JP2004085519A - Method and device for creating large quantity of heating and helium, by nuclear fusion using super-high density deuterated nanoparticle - Google Patents

Method and device for creating large quantity of heating and helium, by nuclear fusion using super-high density deuterated nanoparticle Download PDF

Info

Publication number
JP2004085519A
JP2004085519A JP2002293036A JP2002293036A JP2004085519A JP 2004085519 A JP2004085519 A JP 2004085519A JP 2002293036 A JP2002293036 A JP 2002293036A JP 2002293036 A JP2002293036 A JP 2002293036A JP 2004085519 A JP2004085519 A JP 2004085519A
Authority
JP
Japan
Prior art keywords
deuterium
metal
density
helium
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002293036A
Other languages
Japanese (ja)
Inventor
Yoshiaki Arata
荒田 吉明
Hiroshi Fujita
藤田 廣志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Industrial Promotion Organization
Original Assignee
Osaka Industrial Promotion Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Industrial Promotion Organization filed Critical Osaka Industrial Promotion Organization
Priority to JP2002293036A priority Critical patent/JP2004085519A/en
Publication of JP2004085519A publication Critical patent/JP2004085519A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for creating a large quantity of heating and helium by nuclear fusion reaction using a super-high density deuterated nanoparticle. <P>SOLUTION: Deuterium is solid-dissolved into an ultramicro metal nanoparticle, and a deuterium aggregate is formed to obtain the super-high density deuterated nanoparticle having 200% or more of atomic ratio(deuterium/metal), energy is imparted thereafter to the particle and/or the deuterium aggregate, and the nuclear fusion reaction is set up to create the large quantity of heating and the helium. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、人類が求めている安全で、しかも資源の永久性が保証される新エネルギー、及び有用ではあるが存在率が極めて少ないヘリウムガスを量産する方法、並びに該方法により得られ新エネルギーとヘリウムの提供に関するものである。更に、この発明は、エネルギー理工学をはじめ、材料理工学、冷媒工学、航空工学等々の広分野における新しい科学と技術の発展、また、人類が存続するためのあらゆる活動、ひいては地球環境の保全に計り知れないほど寄与する。
【0002】
【従来技術とその課題】
従来のエネルギー開発は、化石燃料、水力、原子力、風力、水素、太陽エネルギーなどを用いて行われてきた。しかし、これ等は、いずれも資源、環境、効率等に係る深刻な問題を抱え、その将来性は憂慮されている。一方、新しいエネルギーとして超高温核融合が試みられてはいるが、現時点では、その実用化への道は未だ遠い。また、近年、パラジウム(Pd)を用いた電気分解によるエネルギー開発の研究も行われてはいるが、そのほとんどが疑問視されており、その中で本発明者らが唯一成功した超微粒子のPdブラックを用いるDS−カソード(WO95/35574)、及び金属ナノ粒子を用いた上記カソード(Proceedings of the Japan Academy,Vol.78,Ser.B,No.3,pp.57−62,2002)においてさえ効率が悪く、工業化は不可能な実情にあった。更に、発明者らは、超音波エネルギーによるバルク(金属塊)やフォイル(金属箔)への重水(DO)のインプランテーションとそこでの核融合反応の誘導を試みたが、発熱効率が極めて低く、実用化は不可能であった(Proceedings of the Japan Academy,Vol.78,Ser.B,No.3,pp.63−68,2002)。
【0003】
【課題を解決するための手段】
この発明は、金属ナノ超微粒子及び2次元金属ナノ粒子に相当する表面層(以下、これ等の両者を「アトム・クラスター」と総称する)が、従来のバルク(金属塊)やフォイル(金属箔)とは異質の機能あるいは挙動を呈するという知見の、核融合反応への意外かつ巧妙な応用と卓抜した創意に基づくものである。即ち、この発明は、従来のバルクやフォイルの踏襲使用下での条件の改変ではなく、上述したアトム・クラスターを用いる新規かつ斬新な諸条件の模索・選別・組合せ設定により完成された。
また、この発明者らは、長年にわたる刻苦勉励と鋭意研究を重ねた結果、最も水素を吸収することが知られているパラジウム(Pd)でさえ、重水素の固溶度は高々原子比(重水素原子/金属原子)70〜80%であり、100%を超えることは不可能であるとする従来の定説を覆した。しかも、驚くべきことに、水素ガスへの数億気圧に相当する加圧効果を、実用的な約0.3〜約100気圧の加圧下で実現すると共に、これを具に核融合反応に活用した。この発明は、かかる偉業と洞察に基づき完成された。
【0004】
尚、この発明によれば、次の(1)〜(11)が提供される:
(1)金属ナノ超微粒子又はその集団又は2次元金属ナノ超微粒子に相当する表面層に重水素を固溶させると共に、その各金属格子内に超高密度重水素の局所凝縮体を形成させ、これより得られる超高密度重水素化ナノ粒子、及び/又は該粒子又は前記表面層が吸蔵の上記重水素凝縮体に、エネルギーを加え、核融合
反応を誘導するか惹起させることにより、多量の発熱を得る方法、及びヘリウムを造出量産する方法。
【0005】
(2)金属ナノ超微粒子、その集団、及び2次元金属ナノ超微子に相当する表面層が、パラジウム、チタン、ジルコニウム、銀等の金属群から選ばれる少なくとも1種の金属又は2種以上の金属の組合せで構成されている前(1)記載の多量の発熱を得る方法、及びヘリウムを造出量産する方法。
(3)金属ナノ超微粒子(球形)、その集団、及び2次元金属ナノ超微粒子に相当する表面層(円形)が、埋め込み型の場合は、その平均径が、少なくとも該金属原子13個で構成される格子サイズから最大5nmまでの範囲にある前(1)又は(2)記載の多量の発熱を得る方法、及びヘリウムを造出量産する方法。
【0006】
(4)金属ナノ超微粒子(球形)、その集団、及び2次元金属ナノ超微粒子に相当する表面層(円形)が、孤立型の場合は、その平均径が、少なくとも該金属原子13個で構成される格子サイズから最大15nmまでの範囲にある前(1)又は(2)記載の多量の発熱を得る方法、及びヘリウムを造出量産する方法。
(5)超高密度重水素化ナノ粒子、その集団、及び2次元金属ナノ超微粒子に相当する表面層が、少なくとも200パーセントの原子比(重水素/金属)で構成されるよう調整した前(1)〜(4)記載の多量の発熱を得る方法、及びヘリウムを造出量産する方法。
【0007】
(6)エネルギーが、超音波、強磁場、高圧、レーザー、レーザー爆縮、高密度電子ビーム、高密度電流、放電、化学反応のエネルギー源群から選ばれる少なくとも1種の衝撃エネルギー及び/又は定常エネルギーであって、該エネルギーの程度が核融合反応を惹起させる強度又は量である前(1)〜(5)記載の多量の発熱を得る方法、及びヘリウムを造出量産する方法。
【0008】
(7)金属ナノ超微粒子又はその集団又は2次元金属ナノ超微粒子に相当する表面層に重水素を固溶させると共に、その各金属格子内に超高密度重水素の局所凝縮体を形成させる手段、これより得られる超高密度重水素化ナノ粒子、及び/又は該粒子又は前記表面層が吸蔵の上記重水素凝縮体に、エネルギーを加え、核融合反応を誘導するか惹起させる手段、及び核融合反応容器を少なくとも具備することを特徴とする多量の発熱を得る装置又はシステム、ヘリウムを造出量産する装置又はシステム、及び発熱とヘリウムの両者を量産する装置又はシステム。
(8)前(1)又は(5)記載の超高密度重水素化ナノ粒子及び/又は該粒子又は2次元金属ナノ超微粒子に相当する表面層が吸蔵の重水素凝縮体に、エネルギーを加え、核融合反応を誘導するか惹起させる手段、及び核融合反応容器を少なくとも有することを特徴とする多量の発熱を得る装置又はシステム、ヘリウムを造出量産する装置又はシステム、及び発熱とヘリウムの両者を同時に量産する装置又はシステム。
【0009】
(9)前(1)〜(6)記載の方法から選ばれる1つの方法、又は前記(7)又は(8)の装置により製造されるヘリウム。
【0010】
(10)前(1)、(2)、(3)又は(4)記載の金属ナノ超微粒子とその集団並びに2次元金属ナノ超微粒子に相当する表面層。
(11)前(1)又は(5)記載の超高密度重水素化ナノ粒子とその集団並びに2次元金属ナノ超微粒子に相当する超高密度重水素化表面層。
【0011】
【発明の実施形態】
金属ナノ超微粒子:この明細書に記載の用語「金属ナノ超微粒子」は、「金属ナノ超微粒子とその集団」及び「2次元金属ナノ超微粒子に相当する表面層」をも併せて意味し、また、該粒子の別称として「アトム・クラスター」と表記することがある。金属ナノ超微粒子(球形)及び2次元金属ナノ超微粒子に相当する表面層(円形)の平均径は、少なくとも該金属原子13個で構成される格子サイズから、埋め込み型の場合は最大5nmまで、孤立型の場合は最大15nmまでの範囲にある。該粒子は、パラジウム、チタン、ジルコニウム、銀等の金属群から選ばれる少なくとも1種の金属で構成される。尚、2種以上の金属は、これ等の各金属ナノ超微粒子が混合又は共存した形、あるいはこれ等の金属原子が混在する合金の形で用いることができる。
ところで、物質を細分化していくと、ある臨界サイズ以下になったとき、急速にその物性に変化が生じる。アトム・クラスターは、このように物性が急変した原子集団に対する称呼である(Materials Transaction,JIM,Vol.35,No.9,pp.563−575,1994)。尚、物性の急変とは、例えば、4原子からなる格子を想定すると、あたかも木製の非弾性格子がバネ製のそれに変化したときに見られる物性、即ち、原子間の結合に弾性が生じる現象であると認識される。この発明では、超微細分により物性が急変下の金属粒子あるいは金属結晶格子、及び金属表面層を、後述する超高密度重水素化ナノ粒子の作製に正に有効な材料として、即ち、前述した金属ナノ超微粒子あるいは2次元金属ナノ超微粒子に相当する表面層として用いる。
金属ナノ超微粒子は、アモルファス合金の酸化法、例えば、Zr65・Pd35アモルファス合金の酸化により、平均径が約5nmのZrO・Pdのかたちで製造することができる。その詳細は、特開2002−105609に記載されている。また、蒸着法によっても調製することができる。その詳細は、Materials Transaction,JIM,Vol.35(前述)に記載されている。
この発明によれば、金属ナノ超微粒子は、互いに接触することなく粒子ごとに独立した状態で支持体に埋め込まれた「埋め込み型」、又は互いに接触することなく粒子ごとに独立し状態で液体、気体、基盤等に分散させた「孤立型」により使用される。埋め込み型での上記粒子の平均径は、少なくとも該金属原子13個で構成される格子サイズから最大5nmまでの範囲であり、孤立型での前記粒子の平均径は、少なくとも該金属原子13個で構成される格子サイズから最大15nmまでの範囲が必要である。尚、この発明に係る金属ナノ超微粒子(アトム・クラスター)及び2次元金属ナノ超微粒子に相当する表面層は、核融合反応用材料として単独で提供あるいは市販することができる。
【0012】
超高密度重水素化ナノ粒子:この明細書に記載の用語「超高密度重水素化ナノ粒子」は、「超高密度重水素化ナノ粒子とその集団」及び「2次元超高密度重水素化ナノ粒子に相当する超高密度重水素化表面層」をも併せて意味する。前述の金属ナノ超微粒子(アトム・クラスター)及び2次元金属ナノ超微粒子に相当する表面層をホストとして用いることにより、原子比(重水素原子数/金属原子数)200%以上の重水素原子を固溶させることが可能となる。この発明では、例えば、加圧下で平均径5nm以下の埋め込み型アトム・クラスターに重水素を吸蔵させる。かかる加圧により、10気圧以下で原子比250%以上、また、100気圧で原子比約300%の重水素を固溶させ、金属結晶格子内の局所に容易に超高密度重水素の凝縮体を形成させることが可能であり、これにより、超高密度重水素化ナノ粒子を得ることができる。かかる重水素凝縮体の形成は、その重水素2原子の核間隔を核融合が可能な0.25Å以下に縮めるために行い、該重水素凝縮体は、数億気圧を負荷した重水素ガスに相当する加圧効果(正確には原子比400%の場合)を受けていると概算される。尚、重水素は市販のものを用いることができる。また、この発明に係る超高密度重水素化ナノ粒子とその集団、及び2次元金属ナノ超微粒子に相当する超高密度重水素化表面層は、核融合反応用材料として単独で提供あるいは市販することができる。
【0013】
エネルギー:ここでいう「エネルギー」とは、衝撃エネルギーと定常エネルギーの両者を併せて意味する。超高密度重水素化ナノ粒子とその集団、及び2次元金属ナノ超微粒子に相当する超高密度重水素化表面層への負荷エネルギーの手段あるいはエネルギー源として、超音波、強磁場、高圧、レーザー、レーザー爆縮、高密度電子ビーム、高密度電流、放電、化学反応等を用いることができる。これ等のエネルギーは、単独又は2種以上を組合せて用いることができる。尚、超音波を使用の場合には、そのエネルギーを核融合反応体に伝導させるための伝導媒体が必要であり、これには、例えば、DO(市販)やHO等を用いることができる。また、加えるエネルギーの程度として、例えば、超音波では300ワットで19kHzの強度の様に、核融合反応を誘導するか惹起させるだけの強度あるいは量が必要である
【0014】
核融合反応の装置及びシステム:基本的には、核融合反応体を収納する核融合反応容器、核融合反応制御の手段、上記の反応体に衝撃エネルギー及び/又は定常ネルギーを加え核融合反応を誘導するか惹起させる手段、発熱利用の手段及び/又はヘリウム採取の手段を具備した装置やシステムが推奨される。また、かかる装置やシステムが具備する上記の基本手段は、適宜、必要に応じて追加及び/又は省略することができる。例えば、図1に示す超音波励起核融合反応装置を用いることができる。尚、図1の符号部位の名称はそれぞれ、反応容器1、核融合反応体2、超音波振動子3、超音波伝導媒体4、真空排気口5、ガス(DやH等)注入口6、媒体(DOやHO等)注入口7、及びタービン発電機の駆動用ガス取出口8である。この場合、排出ガスは、タービン発電機駆動の動力源とヘリウム源の両者に利用することができる。
また、この発明に係る核融合反応の装置及びシステムは、発電、電池、暖房、冷房等々の手段あるいはこれ等への用途として、従来では実用化ができなかった小型化や携帯化が可能である。
【0015】
発熱:核融合反応の容器中で生成される高温高圧ガスは、ジェットガスして、蒸気や位置エネルギー等に変換することなく、タービン発電機や機械の駆動動力源に用いることができる。更に、水力、火力、風力、石炭、石油、原子力等の代替えエネルギーとして、また、地球環境の再生と保全を可能にするクリーンエネルギーとして、あらゆる分野で実用に供することができる。
【0016】
ヘリウムの採取:核融合炉内で生成されたヘリウムは、他の混在ガスが約50K付近で液化あるいは固化するので、共存する不純ガスを極低温で冷却液化又は固化することにより除去し、気体として量産採取することができる。また、上記不純物を精製用カラムに吸着させ除去することにより、採取することも可能である。尚、この発明により生産されるヘリウムは、衆知の用途、例えば、溶接用保護ガス、気球用充填ガス、放電管用封入ガス、潜水用人工空気等々に用いることができる。また、大量かつ低廉であるので、新規な用途の開発をも促す。
【0017】
核融合反応に用いる元素:原子番号が4以下の元素とその同位元素が使用できる。また、これ等のうち取扱いの容易さを考慮すると、重水素(D)単体、及び重水素と水素あるいはトリチュウム(T)の使用が好ましい。更に好ましくは、安全性を考慮すると、次のDD核融合反応:
D+D=He+格子エネルギー(23.8MeV)
は、中性子を生じず核融合反応それ自体が緩和であるので、後述するDD反応に比べ優れて望ましい。従って、環境保全の観点から、この発明が初めて可能にした、前述の超高密度重水素化ナノ粒子あるいは超高密度重水素化ナノ粒子を用いるDD反応の諸条件下での重水素(D)の単独使用が推奨される。しかし、D原子の超過激な衝突によりHと中性子とを放出する衆知のDD核融合反応は、非常に危険であるので、産業上利用及び環境保全の観点から望まれない。
【0018】
以下、実施例を上げ、この出願の発明の構成、作用、及び効果につき、具体的に説明する。但し、この出願の発明は、以下に示す実施例にのみ、限定されるわけではない。
【0019】
【実施例】
<実施例1>
核融合反応:先ず支持体としてジルコニア(ZrO)を用い、この支持体に平均径5nmの金属(Pd)ナノ超微粒子を埋め込み、いわゆる、埋め込み型の金属ナノ超微粒子(アトム・クラスター)を作製した。このアトム・クラスターを、図1に示す核融合反応装置にかけ、多量の発熱とヘリウムとを生成させた。即ち、図1に示すように、反応容器1の内側底部2に挿入した上記アトム・クラスターに重水素(D)を注入の後、加圧によりこれを吸蔵させることにより、先ず核融合反応体(超高密度重水素化ナノ粒子)2を調製した。次いで、超音波振動子3の作動による衝撃エネルギーを、超音波伝導媒体(DO)を通して核融合反応体2に加えることにより、核融合反応を行った。 以下、上記操作の手順を詳述する。
【0020】
操作I:反応炉容器内に3.5gの前述Pdアトム・クラスターを挿入した後、真空排気口5から高真空(10−Torr)に排気しながら150℃で焼きだしを行った。
操作II:重水素(D)ガスを注入口6から一定速度(20cc/min)で導入することにより、容器内圧を約10気圧にし、このガスを核融合反応体のPdアトム・クラスターの中にD原子の状態で固溶させ、かつ、凝縮体を形成させることにより、原子比(D/Pd)250%以上からなる超高密度重水素化ナノPd粒子を得た。尚、固溶原子の量は、注入ガス流速と反応容器内のガス圧上昇までの時間の両者から算出した。
操作III:重水(DO)を図1に示すように、振動子3が十分に浸かるよう、注入口7から反応容器内に注入した。
【0021】
操作IV:振動子3の端面から超音波エネルギーを、伝導媒体4を通して核融合反応体2に与えた。
【0022】
以上の条件下で発生した反応容器内のガスにつき、四重極質量分析計(QMS:quadrupole mass spectrometer)により分析した。また、操作IVでの反応終了後の試料を取出し、これを上記QMSの試料容器内で約1,300℃に加熱し、発生したガスを前述と同様に質量分析した。
その結果を図2と図3に示す。尚、図3(a)と(b)におけるMass number M2(=D)、M3(=DH)であり、図3(a)の極めて多量のM4はHeを、これに対し、図3(b)のM4はDをそれぞれ表す。尚、図3(c)はM4のスペクトル表示であり、時間経過と共にDは消滅し、Heのみが残留することを示している。特筆すべきは、図3(a)におけるM4(=He)は桁違いに多く、アトム・クラスターに吸蔵されていた超高密度重水素がほとんど変化し放出されたことを示している。これに対し、図3(b)では、反応終了後のアトム・クラスターにはHeとDがほとんど存在しないことを示している。
操作IIIでの重水素(D)ガスの注入時に、化学反応エネルギーとして約40kJ/molを放出し、反応容器外壁でわずかな温度上昇が検出された(図2の曲線A)。また、図2の曲線Bに示すように、操作IVでの超音波処理に伴い、反応容器外壁表面の温度が急激に上昇し、特異的な温度特性が見られた。このことは、核融合反応が約10分間、継続したことを意味する。その際、媒体DOがほとんど気化しており、D又はDに分解し、反応容器内は高温・高圧状態になり、核融合反応のすさまじさを示している。以上の知見に基づき、生じた核融合反応は、D+D=He+格子エネルギー(23.8MeV)であると判断された。
尚、前述した操作IIにおいて、原子比(D/Pd)が200%未満、即ち、多量の重水素を吸蔵しない重水素化ナノPd粒子を調整し、これを操作III及びIVに供した場合には、媒体DOは気化蒸発することなく、ほぼ残存することが確認された。
【0023】
【発明の効果】
この発明に係る方法は、放射能の危険性がなく安全であり、かつ、資源の永久性が保証され、操業・保守ともに容易である。また、エネルギー創生と同時に、貴重なヘリウムガスが量産され、低廉なかたちで広く提供される。更に、この発明に係る核融合反応装置から噴出されるHeを含む反応ガスには、当然、蒸気に変換する必要はなく、ジェットガスとして直接、発電機や機械の駆動に用いることができる利点がある。特に、新規な、しかもクリーンエネルギーとして、人類の存続と地球環境の保全に対し、計り知れない恩恵と至上の福音をもたらす。
【0024】
【図面の簡単な説明】
【図1】超音波励起核融合装置の原理を示す概略縦断面図である。
【符号の説明】
1  核融合反応容器
2  核融合反応体
3  超音波振動子
4  超音波伝導媒体
5  真空排気口
6  ガス(Dガス)注入口
7  伝導媒体(DO)注入口
8  タービン発電機駆動用のガス取出し口
【図2】超高密度重水素化Pdアトム・クラスターの超音波負荷による経時的な発熱の変化を示す図である。曲線Aは、超音波処理前の重水素ガス注入時の化学反応熱、Bは超音波負荷時の発熱の時間経過を各々示す。
【図3】(a)と(c)は、核融合反応により生じた反応容器内部の反応ガスにつき、QMSを用いて質量分析した結果を示す図である。(b)は上記反応終了後に反応容器から試料を取出し、QMSの試料容器内で約1,300℃に加熱し、発生したガスを上記と同様に質量分析した結果を示す図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a new energy that is safe for human beings and that guarantees the eternalness of resources, a method for mass-producing helium gas that is useful but has a very low abundance, and a new energy obtained by the method. It concerns the provision of helium. Furthermore, the present invention can be applied to the development of new science and technology in a wide range of fields such as energy science and technology, material science and technology, refrigerant engineering, aeronautics, etc. Contribute immeasurably.
[0002]
[Prior art and its problems]
Conventional energy development has been performed using fossil fuels, hydro, nuclear, wind, hydrogen, solar energy and the like. However, all of these have serious problems concerning resources, environment, efficiency, etc., and their future potential is concerned. On the other hand, ultra-high temperature fusion has been attempted as a new energy, but at present, the road to practical use is still long. In recent years, research on energy development by electrolysis using palladium (Pd) has been carried out, but most of them have been questioned. Even in the DS-cathode using black (WO 95/35574) and the above-mentioned cathode using metal nanoparticles (Proceedings of the Japan Academy, Vol. 78, Ser. B, No. 3, pp. 57-62, 2002). It was inefficient and industrialization was impossible. Furthermore, the inventors tried to implant heavy water (D 2 O) into a bulk (metal lump) or foil (metal foil) by ultrasonic energy and to induce a fusion reaction therein, but the heat generation efficiency was extremely high. It was too low to be put into practical use (Proceedings of the Japan Academy, Vol. 78, Ser. B, No. 3, pp. 63-68, 2002).
[0003]
[Means for Solving the Problems]
According to the present invention, a surface layer corresponding to ultrafine metal nanoparticles and two-dimensional metal nanoparticles (hereinafter, both of them are collectively referred to as an “atom cluster”) is formed by a conventional bulk (metal mass) or foil (metal foil). ) Is based on the surprising and clever application of fusion knowledge to nuclear fusion reactions and outstanding creativity. That is, the present invention has been completed by searching for new and novel conditions using the above-described atom cluster, by selecting, selecting, and setting combinations, rather than by modifying the conditions under the conventional use of bulk or foil.
In addition, the present inventors have made years of hard work and diligent research, and have found that even with palladium (Pd), which is known to absorb hydrogen the most, the solid solubility of deuterium is at most an atomic ratio (weight). (Hydrogen atom / metal atom) is 70 to 80%, and it is impossible to exceed 100%. Moreover, surprisingly, a pressurizing effect equivalent to several hundred million atmospheres on hydrogen gas is realized under practically applied pressure of about 0.3 to about 100 atmospheres, and this is used for nuclear fusion reaction. did. This invention has been completed based on such feats and insights.
[0004]
According to the present invention, the following (1) to (11) are provided:
(1) Deuterium is dissolved in a surface layer corresponding to ultrafine metal nanoparticles or a group thereof or two-dimensional ultrafine metal nanoparticles, and a local condensate of ultrahigh-density deuterium is formed in each metal lattice; By applying energy to the ultra-high-density deuterated nanoparticles obtained therefrom and / or the deuterium condensate that the particles or the surface layer occludes, to induce or induce a nuclear fusion reaction, A method of obtaining heat and a method of mass-producing helium.
[0005]
(2) The metal nano-ultrafine particles, a group thereof, and the surface layer corresponding to the two-dimensional metal nano-ultrafine particles have at least one metal selected from a metal group such as palladium, titanium, zirconium, and silver, or two or more metals. The method for obtaining a large amount of heat and the method for producing and mass-producing helium as described in (1) above, comprising a combination of metals.
(3) When the metal nano ultrafine particles (spherical shape), the group thereof, and the surface layer (circle) corresponding to the two-dimensional metal nano ultrafine particles are of an embedded type, the average diameter is at least 13 metal atoms. (1) or (2) a method of obtaining a large amount of heat and a method of mass-producing helium in a range from a lattice size to a maximum of 5 nm.
[0006]
(4) When the metal nano-ultrafine particles (spherical shape), a group thereof, and the surface layer (circle) corresponding to the two-dimensional metal nano-ultrafine particles are of an isolated type, the average diameter is at least 13 metal atoms. (1) or (2) a method of obtaining a large amount of heat generation and a method of mass-producing helium in a range from a lattice size to a maximum of 15 nm.
(5) Before the ultrahigh-density deuterated nanoparticles, the population thereof, and the surface layer corresponding to the two-dimensional metal nanoparticle were adjusted to have an atomic ratio (deuterium / metal) of at least 200% ( The method for obtaining a large amount of heat and the method for mass-producing helium according to 1) to (4).
[0007]
(6) The energy is at least one kind of impact energy and / or steady state selected from energy sources of ultrasonic waves, strong magnetic fields, high pressure, laser, laser implosion, high-density electron beam, high-density current, discharge, and chemical reaction. The method for obtaining a large amount of heat as described in (1) to (5) above, wherein the degree of the energy is an intensity or an amount for inducing a nuclear fusion reaction, and a method for producing and mass-producing helium.
[0008]
(7) Means for forming a solid solution of deuterium in the surface layer corresponding to ultrafine metal nanoparticles or a group thereof or two-dimensional ultrafine metal nanoparticles, and forming a local condensate of ultrahigh-density deuterium in each metal lattice. Means for applying energy to the ultra-high-density deuterated nanoparticles obtained therefrom and / or the deuterium condensate that the particles or the surface layer occludes to induce or induce a fusion reaction, and nuclei An apparatus or system for obtaining a large amount of heat, comprising at least a fusion reaction vessel, an apparatus or system for producing and mass-producing helium, and an apparatus or system for mass-producing both heat and helium.
(8) Applying energy to the deuterium condensate whose surface layer corresponding to the ultrahigh-density deuterated nanoparticles and / or the two-dimensional metal nanoparticle described in (1) or (5) above is occluded; Means for inducing or inducing a fusion reaction, and a device or a system for obtaining a large amount of heat, comprising at least a fusion reaction vessel, a device or a system for producing and mass-producing helium, and both a heat and a helium Equipment or system for mass production at the same time.
[0009]
(9) Helium produced by one of the methods described in the above (1) to (6) or the apparatus of the above (7) or (8).
[0010]
(10) The ultrafine metal nanoparticle described in (1), (2), (3) or (4) above, a group thereof, and a surface layer corresponding to the two-dimensional ultrafine metal nanoparticle.
(11) An ultra-high-density deuterated surface layer corresponding to the ultra-high-density deuterated nanoparticles and the population thereof and the two-dimensional metal nano-particles according to the above (1) or (5).
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Metal nano-particles: The term “metal nano-particles” described in this specification also means “metal nano-particles and a group thereof” and “surface layer corresponding to two-dimensional metal nano-particles”, Further, the particles are sometimes referred to as “atom clusters”. The average diameter of the metal nano-ultrafine particles (spherical) and the surface layer (circle) corresponding to the two-dimensional metal nano-ultrafine particles is from a lattice size composed of at least 13 of the metal atoms to a maximum of 5 nm in the case of an embedded type. In the case of the isolated type, the range is up to 15 nm. The particles are composed of at least one metal selected from the group consisting of metals such as palladium, titanium, zirconium and silver. The two or more kinds of metals can be used in the form of a mixture or coexistence of each of these metal nano-particles or in the form of an alloy in which these metal atoms are mixed.
By the way, when a material is subdivided, when its size becomes smaller than a certain critical size, its physical properties rapidly change. The atom cluster is a name for an atomic group whose physical properties have suddenly changed as described above (Materials Transaction, JIM, Vol. 35, No. 9, pp. 563-575, 1994). The sudden change in physical properties is, for example, assuming a lattice consisting of four atoms, a physical property that is seen when a wooden inelastic lattice changes to that made of a spring, that is, a phenomenon in which elasticity occurs in the bonds between atoms. It is recognized that there is. In the present invention, the metal particles or metal crystal lattice whose physical properties suddenly change due to the ultrafine fraction, and the metal surface layer, as a material that is exactly effective for producing ultrahigh-density deuterated nanoparticles described later, It is used as a surface layer corresponding to ultrafine metal nanoparticles or two-dimensional ultrafine metal nanoparticles.
Ultrafine metal nanoparticles can be produced in the form of ZrO 2 .Pd having an average diameter of about 5 nm by an oxidation method of an amorphous alloy, for example, oxidation of a Zr 65 .Pd 35 amorphous alloy. The details are described in JP-A-2002-105609. Further, it can also be prepared by a vapor deposition method. The details are described in Materials Transaction, JIM, Vol. 35 (supra).
According to the present invention, the metal nano-ultrafine particles are `` embedded '' embedded in the support in an independent state for each particle without contacting each other, or a liquid in an independent state for each particle without contacting each other, Used by "isolated type" dispersed in gas, base, etc. The average diameter of the particles in the embedded type is in a range from a lattice size of at least 13 metal atoms to a maximum of 5 nm, and the average diameter of the particles in the isolated type is at least 13 metal atoms. A range from the configured grating size to a maximum of 15 nm is required. In addition, the surface layer corresponding to the metal nano-ultrafine particles (atom cluster) and the two-dimensional metal nano-ultrafine particles according to the present invention can be provided alone or commercially available as a nuclear fusion reaction material.
[0012]
Ultra-high-density deuterated nanoparticles: The term “ultra-high-density deuterated nanoparticles” as used herein refers to “ultra-high-density deuterated nanoparticles and their populations” and “two-dimensional ultra-high-density deuterium. Ultra-high-density deuterated surface layer corresponding to immobilized nanoparticles ”. By using a surface layer corresponding to the above-mentioned metal nanoparticle (atom cluster) and two-dimensional metal nanoparticle as a host, deuterium atoms having an atomic ratio (number of deuterium atoms / number of metal atoms) of 200% or more can be obtained. It becomes possible to form a solid solution. In the present invention, for example, deuterium is absorbed under pressure into an embedded atom cluster having an average diameter of 5 nm or less. By this pressurization, deuterium having an atomic ratio of 250% or more at 10 atm or less and an atomic ratio of about 300% at 100 atm is solid-dissolved, and an ultra-high-density deuterium condensate can easily be formed locally in the metal crystal lattice. Can be formed, whereby ultrahigh-density deuterated nanoparticles can be obtained. The formation of such a deuterium condensate is carried out in order to reduce the internuclear distance between the two atoms of deuterium to 0.25 ° or less at which fusion is possible. It is estimated that a corresponding pressurizing effect (accurately, in the case of an atomic ratio of 400%) has been received. Note that commercially available deuterium can be used. In addition, the ultra-high-density deuterated nanoparticles and the population thereof according to the present invention, and the ultra-high-density deuterated surface layer corresponding to the two-dimensional metal nano ultra-fine particles are provided alone or commercially available as a fusion reaction material. be able to.
[0013]
Energy: The term “energy” as used herein means both impact energy and stationary energy. Ultrasonic, strong magnetic field, high pressure, laser as a means or energy source of load energy to ultra-high density deuterated nanoparticles and their population, and ultra-high density deuterated surface layer equivalent to two-dimensional metal nanoparticle , Laser implosion, high-density electron beam, high-density current, discharge, chemical reaction and the like can be used. These energies can be used alone or in combination of two or more. In the case of using an ultrasonic wave, a conductive medium for transmitting the energy to the nuclear fusion reactant is required. For example, D 2 O (commercially available), H 2 O, or the like is used. Can be. In addition, the degree of energy to be applied needs to be an intensity or amount sufficient to induce or induce a nuclear fusion reaction, such as an intensity of 19 kHz at 300 watts in ultrasonic waves.
Fusion reaction apparatus and system: Basically, a fusion reaction vessel containing a fusion reactant, a means for controlling a fusion reaction, and applying a shock energy and / or a steady energy to the above-mentioned reactant to perform a fusion reaction. Devices or systems with means for inducing or raising, means for utilizing heat generation and / or means for helium collection are recommended. Further, the above-described basic means included in such an apparatus or system can be appropriately added and / or omitted as needed. For example, the ultrasonic excitation nuclear fusion reactor shown in FIG. 1 can be used. Incidentally, each of the names of the code portion of Figure 1, the reaction vessel 1, a nuclear fusion reaction body 2, the ultrasonic transducer 3, the ultrasonic conducting medium 4, the vacuum exhaust port 5, the gas (D 2, H 2, etc.) Inlet 6, a medium (D 2 O, H 2 O, etc.) inlet 7 and a driving gas outlet 8 for the turbine generator. In this case, the exhaust gas can be used for both the power source for driving the turbine generator and the helium source.
Further, the nuclear fusion reaction apparatus and system according to the present invention can be miniaturized and portable, which could not be put to practical use in the past, as means for power generation, batteries, heating, cooling, and the like, or as applications to these. .
[0015]
Heat generation: The high-temperature and high-pressure gas generated in the fusion reaction vessel can be used as a turbine generator or a driving power source of a machine without being converted into steam or potential energy by jet gas. Further, it can be put to practical use in various fields as an alternative energy such as hydraulic power, thermal power, wind power, coal, petroleum, and nuclear power, and as a clean energy capable of regenerating and preserving the global environment.
[0016]
Extraction of helium: The helium generated in the fusion reactor is liquefied or solidified at about 50K around other mixed gases. Mass production can be collected. In addition, it is also possible to collect the impurities by adsorbing them on a purification column and removing them. The helium produced by the present invention can be used for publicly known uses, for example, a protective gas for welding, a filling gas for a balloon, a filling gas for a discharge tube, artificial air for diving, and the like. In addition, since it is inexpensive in large quantities, it also encourages the development of new applications.
[0017]
Element used for nuclear fusion reaction: an element having an atomic number of 4 or less and its isotope can be used. Considering the ease of handling, it is preferable to use deuterium (D) alone or deuterium and hydrogen or tritium (T). More preferably, considering safety, the following DD fusion reaction:
2 D + 2 D = 4 He + lattice energy (23.8MeV)
Is preferable because it produces no neutrons and the fusion reaction itself is relaxed, so that it is superior to the DD reaction described below. Therefore, from the viewpoint of environmental conservation, the present invention enabled for the first time, the above-mentioned ultra-high-density deuterated nanoparticles or deuterium (D) under various conditions of DD reaction using ultra-high-density deuterated nanoparticles. Is recommended for use alone. However, the well-known DD fusion reaction that emits 3 H and neutrons due to the intense collision of D atoms is extremely dangerous and is not desirable from the viewpoint of industrial use and environmental protection.
[0018]
Hereinafter, the configuration, operation, and effect of the invention of this application will be specifically described with reference to examples. However, the invention of this application is not limited only to the examples described below.
[0019]
【Example】
<Example 1>
Nuclear fusion reaction: First, zirconia (ZrO 2 ) is used as a support, and metal (Pd) nano-fine particles having an average diameter of 5 nm are embedded in this support, so-called embedded metal nano-fine particles (atom clusters) are produced. did. This atom cluster was applied to the nuclear fusion reactor shown in FIG. 1 to generate a large amount of heat and helium. That is, as shown in FIG. 1, deuterium (D 2 ) is injected into the above-mentioned atom cluster inserted into the inner bottom portion 2 of the reaction vessel 1 and then occluded by pressurization. (Ultra high-density deuterated nanoparticles) 2 was prepared. Next, a nuclear fusion reaction was performed by applying impact energy due to the operation of the ultrasonic transducer 3 to the nuclear fusion reactant 2 through an ultrasonic conduction medium (D 2 O). Hereinafter, the procedure of the above operation will be described in detail.
[0020]
Operation I: After inserting the above Pd atom clusters of 3.5g into the reactor vessel and subjected to bakeout at 0.99 ° C. while evacuating from the vacuum exhaust port 5 to a high vacuum (10- 7 Torr).
Operation II: Deuterium (D 2 ) gas was introduced at a constant rate (20 cc / min) from the inlet 6 to bring the pressure in the vessel to about 10 atm, and this gas was introduced into the Pd atom cluster of the fusion reactant. By forming a solid solution in the state of D atoms and forming a condensate, ultrahigh-density deuterated nano-Pd particles having an atomic ratio (D / Pd) of 250% or more were obtained. The amount of solid solution atoms was calculated from both the flow rate of the injected gas and the time until the gas pressure in the reaction vessel rose.
Operation III: As shown in FIG. 1, heavy water (D 2 O) was injected into the reaction vessel from the injection port 7 so that the vibrator 3 was sufficiently immersed.
[0021]
Operation IV: Ultrasonic energy was applied to the fusion reactant 2 through the conductive medium 4 from the end face of the transducer 3.
[0022]
The gas generated in the reaction vessel under the above conditions was analyzed by a quadrupole mass spectrometer (QMS). Further, a sample after the completion of the reaction in the operation IV was taken out, heated to about 1,300 ° C. in the above-mentioned QMS sample container, and the generated gas was subjected to mass spectrometry in the same manner as described above.
The results are shown in FIGS. The mass numbers M2 (= D) and M3 (= DH) in FIGS. 3A and 3B are shown. In FIG. 3A, an extremely large amount of M4 represents He, whereas FIG. M4 of) respectively represent the D 2. Incidentally, FIG. 3 (c) is a spectral representation of the M4, shows that D 2 disappears with time, only He remains. It should be noted that M4 (= He) in FIG. 3 (a) is extremely large, indicating that the ultrahigh-density deuterium occluded in the atom cluster was almost changed and released. On the other hand, FIG. 3B shows that He and D hardly exist in the atom cluster after the reaction.
Upon injection of deuterium (D 2 ) gas in operation III, about 40 kJ / mol was released as the chemical reaction energy, and a slight temperature rise was detected on the outer wall of the reaction vessel (curve A in FIG. 2). Further, as shown by the curve B in FIG. 2, the temperature of the outer wall surface of the reaction vessel rapidly increased with the ultrasonic treatment in the operation IV, and specific temperature characteristics were observed. This means that the fusion reaction continued for about 10 minutes. At that time, the medium D 2 O is almost vaporized and decomposed into D 2 or D, and the inside of the reaction vessel is in a high temperature and high pressure state, indicating a tremendous nuclear fusion reaction. Based on the above findings, the resulting fusion reaction was determined to be 2 D + 2 D = 4 He + lattice energy (23.8MeV).
In the above-mentioned operation II, when the atomic ratio (D / Pd) is less than 200%, that is, deuterated nano-Pd particles that do not absorb a large amount of deuterium are prepared and subjected to operations III and IV, It was confirmed that the medium D 2 O almost remained without being vaporized and evaporated.
[0023]
【The invention's effect】
The method according to the present invention is safe without danger of radioactivity, guarantees the permanence of resources, and is easy to operate and maintain. At the same time as energy creation, valuable helium gas is mass-produced and widely provided at low cost. Furthermore, the reaction gas containing He ejected from the nuclear fusion reactor according to the present invention does not need to be converted into steam, and can be used directly as a jet gas for driving a generator or a machine. is there. In particular, as a new and clean energy, it will bring immense benefits and the supreme gospel to the survival of humanity and the preservation of the global environment.
[0024]
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view showing the principle of an ultrasonic excitation fusion device.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 fusion reaction vessel 2 fusion reactant 3 ultrasonic transducer 4 ultrasonic conduction medium 5 vacuum exhaust port 6 gas (D 2 gas) injection port 7 conduction medium (D 2 O) injection port 8 for driving turbine generator FIG. 2 is a view showing a change in heat generation over time due to an ultrasonic load of an ultrahigh-density deuterated Pd atom cluster. Curve A shows the heat of chemical reaction at the time of deuterium gas injection before ultrasonic treatment, and B shows the time course of heat generation under ultrasonic load.
FIGS. 3A and 3C are diagrams showing the results of mass spectrometry using QMS for a reaction gas inside a reaction vessel generated by a nuclear fusion reaction. (B) is a view showing a result of taking out a sample from the reaction vessel after the completion of the reaction, heating the sample to about 1,300 ° C. in a QMS sample vessel, and performing mass spectrometry on the generated gas in the same manner as above.

Claims (11)

金属ナノ超微粒子に重水素を固溶させ、かつ、該金属格子内に超高密度重水素の局所凝縮体を形成させ、得られる超高密度重水素化ナノ粒子、及び/又は該粒子が吸蔵の上記重水素凝縮体に、エネルギーを加え、核融合反応を惹起させることを特徴とする多量の発熱及びヘリウムの造出方法。Deuterium is dissolved in ultrafine metal nanoparticles and a local condensate of ultrahigh-density deuterium is formed in the metal lattice, and the resulting ultrahigh-density deuterated nanoparticles and / or occluded particles are obtained. A large amount of heat and a method for producing helium, wherein energy is added to the deuterium condensate to cause a nuclear fusion reaction. 金属ナノ超微粒子が、パラジウム、チタン、ジルコニウム及び銀の金属群から選ばれる少なくとも1種の金属である請求項1記載の多量の発熱及びヘリウムの造出方法。The method of claim 1, wherein the ultrafine metal nanoparticles are at least one metal selected from the group consisting of palladium, titanium, zirconium and silver. 金属ナノ超微粒子が、埋め込み型であり、その粒子の平均径が少なくとも該金属原子13個で構成される格子サイズから最大5nmまでの範囲にある請求項1又は2記載の多量の発熱及びヘリウムの造出方法。3. A large amount of heat generation and helium emission according to claim 1 or 2, wherein the metal nano-fine particles are embedded type, and the average diameter of the particles is in a range from a lattice size composed of at least 13 metal atoms to a maximum of 5 nm. Production method. 金属ナノ超微粒子が、孤立型であり、その粒子の平均径が少なくとも該金属原子13個で構成される格子サイズから最大15nmまでの範囲にある請求項1又は2記載の多量の発熱及びヘリウムの造出方法。3. A large amount of heat generation and helium emission according to claim 1 or 2, wherein the metal nano-ultrafine particles are of an isolated type, and the average diameter of the particles is in a range from a lattice size composed of at least 13 of the metal atoms to a maximum of 15 nm. Production method. 超高密度重水素化ナノ粒子が、少なくとも200パーセントの原子比(重水素原子/金属原子)で構成される請求項1、2、3、又は4記載の多量の発熱及びヘリウムの造出方法。5. The method of claim 1, 2, 3, or 4, wherein the ultra-high density deuterated nanoparticles are composed of at least 200 percent atomic ratio (deuterium atoms / metal atoms). エネルギーが、超音波、強磁場、高圧、レーザー、レーザー爆縮、高密度電子ビーム、高密度電流、放電、化学反応のエネルギー源群から選ばれる少なくとも1種の衝撃エネルギー及び/又は定常エネルギーであって、該エネルギーの程度が核融合反応を惹起させる強度又は量である請求項1、2、3、4又は5記載の多量の発熱及びヘリウムの造出方法。The energy is at least one kind of impact energy and / or stationary energy selected from the group of energy sources of ultrasonic waves, strong magnetic fields, high pressure, lasers, laser implosion, high-density electron beams, high-density currents, discharges, and chemical reactions. The method for producing a large amount of heat and helium according to claim 1, 2, 3, 4, 4 or 5, wherein the degree of the energy is an intensity or an amount for inducing a nuclear fusion reaction. 金属ナノ超微粒子に重水素を固溶させ、かつ、該金属格子内に超高密度重水素の局所凝縮体を形成させる手段、これにより得られる超高密度重水素化ナノ粒子、及び/又は該粒子が吸蔵の上記重水素凝縮体に、エネルギーを加え、核融合反応を惹起させる手段、及び核融合反応容器を少なくとも具備することを特徴とする多量の発熱及びヘリウムを造出する装置又はシステム。Means for dissolving deuterium in the ultrafine metal nanoparticles and forming a local condensate of ultrahigh-density deuterium in the metal lattice, ultrahigh-density deuterated nanoparticles obtained thereby, and / or An apparatus or system for producing a large amount of heat and helium, comprising at least a unit for applying energy to the deuterium condensate having occluded particles to cause a nuclear fusion reaction, and a nuclear fusion reaction vessel. 請求項1又は5記載の超高密度重水素化ナノ粒子、及び/又は該粒子が吸蔵の上記重水素凝縮体に、エネルギーを加え、核融合反応を惹起させる手段と核融合反応容器とを少なくとも有することを特徴とする多量の発熱及びヘリウムを造出する装置又はシステム。The ultrahigh-density deuterated nanoparticles according to claim 1 or 5, and / or a means for applying energy to the deuterium condensate occluded by the particles and causing a nuclear fusion reaction and a nuclear fusion reaction vessel. An apparatus or system for producing a large amount of heat and helium, comprising: 請求項1〜6記載の方法から選ばれる1つの方法、又は請求項7又は8記載の装置により製造されるヘリウム。Helium produced by one of the methods according to claims 1 to 6, or by the device according to claims 7 or 8. 請求項1、2、3又は4記載の金属ナノ超微粒子。The ultrafine metal nanoparticle according to claim 1, 2, 3, or 4. 請求項1又は5記載の超高密度重水素化ナノ粒子。Ultra-high density deuterated nanoparticles according to claim 1 or 5.
JP2002293036A 2002-08-28 2002-08-28 Method and device for creating large quantity of heating and helium, by nuclear fusion using super-high density deuterated nanoparticle Pending JP2004085519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002293036A JP2004085519A (en) 2002-08-28 2002-08-28 Method and device for creating large quantity of heating and helium, by nuclear fusion using super-high density deuterated nanoparticle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002293036A JP2004085519A (en) 2002-08-28 2002-08-28 Method and device for creating large quantity of heating and helium, by nuclear fusion using super-high density deuterated nanoparticle

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008123825A Division JP2008261868A (en) 2008-05-09 2008-05-09 Method of generating a lot of heat and helium by nuclear fusion using superhigh-density deuterated nanoparticle and its device

Publications (1)

Publication Number Publication Date
JP2004085519A true JP2004085519A (en) 2004-03-18

Family

ID=32063957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002293036A Pending JP2004085519A (en) 2002-08-28 2002-08-28 Method and device for creating large quantity of heating and helium, by nuclear fusion using super-high density deuterated nanoparticle

Country Status (1)

Country Link
JP (1) JP2004085519A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1331651C (en) * 2004-11-15 2007-08-15 四川大学 Method for improving mechanical properties of fusion seam of polymer injection articles and injection article die
JP2009522555A (en) * 2005-12-29 2009-06-11 プロフュージョン エナジー, インコーポレイテッド Apparatus and method for energy generation
DE102013110249A1 (en) * 2013-09-17 2015-03-19 Airbus Defence and Space GmbH Apparatus and method for power generation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1331651C (en) * 2004-11-15 2007-08-15 四川大学 Method for improving mechanical properties of fusion seam of polymer injection articles and injection article die
JP2009522555A (en) * 2005-12-29 2009-06-11 プロフュージョン エナジー, インコーポレイテッド Apparatus and method for energy generation
DE102013110249A1 (en) * 2013-09-17 2015-03-19 Airbus Defence and Space GmbH Apparatus and method for power generation
WO2015040077A1 (en) 2013-09-17 2015-03-26 Airbus Defence and Space GmbH Energy generating device and energy generating method and also control arrangement and reactor vessel therefor

Similar Documents

Publication Publication Date Title
US20080123793A1 (en) Thermal power production device utilizing nanoscale confinement
US20200075178A1 (en) Rotating High-Density Fusion Reactor For Aneutronic and Neutronic Fusion
US20070286324A1 (en) Direct generation of electrical and electromagnetic energy from materials containing deuterium
AU2020209270A1 (en) Magnetohydrodynamic hydrogen electrical power generator
US20060153752A1 (en) Hydrogen condensate and method of generating heat therewith
CA2218895C (en) Lower-energy hydrogen methods and structures
CA3114715C (en) Rotating high-density fusion reactor for aneutronic and neutronic fusion
US20130266106A1 (en) Methods of generating energetic particles using nanotubes and articles thereof
WO2006055294A9 (en) Methods and apparatus for energy conversion using materials comprising molecular deuterium and molecular hydrogen-deuterium
EP1642301A2 (en) Fusion apparatus and methods
JP2008261868A (en) Method of generating a lot of heat and helium by nuclear fusion using superhigh-density deuterated nanoparticle and its device
EP1802382A2 (en) Apparatus and method for separating tritiated and heavy water from light water via a conical configuration
JP2004085519A (en) Method and device for creating large quantity of heating and helium, by nuclear fusion using super-high density deuterated nanoparticle
JPH04505364A (en) Production of fusion energy
WO2001068526A1 (en) Carbonaceous material for hydrogen storage and method for preparation thereof, carbonaceous material having hydrogen absorbed therein and method for preparation thereof, cell and fuel cell using carbonaceous material having hydrogen absorbed therein
JP2020519892A (en) Reducing coulomb barriers for interacting reactants
Liu et al. Deuteride materials
TWI820023B (en) Helium generator and method producing helium-3
WO2008051180A2 (en) Method and apparatus for acceleration-induced reactions in materials containing deuterium
WO2007061019A1 (en) Method of generating heat energy and apparatus for generating heat energy
WO2006128108A2 (en) Method and apparatus involving stimulation of materials containing deuterium with modulated sources
Hosseinimotlagh et al. Calculation of Stau-Atoms and Molecules Formation Rates for Different Common Fusion Fuels in Stau Catalyzed Fusion
Shon et al. Simulation of fast ignitor physics using GaPH (a fluid element particle in cell) method
JPH02207825A (en) Separating, fixing and supplying device for hydrogen isotope
JPH03215786A (en) Solar fusion device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050825

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060811

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080509