JP2004087542A - Superconducting magnet device for cusp magnetic field generation - Google Patents

Superconducting magnet device for cusp magnetic field generation Download PDF

Info

Publication number
JP2004087542A
JP2004087542A JP2002242855A JP2002242855A JP2004087542A JP 2004087542 A JP2004087542 A JP 2004087542A JP 2002242855 A JP2002242855 A JP 2002242855A JP 2002242855 A JP2002242855 A JP 2002242855A JP 2004087542 A JP2004087542 A JP 2004087542A
Authority
JP
Japan
Prior art keywords
superconducting
magnetic field
superconducting coils
generating
magnet device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002242855A
Other languages
Japanese (ja)
Inventor
Yukio Mikami
三上 行雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2002242855A priority Critical patent/JP2004087542A/en
Publication of JP2004087542A publication Critical patent/JP2004087542A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cusp magnetic field generating superconducting magnet device for generating a cups magnetic field distribution without making the diameter of a superconducting coil large. <P>SOLUTION: The device is equipped with a vacuum container 70 in a double-cyclinder structure having a hollow space whose center axis is perpendicular, two couples of superconducting coils 11a and 11b, and 21a and 21b which are arranged in the vacuum container so that their center axes are horizontal, and a refrigerator for cooling those superconducting coils. The two couples of superconducting coils face each other across the hollow space and surround the center axis of the hollow space, and symmetrical surfaces of each couple of superconducting coils contains the center axis. Further, mutually adjacent superconducting coils are electrified so that magnetic fields generated by the superconducting coils are in opposite directions. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はカスプ磁場発生用超伝導磁石装置に関し、例えば単結晶引上げ装置の磁場発生手段に適したカスプ磁場発生用超伝導磁石装置に関する。
【0002】
【従来の技術】
図5、図6を参照して、冷凍機冷却型のカスプ磁場発生用超伝導磁石装置について説明する。図5、図6において、超伝導磁石装置は、カスプ磁場を発生するための上下一対の超伝導コイル71a、71bを収容した密閉構造の真空容器70と、真空容器70の下面側から内部に配置され、超伝導コイル71a、71bを冷却するための2つの極低温冷凍機(以下、冷凍機と呼ぶ)72a、72bとを備えている。
【0003】
冷凍機72a、72bには、冷媒であるヘリウムガスを圧縮して供給、循環するための圧縮機が接続される。簡単に言えば、図示されている冷凍機72a、72bは、ヘリウムガスの導入及び排出を切換えるためのロータリバルブを切換える電動機と、ディスプレーサに連結されてその往復運動を回転運動に変え、その往復運動の上下限を設定するための運動変換機構を備えている。詳しくは、特公昭63−53469に開示されているので、図示、説明は省略する。超伝導コイル71a、71bは、真空容器70内で巻枠としてのコイル冷却用熱伝導体73で支持されている。
【0004】
冷凍機72a、72bはそれぞれ、50Kの第一段コールドヘッドを持つ第一段目の冷凍ステージ72−1と、先端側において4Kの第二段コールドヘッドを持つ第二段目の冷凍ステージ72−2とを持つ2段式冷凍機である。冷凍ステージ72−1、72−2を収容しているスリーブ80の内部空間は真空容器70の内部空間と完全に仕切られると共に、外部に対しても完全にシールされる。スリーブ80の先端伝熱部材80−1は、コイル冷却用熱伝導体73に設けられた接続部73−1の近くに位置している。そして、先端伝熱部材80−1と接続部73−1との間を、可撓性を有する多層板状伝熱部材74で接続している。その結果、コイル冷却用熱伝導体73とスリーブ80との間の熱収縮による応力発生が防止される。
【0005】
真空容器70は、二重円筒構造を有しており、コイル冷却用熱伝導体73も円筒形状に作られている。超伝導コイル71a、71bは、コイル冷却用熱伝導体73の上下において真空容器70の中心軸と同心となるように巻回されている。更に、2つの超伝導コイル71a、71b及びコイル冷却用熱伝導体73は、スリーブ80の上部と共に、真空容器70内に配置された二重円筒型の熱輻射シールド体75に収容されている。この熱輻射シールド体75は、輻射熱の侵入を防止するためのものである。スリーブ80は、熱輻射シールド体75の底部を貫通して上方に延びている。真空容器70の外周には磁気シールド体90を設けて、外周部の漏洩磁界を低減できるようにしている。
【0006】
このようなカスプ磁場発生用超伝導磁石装置では、対向した一対の超伝導コイル71a、71bにより図7に示す磁力線分布を生成することができる。但し、図7では真空容器70の片側についてのみ磁力線分布を示している。また、図7において中心軸というのは、真空容器70の中空空間における中心軸のことである。そして、真空容器70の中空空間は単結晶引上げ装置のようなものが配置される磁場利用空間となる。
【0007】
【発明が解決しようとする課題】
いずれにしても、上記の構成の超伝導磁石装置では、超伝導コイル71a、71bの直径が磁場利用空間の直径より大きくなるため、磁場利用空間が大きくなるにつれて、超伝導コイル71a、71bの寸法も大きくしなければならず、超伝導コイル71a、71bの大型化に起因する問題が発生する。例としては、超伝導コイルの製造設備を大型コイルに対応したものにする必要があること、超伝導コイルの冷却が難しくなる等が挙げられる。
【0008】
そこで、本発明の課題は、超伝導コイルの径を大きくせずともカスプ型の磁場分布を生成できるカスプ磁場発生用超伝導磁石装置を提供することにある。
【0009】
【課題を解決するための手段】
本発明によるカスプ磁場発生用超伝導磁石装置は、中心軸が鉛直方向を向いている中空空間を有する二重筒構造の真空容器と、該真空容器内にコイル中心軸が水平方向を向くようにして配置された二対以上の超伝導コイルと、該超伝導コイルを冷却するための冷凍手段とを備え、前記二対以上の超伝導コイルは、各対の超伝導コイルが前記中空空間を間にして互いに対向し合い、しかも各超伝導コイルが前記中空空間の中心軸を取り囲み、かつ各対の超伝導コイルの対称面が前記中心軸を含むように配置されており、更に、互いに隣り合う超伝導コイルの発生磁場方向が逆向きになるように通電されることを特徴とする。
【0010】
本カスプ磁場発生用超伝導磁石装置の第1の態様においては、同じ仕様の超伝導コイルが二対、各対の超伝導コイルの中心を結ぶ線分が互いに直交するように配置される。
【0011】
本カスプ磁場発生用超伝導磁石装置の第2の態様においては、同じ仕様の超伝導コイルが二対、各対の超伝導コイルの中心を結ぶ線分が斜交するように配置される。
【0012】
本カスプ磁場発生用超伝導磁石装置の第3の態様においては、対毎に仕様の異なる超伝導コイルが二対、各対の超伝導コイルの中心を結ぶ線分が互いに直交するように配置される。
【0013】
本カスプ磁場発生用超伝導磁石装置の第4の態様においては、同じ仕様の超伝導コイルが三対、前記真空容器内で周方向に等角度間隔をおいて配置される。
【0014】
なお、前記冷凍手段は第一段、第二段の冷凍ステージを持つ2段冷却式冷凍機であり、前記各超伝導コイルは前記真空容器内で巻枠としてのコイル冷却用熱伝導体で支持されており、前記真空容器の下面には前記2段冷却式冷凍機を挿入するための挿入口を設けると共に、該挿入口から前記真空容器内へ延びて前記2段冷却式冷凍機を封止状態で収容するためのスリーブを固定し、該スリーブにはその先端に前記2段冷却式冷凍機の前記第二段の冷凍ステージのコールドヘッドと接触する伝熱部材を設け、該伝熱部材と前記コイル冷却用熱伝導体とが接続部材を介して熱的に結合されていることを特徴とする。
【0015】
【発明の実施の形態】
図1〜図4を参照して、本発明をいくつかの実施の形態について説明する。図1は、本発明の第1の実施の形態によるカスプ磁場発生用超伝導磁石装置を示す。本発明によるカスプ磁場発生用超伝導磁石装置と図5に示したカスプ磁場発生用超伝導磁石装置との間の主たる相違は、超伝導コイルの構造及びその配置形態にあり、真空容器70内の構造や超伝導コイルの冷却構造は図5に示したものと同じであるので図示を省略している。図5では2つの超伝導コイル71a、71bがいわば水平にして上下に配置されているが、本形態では超伝導コイルは縦、つまりコイル中心軸が水平方向を向くようにした状態で配置されるので、超伝導コイルを支持するための円筒状のコイル冷却用熱伝導体の外周側に、超伝導コイル毎に環状のコイル受けが形成されることになる。以上の点は、以降で述べられる第2〜第4の実施の形態でも同様である。
【0016】
図1の第1の実施の形態では、中心軸が鉛直方向を向いている中空空間を有する二重円筒構造の真空容器70内に、同じ仕様の二対の超伝導コイル11a、11b、21a、21bが、各対の超伝導コイルの中心を結ぶ線分が中空空間の中心において互いに直交するように縦にして配置されている。更に言えば、二対の超伝導コイル11a、11b、21a、21bは、各対の超伝導コイルが真空容器70の中空空間を間にして互いに対向し合い、しかも各超伝導コイルが中空空間の中心軸を取り囲み、かつ各対の超伝導コイルの対称面が前記中心軸を含むように配置されている。そして、互いに隣り合う超伝導コイルの発生磁場方向が逆向きになるように通電される。
【0017】
その結果、図1(b)に示すように、中空空間の中心軸に対して4回対称のカスプ型磁力線分布が得られる。
【0018】
図2の第2の実施の形態では、中空空間を有する二重円筒構造の真空容器70内に、同じ仕様の二対の超伝導コイル11a、11b、21a、21bが、各対の超伝導コイルの中心を結ぶ線分が中空空間の中心において斜交するように縦にして配置されている。更に言えば、二対の超伝導コイル11a、11b、21a、21bは、各対の超伝導コイルが真空容器70の中空空間を間にして互いに対向し合い、しかも各超伝導コイルが中空空間の中心軸を取り囲み、かつ各対の超伝導コイルの対称面が前記中心軸を含むように配置されている。そして、互いに隣り合う超伝導コイルの発生磁場方向が逆向きになるように通電される。
【0019】
その結果、図2(b)に示すように、中空空間の中心軸に対して2回対称のカスプ型磁力線分布が得られる。
【0020】
図3の第3の実施の形態では、中空空間を有する二重円筒構造の真空容器70内に、対毎に仕様の異なる二対の超伝導コイル31a、31b、41a、41bが、各対の超伝導コイルの中心を結ぶ線分が中空空間の中心において互いに直交するように縦にして配置されている。更に言えば、二対の超伝導コイル31a、31b、41a、41bは、各対の超伝導コイルが真空容器70の中空空間を間にして互いに対向し合い、しかも各超伝導コイルが中空空間の中心軸を取り囲み、かつ各対の超伝導コイルの対称面が前記中心軸を含むように配置されている。そして、互いに隣り合う超伝導コイルの発生磁場方向が逆向きになるように通電される。
【0021】
その結果、図3(b)に示すように、中空空間の中心軸に対して2回対称のカスプ型磁力線分布が得られる。
【0022】
図4の第4の実施の形態では、中空空間を有する二重円筒構造の真空容器70内に、同じ仕様の三対の超伝導コイル51a〜51fが、真空容器70内で周方向に等角度間隔をおいて縦にして配置されている。勿論、各対の超伝導コイルの中心を結ぶ線分は中空空間の中心において交叉している。更に言えば、三対の超伝導コイル51a〜51fは、各対の超伝導コイルが真空容器70の中空空間を間にして互いに対向し合い、しかも各超伝導コイルが中空空間の中心軸を取り囲み、かつ各対の超伝導コイルの対称面が前記中心軸を含むように配置されている。そして、互いに隣り合う超伝導コイルの発生磁場方向が逆向きになるように通電される。
【0023】
その結果、図4(b)に示すように、中空空間の中心軸に対して6回対称のカスプ型磁力線分布が得られる。
【0024】
なお、上記のいずれの形態においても、すべての超伝導コイルの中心軸が同一平面上にあるように配置するのが好ましい。また、図5では冷凍機が180度の角度間隔をおいて2個設置されているが、複数の超伝導コイルを支持しているコイル冷却用熱伝導体は1つの板体であるので、冷凍機は2個に限らず1個以上あれば良い。
【0025】
【発明の効果】
本発明によるカスプ磁場発生用超伝導磁石装置は従来のものと比べて、真空容器の中空空間の径が大きくなっても超伝導コイルは小型で良いという利点がある。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態による超伝導コイルの配置形態とその磁力線分布を示した図である。
【図2】本発明の第2の実施の形態による超伝導コイルの配置形態とその磁力線分布を示した図である。
【図3】本発明の第3の実施の形態による超伝導コイルの配置形態とその磁力線分布を示した図である。
【図4】本発明の第4の実施の形態による超伝導コイルの配置形態とその磁力線分布を示した図である。
【図5】本発明が適用され得る冷凍機冷却式超伝導磁石装置の構造を示した断面図である。
【図6】図5の冷凍機冷却式超伝導磁石装置を底面側から見た図である。
【図7】従来のカスプ磁場発生用超伝導磁石装置における磁力線分布を示した図である。
【符号の説明】
11a、11b、21a、21b、31a、31b、51a〜51f、71
a、71b  超伝導コイル
70  真空容器
72a、72b  冷凍機
72−1  第一段目の冷凍ステージ
72−2  第二段目の冷凍ステージ
73  コイル冷却用熱伝導体
73−1  接続部
75  熱輻射シールド体
80  スリーブ
80−1  先端伝熱部材
90  磁気シールド体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a superconducting magnet apparatus for generating a cusp magnetic field, for example, a superconducting magnet apparatus for generating a cusp magnetic field suitable for a magnetic field generating means of a single crystal pulling apparatus.
[0002]
[Prior art]
A refrigerator-cooled superconducting magnet device for generating a cusp magnetic field will be described with reference to FIGS. 5 and 6, the superconducting magnet device has a vacuum vessel 70 of a closed structure containing a pair of upper and lower superconducting coils 71a and 71b for generating a cusp magnetic field, and is disposed inside the vacuum vessel 70 from the lower surface side. And two cryogenic refrigerators (hereinafter referred to as refrigerators) 72a and 72b for cooling the superconducting coils 71a and 71b.
[0003]
A compressor for compressing, supplying, and circulating helium gas as a refrigerant is connected to the refrigerators 72a and 72b. Briefly, the refrigerators 72a and 72b shown are an electric motor that switches a rotary valve for switching the introduction and discharge of helium gas, and a reciprocating motion that is connected to a displacer and changes the reciprocating motion to a rotary motion. And a motion conversion mechanism for setting the upper and lower limits. The details are disclosed in JP-B-63-53469, and the illustration and description are omitted. The superconducting coils 71a and 71b are supported in the vacuum vessel 70 by a coil cooling heat conductor 73 as a winding frame.
[0004]
Each of the refrigerators 72a and 72b has a first-stage refrigeration stage 72-1 having a 50K first-stage cold head and a second-stage refrigeration stage 72- having a 4K second-stage cold head on the distal end side. 2 is a two-stage refrigerator. The internal space of the sleeve 80 accommodating the freezing stages 72-1 and 72-2 is completely partitioned from the internal space of the vacuum vessel 70, and is completely sealed from the outside. The distal end heat transfer member 80-1 of the sleeve 80 is located near the connection portion 73-1 provided in the coil cooling heat conductor 73. The distal end heat transfer member 80-1 and the connection portion 73-1 are connected by a flexible multilayer plate heat transfer member 74. As a result, generation of stress due to thermal contraction between the coil cooling heat conductor 73 and the sleeve 80 is prevented.
[0005]
The vacuum container 70 has a double cylindrical structure, and the heat conductor 73 for cooling the coil is also formed in a cylindrical shape. The superconducting coils 71a and 71b are wound above and below the coil cooling heat conductor 73 so as to be concentric with the center axis of the vacuum vessel 70. Further, the two superconducting coils 71 a and 71 b and the coil-conducting heat conductor 73 are housed in a double-cylindrical heat radiation shield 75 disposed inside the vacuum vessel 70 together with the upper part of the sleeve 80. The heat radiation shield body 75 is for preventing radiation heat from entering. The sleeve 80 extends upward through the bottom of the heat radiation shield 75. A magnetic shield 90 is provided on the outer periphery of the vacuum vessel 70 so as to reduce the leakage magnetic field at the outer periphery.
[0006]
In such a cusp magnetic field generating superconducting magnet device, the magnetic field line distribution shown in FIG. 7 can be generated by the pair of superconducting coils 71a and 71b opposed to each other. However, FIG. 7 shows the magnetic field line distribution only on one side of the vacuum vessel 70. Further, the central axis in FIG. 7 is the central axis in the hollow space of the vacuum vessel 70. The hollow space of the vacuum vessel 70 is a magnetic field utilization space in which a device such as a single crystal pulling device is arranged.
[0007]
[Problems to be solved by the invention]
In any case, in the superconducting magnet device having the above configuration, since the diameter of the superconducting coils 71a and 71b is larger than the diameter of the magnetic field utilizing space, the dimensions of the superconducting coils 71a and 71b increase as the magnetic field utilizing space increases. And the size of the superconducting coils 71a and 71b is increased. As an example, it is necessary to make the manufacturing equipment of the superconducting coil compatible with a large coil, and it becomes difficult to cool the superconducting coil.
[0008]
Therefore, an object of the present invention is to provide a cusp magnetic field generating superconducting magnet device that can generate a cusp-type magnetic field distribution without increasing the diameter of the superconducting coil.
[0009]
[Means for Solving the Problems]
A superconducting magnet device for generating a cusp magnetic field according to the present invention includes a vacuum vessel having a double cylindrical structure having a hollow space whose central axis is oriented vertically, and a coil whose central axis is oriented horizontally in the vacuum vessel. And two or more pairs of superconducting coils, and refrigeration means for cooling the superconducting coils, wherein the two or more pairs of superconducting coils are arranged such that each pair of superconducting coils sandwiches the hollow space. And each superconducting coil surrounds the central axis of the hollow space, and the symmetry plane of each pair of superconducting coils is arranged so as to include the central axis, and further adjacent to each other It is characterized in that current is supplied so that the direction of the generated magnetic field of the superconducting coil is reversed.
[0010]
In the first embodiment of the cusp magnetic field generating superconducting magnet apparatus, two pairs of superconducting coils of the same specification are arranged so that the lines connecting the centers of the superconducting coils of each pair are orthogonal to each other.
[0011]
In the second embodiment of the present cusp magnetic field generating superconducting magnet device, two pairs of superconducting coils having the same specifications are arranged so that the line connecting the centers of the superconducting coils of each pair is oblique.
[0012]
In the third embodiment of the cusp magnetic field generating superconducting magnet device, two pairs of superconducting coils having different specifications for each pair are arranged so that the line segments connecting the centers of the superconducting coils of each pair are orthogonal to each other. You.
[0013]
In the fourth embodiment of the cusp magnetic field generating superconducting magnet apparatus, three pairs of superconducting coils having the same specifications are arranged at equal angular intervals in the circumferential direction in the vacuum vessel.
[0014]
The refrigeration means is a two-stage cooling refrigerator having a first stage and a second stage. Each of the superconducting coils is supported by a coil cooling heat conductor as a winding frame in the vacuum vessel. The lower surface of the vacuum vessel is provided with an insertion port for inserting the two-stage cooling refrigerator, and extends from the insertion port into the vacuum vessel to seal the two-stage cooling refrigerator. A heat transfer member that is in contact with a cold head of the second refrigeration stage of the two-stage cooling refrigerator is provided at the end of the sleeve for fixing the sleeve for housing in a state, The coil cooling heat conductor is thermally coupled via a connecting member.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention will be described with reference to FIGS. FIG. 1 shows a superconducting magnet device for generating a cusp magnetic field according to a first embodiment of the present invention. The main difference between the cusp magnetic field generating superconducting magnet device according to the present invention and the cusp magnetic field generating superconducting magnet device shown in FIG. 5 lies in the structure and arrangement of the superconducting coil. The structure and the cooling structure of the superconducting coil are the same as those shown in FIG. In FIG. 5, the two superconducting coils 71a and 71b are arranged vertically so as to be horizontal, but in this embodiment, the superconducting coils are arranged vertically, that is, with the coil central axis oriented in the horizontal direction. Therefore, an annular coil receiver is formed for each superconducting coil on the outer peripheral side of the cylindrical coil cooling heat conductor for supporting the superconducting coil. The above points are the same in the second to fourth embodiments described below.
[0016]
In the first embodiment of FIG. 1, two pairs of superconducting coils 11a, 11b, 21a of the same specification are placed in a vacuum vessel 70 having a double cylindrical structure having a hollow space whose central axis is oriented vertically. 21b are arranged vertically so that the line segments connecting the centers of the superconducting coils of each pair are orthogonal to each other at the center of the hollow space. Furthermore, two pairs of superconducting coils 11a, 11b, 21a and 21b are arranged such that each pair of superconducting coils face each other with the hollow space of the vacuum vessel 70 interposed therebetween, and furthermore, each superconducting coil has a hollow space. Surrounding the central axis, the symmetry plane of each pair of superconducting coils is arranged to include the central axis. Then, power is supplied so that the directions of the generated magnetic fields of the superconducting coils adjacent to each other are opposite.
[0017]
As a result, as shown in FIG. 1B, a cusp-type magnetic field line distribution four-fold symmetric with respect to the center axis of the hollow space is obtained.
[0018]
In the second embodiment shown in FIG. 2, two pairs of superconducting coils 11a, 11b, 21a, 21b having the same specifications are placed in a vacuum vessel 70 having a double cylindrical structure having a hollow space. Are vertically arranged such that a line segment connecting the centers of the circles crosses obliquely at the center of the hollow space. Furthermore, two pairs of superconducting coils 11a, 11b, 21a and 21b are arranged such that the superconducting coils of each pair face each other with the hollow space of the vacuum vessel 70 interposed therebetween, and furthermore, each superconducting coil is formed of a hollow space. Surrounding the central axis, the symmetry plane of each pair of superconducting coils is arranged to include the central axis. Then, power is supplied so that the directions of the generated magnetic fields of the superconducting coils adjacent to each other are opposite.
[0019]
As a result, as shown in FIG. 2B, a cusp-type magnetic field line distribution that is symmetrical twice with respect to the center axis of the hollow space is obtained.
[0020]
In the third embodiment shown in FIG. 3, two pairs of superconducting coils 31a, 31b, 41a, 41b having different specifications for each pair are placed in a vacuum vessel 70 having a double cylindrical structure having a hollow space. The segments connecting the centers of the superconducting coils are arranged vertically so as to be orthogonal to each other at the center of the hollow space. Furthermore, two pairs of superconducting coils 31a, 31b, 41a, 41b are arranged such that the superconducting coils of each pair face each other with the hollow space of the vacuum vessel 70 interposed therebetween, and furthermore, each superconducting coil is formed of a hollow space. Surrounding the central axis, the symmetry plane of each pair of superconducting coils is arranged to include the central axis. Then, power is supplied so that the directions of the generated magnetic fields of the superconducting coils adjacent to each other are opposite.
[0021]
As a result, as shown in FIG. 3B, a cusp-type magnetic field line distribution which is two-fold symmetric with respect to the center axis of the hollow space is obtained.
[0022]
In the fourth embodiment shown in FIG. 4, three pairs of superconducting coils 51a to 51f having the same specifications are provided in a vacuum vessel 70 having a double cylindrical structure having a hollow space in the vacuum vessel 70 at equal angles in the circumferential direction. They are arranged vertically at intervals. Of course, the line segments connecting the centers of each pair of superconducting coils intersect at the center of the hollow space. More specifically, the three pairs of superconducting coils 51a to 51f are such that each pair of superconducting coils oppose each other with the hollow space of the vacuum vessel 70 interposed therebetween, and each superconducting coil surrounds the central axis of the hollow space. And the symmetry plane of each pair of superconducting coils is arranged to include the central axis. Then, power is supplied so that the directions of the generated magnetic fields of the superconducting coils adjacent to each other are opposite.
[0023]
As a result, as shown in FIG. 4B, a cusp-type magnetic field line distribution symmetrical about six times with respect to the center axis of the hollow space is obtained.
[0024]
In any of the above embodiments, it is preferable to arrange the superconducting coils such that the central axes of all the superconducting coils are on the same plane. In FIG. 5, two refrigerators are installed at an angular interval of 180 degrees. However, since the coil cooling heat conductor supporting a plurality of superconducting coils is one plate, the refrigerator is The number of machines is not limited to two but may be one or more.
[0025]
【The invention's effect】
The superconducting magnet device for generating a cusp magnetic field according to the present invention has an advantage that the superconducting coil can be small in size even if the diameter of the hollow space of the vacuum vessel is increased, as compared with the conventional device.
[Brief description of the drawings]
FIG. 1 is a diagram showing an arrangement of a superconducting coil according to a first embodiment of the present invention and a magnetic field line distribution thereof.
FIG. 2 is a diagram showing an arrangement of superconducting coils according to a second embodiment of the present invention and a magnetic field line distribution thereof.
FIG. 3 is a diagram showing an arrangement of superconducting coils and a magnetic field line distribution thereof according to a third embodiment of the present invention.
FIG. 4 is a diagram showing an arrangement of superconducting coils and a distribution of magnetic lines of force according to a fourth embodiment of the present invention.
FIG. 5 is a sectional view showing the structure of a refrigerator-cooled superconducting magnet device to which the present invention can be applied.
6 is a view of the refrigerator-cooled superconducting magnet device of FIG. 5 as viewed from the bottom side.
FIG. 7 is a diagram showing a magnetic field line distribution in a conventional superconducting magnet device for generating a cusp magnetic field.
[Explanation of symbols]
11a, 11b, 21a, 21b, 31a, 31b, 51a to 51f, 71
a, 71b Superconducting coil 70 Vacuum container 72a, 72b Refrigerator 72-1 First stage refrigeration stage 72-2 Second stage refrigeration stage 73 Coil cooling heat conductor 73-1 Connection part 75 Heat radiation shield Body 80 Sleeve 80-1 Tip heat transfer member 90 Magnetic shield

Claims (6)

中心軸が鉛直方向を向いている中空空間を有する二重筒構造の真空容器と、該真空容器内にコイル中心軸が水平方向を向くようにして配置された二対以上の超伝導コイルと、該超伝導コイルを冷却するための冷凍手段とを備え、
前記二対以上の超伝導コイルは、各対の超伝導コイルが前記中空空間を間にして互いに対向し合い、しかも各超伝導コイルが前記中空空間の中心軸を取り囲み、かつ各対の超伝導コイルの対称面が前記中心軸を含むように配置されており、
更に、互いに隣り合う超伝導コイルの発生磁場方向が逆向きになるように通電されることを特徴とするカスプ磁場発生用超伝導磁石装置。
A vacuum vessel having a double cylindrical structure having a hollow space in which the central axis is oriented vertically, and two or more pairs of superconducting coils arranged such that the coil central axis is oriented horizontally in the vacuum vessel, Refrigeration means for cooling the superconducting coil,
The two or more pairs of superconducting coils are such that each pair of superconducting coils oppose each other with the hollow space therebetween, and each superconducting coil surrounds the central axis of the hollow space, and each pair of superconducting coils The symmetry plane of the coil is arranged so as to include the central axis,
Further, a superconducting magnet device for generating a cusp magnetic field, wherein current is supplied so that the directions of generated magnetic fields of adjacent superconducting coils are opposite to each other.
請求項1に記載のカスプ磁場発生用超伝導磁石装置において、同じ仕様の超伝導コイルが二対、各対の超伝導コイルの中心を結ぶ線分が互いに直交するように配置されていることを特徴とするカスプ磁場発生用超伝導磁石装置。The superconducting magnet device for generating a cusp magnetic field according to claim 1, wherein two pairs of superconducting coils having the same specifications are arranged so that lines connecting centers of the superconducting coils of each pair are orthogonal to each other. A superconducting magnet device for generating cusp magnetic fields. 請求項1に記載のカスプ磁場発生用超伝導磁石装置において、同じ仕様の超伝導コイルが二対、各対の超伝導コイルの中心を結ぶ線分が斜交するように配置されていることを特徴とするカスプ磁場発生用超伝導磁石装置。2. The superconducting magnet apparatus for generating a cusp magnetic field according to claim 1, wherein two pairs of superconducting coils having the same specifications are arranged so that lines connecting the centers of the superconducting coils of each pair are oblique. A superconducting magnet device for generating cusp magnetic fields. 請求項1に記載のカスプ磁場発生用超伝導磁石装置において、対毎に仕様の異なる超伝導コイルが二対、各対の超伝導コイルの中心を結ぶ線分が互いに直交するように配置されていることを特徴とするカスプ磁場発生用超伝導磁石装置。2. The superconducting magnet device for generating a cusp magnetic field according to claim 1, wherein two pairs of superconducting coils having different specifications for each pair are arranged such that line segments connecting the centers of the superconducting coils of each pair are orthogonal to each other. A superconducting magnet device for generating a cusp magnetic field. 請求項1に記載のカスプ磁場発生用超伝導磁石装置において、同じ仕様の超伝導コイルが三対、前記真空容器内で周方向に等角度間隔をおいて配置されていることを特徴とするカスプ磁場発生用超伝導磁石装置。2. The cusp magnetic field generating superconducting magnet device according to claim 1, wherein three pairs of superconducting coils having the same specification are arranged at equal angular intervals in a circumferential direction in the vacuum vessel. Superconducting magnet device for generating a magnetic field. 請求項1〜5のいずれかに記載のカスプ磁場発生用超伝導磁石装置において、前記冷凍手段は第一段、第二段の冷凍ステージを持つ2段冷却式冷凍機であり、前記各超伝導コイルは前記真空容器内で巻枠としてのコイル冷却用熱伝導体で支持されており、前記真空容器の下面には前記2段冷却式冷凍機を挿入するための挿入口を設けると共に、該挿入口から前記真空容器内へ延びて前記2段冷却式冷凍機を封止状態で収容するためのスリーブを固定し、該スリーブにはその先端に前記2段冷却式冷凍機の前記第二段の冷凍ステージのコールドヘッドと接触する伝熱部材を設け、該伝熱部材と前記コイル冷却用熱伝導体とが接続部材を介して熱的に結合されていることを特徴とするカスプ磁場発生用超伝導磁石装置。The superconducting magnet apparatus for generating a cusp magnetic field according to any one of claims 1 to 5, wherein the refrigerating means is a two-stage cooling type refrigerator having a first stage and a second stage. The coil is supported by a coil-cooling heat conductor as a winding frame in the vacuum vessel. An insertion port for inserting the two-stage cooling refrigerator is provided on a lower surface of the vacuum vessel. A sleeve extending from the mouth into the vacuum vessel and accommodating the two-stage cooling refrigerator in a sealed state is fixed, and the sleeve is provided at the tip thereof with the second stage of the two-stage cooling refrigerator. A cusp magnetic field generating super-cooling device, comprising: a heat transfer member that is in contact with a cold head of a refrigeration stage, wherein the heat transfer member and the coil cooling heat conductor are thermally coupled via a connection member. Conduction magnet device.
JP2002242855A 2002-08-23 2002-08-23 Superconducting magnet device for cusp magnetic field generation Withdrawn JP2004087542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002242855A JP2004087542A (en) 2002-08-23 2002-08-23 Superconducting magnet device for cusp magnetic field generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002242855A JP2004087542A (en) 2002-08-23 2002-08-23 Superconducting magnet device for cusp magnetic field generation

Publications (1)

Publication Number Publication Date
JP2004087542A true JP2004087542A (en) 2004-03-18

Family

ID=32051774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002242855A Withdrawn JP2004087542A (en) 2002-08-23 2002-08-23 Superconducting magnet device for cusp magnetic field generation

Country Status (1)

Country Link
JP (1) JP2004087542A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108054A (en) * 2004-10-08 2006-04-20 Japan Science & Technology Agency Multivalent ion generation source and charged particle beam device using this generation source

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108054A (en) * 2004-10-08 2006-04-20 Japan Science & Technology Agency Multivalent ion generation source and charged particle beam device using this generation source
WO2006040850A1 (en) * 2004-10-08 2006-04-20 Japan Science And Technology Agency Multivalent ion generation source and charged particle beam apparatus employing such generation source
US7544952B2 (en) 2004-10-08 2009-06-09 Japan Science And Technology Agency Multivalent ion generating source and charged particle beam apparatus using such ion generating source

Similar Documents

Publication Publication Date Title
US6415613B1 (en) Cryogenic cooling system with cooldown and normal modes of operation
US7497084B2 (en) Co-axial multi-stage pulse tube for helium recondensation
CN101202142B (en) Superconductive magnet device and magnetic resonance imaging apparatus
JP2004283580A (en) Pulse tube cryocooler system for magnetic resonance superconducting magnet
US20120165198A1 (en) Superconducting electric motor
JP5162654B2 (en) Superconducting motor
JP5198358B2 (en) Superconducting magnet device
JP2004087542A (en) Superconducting magnet device for cusp magnetic field generation
CN216928214U (en) Superconducting magnet device
JP4799757B2 (en) Superconducting magnet
CN217485181U (en) Superconducting magnet device
JP2010267661A (en) Superconducting magnet device unit
JP2003007526A (en) Refrigerator cooling type superconducting magnet device
CN103759451B (en) Close-coupled inertia cast high frequency coaxial pulse tube refrigerating machine and manufacture method
JPH10321430A (en) Superconductive electromagnet device
JP2012143044A (en) Superconducting motor
KR20040009260A (en) Conduction Cooling System for High Temperature Superconducting Rotor
JP2009170724A (en) Cooling vessel of superconductive coil
JPH02218102A (en) Superconducting magnet for nuclear magnetic resonance imaging sensor
JP2005201604A (en) Low temperature cooling system, and heat storage device
JPS63263707A (en) Detachable radiant heat shielding refrigerating apparatus for superconductive magnet
JPH11199367A (en) Refrigerator-cooling type superconductive magnet device for pulling-up device of single crystal
KR100465023B1 (en) Internal Condensation Type Cooling System for High Temperature Superconducting Rotor
JPH01281372A (en) Cooling device
JP2012143043A (en) Superconducting motor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051101