JP2004087601A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor Download PDF

Info

Publication number
JP2004087601A
JP2004087601A JP2002243809A JP2002243809A JP2004087601A JP 2004087601 A JP2004087601 A JP 2004087601A JP 2002243809 A JP2002243809 A JP 2002243809A JP 2002243809 A JP2002243809 A JP 2002243809A JP 2004087601 A JP2004087601 A JP 2004087601A
Authority
JP
Japan
Prior art keywords
conductive carbon
layer
carbon layer
solid electrolytic
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002243809A
Other languages
Japanese (ja)
Other versions
JP4307032B2 (en
Inventor
Yoshikazu Hirata
平田  義和
Seiji Omura
大村  誠司
Atsushi Furusawa
古澤  厚志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electronic Components Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electronic Components Co Ltd, Sanyo Electric Co Ltd filed Critical Sanyo Electronic Components Co Ltd
Priority to JP2002243809A priority Critical patent/JP4307032B2/en
Publication of JP2004087601A publication Critical patent/JP2004087601A/en
Application granted granted Critical
Publication of JP4307032B2 publication Critical patent/JP4307032B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolytic capacitor constituted of successively forming a dielectric oxide film layer, a solid electrolytic layer, a conductive carbon layer, and a silver paint layer on the surface of an anode body consisting of a metallic material having valve action and having improved adhesion between the conductive carbon layer and the silver paint layer, reduced in ESR and tanδ and having high heat resistance and high humidity resistance. <P>SOLUTION: Fine cracks whose width is 1-50μm are formed on the conductive carbon layer. Preferably a 2nd conductive carbon layer having fine cracks is formed on a 1st conductive carbon layer having no cracks. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は弁金属からなる陽極体の表面に、誘電体皮膜層及び固体電解質層を順次形成した固体電解コンデンサに関する。
【0002】
【従来の技術】
近年、電子機器の小型化、高速化に伴って、コンデンサ分野においても小型、高容量でかつ低インピーダンスの固体電解コンデンサが要求されている。
【0003】
現在、弁金属からなる陽極体の表面に、誘電体皮膜層及び固体電解質層を順次形成した固体電解コンデンサとして図4に示すような構成を有するものが知られている。
【0004】
この固体電解コンデンサは弁作用金属(タンタル、ニオブ、チタン、アルミニウム等)の焼結体からなる陽極体1表面に、該陽極体表面を酸化させた誘電体皮膜層2、二酸化マンガン等の導電性無機材料、或いはTCNQ錯塩、導電性ポリマー等の導電性有機材料からなる固体電解質層3、グラファイトを含有する導電性カーボン層4、銀ペイント層5を順次形成してコンデンサ素子15を構成し、前記陽極体1の一端面に植立された陽極リードピン16に陽極端子61を溶接し、前記銀ペイント層5に陰極端子62をろう接し、前記コンデンサ素子15の外側にをエポキシ樹脂等からなる外装樹脂層7にて被覆密封したものである。
【0005】
【発明が解決しようとする課題】
上述のような固体電解コンデンサにおいては陰極部分が複数の材料(固体電解質層、導電性カーボン層、銀ペイント層)を積層させて構成され、各層の材料を変えることによる、ESRの低減及び耐熱性、耐湿性の向上の研究が繰り返された。
【0006】
しかし、最近では導電性ポリマーを固体電解質層に用いる等の各層の抵抗を低減させる技術が発達してきたため、今度は層と層との間の抵抗が無視できない程のレベルになってきており、さらにESRを低減するためには層と層との密着性を高めることが必要となっている。
【0007】
そこで本発明では、弁作用を有する金属材からなる陽極体表面に、誘電体酸化皮膜層、固体電解質層、導電性カーボン層、銀ペイント層を順次形成させた固体電解コンデンサおいて、
導電性カーボン層と銀ペイント層の密着性を向上させることにより、ESRの低減及び耐熱性、耐湿性の向上させる目的する。
【0008】
【課題を解決するための手段】
導電性カーボン層と銀ペイント層の密着性を向上させる手段として、各層の接触面積を増やす方法が知られている。しかし、導電性ポリマーからなる固体電解質層は、周知の化学重合法や電解重合法により薄膜状に形成され、その表面は平滑になりやすく、また前記固体電解質層上に形成する導電性カーボン層も平滑に形成されやすい。そのため導電性カーボン層の表面積が狭くなり前記導電性カーボン層と前記銀ペイント層との密着性が悪くなる。
【0009】
そこで本発明では図1に示すように、前記導電性カーボン層形成時に前記導電性カーボン層表面に幅が1〜50μmの微細なクラックが形成されるように塗布し、導電性カーボン層の表面積を十分に拡大させた上に銀ペイントを塗布し銀ペイント層を形成することで密着性を向上し、層間におけるESRを低減させることができる。
【0010】
また、導電性カーボン層の形成工程を2回に分け、1層目をクラックの無い均一な導電性カーボン層で形成し、2層目を上記のクラック入り導電性カーボン層で形成することにより、固体電解質層との密着性を悪化させることなく銀ペイント層との密着性を向上させることができる。
【0011】
【発明の実施の形態】
本発明の一実施形態における固体電解コンデンサは、図2に示すように弁作用金属(タンタル、ニオブ、チタン、アルミニウム等)の焼結体からなる陽極体1表面に、該陽極体表面を酸化させた誘電体皮膜層2、二酸化マンガン等の導電性無機材料、或いはTCNQ錯塩、導電性ポリマー等の導電性有機材料からなる固体電解質層3、導電性カーボン層4、銀ペイント層5を順次形成してコンデンサ素子15を構成し、前記陽極体1の一端面に植立された陽極リードピン16に陽極端子61を溶接し、前記銀ペイント層5に陰極端子62をろう接し、前記コンデンサ素子15の外側にをエポキシ樹脂等からなる外装樹脂層7にて被覆密封したものである。
【0012】
導電性カーボン層4及び銀ペイント層5は固体電解質層3の表面に、水または有機溶媒等に分散させた導電性カーボン及び銀を順次塗布して乾燥することで形成される。
【0013】
本発明で用いる微細なクラックを導電性カーボン層に形成させるには、導電性カーボン含有溶液中の導電性カーボン粉末の粒子径を10〜100nmのものを用い、形成させる導電性カーボン層の厚さを0.3〜1μmにすることで可能となる。さらに、導電性カーボン含有溶液中の結着剤の含有量を0〜5wt%にすることで導電性カーボン層形成時の層の結着力を下げ、よりクラックを発生させやすくすることができる。
【0014】
ここで導電性カーボン含有溶液に用いる結着剤として、水溶性であるメチルセルロース、ポリアクリロニトリル、ポリビニルアルコ−ル、メタクリル酸メチルまたはその誘導体から選ばれる少なくとも1種の化合物を含むことが望ましい。
【0015】
また、図3に示すように導電性カーボン層4の形成工程を2回に分け、1層目をクラックの無い均一な導電性カーボン層41で形成し、2層目を上記のクラック入り導電性カーボン層42で形成すると、固体電解質層3との密着性を悪化させることなく銀ペイント層5との密着性を向上させることができる。この時、1層目の導電性カーボン層41は厚さを0. 3〜0. 6μmにし、結着剤の重量は導電性カーボン粉末の重量の10〜20wt%とし、2層目の結着剤の重量は導電性カーボン粉末の重量の0〜5wt%にすると効果的である。
【0016】
以下に本発明について実施例をあげて詳しく説明する。
【0017】
(実施例1)タンタル粉末を用いて外形4.4×3.3×0.9mmの陽極焼結素子を作製し、該素子の表面に化成(電解酸化)処理を施してタンタル酸化物からなる誘電体皮膜層を形成し、次いでポリピロールからなる固体電解質層を形成した。次に平均粒子径が約25nmの導電性カーボン粉末からなる導電性カーボン溶液を該固体電解質上に塗布し、それを150℃で30分間乾燥させた。
【0018】
導電性カーボン溶液の組成は導電性カーボン粉末:メチルセルロース:純水=10:0.1:100(重量比)とした。その後、表面を観察すると幅が10μm程度、長さが50〜500μmのクラックが全体的に確認できた。また導電性カーボン層の厚さは0.4μmであった。
【0019】
その後、該導電性カーボン層上に銀ペイント層を形成しコンデンサ素子を完成させた。
【0020】
(実施例2)導電性カーボン溶液の組成を導電性カーボン粉末:メチルセルロース:純水=5:0.1:100(重量比)としたこと以外は実施例1と同様の方法で作製した。乾燥後、導電性カーボン層表面には幅が20μm程度のクラックが全体的に確認できた。また導電性カーボン層の厚さは0.6μmであった。
【0021】
(実施例3)タンタル粉末を用いて外形4.4×3.3×0.9mmの陽極焼結素子を作製し、該素子の表面に化成(電解酸化)処理を施してタンタル酸化物からなる誘電体皮膜層を形成し、次いでポリピロールからなる固体電解質層を形成した。次に平均粒子径が約25nmの導電性カーボン粉末からなる導電性カーボン溶液を該固体電解質上に塗布し、それを150℃で30分間乾燥させクラックの無い導電性カーボン層1を形成した。導電性カーボン層1に用いた導電性カーボン溶液の組成は導電性カーボン粉末:メチルセルロース:純水=5:1:100(重量比)とした。さらにその上に平均粒子径が約25nmの導電性カーボン粉末からなる導電性カーボン溶液を該固体電解質上に塗布し、それを150℃で30分間乾燥させクラックの有る導電性カーボン層2を形成した。導電性カーボン層2に用いた導電性カーボン溶液の組成は導電性カーボン粉末:メチルセルロース:純水=5:0.1:100(重量比)とした。カーボン層1は平坦な表面状態であるのに対し、カーボン層2は幅が20μm程度のクラックが全体的に分布していた。導電性カーボン層1及び2の厚さはそれぞれ、0.4μm、0.4μmであった。その後、実施例1と同様の方法で作製した。
【0022】
(実施例4)導電性カーボン溶液の組成を導電性カーボン粉末:メチルセルロース:純水=3:0.3:100(重量比)としたこと以外は実施例1と同様の方法で作製した。導電性カーボン層の厚さは0.3μm程度あった。導電性カーボン層表面には幅が10μmのクラックが全体的に確認できた。
【0023】
(比較例1)導電性カーボン溶液の組成を導電性カーボン粉末:メチルセルロース:純水=5:1:100(重量比)としたこと以外は実施例1と同様の方法で作製した。導電性カーボン層の厚みは0.6μmであった。導電性カーボン層表面にはクラックが確認できなかった。
【0024】
(比較例2)タンタル粉末を用いて外形4.4×3.3×0.9mmの陽極焼結素子を作製し、該素子の表面に化成(電解酸化)処理を施してタンタル酸化物からなる誘電体皮膜層を形成し、次いでポリピロールからなる固体電解質層を形成した。次に平均粒子径が約25nmの導電性カーボン粉末からなる導電性カーボン溶液を該固体電解質上に塗布し、それを150℃で30分間乾燥させ導電性カーボン層1を形成した。さらに、同様の導電性カーボン溶液を用い前記導電性カーボン層1上に導電性カーボン層2を形成した。導電性カーボン溶液の組成は導電性カーボン粉末:メチルセルロース:純水=5:1:100(重量比)とした。導電性カーボン層1及び2の厚さはそれぞれ、0.6μm、0.6μmであった。導電性カーボン層1及び2の表面にはクラックが確認できなかった。その後は実施例1と同様の方法で作製した。
【0025】
(比較例3) タンタル粉末を用いて外形4.4×3.3×0.9mmの陽極焼結素子を作製し、該素子の表面に化成(電解酸化)処理を施してタンタル酸化物からなる誘電体皮膜層を形成し、次いでポリピロールからなる固体電解質層を形成した。次に平均粒子径が約120nmの導電性カーボン粉末からなる導電性カーボン溶液を該固体電解質上に塗布し、それを150℃で30分間乾燥させ形成した。導電性カーボン溶液の組成は導電性カーボン粉末:メチルセルロース:純水=10:0.1:100(重量比)とした。これを3回繰り返して導電性カーボン層の厚さを1μm程度に調整した。導電性カーボン層表面には幅が60μmのクラックが全体的に確認できた。その後は実施例1と同様の方法で作製した。
【0026】
実施例1〜4、比較例1〜3におけるコンデンサについて、高温負荷試験(105℃・500時間)前後の電気特性を表1に、耐湿無負荷試験(60℃・90%RH・500時間)前後の電気特性表2に示す。
【0027】
表1、表2において静電容量は120Hzで測定したものであり、ESRは100Hzで測定したものであり、tanδは120Hzで測定したものである。
【0028】
【表1】

Figure 2004087601
【0029】
【表2】
Figure 2004087601
【0030】
表1、表2を見ればわかるように実施例1〜4においては、比較例1〜3に比べてESR初期値において2〜3mΩ低い値が得られた。また高温負荷試験および耐湿無負荷試験でもESRにおいて劣化の少ない優れた結果を示している。これは導電性カーボン層と銀ペイント層の密着性が向上したためと考えられる。また(比較例3)の結果から分かるように導電性カーボン層に発生するクラックは導電性カーボン粉末の粒子径が大きい、或いは導電性カーボン層が厚いほど大きくなりESRの低減効果は少なくなる。逆に、導電性カーボン粉末の粒子径が小さく、導電性カーボン層の厚さを50μm以下でクラックを発生させると、幅が10μm程度のものが得られESRの低減効果も大きくなる。さらに導電性カーボン層形成の際に2層に分けて形成し、1層目にクラックの無い導電性カーボン層を形成し、2層目に微細なクラックが入った導電性カーボン層を形成したもの(実施例3)では特に優れた特性を示した。
【0031】
【発明の効果】
本発明によれば、弁作用を有する金属材からなる陽極体表面に、誘電体酸化皮膜層、固体電解質層、導電性カーボン層、及び銀ペイント層を順次形成した固体電解コンデンサにおいて、
導電性カーボン層と銀ペイント層との密着性が改善され、ESR及びtanδが小さく、耐熱性及び耐湿性にも優れた固体電解コンデンサが提供できる。また導電性カーボン層と銀ペイント層との接触面積が拡大されることにより、銀ペイント層が剥がれにくくなり不良品の減少につながる。
【図面の簡単な説明】
【図1】本発明による導電性カーボン層表面図である。
【図2】本発明による導電性カーボン層に微細なクラックが入った固体電解コンデンサの断面図である。
【図3】本発明による導電性カーボン層を2層に分けて構成した固体電解コンデンサの断面図である。
【図4】従来の固体電解コンデンサの断面図である。
【符号の説明】
1   陽極体
15  コンデンサ素子
16  陽極リードピン
2   誘電体皮膜層
3   固体電解質層
4   導電性カーボン層
41  導電性カーボン層1(クラック無し)
42  導電性カーボン層2(クラック有り)
5   銀ペイント層
61 陽極リード端子
62 陰極リード端子
7   外装樹脂層
8   クラック[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solid electrolytic capacitor in which a dielectric film layer and a solid electrolyte layer are sequentially formed on a surface of an anode body made of a valve metal.
[0002]
[Prior art]
2. Description of the Related Art In recent years, with the miniaturization and speeding-up of electronic devices, a small, high-capacity, low-impedance solid electrolytic capacitor is also required in the field of capacitors.
[0003]
At present, a solid electrolytic capacitor having a configuration as shown in FIG. 4 is known as a solid electrolytic capacitor in which a dielectric film layer and a solid electrolyte layer are sequentially formed on the surface of an anode body made of a valve metal.
[0004]
This solid electrolytic capacitor has an anode body 1 made of a sintered body of a valve metal (tantalum, niobium, titanium, aluminum, etc.), a dielectric coating layer 2 oxidized on the anode body surface, and a conductive material such as manganese dioxide. A capacitor element 15 is formed by sequentially forming a solid electrolyte layer 3 made of an inorganic material or a conductive organic material such as a TCNQ complex salt or a conductive polymer, a conductive carbon layer 4 containing graphite, and a silver paint layer 5, The anode terminal 61 is welded to the anode lead pin 16 implanted on one end surface of the anode body 1, the cathode terminal 62 is soldered to the silver paint layer 5, and the exterior of the capacitor element 15 is made of an epoxy resin or the like. It was covered and sealed with layer 7.
[0005]
[Problems to be solved by the invention]
In the solid electrolytic capacitor as described above, the cathode portion is formed by laminating a plurality of materials (solid electrolyte layer, conductive carbon layer, silver paint layer), and the ESR is reduced and the heat resistance is improved by changing the material of each layer. Research on improving moisture resistance was repeated.
[0006]
However, recently, a technology for reducing the resistance of each layer, such as using a conductive polymer for the solid electrolyte layer, has been developed, so that the resistance between the layers has become a level that cannot be ignored. In order to reduce ESR, it is necessary to increase the adhesion between layers.
[0007]
Thus, in the present invention, a solid electrolytic capacitor in which a dielectric oxide film layer, a solid electrolyte layer, a conductive carbon layer, and a silver paint layer are sequentially formed on the anode body surface made of a metal material having a valve action,
The purpose is to reduce ESR and improve heat resistance and moisture resistance by improving the adhesion between the conductive carbon layer and the silver paint layer.
[0008]
[Means for Solving the Problems]
As a means for improving the adhesion between the conductive carbon layer and the silver paint layer, a method of increasing the contact area of each layer is known. However, the solid electrolyte layer made of a conductive polymer is formed into a thin film by a well-known chemical polymerization method or electrolytic polymerization method, the surface of which is likely to be smooth, and the conductive carbon layer formed on the solid electrolyte layer is also It is easy to form smoothly. Therefore, the surface area of the conductive carbon layer is reduced, and the adhesion between the conductive carbon layer and the silver paint layer is deteriorated.
[0009]
Therefore, in the present invention, as shown in FIG. 1, when the conductive carbon layer is formed, the conductive carbon layer is applied so that fine cracks having a width of 1 to 50 μm are formed on the surface thereof, and the surface area of the conductive carbon layer is reduced. By forming a silver paint layer by applying a silver paint on a sufficiently enlarged surface, the adhesion can be improved, and the ESR between the layers can be reduced.
[0010]
Also, the conductive carbon layer forming process is divided into two steps, the first layer is formed by a crack-free uniform conductive carbon layer, and the second layer is formed by the cracked conductive carbon layer. The adhesion with the silver paint layer can be improved without deteriorating the adhesion with the solid electrolyte layer.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
As shown in FIG. 2, the solid electrolytic capacitor according to one embodiment of the present invention oxidizes the surface of the anode body 1 made of a sintered body of a valve metal (tantalum, niobium, titanium, aluminum, etc.). A dielectric film layer 2, a solid electrolyte layer 3, a conductive carbon layer 4, and a silver paint layer 5 made of a conductive inorganic material such as manganese dioxide or a conductive organic material such as a TCNQ complex salt or a conductive polymer are sequentially formed. The anode terminal 61 is welded to the anode lead pin 16 planted on one end surface of the anode body 1, the cathode terminal 62 is soldered to the silver paint layer 5, and the outside of the capacitor element 15 is formed. Is sealed with an exterior resin layer 7 made of an epoxy resin or the like.
[0012]
The conductive carbon layer 4 and the silver paint layer 5 are formed by sequentially applying and drying conductive carbon and silver dispersed in water or an organic solvent on the surface of the solid electrolyte layer 3.
[0013]
In order to form fine cracks in the conductive carbon layer used in the present invention, the conductive carbon powder in the conductive carbon-containing solution has a particle diameter of 10 to 100 nm, and the thickness of the conductive carbon layer to be formed is Is set to 0.3 to 1 μm. Further, by setting the content of the binder in the conductive carbon-containing solution to 0 to 5 wt%, the binding force of the layer at the time of forming the conductive carbon layer can be lowered, and cracks can be more easily generated.
[0014]
Here, it is desirable that the binder used in the conductive carbon-containing solution contains at least one compound selected from water-soluble methylcellulose, polyacrylonitrile, polyvinyl alcohol, methyl methacrylate or a derivative thereof.
[0015]
Also, as shown in FIG. 3, the step of forming the conductive carbon layer 4 is divided into two steps, the first layer is formed of a crack-free uniform conductive carbon layer 41, and the second layer is formed of the cracked conductive layer. When formed with the carbon layer 42, the adhesion with the silver paint layer 5 can be improved without deteriorating the adhesion with the solid electrolyte layer 3. At this time, the first conductive carbon layer 41 has a thickness of 0.1 mm. 3-0. It is effective that the thickness is 6 μm, the weight of the binder is 10 to 20 wt% of the weight of the conductive carbon powder, and the weight of the second layer binder is 0 to 5 wt% of the weight of the conductive carbon powder.
[0016]
Hereinafter, the present invention will be described in detail with reference to examples.
[0017]
(Example 1) An anode sintered element having an outer diameter of 4.4 x 3.3 x 0.9 mm was manufactured using tantalum powder, and the surface of the element was subjected to a chemical (electrolytic oxidation) treatment to be made of tantalum oxide. A dielectric film layer was formed, and then a solid electrolyte layer made of polypyrrole was formed. Next, a conductive carbon solution comprising a conductive carbon powder having an average particle size of about 25 nm was applied on the solid electrolyte, and dried at 150 ° C. for 30 minutes.
[0018]
The composition of the conductive carbon solution was set to conductive carbon powder: methyl cellulose: pure water = 10: 0.1: 100 (weight ratio). Thereafter, when the surface was observed, cracks having a width of about 10 μm and a length of 50 to 500 μm were entirely confirmed. The thickness of the conductive carbon layer was 0.4 μm.
[0019]
Thereafter, a silver paint layer was formed on the conductive carbon layer to complete a capacitor element.
[0020]
(Example 2) A conductive carbon solution was prepared in the same manner as in Example 1 except that the composition of the conductive carbon powder was changed to conductive carbon powder: methyl cellulose: pure water = 5: 0.1: 100 (weight ratio). After drying, cracks having a width of about 20 μm were entirely observed on the surface of the conductive carbon layer. The thickness of the conductive carbon layer was 0.6 μm.
[0021]
(Example 3) An anode sintered element having an outer diameter of 4.4 x 3.3 x 0.9 mm was manufactured using tantalum powder, and the surface of the element was subjected to a chemical conversion (electrolytic oxidation) treatment to be made of tantalum oxide. A dielectric film layer was formed, and then a solid electrolyte layer made of polypyrrole was formed. Next, a conductive carbon solution comprising a conductive carbon powder having an average particle diameter of about 25 nm was applied on the solid electrolyte, and dried at 150 ° C. for 30 minutes to form a conductive carbon layer 1 without cracks. The composition of the conductive carbon solution used for the conductive carbon layer 1 was conductive carbon powder: methyl cellulose: pure water = 5: 1: 100 (weight ratio). Further, a conductive carbon solution comprising a conductive carbon powder having an average particle size of about 25 nm was further applied on the solid electrolyte, and dried at 150 ° C. for 30 minutes to form a conductive carbon layer 2 having cracks. . The composition of the conductive carbon solution used for the conductive carbon layer 2 was conductive carbon powder: methyl cellulose: pure water = 5: 0.1: 100 (weight ratio). The carbon layer 1 had a flat surface state, whereas the carbon layer 2 had cracks with a width of about 20 μm distributed throughout. The thicknesses of the conductive carbon layers 1 and 2 were 0.4 μm and 0.4 μm, respectively. Thereafter, it was manufactured in the same manner as in Example 1.
[0022]
(Example 4) A conductive carbon solution was prepared in the same manner as in Example 1 except that the composition of the conductive carbon powder was changed to conductive carbon powder: methylcellulose: pure water = 3: 0.3: 100 (weight ratio). The thickness of the conductive carbon layer was about 0.3 μm. Cracks having a width of 10 μm were entirely observed on the surface of the conductive carbon layer.
[0023]
Comparative Example 1 A conductive carbon solution was prepared in the same manner as in Example 1 except that the composition of the conductive carbon solution was changed to conductive carbon powder: methyl cellulose: pure water = 5: 1: 100 (weight ratio). The thickness of the conductive carbon layer was 0.6 μm. No crack was observed on the surface of the conductive carbon layer.
[0024]
(Comparative Example 2) An anode sintered element having an outer diameter of 4.4 x 3.3 x 0.9 mm was prepared using tantalum powder, and the surface of the element was subjected to a chemical conversion (electrolytic oxidation) treatment to be made of tantalum oxide. A dielectric film layer was formed, and then a solid electrolyte layer made of polypyrrole was formed. Next, a conductive carbon solution comprising a conductive carbon powder having an average particle diameter of about 25 nm was applied onto the solid electrolyte, and dried at 150 ° C. for 30 minutes to form a conductive carbon layer 1. Further, a conductive carbon layer 2 was formed on the conductive carbon layer 1 using the same conductive carbon solution. The composition of the conductive carbon solution was set to conductive carbon powder: methyl cellulose: pure water = 5: 1: 100 (weight ratio). The thicknesses of the conductive carbon layers 1 and 2 were 0.6 μm and 0.6 μm, respectively. No crack was observed on the surfaces of the conductive carbon layers 1 and 2. Thereafter, it was manufactured in the same manner as in Example 1.
[0025]
(Comparative Example 3) An anode sintered element having an outer diameter of 4.4 x 3.3 x 0.9 mm was prepared using tantalum powder, and the surface of the element was subjected to a chemical conversion (electrolytic oxidation) treatment to be made of tantalum oxide. A dielectric film layer was formed, and then a solid electrolyte layer made of polypyrrole was formed. Next, a conductive carbon solution composed of a conductive carbon powder having an average particle diameter of about 120 nm was applied on the solid electrolyte, and dried at 150 ° C. for 30 minutes to form. The composition of the conductive carbon solution was set to conductive carbon powder: methyl cellulose: pure water = 10: 0.1: 100 (weight ratio). This was repeated three times to adjust the thickness of the conductive carbon layer to about 1 μm. A crack having a width of 60 μm was entirely observed on the surface of the conductive carbon layer. Thereafter, it was manufactured in the same manner as in Example 1.
[0026]
Table 1 shows the electrical characteristics of the capacitors in Examples 1 to 4 and Comparative Examples 1 to 3 before and after a high-temperature load test (105 ° C., 500 hours). Table 2 shows the electrical characteristics.
[0027]
In Tables 1 and 2, the capacitance is measured at 120 Hz, the ESR is measured at 100 Hz, and the tan δ is measured at 120 Hz.
[0028]
[Table 1]
Figure 2004087601
[0029]
[Table 2]
Figure 2004087601
[0030]
As can be seen from Tables 1 and 2, in Examples 1 to 4, a value lower by 2 to 3 mΩ in the ESR initial value was obtained than in Comparative Examples 1 to 3. The high-temperature load test and the humidity-free no-load test also show excellent results with little deterioration in ESR. This is probably because the adhesion between the conductive carbon layer and the silver paint layer was improved. Further, as can be seen from the results of (Comparative Example 3), cracks generated in the conductive carbon layer are larger as the particle size of the conductive carbon powder is larger or the conductive carbon layer is thicker, and the effect of reducing the ESR is reduced. Conversely, if the conductive carbon powder has a small particle diameter and the conductive carbon layer has a thickness of 50 μm or less and cracks are generated, the conductive carbon layer having a width of about 10 μm is obtained, and the effect of reducing the ESR is increased. In addition, when forming a conductive carbon layer, the conductive carbon layer is divided into two layers, a conductive carbon layer having no crack is formed as a first layer, and a conductive carbon layer having fine cracks is formed as a second layer. (Example 3) showed particularly excellent characteristics.
[0031]
【The invention's effect】
According to the present invention, a solid electrolytic capacitor in which a dielectric oxide film layer, a solid electrolyte layer, a conductive carbon layer, and a silver paint layer are sequentially formed on the surface of an anode body made of a metal material having a valve action,
A solid electrolytic capacitor having improved adhesion between the conductive carbon layer and the silver paint layer, low ESR and tan δ, and excellent heat resistance and moisture resistance can be provided. In addition, since the contact area between the conductive carbon layer and the silver paint layer is increased, the silver paint layer is less likely to peel off, leading to a reduction in defective products.
[Brief description of the drawings]
FIG. 1 is a surface view of a conductive carbon layer according to the present invention.
FIG. 2 is a sectional view of a solid electrolytic capacitor having fine cracks in a conductive carbon layer according to the present invention.
FIG. 3 is a cross-sectional view of a solid electrolytic capacitor in which a conductive carbon layer according to the present invention is divided into two layers.
FIG. 4 is a sectional view of a conventional solid electrolytic capacitor.
[Explanation of symbols]
Reference Signs List 1 anode body 15 capacitor element 16 anode lead pin 2 dielectric film layer 3 solid electrolyte layer 4 conductive carbon layer 41 conductive carbon layer 1 (no crack)
42 conductive carbon layer 2 (with cracks)
5 Silver paint layer 61 Anode lead terminal 62 Cathode lead terminal 7 Exterior resin layer 8 Crack

Claims (6)

弁作用を有する金属材からなる陽極体表面に、誘電体酸化皮膜層、固体電解質層、導電性カーボン層、及び銀ペイント層を順次形成した固体電解コンデンサにおいて、
前記導電性カーボン層に幅が1〜50μmの微細なクラックが入っていることを特徴とする固体電解コンデンサ。
In a solid electrolytic capacitor in which a dielectric oxide film layer, a solid electrolyte layer, a conductive carbon layer, and a silver paint layer are sequentially formed on the anode body surface made of a metal material having a valve action,
A solid electrolytic capacitor, wherein the conductive carbon layer has fine cracks having a width of 1 to 50 μm.
前記導電性カーボン層を形成する導電性カーボン粉末の粒子径が10〜100nmであることを特徴とする請求項1の固体電解コンデンサ。2. The solid electrolytic capacitor according to claim 1, wherein the conductive carbon powder forming the conductive carbon layer has a particle size of 10 to 100 nm. 前記導電性カーボン層の厚さが0.3〜1μmであることを特徴とする請求項1の固体電解コンデンサ。2. The solid electrolytic capacitor according to claim 1, wherein said conductive carbon layer has a thickness of 0.3 to 1 [mu] m. 前記導電性カーボン層は結着剤を含み、該結着剤の重量は導電性カーボン粉末の重量の0.1〜5wt%であることを特徴とする請求項1の固体電解コンデンサ。2. The solid electrolytic capacitor according to claim 1, wherein the conductive carbon layer contains a binder, and the weight of the binder is 0.1 to 5 wt% of the weight of the conductive carbon powder. 前記結着剤はメチルセルロース、ポリアクリロニトリル、ポリビニルアルコール、メタクリル酸メチル及びそれらの誘導体から選ばれる少なくとも1種の化合物を含むことを特徴とする請求項4の固体電解コンデンサ。The solid electrolytic capacitor according to claim 4, wherein the binder contains at least one compound selected from methylcellulose, polyacrylonitrile, polyvinyl alcohol, methyl methacrylate, and derivatives thereof. 前記導電性カーボン層は、クラックの無い第1の導電性カーボン層上に、微細なクラックが入った第2の導電性カーボン層を形成した構造を有することを特徴とする請求項1の固体電解コンデンサ。2. The solid electrolytic device according to claim 1, wherein the conductive carbon layer has a structure in which a second conductive carbon layer having fine cracks is formed on a first conductive carbon layer having no cracks. Capacitors.
JP2002243809A 2002-08-23 2002-08-23 Solid electrolytic capacitor Expired - Fee Related JP4307032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002243809A JP4307032B2 (en) 2002-08-23 2002-08-23 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002243809A JP4307032B2 (en) 2002-08-23 2002-08-23 Solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2004087601A true JP2004087601A (en) 2004-03-18
JP4307032B2 JP4307032B2 (en) 2009-08-05

Family

ID=32052480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002243809A Expired - Fee Related JP4307032B2 (en) 2002-08-23 2002-08-23 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4307032B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099974A (en) * 2007-09-28 2009-05-07 Sanyo Electric Co Ltd Solid electrolytic capacitor and method of manufacturing the same
KR101681399B1 (en) * 2015-01-05 2016-11-30 삼성전기주식회사 Tantal condenser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099974A (en) * 2007-09-28 2009-05-07 Sanyo Electric Co Ltd Solid electrolytic capacitor and method of manufacturing the same
KR101681399B1 (en) * 2015-01-05 2016-11-30 삼성전기주식회사 Tantal condenser

Also Published As

Publication number Publication date
JP4307032B2 (en) 2009-08-05

Similar Documents

Publication Publication Date Title
JP5289033B2 (en) Solid electrolytic capacitor
EP2290664B1 (en) Solid electrolytic capacitor and method of manufacturing thereof
JP2009505412A (en) Polymer-based solid capacitor and method of manufacturing the same
WO2012124584A1 (en) Solid electrolytic capacitor and method of producing same
JP2008300637A (en) Conductive paste for solid electrolytic capacitor electrode, and manufacturing method of electrode of solid electrolytic capacitor using the conductive paste
JP2950670B2 (en) Solid electrolytic capacitors
JP2001102255A (en) Tantalum solid electrolytic capacitor and manufacturing method therefor
JP5232899B2 (en) Solid electrolytic capacitor
JP4553770B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5623214B2 (en) Solid electrolytic capacitor
JP2001217159A (en) Solid electrolytic capacitor and its manufacturing method
JP4307032B2 (en) Solid electrolytic capacitor
JP2009105171A (en) Solid-state electrolytic capacitor and its method for manufacturing
JP2004079838A (en) Solid electrolytic capacitor
JP5611745B2 (en) Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
JP2003086464A (en) Solid electrolytic capacitor
JP2007180440A (en) Solid electrolytic capacitor and manufacturing method thereof
JP2008010719A (en) Solid electrolytic capacitor, and its manufacturing method
JPH11135377A (en) Solid electrolytic capacitor and its manufacture
JP4624017B2 (en) Manufacturing method of solid electrolytic capacitor
JP2003168633A (en) Solid electrolytic capacitor, its manufacturing method, conductive composite material, and its manufacturing method
WO2006129639A1 (en) Solid electrolytic capacitor and method for manufacturing same
JP2007096264A (en) Solid electrolytic capacitor element, its manufacturing method, and solid electrolytic capacitor
JP3482983B2 (en) Tantalum solid electrolytic capacitor element and tantalum solid electrolytic capacitor
JP2001338847A (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040310

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050111

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090428

R151 Written notification of patent or utility model registration

Ref document number: 4307032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees