【0001】
【発明の属する技術分野】
本発明は固体高分子電解質膜に関する。
【0002】
【従来の技術】
一般には燃料電池用高分子電解質膜としてスルホン酸基を有するパーフルオロカーボン重合体膜(商品名:ナフィオン、アシプレックス等)が用いられ、良好な発電性能と耐久性が確認されている。しかし、実用化のためにはコストの低減およびさらに水素イオン伝導性を高くした電解質膜が期待されている。これに該当するものとして炭化水素系電解質膜がある。
【0003】
従来技術として、特開平6―206938号公報には、エチレン−酢酸ビニル共重合体を改質しスルホン酸基を導入した炭化水素系の固体高分子電解質が開示されている。
【0004】
【発明が解決しようとする課題】
しかしながら、従来技術では、エチレン−酢酸ビニル共重合体を改質しスルホン酸基を導入後熱プレスにより製膜をおこなっている。このため膜強度はエチレン−酢酸ビニル共重合体に依存し、柔らかく、架橋剤の添加がないため膜の含水時の寸法変化も著しい。また、熱プレスにより製膜を行うためポリマーの劣化を起こし、膜物性の低下原因となる。よってできた膜は寸法変化率が大きく燃料電池における乾燥、湿潤条件での膜耐久性が不十分な固体高分子電解質膜となる。
【0005】
本発明は上記課題を解決したもので、低コストで、かつ耐久性に優れた固体高分子電解質膜を提供する。
【0006】
【課題を解決するための手段】
上記技術的課題を解決するために、本発明の請求項1において講じた技術的手段(以下、第1の技術的手段と称する。)は、炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体で形成された主鎖と、
【化1】
の化学式で表される第1分子構造を有する側鎖とが設けられていることを特徴とする固体高分子電解質膜である。
【0007】
上記第1の技術的手段による効果は、以下のようである。
【0008】
すなわち、主鎖として使用した炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体が適度な柔軟性を持ち寸法変化が少ないため、乾燥、湿潤条件での耐久性に優れた固体高分子電解質膜ができる。また炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体はフッ素化された部位とフッ素化されていない部位の両方が存在するので、主鎖切断型ラジカルと分子間架橋型ラジカルとが同時に生成することにより、適度にラジカルを生成させつつ膜の強度を保つことができ、耐久性に優れた固体高分子電解質膜ができる。さらに主鎖として炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体を使用したので、パーフルオロカーボン重合体膜に比較して低コスト化できる。
【0009】
上記技術的課題を解決するために、本発明の請求項2において講じた技術的手段(以下、第2の技術的手段と称する。)は、前記側鎖が
【化2】
の化学式で表される第2分子構造を有することを特徴とする請求項1記載の固体高分子電解質膜である。
【0010】
上記第2の技術的手段による効果は、以下のようである。
【0011】
すなわち、
【化2】
が水酸基を有する構造であるので、水素結合により水を保持することができ、保水性に優れた固体高分子電解質膜となる効果を奏する。また、
【化2】
が
【化1】
に変換される構造であるので、第2分子構造をもつことにより第1分子構造を製造しやすくなる効果を奏する。
【0012】
上記技術的課題を解決するために、本発明の請求項3において講じた技術的手段(以下、第3の技術的手段と称する。)は、前記主鎖に対する前記側鎖の重量比が0.5より大きく、かつ前記第1分子構造と前記第2分子構造の合計に対する前記第1分子構造のモル比が0.2より大きいことを特徴とする請求項2記載の固体高分子電解質膜である。
【0013】
上記第3の技術的手段による効果は、以下のようである。
【0014】
すなわち、水素イオン伝導性を有する側鎖の主鎖に対する重量比が0.5より大きいためイオン導電性に優れた固体高分子電解質膜ができ、かつ第1分子構造と第2分子構造の合計に対する第1分子構造モル比が0.2より大きいため耐久性に優れた固体高分子電解質膜ができるので、イオン導電性に優れ、かつ耐久性に優れた固体高分子電解質膜ができる。
【0015】
上記技術的課題を解決するために、本発明の請求項4において講じた技術的手段(以下、第4の技術的手段と称する。)は、前記炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体が
【化3】
であることを特徴とする請求項1記載の固体高分子電解質膜である。
【0016】
上記第4の技術的手段による効果は、以下のようである。
【0017】
すなわち、炭化フッ素系ビニル重合体では放射線グラフトを行うと主鎖切断型ラジカルの生成が著しくグラフト重合ができないが、炭化水素系ビニルモノマーとの共重合体にすることにより放射線グラフト重合が可能となる効果を奏する。
【0018】
【発明の実施の形態】
以下、本発明について詳しく説明する。説明を簡単にするため、炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体としてエチレンー四フッ化エチレン共重合体を用いて説明する。エチレンー四フッ化エチレン共重合体は化学式(1)で表される。
【0019】
【化4】
このエチレンー四フッ化エチレン共重合体に真空または不活性ガス雰囲気下で放射線を照射するとエチレン基の一部にラジカルが生成し、それを化学式(2)で表した。
【0020】
【化5】
以下の説明では、前記化学式(2)を化学式(3)で表す。
【0021】
【化6】
化学式(3)に酢酸ビニルを重合させてグラフトし化学式(4)で表されるフィルムを得た。
【0022】
【化7】
このフィルムに加水分解処理をすると、化学式(5)に示すフィルムとなる。
【0023】
【化8】
最後にアルキルスルホン化処理することで、化学式(6)に示した固体高分子電解質膜を得た。
【0024】
【化9】
この膜は、炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体の主鎖を持つため、適度な柔軟性を持ち寸法変化が少なく、乾燥、湿潤条件での耐久性に優れた固体高分子電解質膜ができる。また炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体はフッ素化された部位とフッ素化されていない部位の両方が存在するので、主鎖切断型ラジカルと分子間架橋型ラジカルとが同時に生成することにより、適度にラジカルを生成させつつ膜の強度を保つことができ、耐久性に優れた固体高分子電解質膜ができる。さらに主鎖として炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体を使用したので、パーフルオロカーボン重合体膜に比較して低コスト化できる。
【0025】
炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体の主鎖にベンゼン基を有するグラフトスチレン側鎖を形成して作製された化学式(7)に示す固体高分子電解質膜では、ベンゼン基に結合した炭素に結合した水素が燃料電池の電極反応時に発生する活性酸素により抜かれ、この炭素がラジカルとなり、電解質膜の自動酸化が生じ、劣化する問題があった。これに対し、本発明の固体高分子電解質膜では、ベンゼン基は存在しないので、自動酸化は生じない。したがって、この点からも本発明の固体高分子電解質膜は耐久性に優れている。
【0026】
以下、本発明の実施例について説明する。以下の実施例では固体高分子電解質膜の原料として、炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体であるエチレンー四フッ化エチレン共重合体のフィルムを使用している。このフィルムの厚さは50μmである。このエチレンー四フッ化エチレン共重合体が、製造された固体高分子電解質膜の炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体で形成された主鎖となる。
【0027】
(実施例)
エチレンー四フッ化エチレン共重合体のフィルムをアセトンで洗浄した後、放射線源としてコバルト60を用いて20KGyのガンマ線を照射した。得られたフィルム10cm2をガラス反応管に入れた後、酢酸ビニルモノマー70gを反応管に加え、反応管の内部を充分に窒素で置換した(グラフト処理)。
【0028】
その後、かかる反応管を70℃の恒温槽に8時間浸漬した。反応後のフィルムをメタノールで3回洗浄した後、乾燥機を用いて乾燥させた。乾燥フィルムのエステル交換反応は、水酸化ナトリウム2部(重量部、以下同様)とメタノール98部の溶液に55℃3時間浸漬させた後、メタノールで洗浄した(加水分解処理)。さらにイオン交換水でフィルムを洗浄し、100℃で3時間乾燥させ重量変化量及びIR(赤外吸収分析)データよりアセチル基がほぼ100%水酸基に置換されたことを確認した。
【0029】
得られたフィルムのスルホン酸基導入反応は、ガラス反応管にフィルムを入れた後、蒸留したジメチルスルホキシド3×10−5m3を入れ反応管の内部を充分に窒素で置換した。その中に水素化ナトリウムを0.5g入れ60℃に加温し1時間反応させた。反応液にプロパンサルトン2gを蒸留したジメチルスルホキシド10−5m3に溶解しこれを1時間かけて滴下し、その後80℃で7時間反応させた(アルキルスルホン化処理)。反応後フィルムを取り出し、これを1Nの塩酸溶液に50℃で8時間浸漬させ、イオン交換水で充分に洗浄して固体高分子電解質膜を得た。
【0030】
なお、ここではスルホン化剤としてプロパンサルトンを使用しているが、2−ブロモエタンスルホン酸ナトリウム、1,4−ブタンスルトンなども使用できる。
【0031】
得られた固体高分子電解質膜の強度評価は、固体高分子電解質膜を90℃の熱水に十分含水させ、含水した固体高分子電解質膜(膜厚95μm)を30mm×30mmに切り出し図1の治具の真ん中に置き、もう一つの図1の治具で挟み込んで固定し、これを90℃の乾熱条件下および90℃湿度95%条件下に各々1時間交互に入れ、膜の伸縮により破断するまでのサイクル数を測定した。
【0032】
(比較例)
比較例は、従来技術のエチレン−酢酸ビニル共重合体を改質しスルホン酸基を導入した炭化水素系の固体高分子電解質膜である。この固体高分子電解質膜の製造は下記に示す方法で行った。
【0033】
エチレン−酢酸ビニル共重合体(酢酸ビニル含量約40%)25gをトルエン10−4m3に溶解し、この中にメタノール5×10−5m3と水酸化ナトリウム5gを入れ65℃、2時間反応させ、その後メタノール5×10−4m3を加え沈殿物をろ別しポリマーを回収した。このポリマーを85℃の真空乾燥機で十分乾燥した。十分乾燥させたポリマー7gを蒸留したテトラヒドロフラン5×10−5m3に溶解し、この中に水素化ナトリウム1.8gおよび蒸留したジメチルスルホキシド5×10−5m3を入れ60℃に加温し2時間反応させた。この反応液に蒸留したテトラヒドロフラン2×10−5m3に溶解したプロパンサルトン10gを1時間かけて滴下、その後反応液を80℃とし8時間反応させた。反応液を10−3m3のアセトンに入れ沈殿物をろ別しポリマーを回収した。回収したポリマーをよくイオン交換水で洗浄し、1N塩酸10−3m3に入れ12時間浸漬したのち、さらにイオン交換水で良く洗浄した。乾燥したポリマーを2g取り、1mm厚のアルミ板にはさみ、130℃、4.9MPaで2分間プレスしフィルムを作製した。このフィルムを90℃の熱水に十分含水させ100μm厚の固体高分子電解質膜を得た。得られた固体高分子電解質膜の強度評価は、実施例と同様な試験を行った。
【0034】
(強度評価結果)
比較例の固体高分子電解質膜は100サイクル行った後、膜中央から破断していたが、実施例の固体高分子電解質膜は変化が見られなかった。その後400サイクル行ったが、膜の破断は見られなかった。
【0035】
【発明の効果】
以上のように、本発明は、炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体で形成された主鎖と、
【化1】
の化学式で表される第1分子構造を有する側鎖とが設けられていることを特徴とする固体高分子電解質膜であるので、耐久性に優れた固体高分子電解質膜を低コストで提供できる。
【図面の簡単な説明】
【図1】測定治具の斜視図
【符号の説明】
1…強度測定治具
2…貫通穴部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solid polymer electrolyte membrane.
[0002]
[Prior art]
Generally, a perfluorocarbon polymer membrane having a sulfonic acid group (trade name: Nafion, Aciplex, etc.) is used as a polymer electrolyte membrane for a fuel cell, and good power generation performance and durability have been confirmed. However, for practical use, an electrolyte membrane with reduced cost and further increased hydrogen ion conductivity is expected. A hydrocarbon electrolyte membrane corresponds to this.
[0003]
As a prior art, JP-A-6-206938 discloses a hydrocarbon-based solid polymer electrolyte obtained by modifying an ethylene-vinyl acetate copolymer and introducing a sulfonic acid group.
[0004]
[Problems to be solved by the invention]
However, in the prior art, a film is formed by hot pressing after modifying the ethylene-vinyl acetate copolymer to introduce sulfonic acid groups. For this reason, the film strength depends on the ethylene-vinyl acetate copolymer, and is soft. Since no cross-linking agent is added, the dimensional change of the film when containing water is remarkable. In addition, since the film is formed by hot pressing, the polymer is deteriorated, which causes deterioration of the film physical properties. Thus, the resulting membrane is a solid polymer electrolyte membrane having a large dimensional change rate and insufficient membrane durability under dry and wet conditions in a fuel cell.
[0005]
The present invention has solved the above-mentioned problems, and provides a solid polymer electrolyte membrane having low cost and excellent durability.
[0006]
[Means for Solving the Problems]
In order to solve the above technical problems, the technical measures taken in claim 1 of the present invention (hereinafter, referred to as first technical means) are based on the combination of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer. A main chain formed of a copolymer,
Embedded image
And a side chain having a first molecular structure represented by the following chemical formula:
[0007]
The effects of the first technical means are as follows.
[0008]
That is, since the copolymer of the fluorocarbon vinyl monomer and the hydrocarbon vinyl monomer used as the main chain has appropriate flexibility and small dimensional change, it is a solid polymer having excellent durability under dry and wet conditions. An electrolyte membrane is formed. In addition, the copolymer of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer has both a fluorinated site and a non-fluorinated site. Simultaneous formation of the solid polymer electrolyte membrane can maintain the strength of the membrane while appropriately generating radicals, and can provide a solid polymer electrolyte membrane having excellent durability. Further, since a copolymer of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer is used as the main chain, the cost can be reduced as compared with a perfluorocarbon polymer film.
[0009]
In order to solve the above technical problem, the technical means (hereinafter referred to as the second technical means) taken in claim 2 of the present invention is characterized in that the side chain is represented by the following formula:
2. The solid polymer electrolyte membrane according to claim 1, having a second molecular structure represented by the following chemical formula:
[0010]
The effects of the second technical means are as follows.
[0011]
That is,
Embedded image
Is a structure having a hydroxyl group, so that water can be retained by hydrogen bonding, and an effect of forming a solid polymer electrolyte membrane having excellent water retention is exhibited. Also,
Embedded image
Is
Since the second molecular structure is used, the first molecular structure can be easily manufactured.
[0012]
In order to solve the above technical problem, the technical means (hereinafter referred to as third technical means) taken in claim 3 of the present invention is such that the weight ratio of the side chain to the main chain is 0.1%. 3. The solid polymer electrolyte membrane according to claim 2, wherein the molar ratio of the first molecular structure to the total of the first molecular structure and the second molecular structure is larger than 0.2. .
[0013]
The effects of the third technical means are as follows.
[0014]
That is, since the weight ratio of the side chain having hydrogen ion conductivity to the main chain is larger than 0.5, a solid polymer electrolyte membrane having excellent ionic conductivity can be obtained, and the total molecular weight of the first and second molecular structures can be obtained. Since the first molecular structure molar ratio is larger than 0.2, a solid polymer electrolyte membrane having excellent durability can be obtained, and thus a solid polymer electrolyte membrane having excellent ionic conductivity and excellent durability can be obtained.
[0015]
In order to solve the above technical problem, the technical measures taken in claim 4 of the present invention (hereinafter, referred to as fourth technical means) include the above-mentioned fluorocarbon vinyl monomer, hydrocarbon vinyl monomer and Is a copolymer of
The solid polymer electrolyte membrane according to claim 1, wherein
[0016]
The effects of the fourth technical means are as follows.
[0017]
In other words, when radiation grafting is performed on a fluorocarbon vinyl polymer, radical generation of a main chain scission type radical is remarkable, and graft polymerization cannot be performed. However, radiation graft polymerization becomes possible by forming a copolymer with a hydrocarbon vinyl monomer. It works.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail. For simplicity, the description will be made using an ethylene-tetrafluoroethylene copolymer as a copolymer of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer. The ethylene-tetrafluoroethylene copolymer is represented by the chemical formula (1).
[0019]
Embedded image
When the ethylene-tetrafluoroethylene copolymer was irradiated with radiation in a vacuum or in an inert gas atmosphere, radicals were generated in some of the ethylene groups, which were represented by the chemical formula (2).
[0020]
Embedded image
In the following description, the chemical formula (2) is represented by the chemical formula (3).
[0021]
Embedded image
Vinyl acetate was polymerized to the chemical formula (3) and grafted to obtain a film represented by the chemical formula (4).
[0022]
Embedded image
When this film is hydrolyzed, a film represented by the chemical formula (5) is obtained.
[0023]
Embedded image
Finally, an alkyl sulfonation treatment was performed to obtain a solid polymer electrolyte membrane represented by the chemical formula (6).
[0024]
Embedded image
Since this film has a main chain of a copolymer of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer, it has moderate flexibility, small dimensional change, and excellent durability under dry and wet conditions. A polymer electrolyte membrane is formed. In addition, the copolymer of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer has both a fluorinated site and a non-fluorinated site. Simultaneous formation of the solid polymer electrolyte membrane can maintain the strength of the membrane while appropriately generating radicals, and can provide a solid polymer electrolyte membrane having excellent durability. Further, since a copolymer of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer is used as the main chain, the cost can be reduced as compared with a perfluorocarbon polymer film.
[0025]
In the solid polymer electrolyte membrane represented by the chemical formula (7) produced by forming a graft styrene side chain having a benzene group on the main chain of a copolymer of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer, the benzene group Hydrogen bonded to the carbon bonded to the fuel cell is removed by active oxygen generated at the time of the electrode reaction of the fuel cell, and this carbon becomes a radical, which causes autooxidation of the electrolyte membrane and causes deterioration. On the other hand, in the solid polymer electrolyte membrane of the present invention, since there is no benzene group, autoxidation does not occur. Therefore, also from this point, the solid polymer electrolyte membrane of the present invention is excellent in durability.
[0026]
Hereinafter, examples of the present invention will be described. In the following examples, a film of an ethylene-tetrafluoroethylene copolymer, which is a copolymer of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer, is used as a raw material of the solid polymer electrolyte membrane. The thickness of this film is 50 μm. This ethylene-tetrafluoroethylene copolymer becomes a main chain formed of a copolymer of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer in the produced solid polymer electrolyte membrane.
[0027]
(Example)
After the ethylene-tetrafluoroethylene copolymer film was washed with acetone, it was irradiated with 20 KGy gamma rays using cobalt 60 as a radiation source. After placing 10 cm 2 of the obtained film in a glass reaction tube, 70 g of vinyl acetate monomer was added to the reaction tube, and the inside of the reaction tube was sufficiently purged with nitrogen (grafting treatment).
[0028]
Thereafter, the reaction tube was immersed in a constant temperature bath at 70 ° C. for 8 hours. The film after the reaction was washed three times with methanol, and then dried using a dryer. In the transesterification reaction of the dried film, the film was immersed in a solution of 2 parts of sodium hydroxide (parts by weight, hereinafter the same) and 98 parts of methanol at 55 ° C. for 3 hours, and then washed with methanol (hydrolysis treatment). Further, the film was washed with ion-exchanged water, dried at 100 ° C. for 3 hours, and it was confirmed from the weight change amount and IR (infrared absorption analysis) data that almost 100% of the acetyl groups were substituted with hydroxyl groups.
[0029]
In the sulfonic acid group introduction reaction of the obtained film, after putting the film in a glass reaction tube, 3 × 10 −5 m 3 of distilled dimethyl sulfoxide was added, and the inside of the reaction tube was sufficiently replaced with nitrogen. 0.5 g of sodium hydride was added therein, and the mixture was heated to 60 ° C. and reacted for 1 hour. To the reaction solution, 2 g of propane sultone was dissolved in 10 −5 m 3 of distilled dimethyl sulfoxide, which was added dropwise over 1 hour, followed by a reaction at 80 ° C. for 7 hours (alkyl sulfonation treatment). After the reaction, the film was taken out, immersed in a 1N hydrochloric acid solution at 50 ° C. for 8 hours, and sufficiently washed with ion-exchanged water to obtain a solid polymer electrolyte membrane.
[0030]
Here, propane sultone is used as the sulfonating agent, but sodium 2-bromoethanesulfonate, 1,4-butane sultone and the like can also be used.
[0031]
The strength of the obtained solid polymer electrolyte membrane was evaluated by sufficiently immersing the solid polymer electrolyte membrane in hot water at 90 ° C., cutting out the hydrated solid polymer electrolyte membrane (thickness: 95 μm) into 30 mm × 30 mm, and FIG. Placed in the middle of the jig, sandwiched and fixed with another jig of FIG. 1, and alternately put it for 1 hour under the condition of 90 ° C. dry heat and 90 ° C. and 95% humidity, respectively. The number of cycles until breaking was measured.
[0032]
(Comparative example)
The comparative example is a hydrocarbon-based solid polymer electrolyte membrane obtained by modifying a conventional ethylene-vinyl acetate copolymer and introducing a sulfonic acid group. The production of this solid polymer electrolyte membrane was carried out by the following method.
[0033]
25 g of ethylene-vinyl acetate copolymer (vinyl acetate content about 40%) was dissolved in 10 -4 m 3 of toluene, and 5 × 10 -5 m 3 of methanol and 5 g of sodium hydroxide were added thereto, and the mixture was added at 65 ° C. for 2 hours. After the reaction, 5 × 10 −4 m 3 of methanol was added, and the precipitate was separated by filtration to collect a polymer. This polymer was sufficiently dried with a vacuum dryer at 85 ° C. 7 g of the sufficiently dried polymer was dissolved in 5 × 10 −5 m 3 of distilled tetrahydrofuran, and 1.8 g of sodium hydride and 5 × 10 −5 m 3 of distilled dimethyl sulfoxide were added thereto, and the mixture was heated to 60 ° C. The reaction was performed for 2 hours. To this reaction solution, 10 g of propane sultone dissolved in 2 × 10 −5 m 3 of distilled tetrahydrofuran was added dropwise over 1 hour. Thereafter, the reaction solution was heated to 80 ° C. and reacted for 8 hours. The reaction solution was put into acetone of 10 −3 m 3 , and the precipitate was separated by filtration to collect a polymer. The recovered polymer was thoroughly washed with ion-exchanged water, immersed in 1N hydrochloric acid (10 −3 m 3) for 12 hours, and then thoroughly washed with ion-exchanged water. 2 g of the dried polymer was taken, sandwiched between aluminum plates having a thickness of 1 mm, and pressed at 130 ° C. and 4.9 MPa for 2 minutes to produce a film. This film was sufficiently hydrated in hot water at 90 ° C. to obtain a solid polymer electrolyte membrane having a thickness of 100 μm. For the evaluation of the strength of the obtained solid polymer electrolyte membrane, the same test as in the example was performed.
[0034]
(Strength evaluation result)
The solid polymer electrolyte membrane of the comparative example was broken from the center of the membrane after 100 cycles, but no change was observed in the solid polymer electrolyte membrane of the example. Thereafter, 400 cycles were performed, but no breakage of the film was observed.
[0035]
【The invention's effect】
As described above, the present invention has a main chain formed of a copolymer of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer,
Embedded image
And a side chain having a first molecular structure represented by the following chemical formula: is provided, so that a solid polymer electrolyte membrane having excellent durability can be provided at low cost. .
[Brief description of the drawings]
FIG. 1 is a perspective view of a measuring jig.
1: strength measuring jig 2: through hole