JP2004079838A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor Download PDF

Info

Publication number
JP2004079838A
JP2004079838A JP2002239231A JP2002239231A JP2004079838A JP 2004079838 A JP2004079838 A JP 2004079838A JP 2002239231 A JP2002239231 A JP 2002239231A JP 2002239231 A JP2002239231 A JP 2002239231A JP 2004079838 A JP2004079838 A JP 2004079838A
Authority
JP
Japan
Prior art keywords
layer
conductive carbon
electrolytic capacitor
carbon black
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002239231A
Other languages
Japanese (ja)
Inventor
Seiji Omura
大村  誠司
Yoshikazu Hirata
平田  義和
Atsushi Furusawa
古澤  厚志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electronic Components Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electronic Components Co Ltd, Sanyo Electric Co Ltd filed Critical Sanyo Electronic Components Co Ltd
Priority to JP2002239231A priority Critical patent/JP2004079838A/en
Publication of JP2004079838A publication Critical patent/JP2004079838A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolytic capacitor that is small in ESR and tanδ and superior in heat resistance and moisture resistance by improving adhesion between a solid electrolyte layer and a conductive carbon layer in the solid electrolytic capacitor wherein a dielectric film, a solid electrolyte layer made of conductive polymer, a conductive carbon layer, and a cathode leading layer are formed in sequence on the surface of an anode made of metal. <P>SOLUTION: The conductive carbon layer uses a carbon material containing mainly a conductive carbon black powder of of 10-270nm in average particle size. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、金属材からなる陽極体の表面に、誘電体皮膜層及び固体電解質層を順次形成した固体電解コンデンサに関する。
【0002】
【従来の技術】
金属材からなる陽極体の表面に、誘電体皮膜層及び固体電解質層を順次形成した固体電解コンデンサとして、図1に示すような構成を有するものが知られている。
【0003】
この固体電解コンデンサは弁作用金属(タンタル、ニオブ、チタン、アルミニウム等)の焼結体からなる陽極体1表面に、該陽極体表面を酸化させた誘電体酸化皮膜2、二酸化マンガン等の導電性無機固体、或いはTCNQ錯塩、導電性ポリマー等の導電性有機固体からなる固体電解質層3、グラファイト等の導電性カーボン材を含有する導電性カーボン層4、銀等を含有する陰極引出層5を順次形成してコンデンサ素子15を構成し前記陽極体1の一端面に植立された陽極リードピン16に陽極端子61を溶接し、前記陰極引出層5に陰極端子62をろう接し、前記コンデンサ素子15の外側にをエポキシ樹脂等からなる外装樹脂層7にて被覆密封したものである。
【0004】
【発明が解決しようとする課題】
上述のような構成を有する固体電解コンデンサにおいて、固体電解質層に対するカーボン層の密着性が不十分であると、コンデンサ完成品としてのESR(等価直列抵抗)やtanδ(損失角の正接)が大きくなり、極端な場合には、ヒートショック等により導電性カーボン層が剥離することもある。
【0005】
特に、固体電解質層の材料として、ポリピロール、ポリチオフェン、ポリアニリン或いはそれらの誘導体等の導電性ポリマーを採用する場合は、二酸化マンガンやTCNQ錯塩に比べて電気抵抗率が小さく、従ってコンデンサ完成品としてのESRやtanδも比較的小さくなるので固体電解質層と導電性カーボン層との密着性の良否がESRやtanδに対して相対的に大きな影響を及ぼすことになる。
【0006】
また導電性ポリマーからなる固体電解質層は周知の化学重合法や電解重合法により薄膜状に形成され、従ってその表面は平滑(例えば、中心線平均粗さ30〜500nm)になりやすいため、導電性カーボン材(例えばグラファイト)の粒子径が大きいと、固体電解質層と導電性カーボン層との密着性が悪くなりやすい。
【0007】
この問題に対して特開平7−94368号には、導電性ポリマー層中に導電性粉末を混在させることにより、導電性ポリマー層の表面に凹凸を設ける技術が開示されているが、導電性ポリマー層中に導電性粉末を混在させると、該導電性ポリマー層が厚くなってコンデンサ完成品としての外形寸法が大きくなり、また製造工程も複雑になる。
【0008】
また固体電解質層と陰極引出層の密着性を改善する従来技術として固体電解質層に二酸化マンガンを用いて、導電性カーボン層に平均粒子径が0.28μmのカーボンブラックを用いる方法が特許第3199101号に開示されている。
【0009】
本発明は金属材からなる陽極体の表面に、誘電体皮膜層、導電性ポリマーからなる固体電解質層、導電性カーボン層及び陰極引出層を順次形成した固体電解コンデンサおいて、前記固体電解質層と導電性カーボン層との密着性を改善することにより、ESR及びtanδが小さく、耐熱及び耐湿性に優れた固体電解コンデンサを提供するものである。
【0010】
【課題を解決するための手段】
金属材からなる陽極体表面に、誘電体皮膜層、導電性ポリマー(ピロール、チオフェン、アニリン、フラン等)からなる固体電解質層、導電性カーボン層及び陰極引出層を順次形成した固体電解コンデンサにおいて、
前記導電性カーボン層は、主成分として導電性カーボンブラック粉末を含むことを特徴とするものである。
本発明で用いるカーボンブラックとは、形状が球状体をしており、その球状体表面積及びその付近の層中では炭素六方層面は球状体表面に平行配向している。また、構成する炭素六方層面は20Å前後の大きさで、その積み重なりは数程度で乱層構造をとっているものである。
【0011】
弁作用金属にはタンタル、ニオブ、チタン、アルミニウム等が用いられる。
【0012】
前記導電性カーボンブラック粉末は
(1)平均粒子径が10〜270nmのものを使用する。(平均粒子径が10nmより小さいと粒子径の制御が難しいという問題があり、また270nmより大きい粒子径になると導電性ポリマーとの接触面積が小さくなり、ESR及びtanδ低減が望みにくい。)
(2)電気電導度が5S/cm以上のものを使用する。(5S/cmより低いとESR低減の効果が認められにくいという問題がある。)
また導電性カーボンブラック粉末を分散させた溶液としてpH値が6以上のものを使用する。(pH値が6より小さいと、例えば水系の導電性カーボンブラック溶液を作製した場合、分散状態の長期的な維持に問題が生じる。)
【0013】
【発明の実施の形態】
本発明の一実施形態に相当する固体電解コンデンサは前記図1を参照して、弁作用金属(タンタル、ニオブ、チタン、アルミニウム等)の焼結体からなる陽極体1表面に、該陽極体表面を酸化させた誘電体皮膜層2、導電性ポリマー(ピロール、チオフェン、アニリン、フラン等)からなる固体電解質層3、主成分として導電性カーボンブラック粉末を含む導電性カーボン層4、銀等を含有する陰極引出層5を順次形成してコンデンサ素子15を構成し前記陽極体1の一端面に植立された陽極リードピン16に陽極端子61を溶接し、前記陰極引出層5に陰極端子62をろう接し、前記コンデンサ素子15の外側にをエポキシ樹脂等からなる外装樹脂層7にて被覆密封したものである。
【0014】
固体電解質層の表面は陽極焼結体の表面に比べて平滑になりやすい。導電性ポリマーからなる固体電解質層であれば、周知の化学重合法や電解重合法により、厚さが20〜50μmと形成され,表面が粗い焼結体上に形成しても、その表面の中心線平均粗さは30〜500nmとなる。
【0015】
このような平滑な固体電解質表面に対する導電性カーボン層の密着性を良好なものとするためには、導電性ポリマー層に含有させるカーボンブラックとして、固体電解質表面の中心線平均粗さよりも短い30〜270nmの平均粒子径を有するものを用いることが好ましい。更に好ましくは10〜30nmの平均粒子径のもの用いるとなお良い。
【0016】
また従来は導電性カーボン層の形成に用いる導電性カーボン溶液の作製にあたり、アンモニア等の添加物を溶媒に加え、pH値を調節しバインダーへの分散を良くしていた。しかしアンモニアは刺激臭があり、また人体に有害であるという問題があった。そこで導電性カーボン溶液のpH値が6以上になるカーボンブラック粉末を用いることにより、アンモニア等の添加物を加えることなくバインダーに分散させることができる。
【0017】
導電性カーボン層の成膜方法としては、
(1)カーボンブラックと適当な結着剤(例えば、メチルセルロース等の水溶性結着剤)とを適当な溶媒(例えば水)に溶解させ、該溶解液(以下カーボンブラック溶液と略す)を、誘電体皮膜層及び固体電解質層を形成した陽極焼結素子上に塗布した後、乾燥させる方法。
【0018】
(2)誘電体皮膜層及び固体電解質層を形成した陽極焼結素子を、前記カーボンブラック溶液に浸漬した後、乾燥させる方法等がある。
【0019】
前記カーボンブラック溶液の粘度は0.5〜200mPa・sである。0.5mPa・sより低い粘度になると固形分、つまり導電性カーボンブラック粉末分が少なくなり、塗布後の導電性カーボン層の電導度が低くなってしまう。また200mPa・sより高い粘度のカーボンブラック溶液では、導電性カーボン層が厚く付着してしまう問題がある。
【0020】
前記カーボンブラック溶液の組成としては、基本的には導電性カーボンブラック粉末と結着剤と水系或いは有機系溶媒とで構成される。導電性カーボンブラック粉末の含有率としては導電性カーボンブラック粉末重量/カーボンブラック溶液総重量=0.5〜40wt%、好ましくは0.5〜10wt%である。前記導電性カーボンブラック粉末の含有量が0.5wt%より少ないと、導電性ポリマー層と導電性カーボン層との接触面積が小さくなり、抵抗が大きくなってしまう。また、導電性カーボンブラック粉末の含有量が40wt%より大きくなるとカーボンブラック溶液が低粘度の液状にならず、導電性ポリマー層上への付着が難しくなる。
【0021】
前記導電性カーボン層に含まれる結着剤の重量は導電性カーボンブラック粉末の重量の0〜20wt%である。 好ましくは2〜20wt%である。 従来に比べ結着剤の割合が高くしてもカーボンブラック粉末が微細であるため、密着性向上に効果がある。20wt%より多くなると、カーボンブラック溶液の電気電導度が低くなる問題がある。また、結着剤としては水系(メチルセルロース、ポリアクリロニトル、メタクリル酸メチル及びそれらの誘導体等)又は有機系(フェノール樹脂、ポリエステル樹脂、アクリル等)の溶媒に溶解するものであれば特に制限はない。
【0022】
以下に本発明について実施例をあげて詳しく説明する。
(実施例1)
CV積が50000μF・V/gのタンタル粉末を用いて外形0.9×3.3×4.4mmの陽極焼結素子を作製し、該素子の表面に化成(電解酸化)処理を施してタンタル酸化物からなる誘電酸化皮膜を形成し、次いでポリピロールからなる固体電解質層を形成した後、平均粒子径が約30nm、電気電導度が20S/cm、窒素吸着比表面積が120 m/g、pHが7.2の導電性カーボンブラック粉末からなるカーボンブラック溶液に該素子を一定時間含浸し、乾燥させて前記カーボン層を形成させた。
【0023】
ここでカーボンブラック溶液の組成は導電性カーボン粉末:メチルセルロース:純水=:5:0.5:100(重量比)とし、粘度は3mPa・sに調節した。また導電性カーボン層の厚さは100nmとした。
【0024】
その後、導電性カーボン層上に銀ペーストからなる陰極引出層を形成し、陽極端子及び陰極端子をそれぞれ接続した後、エポキシ樹脂にて外装し陽極端子及び陰極端子を外装樹脂層の外側に沿って折り曲げ、最後にエージング処理を施して、図1に示したような固体電解コンデンサを作製した。
(実施例2)
実施例1と同一のタンタル焼結体を使用し、酸化皮膜形成、ポリピロールからなる固体電解質層を形成した後、平均粒子径が約100nm、電気電導度が15S/cm、窒素吸着比表面積が270 m/g、pHが7.0の導電性カーボンブラック粉末からなる導電性カーボン層を形成させた。
【0025】
ここでカーボンブラック溶液の組成は導電性カーボン粉末:メチルセルロース:純水=:5:0.5:100(重量比)とし、粘度は3.2mPa・sに調節した。また前記カーボン層の厚さは200nmとした。
【0026】
その後、実施例1と同様の方法で固体電解コンデンサを作製した。
【0027】
(実施例3)
実施例1と同一のタンタル焼結体を使用し、酸化皮膜形成、ポリピロールからなる固体電解質層を形成した後、平均粒子径が約30nm、電気電導度が20S/cm、窒素吸着比表面積が120m/g、pHが7.0の導電性カーボンブラック粉末からなる導電性カーボン層を形成させた。
【0028】
ここでカーボンブラック溶液の組成は導電性カーボン粉末:純水=:5:100(重量比)とし、粘度は2.5mPa・sに調節した。また前記カーボン層の厚さは100nmとした。
【0029】
その後、実施例1と同様の方法で固体電解コンデンサを作製した。
(実施例4)
CV積が70000μF・V/gのタンタル粉末を用いて外形0.9×3.3×4.4mmの陽極焼結素子を作製した以外は、実施例1と同様の方法で行ない固体電解コンデンサを作製した。
(比較例1)
平均粒子径が700nmの導電性カーボンブラックを使用し、導電性カーボン層の厚さを約2μmとしたこと以外は実施例1と同様の工程で、固体電解コンデンサを作製した。
(比較例2)
電気電導度が2S/cmの導電性カーボンブラック粉末を使用したこと以外は実施例1と同様の工程で、固体電解コンデンサを作製した。
(比較例3)
導電性カーボン層を3μmの厚さに塗布したこと以外は実施例1と同様の工程で、固体電解コンデンサを作製した。
(比較例4)
CV積が20000μF・V/gのタンタル粉末を用いて外形0.9×3.3×4.4mmの陽極焼結素子を作製した以外は、実施例1と同様の方法で行ない固体電解コンデンサを作製した。
【0030】
実施例1〜4、比較例1〜4におけるコンデンサについて、初期(エージング直後)の電気特性を表1に、高温負荷試験(105℃・500時間)前後の電気特性を表2に、耐湿無負荷試験(60℃・90%RH・500時間)前後の電気特性を表3に示す。
【0031】
表1〜3において静電容量は120Hzで測定したものであり、ESRは100Hzで測定したものであり、tanδは120Hzで測定したものである。
【0032】
【表1】

Figure 2004079838
【0033】
【表2】
Figure 2004079838
【0034】
【表3】
Figure 2004079838
【0035】
表1〜3を見ればわかるように、実施例1〜4においては、比較例1〜4に比べて、高温負荷試験による静電容量の変化が小さく、エージング直後、高温負荷試験後及び耐湿無負荷試験後のいずれにおいても、ESR及びtanδが小さくなっている。
【0036】
実施例では導電性カーボン層におけるカーボンブラックの割合が100%だが、グラファイト等のカーボン材と組合すことでも同様の効果が得られる。
【0037】
【発明の効果】
本発明によれば、金属材からなる陽極体表面に、誘電体皮膜層、導電性ポリマーからなら成る固体電解質層、導電性カーボン層及び陰極引出層を順次形成した固体電解コンデンサにおいて、
固体電解質と導電性カーボン層との密着性が改善され、ESR及びtanδが小さく、耐熱性にも優れた固体電解コンデンサが提供される。また粒子径が小さいカーボンブラックを用いることにより、導電性カーボン層を薄くすることができESRの低減することができる。
【図面の簡単な説明】
【図1】固体電解コンデンサの断面図である。
【符号の説明】
1   陽極体
15 コンデンサ素子
16 陽極リードピン
2   誘電体皮膜層
3   固体電解質層
4   導電性カーボン層
5   陰極引出層
61 陽極リード端子
62 陰極リード端子
7   外装樹脂層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solid electrolytic capacitor in which a dielectric film layer and a solid electrolyte layer are sequentially formed on the surface of an anode body made of a metal material.
[0002]
[Prior art]
As a solid electrolytic capacitor in which a dielectric film layer and a solid electrolyte layer are sequentially formed on the surface of an anode body made of a metal material, one having a configuration as shown in FIG. 1 is known.
[0003]
This solid electrolytic capacitor has an anode body 1 made of a sintered body of a valve metal (tantalum, niobium, titanium, aluminum, etc.), a dielectric oxide film 2 oxidized on the anode body surface, and a conductive material such as manganese dioxide. A solid electrolyte layer 3 made of a conductive organic solid such as an inorganic solid or a TCNQ complex salt or a conductive polymer, a conductive carbon layer 4 containing a conductive carbon material such as graphite, and a cathode extraction layer 5 containing silver or the like are sequentially formed. The anode terminal 61 is welded to the anode lead pin 16 planted on one end face of the anode body 1 by forming the capacitor element 15, and the cathode terminal 62 is soldered to the cathode extraction layer 5 to form the capacitor element 15. The outside is covered and sealed with an exterior resin layer 7 made of epoxy resin or the like.
[0004]
[Problems to be solved by the invention]
In the solid electrolytic capacitor having the above-described configuration, if the adhesion of the carbon layer to the solid electrolyte layer is insufficient, ESR (equivalent series resistance) and tan δ (tangent of loss angle) as a finished capacitor increase. In an extreme case, the conductive carbon layer may peel off due to heat shock or the like.
[0005]
In particular, when a conductive polymer such as polypyrrole, polythiophene, polyaniline, or a derivative thereof is used as a material for the solid electrolyte layer, the electric resistivity is smaller than that of manganese dioxide or TCNQ complex salt. And tan δ also become relatively small, so that the quality of adhesion between the solid electrolyte layer and the conductive carbon layer has a relatively large effect on ESR and tan δ.
[0006]
The solid electrolyte layer made of a conductive polymer is formed into a thin film by a well-known chemical polymerization method or electrolytic polymerization method, and the surface thereof is likely to be smooth (for example, the center line average roughness is 30 to 500 nm). If the particle size of the carbon material (for example, graphite) is large, the adhesion between the solid electrolyte layer and the conductive carbon layer tends to deteriorate.
[0007]
To solve this problem, Japanese Patent Application Laid-Open No. 7-94368 discloses a technique in which a conductive powder is mixed in a conductive polymer layer to form irregularities on the surface of the conductive polymer layer. When the conductive powder is mixed in the layer, the conductive polymer layer becomes thick, the external dimensions of the finished capacitor become large, and the manufacturing process becomes complicated.
[0008]
As a conventional technique for improving the adhesion between the solid electrolyte layer and the cathode extraction layer, a method using manganese dioxide for the solid electrolyte layer and carbon black having an average particle size of 0.28 μm for the conductive carbon layer is disclosed in Japanese Patent No. 3199101. Is disclosed.
[0009]
The present invention provides a solid electrolytic capacitor in which a dielectric film layer, a solid electrolyte layer made of a conductive polymer, a conductive carbon layer and a cathode extraction layer are sequentially formed on the surface of an anode body made of a metal material, wherein the solid electrolyte layer and An object of the present invention is to provide a solid electrolytic capacitor having small ESR and tan δ and excellent heat resistance and moisture resistance by improving the adhesion to a conductive carbon layer.
[0010]
[Means for Solving the Problems]
In a solid electrolytic capacitor in which a dielectric film layer, a solid electrolyte layer made of a conductive polymer (pyrrole, thiophene, aniline, furan, etc.), a conductive carbon layer and a cathode extraction layer are sequentially formed on the surface of an anode body made of a metal material,
The conductive carbon layer contains conductive carbon black powder as a main component.
The carbon black used in the present invention has a spherical shape, and the surface area of the spherical body and the carbon hexagonal layer surface in the layer near the spherical body are oriented parallel to the surface of the spherical body. The surface of the carbon hexagonal layer is about 20 ° in size, and has a stack of several layers to form a turbostratic structure.
[0011]
Tantalum, niobium, titanium, aluminum or the like is used as the valve metal.
[0012]
As the conductive carbon black powder, (1) a powder having an average particle diameter of 10 to 270 nm is used. (If the average particle diameter is smaller than 10 nm, there is a problem that it is difficult to control the particle diameter. If the average particle diameter is larger than 270 nm, the contact area with the conductive polymer becomes small, and it is difficult to reduce ESR and tan δ.)
(2) Use one having an electric conductivity of 5 S / cm or more. (If it is lower than 5 S / cm, there is a problem that the effect of ESR reduction is hardly recognized.)
Further, a solution having a pH value of 6 or more is used as a solution in which the conductive carbon black powder is dispersed. (If the pH value is less than 6, for example, when a water-based conductive carbon black solution is prepared, there is a problem in maintaining the dispersed state for a long time.)
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Referring to FIG. 1, a solid electrolytic capacitor according to an embodiment of the present invention has an anode body 1 made of a sintered body of a valve metal (tantalum, niobium, titanium, aluminum, etc.), and a surface of the anode body. Oxidized dielectric coating layer 2, solid electrolyte layer 3 made of conductive polymer (pyrrole, thiophene, aniline, furan, etc.), conductive carbon layer 4 containing conductive carbon black powder as a main component, silver, etc. A cathode terminal 61 is welded to an anode lead pin 16 erected on one end surface of the anode body 1 to form a capacitor element 15 by sequentially forming a cathode extraction layer 5 to be formed, and a cathode terminal 62 is soldered to the cathode extraction layer 5. The outside of the capacitor element 15 is covered and sealed with an exterior resin layer 7 made of epoxy resin or the like.
[0014]
The surface of the solid electrolyte layer tends to be smoother than the surface of the anode sintered body. In the case of a solid electrolyte layer made of a conductive polymer, a thickness of 20 to 50 μm is formed by a well-known chemical polymerization method or electrolytic polymerization method. The line average roughness is 30 to 500 nm.
[0015]
In order to improve the adhesion of the conductive carbon layer to such a smooth solid electrolyte surface, as the carbon black to be contained in the conductive polymer layer, 30 to 30 to less than the center line average roughness of the solid electrolyte surface It is preferable to use one having an average particle size of 270 nm. More preferably, it is more preferable to use one having an average particle diameter of 10 to 30 nm.
[0016]
Conventionally, in preparing a conductive carbon solution used for forming a conductive carbon layer, an additive such as ammonia was added to a solvent to adjust the pH value to improve dispersion in a binder. However, ammonia has a problem that it has an irritating odor and is harmful to the human body. Therefore, by using a carbon black powder having a pH value of the conductive carbon solution of 6 or more, the conductive carbon solution can be dispersed in a binder without adding an additive such as ammonia.
[0017]
As a method of forming the conductive carbon layer,
(1) Carbon black and a suitable binder (for example, a water-soluble binder such as methylcellulose) are dissolved in a suitable solvent (for example, water), and the solution (hereinafter abbreviated as carbon black solution) is dissolved in a dielectric material. A method in which the composition is applied onto the anode sintered element on which the body film layer and the solid electrolyte layer are formed, and then dried.
[0018]
(2) There is a method in which the anode sintered element having the dielectric film layer and the solid electrolyte layer formed thereon is immersed in the carbon black solution and then dried.
[0019]
The viscosity of the carbon black solution is 0.5 to 200 mPa · s. If the viscosity is lower than 0.5 mPa · s, the solid content, that is, the amount of the conductive carbon black powder decreases, and the conductivity of the conductive carbon layer after application decreases. Further, in the case of a carbon black solution having a viscosity higher than 200 mPa · s, there is a problem that the conductive carbon layer is attached to a large thickness.
[0020]
The composition of the carbon black solution is basically composed of a conductive carbon black powder, a binder, and an aqueous or organic solvent. The content of the conductive carbon black powder is as follows: conductive carbon black powder weight / carbon black solution total weight = 0.5 to 40 wt%, preferably 0.5 to 10 wt%. When the content of the conductive carbon black powder is less than 0.5 wt%, the contact area between the conductive polymer layer and the conductive carbon layer becomes small, and the resistance becomes large. On the other hand, when the content of the conductive carbon black powder is more than 40 wt%, the carbon black solution does not become a low-viscosity liquid, and it is difficult to adhere to the conductive polymer layer.
[0021]
The weight of the binder contained in the conductive carbon layer is 0 to 20 wt% of the weight of the conductive carbon black powder. Preferably it is 2 to 20% by weight. Even if the ratio of the binder is higher than before, the carbon black powder is fine, which is effective in improving the adhesion. If it exceeds 20% by weight, there is a problem that the electric conductivity of the carbon black solution becomes low. The binder is not particularly limited as long as it is soluble in a water-based (methylcellulose, polyacrylonitrile, methyl methacrylate and derivatives thereof) or organic (phenolic resin, polyester resin, acrylic, etc.) solvent. .
[0022]
Hereinafter, the present invention will be described in detail with reference to examples.
(Example 1)
An anode sintered element having an outer shape of 0.9 × 3.3 × 4.4 mm is manufactured using tantalum powder having a CV product of 50,000 μF · V / g, and a surface of the element is subjected to a chemical conversion (electrolytic oxidation) treatment to obtain a tantalum powder. After forming a dielectric oxide film composed of an oxide and then forming a solid electrolyte layer composed of polypyrrole, the average particle diameter is about 30 nm, the electric conductivity is 20 S / cm, the nitrogen adsorption specific surface area is 120 m 2 / g, and the pH is The device was impregnated with a carbon black solution composed of a conductive carbon black powder having a particle size of 7.2 for a certain period of time, and dried to form the carbon layer.
[0023]
Here, the composition of the carbon black solution was conductive carbon powder: methyl cellulose: pure water = 5: 0.5: 100 (weight ratio), and the viscosity was adjusted to 3 mPa · s. The thickness of the conductive carbon layer was 100 nm.
[0024]
Thereafter, a cathode extraction layer made of a silver paste is formed on the conductive carbon layer, and after connecting the anode terminal and the cathode terminal respectively, the package is covered with an epoxy resin, and the anode terminal and the cathode terminal are formed along the outside of the package resin layer. The solid electrolytic capacitor was bent and finally subjected to an aging treatment to produce a solid electrolytic capacitor as shown in FIG.
(Example 2)
Using the same tantalum sintered body as in Example 1, forming an oxide film and forming a solid electrolyte layer made of polypyrrole, the average particle diameter is about 100 nm, the electric conductivity is 15 S / cm, and the nitrogen adsorption specific surface area is 270. A conductive carbon layer composed of a conductive carbon black powder having m 2 / g and a pH of 7.0 was formed.
[0025]
Here, the composition of the carbon black solution was conductive carbon powder: methyl cellulose: pure water = 5: 0.5: 100 (weight ratio), and the viscosity was adjusted to 3.2 mPa · s. The thickness of the carbon layer was 200 nm.
[0026]
Thereafter, a solid electrolytic capacitor was manufactured in the same manner as in Example 1.
[0027]
(Example 3)
After forming an oxide film and forming a solid electrolyte layer made of polypyrrole using the same tantalum sintered body as in Example 1, the average particle diameter is about 30 nm, the electric conductivity is 20 S / cm, and the nitrogen adsorption specific surface area is 120 m. A conductive carbon layer made of a conductive carbon black powder having a pH of 2 / g and a pH of 7.0 was formed.
[0028]
Here, the composition of the carbon black solution was conductive carbon powder: pure water = 5: 100 (weight ratio), and the viscosity was adjusted to 2.5 mPa · s. The thickness of the carbon layer was 100 nm.
[0029]
Thereafter, a solid electrolytic capacitor was manufactured in the same manner as in Example 1.
(Example 4)
A solid electrolytic capacitor was manufactured in the same manner as in Example 1 except that an anode sintered element having an outer shape of 0.9 × 3.3 × 4.4 mm was manufactured using a tantalum powder having a CV product of 70000 μF · V / g. Produced.
(Comparative Example 1)
A solid electrolytic capacitor was manufactured in the same process as in Example 1 except that conductive carbon black having an average particle diameter of 700 nm was used and the thickness of the conductive carbon layer was set to about 2 μm.
(Comparative Example 2)
A solid electrolytic capacitor was manufactured in the same process as in Example 1 except that a conductive carbon black powder having an electric conductivity of 2 S / cm was used.
(Comparative Example 3)
A solid electrolytic capacitor was produced in the same process as in Example 1 except that the conductive carbon layer was applied to a thickness of 3 μm.
(Comparative Example 4)
A solid electrolytic capacitor was manufactured in the same manner as in Example 1 except that an anode sintered element having an outer shape of 0.9 × 3.3 × 4.4 mm was manufactured using tantalum powder having a CV product of 20000 μF · V / g. Produced.
[0030]
Table 1 shows the initial (immediately after aging) electric characteristics of the capacitors in Examples 1 to 4 and Comparative Examples 1 to 4, and Table 2 shows the electric characteristics before and after the high-temperature load test (105 ° C. for 500 hours). Table 3 shows the electrical characteristics before and after the test (60 ° C., 90% RH, 500 hours).
[0031]
In Tables 1 to 3, the capacitance is measured at 120 Hz, the ESR is measured at 100 Hz, and the tan δ is measured at 120 Hz.
[0032]
[Table 1]
Figure 2004079838
[0033]
[Table 2]
Figure 2004079838
[0034]
[Table 3]
Figure 2004079838
[0035]
As can be seen from Tables 1 to 3, in Examples 1 to 4, the change in capacitance due to the high-temperature load test was smaller than that in Comparative Examples 1 to 4, immediately after aging, after the high-temperature load test, and without moisture resistance. ESR and tan δ are small after any of the load tests.
[0036]
In the embodiment, the ratio of carbon black in the conductive carbon layer is 100%, but the same effect can be obtained by combining with carbon material such as graphite.
[0037]
【The invention's effect】
According to the present invention, a solid electrolytic capacitor in which a dielectric film layer, a solid electrolyte layer made of a conductive polymer, a conductive carbon layer, and a cathode extraction layer are sequentially formed on the anode body surface made of a metal material,
Provided is a solid electrolytic capacitor having improved adhesion between a solid electrolyte and a conductive carbon layer, low ESR and tan δ, and excellent heat resistance. Also, by using carbon black having a small particle diameter, the conductive carbon layer can be made thinner, and the ESR can be reduced.
[Brief description of the drawings]
FIG. 1 is a sectional view of a solid electrolytic capacitor.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 anode body 15 capacitor element 16 anode lead pin 2 dielectric coating layer 3 solid electrolyte layer 4 conductive carbon layer 5 cathode extraction layer 61 anode lead terminal 62 cathode lead terminal 7 exterior resin layer

Claims (5)

金属材からなる陽極体表面に、誘電体皮膜層、導電性ポリマーからなる固体電解質層、導電性カーボン層及び陰極引出層を順次形成した固体電解コンデンサにおいて、
前記導電性カーボン層は、主成分として導電性カーボンブラック粉末を含むことを特徴とする固体電解コンデンサ。
On a solid electrolytic capacitor in which a dielectric film layer, a solid electrolyte layer made of a conductive polymer, a conductive carbon layer and a cathode extraction layer are sequentially formed on the surface of the anode body made of a metal material,
The solid electrolytic capacitor according to claim 1, wherein the conductive carbon layer contains conductive carbon black powder as a main component.
前記導電性カーボンブラック粉末の平均粒子径が10〜270nmであることを特徴とする請求項1の固体電解コンデンサ。2. The solid electrolytic capacitor according to claim 1, wherein said conductive carbon black powder has an average particle diameter of 10 to 270 nm. 前記導電性カーボン層に含まれる結着剤の重量は導電性カーボンブラック粉末の重量の0〜20wt%とする請求項1及び請求項2固体電解コンデンサ。3. The solid electrolytic capacitor according to claim 1, wherein the weight of the binder contained in the conductive carbon layer is 0 to 20 wt% of the weight of the conductive carbon black powder. 金属材からなる陽極体表面に、誘電体皮膜層、導電性ポリマーからなる固体電解質層、導電性カーボン層及び陰極引出層を順次形成し、前記導電性カーボン層は、主成分として導電性カーボンブラック粉末を含む固体電解コンデンサ製造方法において、
前記導電性カーボン層を形成する工程では前記導電性カーボンブラック粉末を分散させた溶液を用い、その溶液のpH値が6以上であることを特徴とする固体電解コンデンサの製造方法。
On the surface of the anode body made of a metal material, a dielectric film layer, a solid electrolyte layer made of a conductive polymer, a conductive carbon layer and a cathode extraction layer are sequentially formed, and the conductive carbon layer is made of conductive carbon black as a main component. In a method for manufacturing a solid electrolytic capacitor including powder,
A method for producing a solid electrolytic capacitor, wherein in the step of forming the conductive carbon layer, a solution in which the conductive carbon black powder is dispersed is used, and the pH value of the solution is 6 or more.
前記カーボン層を形成するためのカーボンブラック粉末を分散させた溶液の粘度が0.5〜200mPa・sであることを特徴とする請求項4の固体電解コンデンサ製造方法。5. The method according to claim 4, wherein the viscosity of the solution in which the carbon black powder for forming the carbon layer is dispersed is 0.5 to 200 mPas.
JP2002239231A 2002-08-20 2002-08-20 Solid electrolytic capacitor Pending JP2004079838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002239231A JP2004079838A (en) 2002-08-20 2002-08-20 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002239231A JP2004079838A (en) 2002-08-20 2002-08-20 Solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2004079838A true JP2004079838A (en) 2004-03-11

Family

ID=32022391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002239231A Pending JP2004079838A (en) 2002-08-20 2002-08-20 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2004079838A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013456A1 (en) * 2005-07-26 2007-02-01 Showa Denko K. K. Solid electrolytic capacitor element and solid electrolytic capacitor using same
JP2007123629A (en) * 2005-10-28 2007-05-17 Nichicon Corp Solid electrolytic capacitor and manufacturing method thereof
JP2008010719A (en) * 2006-06-30 2008-01-17 Nichicon Corp Solid electrolytic capacitor, and its manufacturing method
JP2009094155A (en) * 2007-10-04 2009-04-30 Sanyo Electric Co Ltd Method for manufacturing solid electrolytic capacitor
JP2009170897A (en) * 2007-12-21 2009-07-30 Sanyo Electric Co Ltd Solid electrolytic capacitor
KR101681399B1 (en) * 2015-01-05 2016-11-30 삼성전기주식회사 Tantal condenser

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166919A (en) * 1979-06-14 1980-12-26 Hitachi Condenser Method of manufacturing solid electrolytic condenser
JPS58110028A (en) * 1981-12-23 1983-06-30 松下電器産業株式会社 Method of producing solid electrolytic condenser
JPS6093702A (en) * 1983-10-26 1985-05-25 松下電器産業株式会社 Method of producing conductive composition
JPH033220A (en) * 1989-05-31 1991-01-09 Marcon Electron Co Ltd Tantalum solid-state electrolytic capacitor
JPH0878293A (en) * 1994-08-31 1996-03-22 Elna Co Ltd Production of solid tantalum capacitor element
JP2001217159A (en) * 2000-02-02 2001-08-10 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166919A (en) * 1979-06-14 1980-12-26 Hitachi Condenser Method of manufacturing solid electrolytic condenser
JPS58110028A (en) * 1981-12-23 1983-06-30 松下電器産業株式会社 Method of producing solid electrolytic condenser
JPS6093702A (en) * 1983-10-26 1985-05-25 松下電器産業株式会社 Method of producing conductive composition
JPH033220A (en) * 1989-05-31 1991-01-09 Marcon Electron Co Ltd Tantalum solid-state electrolytic capacitor
JPH0878293A (en) * 1994-08-31 1996-03-22 Elna Co Ltd Production of solid tantalum capacitor element
JP2001217159A (en) * 2000-02-02 2001-08-10 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and its manufacturing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013456A1 (en) * 2005-07-26 2007-02-01 Showa Denko K. K. Solid electrolytic capacitor element and solid electrolytic capacitor using same
JPWO2007013456A1 (en) * 2005-07-26 2009-02-05 昭和電工株式会社 Solid electrolytic capacitor element and solid electrolytic capacitor using the same
US8004824B2 (en) 2005-07-26 2011-08-23 Murata Manufacturing Co., Ltd. Solid electrolytic capacitor element and solid electrolytic capacitor using same
JP2007123629A (en) * 2005-10-28 2007-05-17 Nichicon Corp Solid electrolytic capacitor and manufacturing method thereof
JP4671350B2 (en) * 2005-10-28 2011-04-13 ニチコン株式会社 Solid electrolytic capacitor and manufacturing method thereof
JP2008010719A (en) * 2006-06-30 2008-01-17 Nichicon Corp Solid electrolytic capacitor, and its manufacturing method
JP2009094155A (en) * 2007-10-04 2009-04-30 Sanyo Electric Co Ltd Method for manufacturing solid electrolytic capacitor
JP2009170897A (en) * 2007-12-21 2009-07-30 Sanyo Electric Co Ltd Solid electrolytic capacitor
US8035953B2 (en) 2007-12-21 2011-10-11 Sanyo Electric Co., Ltd. Solid electrolytic capacitor
KR101681399B1 (en) * 2015-01-05 2016-11-30 삼성전기주식회사 Tantal condenser

Similar Documents

Publication Publication Date Title
JP5289033B2 (en) Solid electrolytic capacitor
JP3070408B2 (en) Solid electrolytic capacitor and method of manufacturing the same
KR101554049B1 (en) Solid Electrolytic Capacitor and Method of Manufacturing thereof
JP4248289B2 (en) Solid electrolytic capacitor and manufacturing method thereof
GB2474747A (en) Polymer Solid Electrolytic Capacitor
JP2007243203A (en) Wet electrolytic capacitor
JP2007243202A (en) Wet electrolytic capacitor having cathode film
GB2447729A (en) Solid Electrolytic Capacitor with a Protective Adhesive Layer
WO2008048338A2 (en) Electrode compositions containing carbon nanotubes for solid electrolyte capacitiors
WO2011121995A1 (en) Solid electrolyte capacitor
JP3202668B2 (en) Method for manufacturing solid electrolytic capacitor
KR102104424B1 (en) Method for manufacturing solid electrolytic capacitor, and solid electrolytic capacitor
JP2010034384A (en) Method of manufacturing solid-state electrolytic capacitor
JP4914769B2 (en) Conductive paste for solid electrolytic capacitor electrode and method for producing electrode of solid electrolytic capacitor using the conductive paste
JP2950670B2 (en) Solid electrolytic capacitors
JP2003229330A (en) Solid electrolytic capacitor and manufacturing method thereof
JP2001102255A (en) Tantalum solid electrolytic capacitor and manufacturing method therefor
JP3515938B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2004079838A (en) Solid electrolytic capacitor
JP4670402B2 (en) Manufacturing method of solid electrolytic capacitor
JP2012069788A (en) Solid electrolytic capacitor
JPH11329900A (en) Manufacture of solid-state electrolytic capacitor
JPH09306788A (en) Capacitor and manufacture thereof
JP2009105171A (en) Solid-state electrolytic capacitor and its method for manufacturing
JP2003168633A (en) Solid electrolytic capacitor, its manufacturing method, conductive composite material, and its manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040310

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050111

RD01 Notification of change of attorney

Effective date: 20051227

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071002

A521 Written amendment

Effective date: 20071116

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20071220

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080208