JP2004087223A - Underwater fuel cell and camera - Google Patents

Underwater fuel cell and camera Download PDF

Info

Publication number
JP2004087223A
JP2004087223A JP2002244825A JP2002244825A JP2004087223A JP 2004087223 A JP2004087223 A JP 2004087223A JP 2002244825 A JP2002244825 A JP 2002244825A JP 2002244825 A JP2002244825 A JP 2002244825A JP 2004087223 A JP2004087223 A JP 2004087223A
Authority
JP
Japan
Prior art keywords
fuel cell
air
housing
underwater
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002244825A
Other languages
Japanese (ja)
Inventor
Yoshihiro Yoshikawa
吉川 喜宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2002244825A priority Critical patent/JP2004087223A/en
Publication of JP2004087223A publication Critical patent/JP2004087223A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Camera Bodies And Camera Details Or Accessories (AREA)
  • Structure And Mechanism Of Cameras (AREA)
  • Studio Devices (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an underwater fuel cell for supplying air from an air tank or a trim control to a fuel cell and a camera with the underwater fuel cell as a power supply, which are equipment for diving normally used in underwater photographing. <P>SOLUTION: An underwater camera 10 has a housing 12 that is in watertight structure, and the housing 12 has a connection section 14 and is connected to an air supply pipe 16 by the connection section 14. The air supply pipe 16 is connected to an exhaust valve 22 in the trim control 18 by the connection section 20, and operates the exhaust valve 22 while air is in the trim control 18. Then, air is supplied from the trim control to the housing 12 via the connection section 20, the air supply pipe 16, and the connection section 14. A camera body 34 and the fuel cell 40 are accommodated in a watertight state in the housing 12. Additionally, the fuel cell 40 and a camera body 34 are connected by a power cable 28, and supply electricity that is generated by the fuel cell 40 to the camera body 34. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は水中燃料電池及びカメラに関するものである。
【0002】
【従来の技術】
長時間に渡り安定して電力を供給できる燃料電池は携帯用電子機器の電源として有望であり、例としてカメラへの応用も提案されている。
【0003】
しかし燃料電池はその発電原理上、酸素を定常的に消費するため特に水中用の器材、例えば水中カメラへの応用は難しい。また、水中カメラに独立した酸素タンクを設ければ装置の大型化を招くため携行性や使い勝手が悪くなる。
【0004】
従来例としては、固体高分子型燃料電池に水素を供給する容器を備えて小型軽量化を図ったものが存在する(例えば、特許文献1参照)。しかし、これらは大気中での使用を前提としており水中で用いることはできない。
【0005】
【特許文献1】
特開平10−64567号公報 (請求項1、第1図)
【0006】
【発明が解決しようとする課題】
本発明は上記事実を考慮し、水中撮影で通常使用するダイビング用器材である、空気タンクまたは浮力調整器から燃料電池に空気を供給する水中燃料電池及び前記水中燃料電池を電源とするカメラを提供することを課題とする。
【0007】
【課題を解決するための手段】
請求項1に記載の水中燃料電池は電源として使用する燃料電池と、前記カメラを水密状態に保つハウジングと、前記ハウジングを空気補給手段と接続する接続手段と、を備えたことを特徴とする。
【0008】
上記構成の発明では、カメラ用電源として好適な燃料電池を水密構造のハウジングに収納し、このハウジングへ空気タンクなどの空気補給手段から接続手段を通じて空気を送り込む。これにより、燃料電池による発電に必要な空気が補給され、水中での燃料電池使用が可能となる。
【0009】
請求項2に記載の水中燃料電池は前記空気補給手段が呼吸用空気タンクまたは浮力調整器であることを特徴とする。
【0010】
上記構成の発明では、通常のダイビング用器材である空気タンクや浮力調整器からハウジングへ空気を補給可能としたことで、燃料電池専用の空気補給手段を必要としないため器材が少なくて済む。
【0011】
請求項3に記載の水中燃料電池は前記ハウジング内の空気を排気する排気弁を前記ハウジングに設けたことを特徴とする。
【0012】
上記構成の発明では、燃料電池で消費されるのは酸素であるのに対し、補給されるのは空気であるため、消費されなかった窒素や燃料電池で発生した炭酸ガスでハウジング内部の気圧が上昇し、新たに空気を補給しにくくなる状況に対して、ハウジングに排気弁を設けハウジング内の空気を排出して気圧を下げ、空気を補給し易くしている。
【0013】
請求項4に記載のカメラは前記燃料電池がカメラ用の電源であることを特徴とする。
【0014】
上記構成の発明では、燃料電池を電源に用いることにより、長時間にわたり安定した電力の供給を受けることができる。
【0015】
【発明の実施の形態】
図1には、第1形態に係る水中カメラの斜視図が示されている。
【0016】
図1に示すように、水中カメラ10は水密構造のハウジング12に収納されており、特に水圧のかかる海中での撮影に対応している。
【0017】
ハウジング12は接続部14を備え、接続部14に給気管16が接続されている。給気管16は接続部20で浮力調整器(BCD)18の排気バルブ22と接続されている。浮力調整器18に空気が入っている状態で排気バルブ22を作動させると、接続部20、給器管16、接続部14を経てハウジング12へ浮力調整器から空気が供給される。
【0018】
このとき、浮力調整器18の排気バルブ22に給気管16が接続されているので本来の役割である浮力の調整ができなくなる恐れがある。そのため給気管16の途中に、新たに排気バルブ21を設け、この排気バルブ21から排気することで浮力調整器の機能を損なわないようにしている。
【0019】
図2には、第1形態に係る水中カメラの断面図が示されている。
【0020】
図2に示すように、水中カメラ10のハウジング12にはカメラ本体34と燃料電池40が水密状態で収納されている。かつ、燃料電池40とカメラ本体34は電源ケーブル28で接続され、燃料電池40で発電して得られた電気をカメラ本体34に供給する。また、ストロボ24も燃料電池40と電源ケーブル26で接続され、電気を燃料電池40から供給される。
【0021】
ハウジング12の内部はカメラ34と燃料電池40のための2区画に完全に分割されており、電源の供給も接続端子30、31を経由して行なう。これはカメラ34が外の水圧よりも低い環境で水密を保つハウジング構造で保護されているのに対し、燃料電池40は外の水圧よりも高い圧力に保つ必要があるためである。また、燃料電池40は発電の際に発熱を伴うため、精密電子機器であるカメラ34を熱から保護する意味でも燃料電池40とは別の区画に収納する必要がある。
【0022】
燃料電池40は燃料室50、電池セル32、空気室66からなり、燃料室のメタノールを消費しながら発電を行ない、発生した水は空気室66内に滴下する。
【0023】
空気室66内の酸素が消費されると発電効率が低下するので、発電量に応じて空気室66の空気を新鮮なものと交換する必要が生じる。このとき、給気管16は浮力調整器18などに接続されているので空気の供給が可能であり、接続部14を介して空気室66に接続されている給気管16から新鮮な空気を供給する。
【0024】
しかし空気室66内部には使用済みの空気が溜まっており、また発電の過程で発生した炭酸ガスも溜まっているため単純に空気を送り込むだけでは換気が行なわれない。そこで空気室66から排気路64をハウジング12の外へ向けて延長し、排気バルブ52を設けて開閉自在な構造とする。これにより、給気管16から空気を送りながら排気バルブ52を開放すると、酸素を消費し炭酸ガスを含んだ古い空気と、電池セル32から滴下した水とが排気路64から排気バルブ52を通ってハウジング12の外すなわち水中へ排出される。
【0025】
一方、カメラ本体34はハウジング12内部に緩衝材38で固定されている。
カメラ本体34は電源ケーブル28、接続端子30、31を介して燃料電池40から電源を供給され、水密構造のレリーズボタン33でカメラ本体のレリーズを押下すると耐圧強化ガラス窓35を通してレンズ36で撮影が行なわれる。
【0026】
図3には本形態に係る燃料電池の概念図が示されている。
【0027】
本形態において使用されるメタノール直接型燃料電池(MDFC)の電池セル32は、アノード(陰極)42、プロトン導電膜44、カソード(陽極)46から構成されている。
【0028】
アノード42では燃料のメタノール水中に含まれるメタノールを水素イオン、電子および炭酸ガスに分離し、水素イオンはプロトン導電膜44を透過してカソード46側へ移動する。炭酸ガスは排ガスとして排出される。
【0029】
一方、電子は抵抗48を通過してカソード46へと向かう。これが電気エネルギーとして取り出され、抵抗48で仕事が行われる。本願においてはカメラ本体34とストロボ24がこの抵抗48に相当する。
【0030】
カソード46ではプロトン導電膜44を透過した水素イオンと抵抗48を通って来た電子、および空気中の酸素が結合して水となり、排水として排出される。
【0031】
以上のように、燃料電池によって発電を行なうためには燃料のメタノール以外に酸素が必要であり、特に水中カメラでは外気が使用できないため空気室66の酸素を使い切ってしまうと以後の発電が不可能となる問題がある。
【0032】
本願では、水中における燃料電池使用のネックとなっている酸素の補給を、一般的なダイビング器材である浮力調整器18や空気タンクなどから空気供給手段を用いて空気室66に空気を補給することで解決している。
【0033】
図4には、本形態に係る排気バルブの断面図が示されている。
【0034】
図4に示すように排気路64の終端は排気バルブ52であり、排気バルブ52を開放することで空気室66内の古い空気Aをハウジング12の外へ排気することができる。
【0035】
図4(A)のように排気バルブ52は支点58で回動自在に支持された可動翼54からなり、複数の可動翼54が重なり合って水密状態を維持している。可動翼54はリンク60で互いに連結し、同時に開閉する構造となっている。
【0036】
通常時は水密状態を保つため、外部の水圧または内部の気圧で開放されないよう図4(A)のようにスライドストッパ56で可動翼54の端部を固定する。
【0037】
排気時は空気室63を加圧した状態で、図4(B)のようにスライドストッパ56をスライドさせて可動翼54を支点58の回りに回動可能な状態とし、可動翼54の端部に設けられた突起62を押して可動翼54を立てた状態に回動する。このとき可動翼54は互いにリンク60で連結されているので同時に回動し、排気路64とハウジング12の外側を連通する。このため排気路64の古い空気Aは可動翼54の間を通ってハウジング12の外部へと排気される。
【0038】
排気を終了するときは可動翼54を押圧すれば支点58を中心として回動し、リンク60により同時に全部の可動翼54が重なり合う状態でバルブ52を閉塞するので、スライドストッパ56をスライドさせてロックをかける。
【0039】
図5には、本形態に係る他の形式の排気バルブの斜視図および断面図が示されている。
【0040】
図5(A)に示すように排気バルブ53は、排気孔72が開けられた排気つまみ70をハウジング12上に設けた構造となっている。
【0041】
図5(B)に示すように排気路64は終端でハウジング12から外へ向かう排気管78へ繋がり、排気路76となる。
【0042】
排気つまみ70は内側にネジが切ってあり、排気路64の終端に設けられ外側にネジが切ってある排気管78と螺合している。排気つまみ70を閉めた状態では排気孔72は排気管78によって塞がれるため空気漏れ・浸水は起こらない。
【0043】
排気の際には図5(C)に示すように排気つまみ70を緩めて行くと排気口72が排気路76と連通する状態となり、空気室66の加圧された古い空気Aが、排気路64から排気管78を通り、排気孔72を抜けてハウジングの外へ排気される。
【0044】
このとき排気つまみ70を緩めすぎて脱落するのを防止するため、ハウジング12上には排気つまみ70の回りに袴部74を設け、排気つまみ70のフランジ80を押えている。
【0045】
排気が終了した時点で排気つまみ70を締め込むと排気孔72は再び排気管78によって塞がれるため図5(B)の状態に戻り、水密状態となる。
【0046】
以上、本実施形態においては空気を浮力調整器の排気バルブから取っているが、それ以外にも空気タンクの一次レギュレータから分岐させる、オクトパスから取るなど様々な方法が考えられる。
【0047】
【発明の効果】
本発明は上記構成としたので、水中撮影で通常使用するダイビング用器材である、空気タンクまたは浮力調整器から燃料電池に空気を供給する水中燃料電池及び前記水中燃料電池を電源とするカメラを提供することができた。
【図面の簡単な説明】
【図1】本実施形態1に係る水中カメラの斜視図である。
【図2】本実施形態1に係る水中カメラ断面図である。
【図3】本実施形態1に係る燃料電池の概念図である。
【図4】本実施形態に係る排気バルブの断面図である。
【図5】本実施形態に係る他の形の排気バルブの断面図である。
【符号の説明】
10  水中カメラ
12  ハウジング
16  給気管
18  浮力調整器
22  排気バルブ
24  ストロボ
32  電池セル
34  カメラ本体
36  レンズ
40  燃料電池
42  アノード(陰極)
44  プロトン導電膜
46  カソード(陽極)
50  燃料室
52  排気バルブ
54  可動翼
56  スライドストッパ
60  リンク
64  排気路
66  空気室
70  排気つまみ
72  排気孔
78  排気管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an underwater fuel cell and a camera.
[0002]
[Prior art]
Fuel cells that can supply power stably over a long period of time are promising as power sources for portable electronic devices, and application to cameras has been proposed as an example.
[0003]
However, since the fuel cell consumes oxygen constantly due to its power generation principle, it is particularly difficult to apply it to underwater equipment such as an underwater camera. Also, if an independent oxygen tank is provided in the underwater camera, the size of the apparatus will be increased, and portability and usability will deteriorate.
[0004]
As a conventional example, there is one that is provided with a container for supplying hydrogen to a polymer electrolyte fuel cell and is reduced in size and weight (for example, see Patent Document 1). However, these are assumed to be used in the atmosphere and cannot be used in water.
[0005]
[Patent Document 1]
JP-A-10-64567 (Claim 1, FIG. 1)
[0006]
[Problems to be solved by the invention]
In consideration of the above-described facts, the present invention provides an underwater fuel cell that supplies air to a fuel cell from an air tank or a buoyancy regulator, and a camera that uses the underwater fuel cell as a power source. The task is to do.
[0007]
[Means for Solving the Problems]
The underwater fuel cell according to claim 1 is provided with a fuel cell used as a power source, a housing for keeping the camera in a watertight state, and connection means for connecting the housing to air supply means.
[0008]
In the invention with the above configuration, a fuel cell suitable as a power source for a camera is housed in a watertight housing, and air is fed into the housing from an air supply means such as an air tank through connection means. Thereby, air necessary for power generation by the fuel cell is replenished, and the fuel cell can be used in water.
[0009]
The underwater fuel cell according to claim 2 is characterized in that the air supply means is a breathing air tank or a buoyancy regulator.
[0010]
In the invention having the above-described configuration, since air can be supplied to the housing from an air tank or a buoyancy adjuster, which is a normal diving equipment, there is no need for air supply means dedicated to the fuel cell, so that the equipment can be reduced.
[0011]
The underwater fuel cell according to claim 3 is characterized in that an exhaust valve for exhausting air in the housing is provided in the housing.
[0012]
In the invention with the above configuration, oxygen is consumed in the fuel cell, whereas air is replenished. Therefore, the air pressure inside the housing is reduced by nitrogen that has not been consumed or carbon dioxide generated in the fuel cell. In response to the situation where the air rises and it becomes difficult to replenish air, an exhaust valve is provided in the housing to discharge the air in the housing to lower the air pressure, thereby making it easy to replenish air.
[0013]
The camera according to claim 4 is characterized in that the fuel cell is a power source for the camera.
[0014]
In the invention having the above-described configuration, by using the fuel cell as a power source, it is possible to receive a stable power supply for a long time.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a perspective view of the underwater camera according to the first embodiment.
[0016]
As shown in FIG. 1, the underwater camera 10 is housed in a watertight housing 12 and is particularly suitable for photographing in the sea where water pressure is applied.
[0017]
The housing 12 includes a connection portion 14, and an air supply pipe 16 is connected to the connection portion 14. The supply pipe 16 is connected to an exhaust valve 22 of a buoyancy adjuster (BCD) 18 at a connection portion 20. When the exhaust valve 22 is operated in a state where air is contained in the buoyancy regulator 18, air is supplied from the buoyancy regulator to the housing 12 through the connection portion 20, the feeder pipe 16, and the connection portion 14.
[0018]
At this time, since the air supply pipe 16 is connected to the exhaust valve 22 of the buoyancy adjuster 18, there is a risk that the buoyancy adjustment, which is the original role, cannot be performed. For this reason, an exhaust valve 21 is newly provided in the middle of the air supply pipe 16, and exhausting from the exhaust valve 21 does not impair the function of the buoyancy regulator.
[0019]
FIG. 2 shows a cross-sectional view of the underwater camera according to the first embodiment.
[0020]
As shown in FIG. 2, the camera body 34 and the fuel cell 40 are housed in a watertight state in the housing 12 of the underwater camera 10. In addition, the fuel cell 40 and the camera body 34 are connected by a power cable 28, and electricity obtained by generating power from the fuel cell 40 is supplied to the camera body 34. The strobe 24 is also connected to the fuel cell 40 by the power cable 26, and electricity is supplied from the fuel cell 40.
[0021]
The interior of the housing 12 is completely divided into two sections for the camera 34 and the fuel cell 40, and power is supplied via the connection terminals 30 and 31. This is because the fuel cell 40 needs to be maintained at a pressure higher than the external water pressure, while the camera 34 is protected by a housing structure that maintains water tightness in an environment lower than the external water pressure. Further, since the fuel cell 40 generates heat during power generation, it must be stored in a separate compartment from the fuel cell 40 in order to protect the camera 34, which is a precision electronic device, from heat.
[0022]
The fuel cell 40 includes a fuel chamber 50, a battery cell 32, and an air chamber 66. The fuel cell 40 generates power while consuming methanol in the fuel chamber, and the generated water drops into the air chamber 66.
[0023]
When the oxygen in the air chamber 66 is consumed, the power generation efficiency decreases, so that it is necessary to replace the air in the air chamber 66 with fresh air according to the amount of power generation. At this time, since the air supply pipe 16 is connected to the buoyancy adjuster 18 and the like, air can be supplied, and fresh air is supplied from the air supply pipe 16 connected to the air chamber 66 through the connection portion 14. .
[0024]
However, used air is stored inside the air chamber 66, and carbon dioxide gas generated during the power generation process is also stored. Therefore, ventilation is not performed simply by feeding air. Therefore, the exhaust path 64 is extended from the air chamber 66 to the outside of the housing 12, and the exhaust valve 52 is provided to make the structure openable and closable. As a result, when the exhaust valve 52 is opened while air is supplied from the air supply pipe 16, old air containing oxygen and containing carbon dioxide and water dripped from the battery cell 32 pass through the exhaust valve 52 from the exhaust passage 64. It is discharged out of the housing 12, that is, into the water.
[0025]
On the other hand, the camera body 34 is fixed inside the housing 12 with a cushioning material 38.
The camera body 34 is supplied with power from the fuel cell 40 via the power cable 28 and the connection terminals 30 and 31. When the release button 33 of the watertight structure is pressed with the release button 33 of the watertight structure, photographing is performed with the lens 36 through the pressure-resistant tempered glass window 35. Done.
[0026]
FIG. 3 shows a conceptual diagram of the fuel cell according to this embodiment.
[0027]
A battery cell 32 of a methanol direct fuel cell (MDFC) used in this embodiment is composed of an anode (cathode) 42, a proton conductive film 44, and a cathode (anode) 46.
[0028]
At the anode 42, methanol contained in the methanol water of fuel is separated into hydrogen ions, electrons and carbon dioxide gas, and the hydrogen ions pass through the proton conductive film 44 and move to the cathode 46 side. Carbon dioxide is discharged as exhaust gas.
[0029]
On the other hand, the electrons pass through the resistor 48 and go to the cathode 46. This is taken out as electric energy, and work is performed by the resistor 48. In the present application, the camera body 34 and the strobe 24 correspond to the resistor 48.
[0030]
At the cathode 46, hydrogen ions that have passed through the proton conductive film 44, electrons that have passed through the resistor 48, and oxygen in the air are combined to form water, which is discharged as waste water.
[0031]
As described above, in order to generate power with the fuel cell, oxygen is required in addition to the fuel methanol. In particular, the underwater camera cannot use the outside air, so if the oxygen in the air chamber 66 is used up, subsequent power generation is impossible. There is a problem.
[0032]
In the present application, replenishment of oxygen, which is a bottleneck in the use of fuel cells in water, is performed by replenishing air into the air chamber 66 from a buoyancy regulator 18 or air tank, which is a general diving equipment, using air supply means. It is solved with.
[0033]
FIG. 4 shows a cross-sectional view of the exhaust valve according to this embodiment.
[0034]
As shown in FIG. 4, the end of the exhaust path 64 is an exhaust valve 52, and the old air A in the air chamber 66 can be exhausted out of the housing 12 by opening the exhaust valve 52.
[0035]
As shown in FIG. 4A, the exhaust valve 52 includes movable wings 54 rotatably supported at a fulcrum 58, and a plurality of movable wings 54 overlap to maintain a watertight state. The movable blades 54 are connected to each other by a link 60 and are configured to open and close simultaneously.
[0036]
In order to maintain a watertight state at normal times, the end of the movable wing 54 is fixed by a slide stopper 56 as shown in FIG. 4A so as not to be opened by an external water pressure or an internal air pressure.
[0037]
During exhaust, the air chamber 63 is pressurized and the slide stopper 56 is slid as shown in FIG. 4B so that the movable blade 54 can rotate around the fulcrum 58. The projection 62 provided on the wing is pushed to turn the movable blade 54 up. At this time, since the movable blades 54 are connected to each other by the link 60, the movable blades 54 rotate at the same time and communicate the exhaust path 64 and the outside of the housing 12. Therefore, the old air A in the exhaust path 64 is exhausted to the outside of the housing 12 through between the movable blades 54.
[0038]
When ending the exhaust, if the movable blade 54 is pressed, the movable blade 54 is rotated around the fulcrum 58, and the valve 52 is closed while all the movable blades 54 are simultaneously overlapped by the link 60. Therefore, the slide stopper 56 is slid and locked. multiply.
[0039]
FIG. 5 shows a perspective view and a cross-sectional view of another type of exhaust valve according to the present embodiment.
[0040]
As shown in FIG. 5A, the exhaust valve 53 has a structure in which an exhaust knob 70 having an exhaust hole 72 is provided on the housing 12.
[0041]
As shown in FIG. 5B, the exhaust path 64 is connected to an exhaust pipe 78 that extends outward from the housing 12 at the terminal end to form an exhaust path 76.
[0042]
The exhaust knob 70 is threaded on the inside and is screwed into an exhaust pipe 78 provided at the end of the exhaust path 64 and threaded on the outside. In the state where the exhaust knob 70 is closed, the exhaust hole 72 is blocked by the exhaust pipe 78, so that air leakage and water immersion do not occur.
[0043]
When exhausting, when the exhaust knob 70 is loosened as shown in FIG. 5C, the exhaust port 72 is in communication with the exhaust path 76, and the old pressurized air A in the air chamber 66 is discharged into the exhaust path. 64 passes through the exhaust pipe 78, passes through the exhaust hole 72, and is exhausted out of the housing.
[0044]
At this time, in order to prevent the exhaust knob 70 from being loosened too much and falling off, a flange portion 74 is provided around the exhaust knob 70 on the housing 12 to hold the flange 80 of the exhaust knob 70.
[0045]
When the exhaust knob 70 is tightened when the exhaust is completed, the exhaust hole 72 is closed again by the exhaust pipe 78, so that the state returns to the state of FIG.
[0046]
As described above, in the present embodiment, air is taken from the exhaust valve of the buoyancy regulator, but various other methods such as branching from the primary regulator of the air tank and taking from the octopus are conceivable.
[0047]
【The invention's effect】
Since the present invention is configured as described above, an underwater fuel cell that supplies air to the fuel cell from an air tank or a buoyancy regulator, which is a diving equipment that is normally used in underwater photography, and a camera that uses the underwater fuel cell as a power source are provided. We were able to.
[Brief description of the drawings]
FIG. 1 is a perspective view of an underwater camera according to a first embodiment.
FIG. 2 is a cross-sectional view of the underwater camera according to the first embodiment.
FIG. 3 is a conceptual diagram of a fuel cell according to the first embodiment.
FIG. 4 is a cross-sectional view of an exhaust valve according to the present embodiment.
FIG. 5 is a cross-sectional view of another type of exhaust valve according to the present embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Underwater camera 12 Housing 16 Air supply pipe 18 Buoyancy regulator 22 Exhaust valve 24 Strobe 32 Battery cell 34 Camera body 36 Lens 40 Fuel cell 42 Anode (cathode)
44 Proton conductive film 46 Cathode (anode)
50 Fuel chamber 52 Exhaust valve 54 Movable blade 56 Slide stopper 60 Link 64 Exhaust passage 66 Air chamber 70 Exhaust knob 72 Exhaust hole 78 Exhaust pipe

Claims (4)

電源として使用する燃料電池と、
前記燃料電池を水密状態に保つハウジングと、
前記ハウジングを空気補給手段と接続する接続手段と、
を備えたことを特徴とする水中燃料電池。
A fuel cell used as a power source;
A housing that keeps the fuel cell watertight;
Connecting means for connecting the housing with air supply means;
An underwater fuel cell comprising:
前記空気補給手段が呼吸用空気タンクまたは浮力調整器であることを特徴とする請求項1に記載の水中燃料電池。The underwater fuel cell according to claim 1, wherein the air supply means is a breathing air tank or a buoyancy regulator. 前記ハウジング内の空気を排気する排気弁を前記ハウジングに設けたことを特徴とする請求項1または請求項2に記載の水中燃料電池。The underwater fuel cell according to claim 1, wherein an exhaust valve for exhausting air in the housing is provided in the housing. 前記燃料電池が電源であることを特徴とするカメラ。A camera, wherein the fuel cell is a power source.
JP2002244825A 2002-08-26 2002-08-26 Underwater fuel cell and camera Pending JP2004087223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002244825A JP2004087223A (en) 2002-08-26 2002-08-26 Underwater fuel cell and camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002244825A JP2004087223A (en) 2002-08-26 2002-08-26 Underwater fuel cell and camera

Publications (1)

Publication Number Publication Date
JP2004087223A true JP2004087223A (en) 2004-03-18

Family

ID=32053192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002244825A Pending JP2004087223A (en) 2002-08-26 2002-08-26 Underwater fuel cell and camera

Country Status (1)

Country Link
JP (1) JP2004087223A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200458792Y1 (en) 2010-06-16 2012-02-20 황영기 Structure for Exchanging Battery Underwater
KR102343335B1 (en) * 2021-07-14 2021-12-27 울산과학기술원 Benting case for battery in water and structure comprising the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200458792Y1 (en) 2010-06-16 2012-02-20 황영기 Structure for Exchanging Battery Underwater
KR102343335B1 (en) * 2021-07-14 2021-12-27 울산과학기술원 Benting case for battery in water and structure comprising the same

Similar Documents

Publication Publication Date Title
US7718301B2 (en) Fuel supply apparatus
US20090239132A1 (en) Oxygen battery system
CA2130559A1 (en) Metal-Air Power Supply and Air-Manager System, And Metal-Air Cell for Use Therein
US10940926B2 (en) Fuel cell watercraft
US20100227259A1 (en) Fuel cell cartridge and electric apparatus having built-in fuel cell
US20040023081A1 (en) Fuel cell system, fuel pack, camera, portable telephone with camera and portable terminal
JP2004055307A (en) Fuel cell mounting apparatus
JP2004087223A (en) Underwater fuel cell and camera
ES2299324B1 (en) FUEL CELL SYSTEM AND PROCEDURE FOR THE PRODUCTION OF ELECTRICAL ENERGY.
US7745034B2 (en) Fuel cell system and fuel cartridge having fuel buffer module
US9680170B2 (en) Gas generator with combined gas flow valve and pressure relief
JP2004087159A (en) Fuel cell and camera
JP5228200B2 (en) Fuel cartridge and fuel cell power generation system including the same
JP2005285588A (en) Electronic equipment
JP2007080794A (en) Fuel cell device
JP2004158229A (en) Fuel cell system
EP2652827B1 (en) Fuel cell system
JP2005203355A (en) Fuel cell system and method of generating electric power in fuel cell system
KR101733278B1 (en) Submarine hydrogen system and hydrogen management method using metal fuel
JP3989327B2 (en) Small electrical equipment
JP2000277138A (en) Fuel cell power generating system
JP2008021553A (en) Fuel cell electric power generation system
JP2005332736A (en) Fuel cell device, and portable information equipment
JP2009262770A (en) Propulsion device for space craft
JP2009123589A (en) Fuel cell and method of operating fuel cell