response amplifier circuit shown in FIG. The symbols in the figure are the same as those in FIG. 3, and 14 ', 15', 18 ', 19', 22 ', and 23' are the terminals of 14, 15, 18, 19, 22, and 23 in FIG. 3 shows a voltage waveform. If the time constants of the coupling capacitors 45A, 45A ', 45B, 45B' and the input impedances of the basic amplification stages 26, 27 are designed to be sufficiently larger than the time constants of the average value detection circuits 13A, 13B, the average value detection circuits 13A, 13B The average value detection circuit 13A of the first basic amplification stage 26 can normally generate the reference potential because it can follow the fluctuation of the intermediate potential of the signal due to the transient phenomenon of the coupling capacitors 45A, 45A ', 45B, 45B'. Works without problems.
[0036]
Here, when the same potential is applied to the input terminals 14 and 15 of the first-stage differential type amplitude limiting amplifier circuit 12A through the bias circuits 46A and 46A ', the standby state (no signal state) or the average value For example, when a continuous code having a length equal to or longer than the time constant of the detection circuit 13A is input, the output potential of the first basic amplification stage 26 is drawn to the intermediate potential of the differential amplitude limiting amplifier circuit 12A. Due to this operation, the amplitude of the output of the first basic amplification stage 26 becomes about half that of the data input after the leading portion of the packet or after the continuous code (FIG. 12B). Since the output signal of the first basic amplification stage 26 is a differential signal, the capacitive coupling between the basic amplification stages greatly separates the intermediate potentials of the differential input signals of the second basic amplification stage 27. However, this effect is compensated (mitigated) because the amplitude of the head portion is small, and although distortion and duty fluctuation slightly remain after the packet head portion and the continuous code, the operation is basically performed in the same manner as in DC coupling. (FIGS. 12D to 12F).
[0037]
FIG. 10 shows an example in which both the input section of the instantaneous response amplification circuit and the basic amplification stage are capacitively coupled for convenience, but either one may be used. As in the third embodiment (FIG. 5) of the present invention, the voltage amplitude adjusting circuit 32A is connected to the input terminals of the differential type amplitude limiting amplifier circuits 12A and 12B on the side where the average value detecting circuits 13A and 13B are not connected. , 32B may be used. Also, the bias circuits 46A, 46A ', 46B, 46B' are similar to the other voltage amplitude adjustment circuits 36A, 36A ', 36B, 36B' in FIG. 9, and have average value detection circuits 13A, 13B and voltage amplitude adjustment circuits 32A, 32A. 32B and the differential type amplitude limiting amplifier circuits 12A and 12B. Furthermore, the bias circuits 46A, 46A ', 46B, 46B' may be replaced by resistors or another voltage amplitude adjusting circuits 36A, 36A ', 36B, 36B', and impedance matching between the input and output of the circuit is required. In this case, the bias may be supplied using an impedance matching circuit. When an impedance matching circuit is built in the differential type amplitude limiting amplifier circuits 12A and 12B, or when a part is DC-coupled, all the bias circuits 46A, 46A ', 46B and 46B' are not necessarily provided. It does not need to be connected to the input.
[0038]
[Other embodiments]
In the instantaneous response amplifier circuits of the first to sixth embodiments described above, the input terminal 1 is represented as two input terminal pairs for the sake of convenience. It is good. In the first to sixth embodiments, when impedance matching is required between the input section of the instantaneous response amplifier circuit or the basic amplifier stages 26 and 27, an impedance matching circuit may be used.
[0039]
In the instantaneous response amplifier circuits of the third to sixth embodiments, for convenience, the average value detection circuits 13A and 13B are connected to the input terminals 15 and 19 of the differential amplitude limiting amplifier circuits 12A and 12B in all the basic amplification stages. Although an example has been shown, for the same reason as in the second embodiment shown in FIG. 4, it is effective regardless of which side the average value detection circuits 13A and 13B are inserted, as long as it is one of the differential terminal pairs. It can be selected arbitrarily in all basic amplification stages.
[0040]
Further, the average value detection circuits 13A and 13B shown in FIG. 2, the voltage amplitude adjustment circuits 32A and 32B shown in FIG. 6, the other voltage amplitude adjustment circuits 36A and 36B shown in FIG. 8, and the bias shown in FIG. The circuits 46A, 46A ', 46B, 46B' are effective in any circuit configuration as long as they provide similar functions. Also, circuit blocks with the same number and distinguished by subscripts A, B, A ', and B' used in a plurality of locations in all circuit diagrams need to have exactly the same circuit configuration as long as they provide similar functions. Absent.
[0041]
【The invention's effect】
As described above, since the instantaneous response amplifier circuit of the present invention does not require a potential holding circuit as compared with the related art, it is possible to avoid a problem in a high-speed potential holding circuit configuration and does not require a reset in a system configuration. Further, since the present invention is effective even when capacitive coupling is performed between the basic amplification stages, it is possible to realize an instantaneous response amplification circuit free from instability of circuit operation and increase in noise due to DC coupling.
[Brief description of the drawings]
FIG. 1 is a block diagram of an instantaneous response amplifier circuit according to a first embodiment.
FIG. 2 is a circuit diagram of a specific example of an average value detection circuit in FIG.
3A and 3B are diagrams showing operation waveforms of the instantaneous response amplifier circuit of FIG. 1, wherein FIG. 3A is an input signal waveform diagram of a first-stage differential type amplitude limiting amplifier circuit, and FIG. (C) is a differential output signal waveform diagram, (d) is an enlarged view of a packet head portion of the differential output signal waveform, and (e) is a packet signal of the differential output signal waveform FIG. 7F is an enlarged view of a central portion, and FIG.
FIG. 4 is a block diagram of an instantaneous response amplifier circuit according to a second embodiment.
FIG. 5 is a block diagram of an instantaneous response amplifier circuit according to a third embodiment.
FIG. 6 is a circuit diagram of a specific example of a voltage amplitude adjustment circuit in FIG. 5;
FIG. 7 is a block diagram of an instantaneous response amplifier circuit according to a fourth embodiment.
8 is a circuit diagram of a specific example of the voltage amplitude adjustment circuit in FIG.
FIG. 9 is a block diagram of an instantaneous response amplifier circuit according to a fifth embodiment.
FIG. 10 is a block diagram of an instantaneous response amplifier circuit according to a sixth embodiment.
11 is a circuit diagram of a specific example of the bias circuit in FIG.
12A and 12B are diagrams illustrating operation waveforms of the instantaneous response amplifier circuit of FIG. 10, wherein FIG. 12A is an input signal waveform diagram of a first-stage differential amplitude limiting amplifier circuit, and FIG. (C) is a differential output signal waveform diagram, (d) is an enlarged view of a packet head portion of the differential output signal waveform, and (e) is a packet signal of the differential output signal waveform FIG. 7F is an enlarged view of a central portion, and FIG.
FIG. 13 is a block diagram of a conventional instantaneous response amplifier circuit.
[Explanation of symbols]
1: Input terminal 2: Differential amplifier circuit 3: Highest potential holding circuit 4: Lowest potential holding circuit 5, 5 ': Resistors 6, 7: Input terminals 8, 9 of differential amplifier circuit: Output terminals of differential amplifier circuit 10, 11: reset signal input terminals 12A, 12B: differential amplitude limiting amplifier circuits 13A, 13B: average value detection circuit 14, 15: input terminals 14 ', 15 of the first stage differential amplitude limiting amplifier circuit 12A. ': Voltage waveforms 16 and 17 at terminals 14 and 15: output terminal 18 of differential amplitude limiting amplifier circuit 12A of first stage, 19: input terminal 18' of differential amplitude limiting amplifier circuit 12B of second stage, 19 ': Voltage waveforms at terminals 18, 19, 20, 21: Output terminals 22, 23 of the second-stage differential amplitude controlled amplification circuit 12B: Differential output terminals 22', 23 ': Voltages at terminals 22, 23 Waveforms 24 and 25: power supply or electric ground 26: first basic amplification stage 2 7: Second basic amplification stage 28: Resistance 29: Capacitance 30: Input terminal 31 of the average value detection circuit: Output terminals 32A and 32B of the average value detection circuit: Voltage amplitude adjustment circuit 33: Resistance 34: Voltage amplitude adjustment circuit Input terminal 35: Output terminal 36A, 36A ', 36B, 36B' of voltage amplitude adjustment circuit: Another voltage amplitude adjustment circuit 37, 38: Power supply or electric ground 39, 40: Resistance 41: Another voltage amplitude adjustment Input terminal 42 of the circuit: output terminals 43 and 44 of another voltage amplitude adjusting circuit: power supply or electric ground 45A, 45A ', 45B, 45B': coupling capacitance 46A, 46A ', 46B, 46B': bias circuit 47 50: power supply or electric ground 51: inductor 52: input terminal of bias circuit 53: output terminal of bias circuit

Claims (5)

入力信号のビット幅数ビット分から数十ビット分程度の時定数を有する平均値検出回路と、差動型振幅制限増幅回路とを有し、
前記平均値検出回路の出力端子を前記差動型振幅制限増幅回路の差動入力端子の一方の入力端子に接続し、前記平均値検出回路の入力端子と前記差動型振幅制限増幅回路の他方の入力端子を入力端子対とし、前記差動型振幅制限増幅回路の差動出力端子を出力端子対とする基本増幅段を構成し、
該基本増幅段を2段縦続接続したことを特徴とする瞬時応答増幅回路。
An average value detection circuit having a time constant of about several tens bits to several tens of bits of a bit width of an input signal, and a differential type amplitude limiting amplifier circuit,
An output terminal of the average value detection circuit is connected to one input terminal of a differential input terminal of the differential type amplitude limiting amplifier circuit, and an input terminal of the average value detection circuit and the other of the differential type amplitude limiting amplifier circuit. The input terminals of the differential-type amplitude limiting amplifier circuit as a pair of output terminals, and configure a basic amplification stage having a pair of differential output terminals as an output terminal pair;
An instantaneous response amplifying circuit comprising two cascade-connected basic amplifying stages.
請求項1に記載の瞬時応答増幅回路において、
前記差動型振幅制限増幅回路の信号入力経路に電圧振幅を調整する電圧振幅調整回路を挿入したことを特徴とする瞬時応答増幅回路。
The instant response amplifier circuit according to claim 1,
An instant response amplifier circuit, wherein a voltage amplitude adjusting circuit for adjusting a voltage amplitude is inserted into a signal input path of the differential type amplitude limiting amplifier circuit.
請求項2に記載の瞬時応答増幅回路において、
前記電圧振幅調整回路は、前記差動型振幅制限増幅回路の前記平均値検出回路が接続された側と反対側の入力端子に入力する信号の振幅を低減させる回路であることを特徴とする瞬時応答増幅回路。
The instantaneous response amplifier circuit according to claim 2,
The voltage amplitude adjustment circuit is a circuit for reducing the amplitude of a signal input to an input terminal of the differential type amplitude limiting amplifier circuit which is opposite to a side to which the average value detection circuit is connected. Response amplification circuit.
請求項2に記載の瞬時応答増幅回路において、
前記電圧振幅調整回路は、前記差動型振幅制限増幅回路の前記平均値検出回路が接続された側の入力端子に入力する信号の最低電位を引き上げる回路であることを特徴とする瞬時応答増幅回路。
The instantaneous response amplifier circuit according to claim 2,
The instantaneous response amplification circuit, wherein the voltage amplitude adjustment circuit is a circuit that raises a minimum potential of a signal input to an input terminal of the differential type amplitude limiting amplifier circuit that is connected to the average value detection circuit. .
請求項1乃至4のいずれか1つに記載の瞬時応答増幅回路において、
瞬時応答増幅回路の入力部又は前記基本増幅段間のいずれか一方もしくは両方を結合容量を用いて接続したことを特徴とする瞬時応答増幅回路。
The instantaneous response amplifier circuit according to any one of claims 1 to 4,
An instantaneous response amplifying circuit, wherein either one or both of an input section of the instantaneous response amplifying circuit and between the basic amplifying stages are connected using a coupling capacitor.
JP2002247949A 2002-08-28 2002-08-28 Instantaneous response amplifier circuit Expired - Lifetime JP3881293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002247949A JP3881293B2 (en) 2002-08-28 2002-08-28 Instantaneous response amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002247949A JP3881293B2 (en) 2002-08-28 2002-08-28 Instantaneous response amplifier circuit

Publications (2)

Publication Number Publication Date
JP2004088525A true JP2004088525A (en) 2004-03-18
JP3881293B2 JP3881293B2 (en) 2007-02-14

Family

ID=32055447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002247949A Expired - Lifetime JP3881293B2 (en) 2002-08-28 2002-08-28 Instantaneous response amplifier circuit

Country Status (1)

Country Link
JP (1) JP3881293B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008263563A (en) * 2007-04-16 2008-10-30 Nippon Telegr & Teleph Corp <Ntt> Amplitude limit amplifying circuit
JP2010028263A (en) * 2008-07-16 2010-02-04 Nippon Telegr & Teleph Corp <Ntt> Amplitude limit amplifier circuit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110553729B (en) * 2019-07-31 2021-12-24 深圳市亚派光电器件有限公司 Reference voltage setting method, circuit, device and medium for optical detection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008263563A (en) * 2007-04-16 2008-10-30 Nippon Telegr & Teleph Corp <Ntt> Amplitude limit amplifying circuit
JP2010028263A (en) * 2008-07-16 2010-02-04 Nippon Telegr & Teleph Corp <Ntt> Amplitude limit amplifier circuit

Also Published As

Publication number Publication date
JP3881293B2 (en) 2007-02-14

Similar Documents

Publication Publication Date Title
US7635837B2 (en) Optical receiving circuit
WO2011099598A1 (en) Optical signal turn-off detection circuit and optical receiver
JPH0884160A (en) Light receiving circuit
KR102157730B1 (en) Peak-Detector using Charge Pump and Burst-Mode Transimpedance Amplifier
JP6217258B2 (en) Current-voltage conversion circuit, optical receiver, and optical transmission system
JPH10190385A (en) Amplifier circuit unit and amplifier circuit
WO2001048914A1 (en) Signal amplifying circuit and optical signal receiver using the same
JP2008029004A (en) Receiver for reducing intersymbol interference of channel and compensating for signal gain loss
CN104852769A (en) Phase-splitting circuit applied to TIA with RSSI on front end of optical receiver
KR100841605B1 (en) Signal amplification circuit and optical receiver
JP4165829B2 (en) Transimpedance amplifier
JP2015211376A (en) Receiving circuit
JP6192179B2 (en) Transimpedance amplifier circuit and semiconductor device thereof
JP4576408B2 (en) Limiter amplifier circuit
JP3881293B2 (en) Instantaneous response amplifier circuit
US6831521B1 (en) Method and apparatus for detecting interruption of an input signal with cancellation of offset level
US6538790B1 (en) Optical receiver array
JP5951160B2 (en) Burst signal receiving circuit
KR20010000218A (en) Burst mode type optical receiver by using multi-stage feedback
JP2007159020A (en) Current/voltage-converting circuit
JP2007049475A (en) Photo-receiver
CN104333336A (en) Phase-splitting circuit applied to transimpedance amplification circuit
JPH09289495A (en) Amplifier for burst signal and optical receiving circuit
JPH10313222A (en) Optical reception circuit
JP2012178670A (en) Buffer circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3881293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term