JP2004087776A - Assembly lens to semiconductor laser and lens assembly structure - Google Patents

Assembly lens to semiconductor laser and lens assembly structure Download PDF

Info

Publication number
JP2004087776A
JP2004087776A JP2002246490A JP2002246490A JP2004087776A JP 2004087776 A JP2004087776 A JP 2004087776A JP 2002246490 A JP2002246490 A JP 2002246490A JP 2002246490 A JP2002246490 A JP 2002246490A JP 2004087776 A JP2004087776 A JP 2004087776A
Authority
JP
Japan
Prior art keywords
semiconductor laser
lens
laser
adhesive
collimator lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002246490A
Other languages
Japanese (ja)
Inventor
Katsuhiro Kuriyama
栗山 勝裕
Koji Fukui
福井 厚司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002246490A priority Critical patent/JP2004087776A/en
Publication of JP2004087776A publication Critical patent/JP2004087776A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lens assembly structure in which an adhesive is hard to enter the gap between a semiconductor laser and a lens for sticking to a light emission surface, and the lens does not displace from the center of the optical axis of a laser emission part when the adhesive is cured, resulting in no degradation of condensing characteristics. <P>SOLUTION: A collimator lens 5 which parallelizes beams from a semiconductor laser 1 is so disposed as to face a laser emission part 3 of the semiconductor laser 1. Fitting tabs 6a and 6b are extended from both ends of the collimator lens 5 toward outside of both end faces of the semiconductor laser 1. Adhesive applied part 8 of the fitting tabs 6a and 6b that face both end faces of the semiconductor laser 1 have widths equal to a half or less than the thickness of semiconductor laser 1, and are made eccentric from the position of the laser emission part 3 of the semiconductor laser 1. The adhesive applied parts 8 are fixed to both end faces of the semiconductor laser 1 using adhesives 7a and 7b. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、高出力半導体レーザに好適に適用できる半導体レーザへの組付レンズ及びレンズ組付構造体に関するものである。
【0002】
【従来の技術】
従来のレーザ加工機の光源としては、CO2 レーザ、YAGレーザなどが用いられているが、装置が大きい、あるいはレーザ出力の細かな制御が行い難いなどの課題があった。
【0003】
近年、高出力の半導体レーザが実用化され、この高出力半導体レーザを光源として用いることでレーザ加工機の小型化が進んでいる。高出力半導体レーザでは、高出力化のためにレーザ発光部がライン状に並んだ半導体レーザアレイを構成し、さらに出力が必要なときにはこの半導体レーザアレイを複数段積み重ねて用いられている。
【0004】
半導体レーザはレーザ射出光の広がり角が大きいため、射出光を平行光化させるコリメータレンズは、NAが大きく、焦点距離の小さなものが用いられる。半導体レーザのレーザ出射光の広がり角は、活性層に垂直な方向に大きいので、レーザ光を有効利用するためには、例えばNA=0.8程度のコリメータレンズが必要になる。また、コリメータレンズの光量の損失を少なくするためには、コリメータレンズの活性層に垂直な方向の厚みはできるだけ大きくとり、積層する半導体レーザアレイ間の間隔に近い値が望ましく、そのため積層する半導体レーザアレイ間の間隔を2mmとすると、レンズの焦点距離は、f=0.8mm程度となる。
【0005】
そして、NAが大きく、焦点距離の短いコリメータレンズでは、コリメータレンズの位置、傾きのずれが射出光の方向、平行度に大きく影響し、レーザ光の集光特性が悪化する。このため、半導体レーザとコリメータレンズの位置を機械的に決めることは難しく、コリメータレンズの位置、傾き調整が必要になる。
【0006】
このようにコリメータレンズの位置、傾きを調整した後、半導体レーザへのコリメータレンズの取り付けに際しては、取扱いの容易さから一般的に紫外線硬化接着剤が用いられ、コリメータレンズ両端から延設した取付タブと半導体レーザの筐体の両側端面とを接着している。
【0007】
図2を参照して説明すると、11は半導体レーザであり、ライン状に配列された複数のレーザ発光部13を有する半導体レーザアレイ12を冷却板14に装着して構成され、冷却板14にて半導体レーザアレイ12を冷却するように構成されている。
【0008】
15は、各レーザ発光部13からの出射光を平行光化するため、半導体レーザアレイ12の発光面に所定の隙間を設けて対向配置されるコリメータレンズであり、両端に半導体レーザ11に組み付けるための取付タブ16a、16bが半導体レーザ11の両側端面に向けて延設されている。これらの取付タブ16a、16bの幅寸法は、コリメータレンズ15の厚みに等しく設定されている。そして、半導体レーザ11の両側端面と取付タブ16a、16bの間に接着剤17a、17bを塗布し、この接着剤17a、17bを硬化させることでコリメータレンズ15が半導体レーザ11に組み付けられている。
【0009】
ところで、コリメータレンズ15の焦点距離は0.8mm程度と小さいので、コリメータレンズ15と半導体レーザ11の各レーザ発光部13との隙間は0.3mm程度以下となり、接着剤17a、17bを塗布したときに毛細管現象によりこの隙間に浸透し易い。かつ、半導体レーザアレイ12の発光面に異物が付着すると、そこで光が散乱し、高出力レーザでは数百度の温度となる。通常、レーザ発光部13の耐熱温度は150℃程度であるので、半導体レーザ11が破壊されてしまう。
【0010】
そこで、従来は、半導体レーザ11のレーザ発光部13上の隙間に紫外線硬化型接着剤17a、17bが浸透し難くするために、図2(b)に示すように、半導体レーザ11のレーザ発光部13の配置位置を避けるように偏芯した位置に接着剤17a、17bを塗布していた。
【0011】
【発明が解決しようとする課題】
しかしながら、紫外線硬化型接着剤が半導体レーザ11のレーザ発光部13の光軸中心から外れた位置に塗布され、かつその紫外線硬化型接着剤は硬化時に数%硬化収縮するため、図2(b)に矢印18で示すように、紫外線硬化型接着剤の硬化収縮により、コリメータレンズ15がレーザ発光部13の光軸中心から斜め方向に位置ずれを生じさせ、出射光の方向、平行度に大きく影響してレーザの集光特性が悪化するという問題があった。
【0012】
本発明は、上記従来の問題点に鑑み、接着剤が半導体レーザとレンズの隙間に浸透して発光面に付着し難く、かつ接着剤の硬化時にレンズがレーザ発光部の光軸中心から位置ずれせず、集光特性が悪化しない半導体レーザへの組付レンズ及びレンズ組付構造体を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明の半導体レーザへの組付レンズは、半導体レーザのレーザ発光部に対向配置し、両端から延設した取付タブを半導体レーザの両側端面に接着剤にて固定して組み付けられ、半導体レーザからの出射光を平行光化する半導体レーザへの組付レンズであって、取付タブの半導体レーザの両側端面に対向する接着剤塗布部を、半導体レーザの厚みの1/2以下の幅寸法とするとともに、半導体レーザのレーザ発光部の配置位置から偏芯位置させたものである。
【0014】
また、本発明の半導体レーザへのレンズ組付構造体は、半導体レーザからの出射光を平行光化するレンズを半導体レーザのレーザ発光部に対向配置し、レンズの両端から半導体レーザの両側端面の外側に向けて取付タブを延設し、取付タブの半導体レーザの両側端面に対向する接着剤塗布部を、半導体レーザの厚みの1/2以下の幅寸法とするとともに、半導体レーザのレーザ発光部の配置位置から偏芯位置させ、接着剤塗布部と半導体レーザの両側端面とを接着剤にて固定したものである。
【0015】
このような本発明の構成によれば、取付タブの半導体レーザの両側端面に対向する接着剤塗布部を、半導体レーザの厚みの1/2以下の幅寸法とするとともに、半導体レーザのレーザ発光部の配置位置から偏芯位置させたことにより、取付タブの接着剤塗布部と半導体レーザの両側端面との間に接着剤を塗布して放置しても、毛細管現象により接着剤がレンズと半導体レーザの発光面の間の隙間に浸透して行くことはなく、また接着剤に紫外線を照射して硬化させた時に数%の硬化収縮が生じても、レーザ発光部の光軸方向と平行する方向に位置ずれするので、位置ずれの影響を低減して集光特性の悪化を防止できる。
【0016】
【発明の実施の形態】
以下、本発明の半導体レーザへの組付レンズ及びレンズ組付構造体の一実施形態について、図1を参照して説明する。
【0017】
図1において、1は半導体レーザであり、ライン状に配列された複数のレーザ発光部3を有する半導体レーザアレイ2を冷却板4に装着して構成され、冷却板4にて半導体レーザアレイ2を冷却するように構成されている。
【0018】
5は、各レーザ発光部3からの出射光を平行光化するため、半導体レーザアレイ2の発光面に所定の隙間を設けて対向配置されるシリンドリカルレンズなどからなるコリメータレンズであり、両端に半導体レーザ1に組み付けるための取付タブ6a、6bが冷却板4の両側端面に向けて延設されている。この取付タブ6a、6bの幅寸法は、コリメータレンズ5の両端の接合部分ではその断面高さ寸法と同じに設定され、半導体レーザ1の両側端面に対向する接着剤塗布部8は、半導体レーザ1の厚みの1/2以下の幅寸法に設定され、かつ半導体レーザ1のレーザ発光部3の配置位置から偏芯位置されている。
【0019】
そして、半導体レーザ1の両側端面と取付タブ6a、6bの接着剤塗布部8との間に接着剤7a、7bを塗布し、この接着剤7a、7bを硬化させることでコリメータレンズ5が半導体レーザ1に組み付けられている。接着剤7a、7bとしては、一般的に紫外線硬化型接着剤、特に耐熱性が高く、硬化収縮が小さいエポキシ系が用いられる。しかし、その場合でも数%程度の硬化収縮は避けられない。
【0020】
ここで、半導体レーザ1の各レーザ発光部3から放射されるレーザ光の放射角は、レーザ発光部3の活性層に垂直な方向に大きく広がるため、レーザ光を有効に利用するためには、コリメータレンズ5のNAは0.8mm程度のものが必要である。また、このような半導体レーザ1を積み重ねることで高出力化する場合、コリメータレンズ5の断面高さ寸法を冷却板4の厚みと同程度とし、その厚みを2mmとすると、コリメータレンズ5の焦点距離は0.8mm程度、コリメータレンズ5と半導体レーザアレイ2の発光面との間の隙間は0.3mm程度となり、接着剤7a、7bが毛細管現象で十分に浸透することになる。
【0021】
次に、半導体レーザ1に上記のようにコリメータレンズ5を組み付ける手順を説明する。
【0022】
まず、コリメータレンズ5と半導体レーザ1のアライメント(位置合わせ)を行う。コリメータレンズ5と各レーザ発光部3の位置がずれると、コリメータレンズ5からの射出光の方向、平行度にずれが生じ、この平行光を集光したときの集光スポットが広がってしまう。例えば、半導体レーザ1の各レーザ発光部3とコリメータレンズ5とが10μm位置ずれを起こすと、コリメータレンズ5の焦点距離が0.8mmのとき、コリメータレンズ5からの射出光の方向が1°ずれる。半導体レーザ1を積み重ねて用いるとき、この平行光をf=100mmの集光レンズで集光すると、スポット径は3.5mmにもなる。これに対してコリメータレンズ5の位置ずれがない場合には、スポット径は0.05mmに絞ることができる。
【0023】
このようにコリメータレンズ5の位置、傾きを高精度に調整した後、接着剤7a、7bを塗布する。接着剤7a、7bは半導体レーザ1の両側端面と取付タブ6a、6bの接着剤塗布部8との間に塗布する。その際、接着剤塗布部8の幅寸法が小さいため、接着剤7a、7bは接着剤塗布部8の両側と先端から長手方向の中心線に対して対称形ではみ出すように塗布される。このように接着剤7a、7bを塗布した後放置しても、接着剤塗布部8が上記のように半導体レーザ1の厚みの1/2以下の幅寸法に設定されかつ半導体レーザ1のレーザ発光部3の配置位置から偏芯位置されているので、毛細管現象によって接着剤7a、7bがコリメータレンズ5と半導体レーザアレイ2の発光面との間に浸透して行くことはない。
【0024】
次に、この状態で接着剤7a、7bに紫外線を照射して硬化させると、硬化時に数%の硬化収縮が生じるが、接着剤7a、7bが接着剤塗布部8の長手方向の中心線に対して対称形となるように塗布されていることから、図1(b)に矢印9で示すように、収縮する方向がレーザ発光部3の光軸中心と平行となり、かつ均一に収縮するので、コリメータレンズ5の位置ずれを低減することができる。
【0025】
【発明の効果】
本発明の半導体レーザへの組付レンズ及びレンズ組付構造体によれば、取付タブの半導体レーザの両側端面に対向する接着剤塗布部を、半導体レーザの厚みの1/2以下の幅寸法とするとともに、半導体レーザのレーザ発光部の配置位置から偏芯位置させたことにより、取付タブの接着剤塗布部と半導体レーザの両側端面との間に接着剤を塗布して放置しても、毛細管現象により接着剤がレンズと半導体レーザの発光面の間の隙間に浸透して行くことはなく、また接着剤に紫外線を照射して硬化させた時に数%の硬化収縮が生じても、レーザ発光部の光軸方向と平行する方向に位置ずれするので、位置ずれの影響を低減して集光特性の悪化を防止できる。
【図面の簡単な説明】
【図1】本発明の一実施形態における半導体レーザへのレンズ組付構造体を示し、(a)は平面図、(b)は側面図、(c)は(a)のA−A矢視図である。
【図2】従来例の半導体レーザへのレンズ組付構造体を示し、(a)は平面図、(b)は側面図、(c)は(a)のB−B矢視図である。
【符号の説明】
1 半導体レーザ
3 レーザ発光部
5 コリメータレンズ
6a、6b 取付タブ
7a、7b 接着剤
8 接着剤塗布部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lens to be mounted on a semiconductor laser and a lens mounting structure that can be suitably applied to a high-power semiconductor laser.
[0002]
[Prior art]
As a light source of a conventional laser beam machine, a CO 2 laser, a YAG laser, or the like is used. However, there are problems such as a large apparatus or difficulty in finely controlling a laser output.
[0003]
In recent years, high-output semiconductor lasers have been put into practical use, and the use of this high-output semiconductor laser as a light source has led to downsizing of laser processing machines. In high-power semiconductor lasers, a semiconductor laser array in which laser light-emitting portions are arranged in a line for higher output is configured, and when output is required, a plurality of semiconductor laser arrays are stacked and used.
[0004]
Since a semiconductor laser has a large spread angle of laser emission light, a collimator lens having a large NA and a small focal length is used as a collimator lens for making the emission light parallel. The spread angle of the laser light emitted from the semiconductor laser is large in the direction perpendicular to the active layer. Therefore, in order to effectively use the laser light, a collimator lens having, for example, about NA = 0.8 is required. Also, in order to reduce the loss of the light quantity of the collimator lens, the thickness of the collimator lens in the direction perpendicular to the active layer should be as large as possible, and a value close to the interval between the stacked semiconductor laser arrays is desirable. If the distance between the arrays is 2 mm, the focal length of the lens is about f = 0.8 mm.
[0005]
In a collimator lens having a large NA and a short focal length, a deviation in the position and inclination of the collimator lens greatly affects the direction and parallelism of the emitted light, and the laser light condensing characteristics deteriorate. For this reason, it is difficult to mechanically determine the positions of the semiconductor laser and the collimator lens, and it is necessary to adjust the position and inclination of the collimator lens.
[0006]
After adjusting the position and inclination of the collimator lens in this way, when attaching the collimator lens to the semiconductor laser, an ultraviolet curing adhesive is generally used for ease of handling, and mounting tabs extending from both ends of the collimator lens are used. And both end surfaces of the housing of the semiconductor laser.
[0007]
Referring to FIG. 2, reference numeral 11 denotes a semiconductor laser, which is configured by mounting a semiconductor laser array 12 having a plurality of laser emitting units 13 arranged in a line on a cooling plate 14. The semiconductor laser array 12 is configured to be cooled.
[0008]
Numeral 15 denotes a collimator lens which is disposed opposite to the light emitting surface of the semiconductor laser array 12 with a predetermined gap in order to collimate the light emitted from each laser light emitting unit 13. The mounting tabs 16a and 16b are extended toward both side end surfaces of the semiconductor laser 11. The width dimensions of these mounting tabs 16a, 16b are set equal to the thickness of the collimator lens 15. Then, adhesives 17a and 17b are applied between both end surfaces of the semiconductor laser 11 and the mounting tabs 16a and 16b, and the adhesives 17a and 17b are cured, so that the collimator lens 15 is assembled to the semiconductor laser 11.
[0009]
By the way, since the focal length of the collimator lens 15 is as small as about 0.8 mm, the gap between the collimator lens 15 and each of the laser emitting units 13 of the semiconductor laser 11 is about 0.3 mm or less, and when the adhesives 17a and 17b are applied. It easily penetrates into this gap due to capillary action. In addition, when foreign matter adheres to the light emitting surface of the semiconductor laser array 12, the light is scattered there, and the temperature of the high output laser is several hundred degrees. Normally, the heat-resistant temperature of the laser emitting section 13 is about 150 ° C., so that the semiconductor laser 11 is broken.
[0010]
Therefore, conventionally, as shown in FIG. 2B, in order to make it difficult for the ultraviolet curable adhesives 17a and 17b to penetrate into the gap on the laser light emitting portion 13 of the semiconductor laser 11, the laser light emitting portion of the semiconductor laser 11 is used. Adhesives 17a and 17b were applied to eccentric positions so as to avoid the arrangement position of 13.
[0011]
[Problems to be solved by the invention]
However, since the ultraviolet curable adhesive is applied to a position deviated from the center of the optical axis of the laser emitting portion 13 of the semiconductor laser 11, and the ultraviolet curable adhesive cures and shrinks by several% during curing, FIG. As shown by an arrow 18 in FIG. 5, the collimator lens 15 is displaced obliquely from the center of the optical axis of the laser light emitting unit 13 due to the curing shrinkage of the ultraviolet curable adhesive, and greatly affects the direction and parallelism of the emitted light. As a result, there is a problem that the focusing property of the laser deteriorates.
[0012]
In view of the above conventional problems, the present invention makes it difficult for the adhesive to penetrate into the gap between the semiconductor laser and the lens and adhere to the light emitting surface, and the lens is displaced from the optical axis center of the laser light emitting portion when the adhesive is cured. It is an object of the present invention to provide an assembling lens and a lens assembling structure for a semiconductor laser that does not deteriorate the light-collecting characteristics.
[0013]
[Means for Solving the Problems]
The lens to be mounted on the semiconductor laser of the present invention is disposed so as to face the laser light emitting portion of the semiconductor laser, and mounting tabs extending from both ends are fixed to both side end surfaces of the semiconductor laser with an adhesive, and are mounted. And an adhesive applied portion facing both side end surfaces of the semiconductor laser of the mounting tab has a width dimension not more than の of the thickness of the semiconductor laser. In addition, the semiconductor laser is eccentrically located from the arrangement position of the laser emitting portion of the semiconductor laser.
[0014]
Further, in the lens assembly structure for a semiconductor laser of the present invention, a lens for collimating the light emitted from the semiconductor laser is disposed opposite to the laser light emitting portion of the semiconductor laser, and both ends of the semiconductor laser are formed from both ends of the lens. The mounting tab is extended toward the outside, and the adhesive applied portion facing the both side end surfaces of the semiconductor laser of the mounting tab is set to have a width dimension equal to or less than の of the thickness of the semiconductor laser, and the laser emitting portion of the semiconductor laser. The eccentric position is set from the disposition position, and the adhesive applied portion and both end surfaces of the semiconductor laser are fixed with the adhesive.
[0015]
According to such a configuration of the present invention, the adhesive coated portions facing the both end surfaces of the semiconductor laser on the mounting tab are set to have a width dimension not more than 1 / of the thickness of the semiconductor laser and the laser emitting portion of the semiconductor laser. The eccentric position from the disposition position allows the adhesive to be applied between the adhesive application portion of the mounting tab and both end surfaces of the semiconductor laser and the adhesive to be applied to the lens and the semiconductor laser by capillary action even when left alone. Does not penetrate into the gap between the light emitting surfaces of the laser, and even if a few percent of curing shrinkage occurs when the adhesive is cured by irradiating ultraviolet rays, the direction parallel to the optical axis direction of the laser light emitting portion. Therefore, the influence of the displacement can be reduced and the deterioration of the light-collecting characteristics can be prevented.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a lens to be mounted on a semiconductor laser and a lens mounting structure according to the present invention will be described with reference to FIG.
[0017]
In FIG. 1, reference numeral 1 denotes a semiconductor laser, which is configured by mounting a semiconductor laser array 2 having a plurality of laser emitting units 3 arranged in a line on a cooling plate 4. It is configured to cool.
[0018]
Reference numeral 5 denotes a collimator lens formed of a cylindrical lens or the like which is disposed to face the light emitting surface of the semiconductor laser array 2 with a predetermined gap to collimate the light emitted from each of the laser light emitting units 3 and has semiconductors at both ends. Mounting tabs 6 a and 6 b for assembling with the laser 1 extend toward both end surfaces of the cooling plate 4. The width of the mounting tabs 6a and 6b is set to be the same as the cross-sectional height of the collimator lens 5 at the joints at both ends. Is set to a width dimension equal to or less than 厚 み of the thickness of the semiconductor laser 1 and is eccentric from the arrangement position of the laser emitting section 3 of the semiconductor laser 1.
[0019]
Then, adhesives 7a and 7b are applied between both end surfaces of the semiconductor laser 1 and the adhesive application portions 8 of the mounting tabs 6a and 6b, and the adhesives 7a and 7b are cured, so that the collimator lens 5 is connected to the semiconductor laser. 1 is assembled. As the adhesives 7a and 7b, an ultraviolet curable adhesive, in particular, an epoxy type having high heat resistance and small curing shrinkage is generally used. However, even in this case, curing shrinkage of about several percent is inevitable.
[0020]
Here, since the emission angle of the laser light emitted from each laser light emitting portion 3 of the semiconductor laser 1 greatly expands in the direction perpendicular to the active layer of the laser light emitting portion 3, in order to effectively use the laser light, The NA of the collimator lens 5 needs to be about 0.8 mm. When the output power is increased by stacking such semiconductor lasers 1, when the cross-sectional height of the collimator lens 5 is approximately the same as the thickness of the cooling plate 4 and the thickness is 2 mm, the focal length of the collimator lens 5 is Is about 0.8 mm, the gap between the collimator lens 5 and the light emitting surface of the semiconductor laser array 2 is about 0.3 mm, and the adhesives 7a and 7b sufficiently penetrate by capillary action.
[0021]
Next, a procedure for assembling the collimator lens 5 to the semiconductor laser 1 as described above will be described.
[0022]
First, the collimator lens 5 and the semiconductor laser 1 are aligned (positioned). If the position of the collimator lens 5 and each laser light emitting unit 3 are shifted, the direction and the parallelism of the light emitted from the collimator lens 5 are shifted, and the condensing spot when condensing the parallel light is expanded. For example, if each laser light emitting unit 3 of the semiconductor laser 1 is displaced by 10 μm from the collimator lens 5, when the focal length of the collimator lens 5 is 0.8 mm, the direction of the light emitted from the collimator lens 5 is shifted by 1 °. . When the semiconductor lasers 1 are stacked and used, if the parallel light is condensed by a condensing lens of f = 100 mm, the spot diameter becomes as large as 3.5 mm. On the other hand, when there is no displacement of the collimator lens 5, the spot diameter can be reduced to 0.05 mm.
[0023]
After adjusting the position and the inclination of the collimator lens 5 with high accuracy in this way, the adhesives 7a and 7b are applied. The adhesives 7a and 7b are applied between both end surfaces of the semiconductor laser 1 and the adhesive application portions 8 of the mounting tabs 6a and 6b. At this time, since the width of the adhesive application section 8 is small, the adhesives 7a and 7b are applied so as to protrude from both sides and the tip of the adhesive application section 8 symmetrically with respect to the center line in the longitudinal direction. Even if the adhesives 7a and 7b are applied in this manner, the adhesive applied portion 8 is set to have a width of 1/2 or less of the thickness of the semiconductor laser 1 as described above, and the laser emission of the semiconductor laser 1 is performed. Since the eccentric position is located from the position where the portion 3 is disposed, the adhesives 7a and 7b do not permeate between the collimator lens 5 and the light emitting surface of the semiconductor laser array 2 due to the capillary phenomenon.
[0024]
Next, when the adhesives 7a and 7b are cured by irradiating ultraviolet rays in this state, a few percent of curing shrinkage occurs at the time of curing, but the adhesives 7a and 7b are aligned with the center line in the longitudinal direction of the adhesive application section 8. Since the coating is applied so as to be symmetrical, the direction of contraction is parallel to the center of the optical axis of the laser light emitting unit 3 and uniform contraction, as indicated by an arrow 9 in FIG. In addition, the displacement of the collimator lens 5 can be reduced.
[0025]
【The invention's effect】
According to the lens to be mounted on the semiconductor laser and the lens mounting structure of the present invention, the adhesive coating portions of the mounting tabs opposite to both end surfaces of the semiconductor laser have a width dimension of 1 / or less of the thickness of the semiconductor laser. In addition, since the laser light emitting portion of the semiconductor laser is eccentrically positioned from the disposition position, even if the adhesive is applied between the adhesive application portion of the mounting tab and both end surfaces of the semiconductor laser, the capillary tube can be left. Due to this phenomenon, the adhesive does not penetrate into the gap between the lens and the light emitting surface of the semiconductor laser, and even if the adhesive shrinks by several percent when it is cured by irradiating it with ultraviolet light, laser light is emitted. Since the position shifts in a direction parallel to the optical axis direction of the portion, the influence of the position shift can be reduced, and the deterioration of the light collecting characteristics can be prevented.
[Brief description of the drawings]
1A and 1B show a lens assembly structure to a semiconductor laser according to an embodiment of the present invention, wherein FIG. 1A is a plan view, FIG. 1B is a side view, and FIG. FIG.
FIGS. 2A and 2B show a conventional lens assembly structure to a semiconductor laser, wherein FIG. 2A is a plan view, FIG. 2B is a side view, and FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Semiconductor laser 3 Laser emission part 5 Collimator lens 6a, 6b Mounting tab 7a, 7b Adhesive 8 Adhesive application part

Claims (2)

半導体レーザのレーザ発光部に対向配置し、両端から延設した取付タブを半導体レーザの両側端面に接着剤にて固定して組み付けられ、半導体レーザからの出射光を平行光化する半導体レーザへの組付レンズであって、取付タブの半導体レーザの両側端面に対向する接着剤塗布部を、半導体レーザの厚みの1/2以下の幅寸法とするとともに、半導体レーザのレーザ発光部の配置位置から偏芯位置させたことを特徴とする半導体レーザへの組付レンズ。A mounting tab that is arranged opposite to the laser light emitting portion of the semiconductor laser and fixed from both ends of both ends of the semiconductor laser with adhesives is attached to the semiconductor laser, and the emitted light from the semiconductor laser is collimated. In the assembly lens, the adhesive coated portion facing the both end surfaces of the semiconductor laser of the mounting tab has a width dimension equal to or less than の of the thickness of the semiconductor laser, and is positioned from the position of the laser emitting portion of the semiconductor laser. An assembling lens for a semiconductor laser, wherein the lens is located at an eccentric position. 半導体レーザからの出射光を平行光化するレンズを半導体レーザのレーザ発光部に対向配置し、レンズの両端から半導体レーザの両側端面の外側に向けて取付タブを延設し、取付タブの半導体レーザの両側端面に対向する接着剤塗布部を、半導体レーザの厚みの1/2以下の幅寸法とするとともに、半導体レーザのレーザ発光部の配置位置から偏芯位置させ、接着剤塗布部と半導体レーザの両側端面とを接着剤にて固定したことを特徴とする半導体レーザへのレンズ組付構造体。A lens for collimating the light emitted from the semiconductor laser is disposed opposite to the laser light emitting portion of the semiconductor laser, and mounting tabs are extended from both ends of the lens toward outside of both side end surfaces of the semiconductor laser. The adhesive-coated portion facing the both side end surfaces of the semiconductor laser has a width dimension equal to or less than の of the thickness of the semiconductor laser, and is eccentrically positioned from the position of the laser emitting portion of the semiconductor laser. A lens assembly structure for a semiconductor laser, wherein both end surfaces of the lens are fixed with an adhesive.
JP2002246490A 2002-08-27 2002-08-27 Assembly lens to semiconductor laser and lens assembly structure Pending JP2004087776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002246490A JP2004087776A (en) 2002-08-27 2002-08-27 Assembly lens to semiconductor laser and lens assembly structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002246490A JP2004087776A (en) 2002-08-27 2002-08-27 Assembly lens to semiconductor laser and lens assembly structure

Publications (1)

Publication Number Publication Date
JP2004087776A true JP2004087776A (en) 2004-03-18

Family

ID=32054378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002246490A Pending JP2004087776A (en) 2002-08-27 2002-08-27 Assembly lens to semiconductor laser and lens assembly structure

Country Status (1)

Country Link
JP (1) JP2004087776A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9929531B2 (en) 2013-05-30 2018-03-27 Furukawa Electric Co., Ltd. Optical module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9929531B2 (en) 2013-05-30 2018-03-27 Furukawa Electric Co., Ltd. Optical module

Similar Documents

Publication Publication Date Title
US7751458B2 (en) High power laser diode array comprising at least one high power diode laser and laser light source comprising the same
FI116010B (en) Method and laser device for producing high optical power density
KR20040005701A (en) Laser light source for multiplexing laser beam and exposure device
JP2008501236A (en) Laser diode array mount and step mirror for shaping a symmetric laser beam
JP7100236B2 (en) Wavelength beam coupling device
US7936799B2 (en) Interleaving laser beams
US7065105B2 (en) Apparatus for shaping the output beam of semiconductor lasers
US8457173B2 (en) Silicon-based lens support structure for diode laser
JP2004087776A (en) Assembly lens to semiconductor laser and lens assembly structure
US9042424B2 (en) Silicon-based lens support structure and cooling package with passive alignment for compact heat-generating devices
JP3930405B2 (en) Laser concentrator
US6785440B1 (en) Assembly for focusing and coupling the radiation produced by a semiconductor laser into optical fibers
US9008147B2 (en) Silicon-based lens support structure and cooling package with passive alignment for compact heat-generating devices
JP2004087774A (en) Method for assembling lens in semiconductor laser
JP2004145299A (en) Optical apparatus
JPH1168197A (en) Solid laser device excited by semiconductor laser
JP7385177B2 (en) Mirror device and light source device having the mirror device
KR20170059171A (en) Submount for high power laser diode optical module
JP2965203B1 (en) Laser device using prism
JP2001044574A (en) Semiconductor laser
CN109906408B (en) Light shaping device
JP2000098190A (en) Semiconductor laser unit, semiconductor laser module and solid-state laser device
US20230163558A1 (en) Semiconductor laser device
US20230095425A1 (en) Quantum cascade laser device
JP2002296530A (en) Optical fiber optical device