JP2004085402A - Method for detecting defect in electrical line - Google Patents

Method for detecting defect in electrical line Download PDF

Info

Publication number
JP2004085402A
JP2004085402A JP2002247956A JP2002247956A JP2004085402A JP 2004085402 A JP2004085402 A JP 2004085402A JP 2002247956 A JP2002247956 A JP 2002247956A JP 2002247956 A JP2002247956 A JP 2002247956A JP 2004085402 A JP2004085402 A JP 2004085402A
Authority
JP
Japan
Prior art keywords
electric wire
defect
magnetic field
wire
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002247956A
Other languages
Japanese (ja)
Inventor
Katsutoshi Kawasaki
川崎 勝利
Shigeki Isono
磯野 重樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2002247956A priority Critical patent/JP2004085402A/en
Publication of JP2004085402A publication Critical patent/JP2004085402A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the cost of a defect detecting device used for the work of detecting defects in an electrical line 1 and to perform the defect detecting work even when a load current is not passing through the electrical line 1 as necessary. <P>SOLUTION: By a CT (Current Transformer) 9, a pulse current is inputted in the electrical line 1 through which a load current is not passing to generate a magnetic field in the periphery of the electrical line 1. Tangential components of the magnetic field surrounding the electrical line 1 in this state and at a plurality of locations in a circumference concentric with the electrical line 1 are measured by a sensor unit 4 fitted over the electrical line 1. The sensor unit 4 is constituted only of a magnetic sensor for measuring the tangential components of the magnetic field. The work of detecting defects in the electrical line 1 is performed on the basis of the magnetic field measured by the sensor unit 4. By this, the purposes are attained. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明に係る電線の欠陥検知方法は、例えば、架空配電線等として敷設されている電線を構成する心線の一部に、錆びや素線断線(この心線を構成する多数の素線のうちの少なくとも一部が切断されている事)等の欠陥が生じているか否かを検知する為に利用する。
【0002】
【従来の技術】
架空配電線や引込線として従来から、屋外用ビニル電線(OW線)等の電線が使用されている。この様な電線は、導電材製の心線の周囲を絶縁層により被覆して成る。又、このうちの心線は、多数の素線を互いに撚り合わせる事により構成している。この様な電線を架空配電線等として長期間使用すると、老朽化に伴い、上記心線の一部に錆びや素線断線等の欠陥が生じる場合がある。この様な場合には、老朽化した電線は、新しい電線に張り替える必要がある。又、この様な張り替えの時期を確認する為に、敷設状態にある電線を構成する心線の一部に錆びや素線断線等の欠陥が生じているか否かを調査する必要がある。
【0003】
この様な調査を行なう為の技術として従来から、例えば特許文献1、2に記載された発明が知られている。活線状態(負過電流が流れている状態)にある電線のうち、心線に錆びや素線断線等の欠陥が生じていない部分では、周囲に一様な磁界を発生する。これに対し、心線に錆びや素線断線等の欠陥を生じている部分では、当該欠陥部分で電流の通路が遮断される為、周囲に発生する磁界が乱れる。上記特許文献1、2に記載された発明は、活線状態にある電線を囲む円周上の複数個所で、それぞれこの電線の周囲に発生した磁界を磁気センサにより検出する。これと共に、これら各磁気センサから上記心線までの距離を、それぞれ変位センサにより検出する。そして、これら磁気センサ及び変位センサの検出値に基づいて、上記電線の周囲の磁界が乱れているか否かを確認する事により、当該部分で心線に錆びや素線断線等の欠陥が生じているか否かを検知する。又、心線に生じた錆びを検出する従来技術として、非特許文献に記載されたものが知られている。
【0004】
(特許文献1)
特開平11−352106号公報
(特許文献2)
特開平11−352107号公報
(非特許文献)
電気学会通信教育会編、「電気設備の診断技術」、オーム社、1988年11月30日、p.323
【0005】
【発明が解決しようとする課題】
上記特許文献1、2に記載された発明の場合、心線と磁気センサとの距離を測定する為の変位センサが必要となる為、装置のコストが嵩む。従って、装置のコスト低減を図れる様にすべく、変位センサを必要としない欠陥検知方法の実現が望まれる。又、上記特許文献1、2及び非特許文献に記載された従来技術の場合、欠陥の検知作業は、電線に負過電流が流れている状態で行なう事を前提としており、この電線に負過電流が流れていない状態での欠陥の検知方法に就いては、何ら示されていない。これに対し、欠陥の検知作業は、電線に負過電流が流れているか否かに拘らず、何時でも行なえる様にしたいとの要望がある。
本発明の電線の欠陥検知方法は、上述の様な事情に鑑みて発明したものである。
【0006】
【課題を解決するための手段】
本発明の電線の欠陥検知方法の対象となる電線は、心線の周囲を絶縁層により被覆して成る。
そして、本発明の電線の欠陥検知方法は、この電線を囲む、この電線と同心の円周上の複数個所(例えば、この円周上の周方向等間隔の複数個所)で、それぞれ上記心線を流れる電流により発生した磁界の、当該円周に関する接線方向成分を測定する。これと共に、これら各測定値の最大値、最小値、及び平均値に基づいて「(最大値−最小値)/平均値」で表される比を計算する。そして、この比が上記電線の全長に亙り所定の閾値以下となる場合に、この電線を構成する心線に錆びや素線断線等の欠陥が生じていないと判定する。これに対し、上記比がこの電線の長さ方向の少なくとも一部で上記閾値よりも大きくなる場合には更に、以下の作業を行なう。この以下の作業は、電線の継続使用に関して差障りのない、上記絶縁層の偏肉を、この電線の欠陥と誤認するのを防止する為に行なう。
【0007】
先ず、請求項1に記載した発明の場合には、当該一部に就いての上記各測定値の分布と、当該一部で上記心線に欠陥が生じていないとした場合のこれら各測定値の理論値の分布とを互いに比較する。そして、これら両分布同士のずれが所定の大きさ以下である場合に、当該一部で上記心線に欠陥が生じていないと判定する。これに対し、上記ずれが所定の大きさを越える場合に、当該一部で上記心線に欠陥が生じていると判定する。
【0008】
次に、請求項2に記載した発明の場合には、それぞれが当該一部に就いての上記各測定値から少なくとも2個の測定値を選択する事により構成した、複数種類の組み合わせ毎に、これら各組み合わせを構成する測定値に基づいて当該一部を流れる電流の中心の座標を計算する。そして、これら各組み合わせ毎に計算した中心の座標のばらつきが所定の大きさ以下である場合に、当該一部で上記心線に欠陥が生じていないと判定する。これに対し、上記ばらつきが所定の大きさを越える場合に、当該一部で上記心線に欠陥が生じていると判定する。
【0009】
又、請求項3に記載した発明の場合には、上述の請求項1〜2の何れかに記載した発明を実施する際に、測定すべき磁界を、変流器により電線を構成する心線に注入したパルス電流によって発生させる。
【0010】
尚、本発明を実施する場合、上記電線を囲む、この電線と同心の円周上の複数個所で、磁界の接線方向成分を測定する作業は、複数個の磁気センサを支持部材により支持して成るセンサユニットを使用する事により、容易に行なえる。即ち、この様なセンサユニットを構成する場合には、上記支持部材として、上記電線にがたつきなく(径方向の位置決めを図った状態で)外嵌自在な(例えば環状若しくは円輪状の)ものを使用する。これと共に、この支持部材の円周方向複数個所に上記複数個の磁気センサを、それぞれ磁界の検出方向を当該円周方向に一致させた状態で支持する。この様なセンサユニットを使用すれば、このセンサユニットを構成する支持部材を上記電線にがたつきなく外嵌した状態で、上記各磁気センサによる磁界の検出方向を上記電線と同心の円周方向に向ける事ができる。この為、この同心の円周上の複数個所で、磁界の接線方向成分を容易に測定する事ができる。又、上記支持部材を、上記電線に外嵌した状態でこの電線の長さ方向に移動自在な構造とすれば、上記磁界の接線方向成分の測定作業を、この電線の全長に就いて容易に行なえる様になる。
【0011】
【作用】
上述した様な本発明の電線の欠陥検知方法によれば、磁界を測定する為の磁気センサと電線を構成する心線との距離を測定する事なく、電線の欠陥検知を行なえる。この為、当該距離を測定する為の変位センサが不要となり、欠陥検知装置のコスト低減を図れる。又、請求項3に記載した電線の欠陥検知方法によれば、電線に負過電流が流れていない場合でも、欠陥検知作業を行なえる。
【0012】
【発明の実施の形態】
図1〜6は、請求項1に対応する、本発明の実施の形態の第1例を示している。図1に示す様に、本例の対象となる電線1は、導電材製の心線2の周囲を絶縁層3により被覆して成る。又、このうちの心線2は、図示しない多数の素線を互いに撚り合わせる事により構成している。又、この心線2と上記絶縁層3との外周面は、それぞれ円筒面である。
【0013】
本例の場合、上記電線1の欠陥検知作業、即ち、この電線1を構成する心線2の一部に錆びや素線断線等の欠陥が生じているか否かを検知する作業は、上記電線1の活線状態(上記心線2に負過電流が流れている状態)で行なう。又、本例の場合には、この様な電線1の欠陥検知作業を、2段階に分けて行なう。先ず、欠陥が生じている可能性の有無を判断する為の、第1段階の作業の原理に就いて説明する。上記電線1のうち、上記絶縁層3の径方向の厚さが全周に亙り均一になっており(即ち、この絶縁層3に偏肉が生じておらず)、且つ、上記心線2に錆びや素線断線等の欠陥が生じていない部分では、この心線2を流れる電流の中心(電流中心)と上記電線1の中心とが互いに一致している。これに対し、上記絶縁層3の径方向の厚さが全周に亙り均一になっていない(即ち、この絶縁層3に偏肉が生じている)部分では、この偏肉が生じた分だけ上記心線2の中心軸が径方向にずれる為、又、この心線2に上記欠陥が生じている部分では、当該欠陥部分で電流の通路が遮断される為、それぞれ電流中心が上記電線1の中心からずれる。
【0014】
従って、上記電線1を流れる電流によりこの電線1の周囲に発生した磁界を測定し、この測定値に基づいて上記電流中心が上記電線1の中心に対してどの程度ずれているかを調べれば、この電線1を構成する心線2に上記欠陥が生じている可能性があるか否かを判定する事ができる。即ち、測定の結果、上記電線1の全体に就いて、この電線1の中心に対する電流中心のずれが所定の大きさ以下となる場合には、上記絶縁層3に偏肉が(殆ど)生じておらず、且つ、上記心線2に(問題となる程度の)欠陥が生じていないと判定できる。これに対し、上記電線1の長さ方向の少なくとも一部で、上記電線1の中心に対する電流中心のずれが所定の大きさを越える場合には、当該部分で上記絶縁層3に偏肉が生じているか、或は上記心線2に上記欠陥が生じているかの、どちらかである(即ち、この心線2に上記欠陥が生じている可能性がある)と判定できる。
【0015】
本例の場合、上述の様に電線1の中心に対する電流中心のずれの程度を調べる為に行なう、この電線1の周囲での磁界の測定は、この電線1を囲む、この電線1と同心の円周上の周方向等間隔の6個所で行ない、且つ、測定する磁界は、これら6個所に於ける磁界の、当該円周に関する接線方向成分とする。
【0016】
この為に本例の場合、図2〜3に示す様なセンサユニット4を使用する。このセンサユニット4は、円環状或は円輪状の支持部材5と、それぞれが磁気センサである6個のサーチコイル6、6と、ロータリスイッチ7と、電圧計8とを備える。このうちの支持部材5は、中心に上記電線1の外径よりも僅かに大きな通孔を設けている。又、上記各サーチコイル6、6はそれぞれ、図2に略示する様に、上記支持部材5の円周方向等間隔の6個所部分に、上記通孔と同心の単一円周上位置に支持している。従って、この通孔に上記電線1を挿通した状態で、この電線1と上記各サーチコイル6、6との距離は、互いに等しくなる。又、上記各サーチコイル6、6の中心軸(磁界の検出方向)と上記支持部材5の円周方向とを一致させた状態で、これら各サーチコイル6、6を上記支持部材5に支持している。又、これら各サーチコイル6、6と上記ロータリスイッチ7と上記電圧計8とは、それぞれ図3に示す様に結線している。そして、上記ロータリスイッチ7の接点を切り換える事で、上記各サーチコイル6、6により検出した磁界(この磁界によりこれら各サーチコイル6、6に誘起された電圧)を、それぞれ上記電圧計8により測定できる様にしている。
【0017】
尚、上記6個のサーチコイル6、6から引き出される信号線の数は、それぞれ2本ずつである為、上記ロータリースイッチ7を使用しなければ、上記電圧計8に接続する信号線の数は、(6×2=)12本となる。これに対し、上述したセンサユニット4の場合には、上記ロータリスイッチ7を使用する事により、上記電圧計8に接続する信号線の数を2本にできる。この為、回路の簡略化を図れる。尚、上記ロータリスイッチ7には、このロータリスイッチ7を遠隔操作する為の図示しない制御線を、2本接続する。尚、磁気センサとしては、上記サーチコイル6の代わりに、例えばホール素子を使用する事もできるが、この場合、このホール素子に設ける端子の数が4個である為、回路を構成する配線の数が多くなる。
【0018】
何れにしても、上述の様に構成するセンサユニット4により、上記電線1と同心の円周上の周方向等間隔の6個所で、それぞれ磁界の接線方向成分を測定する場合には、上記センサユニット4を上記電線1の一部にがたつきなく外嵌(前記通孔に電線1を挿通)する。そして、このセンサユニット4を電線1に対し直角方向に配置して、上記6個のサーチコイル6、6の中心軸と上記同心の円周の周方向とを互いに一致させる。この結果、これら各サーチコイル6、6により、上記6個所に於ける磁界の接線方向成分を測定できる様になる。尚、上述の様にセンサユニット4を電線1の一部に外嵌できる様にすべく、このセンサユニット4を構成する環状或は円輪状の支持部材5は、例えば、円周方向の1個所部分を開放自在な構造とするか、或は二分割可能な構造とする。又、本例の場合、上記センサユニット4により測定すべき磁界は、上記電線1を流れる電流により発生した磁界のみである。この為、上記センサユニット4により測定される磁界に、周辺の電線等から発生した外部磁界が含まれない様にすべく、少なくとも上記磁界の測定時には、上記センサユニット4の周囲に筒状のシールドを被せるのが好ましい。
【0019】
ここで、上記各サーチコイル6、6により検出される磁界に就いて考えてみる。図4に示す様に、上記電線1の電流中心O′が、この電線1の幾何中心Oからずれている場合、この電線1の幾何中心Oから半径Rの円周C上の周方向等間隔の6個所(i=1〜6)に於ける磁界の、当該円周Cに関する接線方向成分H (i=1〜6)は、次の(1)式で表される。
【数1】

Figure 2004085402
この(1)式中、r (i=1〜6)は、上記電流中心O′から上記各6個所までの距離を、αは、これら各6個所に於ける磁界H ′(i=1〜6)の方向と上記円周Cの接線方向との間の角度を、それぞれ表している。これら距離r 及び角度α(cos α)は、それぞれ次の(2)〜(3)式で表される。
【数2】
Figure 2004085402
【数3】
Figure 2004085402
これら(2)〜(3)式中、r は、上記電線1の幾何中心Oから上記電流中心O′までの距離を、θ は、これら両中心O、O′同士を結ぶ直線と基準座標軸xとの間の角度を、それぞれ表している。
【0020】
尚、上記(1)式で表される磁界の接線方向成分H (i=1〜6)の分布は、例えば、図5に示す様になる。又、これら各磁界の接線方向成分H (i=1〜6)の平均値HAVは、上記電線1の幾何中心Oに対する上記電流中心O′のずれの程度に関係なく、常にI/2πRとなる。
一方、上記電線1の幾何中心Oと上記電流中心O′とが互いに一致している場合には、上記6個所での磁界の接線方向成分H (i=1〜6)は、何れもI/2πRとなる。
【0021】
上述の様に、上記電線1と同心の円周上6の個所に於ける磁界の接線方向成分H (i=1〜6)を測定したならば、次いで、これら各磁界の接線方向成分H (i=1〜6)の測定値(前記電圧計8により測定される前記各サーチコイル6、6の誘導電圧)に基づき、上記電線1の中心Oに対する電流中心O′のずれの程度を求める。本例の場合、このずれの程度を、上記各磁界の接線方向成分H (i=1〜6)の測定値の最大最小の偏差により評価する。この最大最小の偏差は、上記各磁界の接線方向成分H (i=1〜6)の測定値の最大値、最小値、及び平均値を使用して、計算式「{(最大値−最小値)/平均値}×100」により求める事ができる。
【0022】
ここで、上記最大最小の偏差と、上記電線1の幾何中心Oに対する電流中心O′のずれの程度との関係に就いて、上記電線1がOW線100mm (外径が2.6mmの素線を19本撚り合わせて外径が13.0mmの心線2とし、絶縁層3の外径を16.0mmとした電線)である場合を例に調べてみる。この電線1の中心Oに対する電流中心O′のずれ(r 、θ )をパラメータとした場合の、上記6個所に於ける磁界の接線方向成分H (i=1〜6)の分布は、以下の表1の様になる。但し、I=10A、R=25mmとした。
【表1】
Figure 2004085402
【0023】
尚、前述したが、上記表1からも明らかな様に、磁界の接線方向成分H (i=1〜6)の平均値HAVは、上記ずれ(r 、θ )の値とは無関係に一定となる{平均値HAV=I/2πR=10/(2π×0.025)=63.7(AT/m)}。又、上記最大最小の偏差は、上記ずれr が、上記心線2の半径の10%(r =0.65mm)の場合には、4.4〜5.2%となり、同じく90%(r =5.85mm)の場合には、40.5〜49.5%となる。この事から、上記ずれr が1mmでも変化すれば、上記最大最小の偏差の値が大きく変化する事が分かる。従って、この最大最小の変化は、上記ずれ(r 、θ )の評価量として好ましく使用できる。
【0024】
そこで、本例の場合には、上記電線1と同心の円周上の6個所に於ける磁界の接線方向成分H (i=1〜6)の測定を、この電線1の全長に亙って連続的に、若しくは所定間隔(極力短い事が好ましい)毎に行なうと共に、これらの測定値に基づいて上記最大最小の偏差を、上記電線1の全長に亙って所定間隔毎に求める。この際、上記電線1の全長に亙って連続的に、若しくは所定間隔毎に、上記6個所に於ける磁界の接線方向成分H (i=1〜6)を測定する作業は、前記センサユニット4を上記電線1に外嵌したまま、この電線1の長さ方向に移動させる事に基づいて行なう。そして、この電線1の全長に亙って、上記最大最小の偏差が所定の閾値以下となる場合には、上記絶縁層3に偏肉が(殆ど)生じておらず、且つ、上記心線2に(問題となる程度の)欠陥が生じていないと判定する。この様な判定をした場合には、その後、次述する第2段階の作業を行なわずに、欠陥検知作業を終了する。これに対し、上記電線1の長さ方向の少なくとも一部で、上記最大最小の偏差が所定の閾値を越える場合には、当該部分で上記絶縁層3に、上記電線1の継続使用に関して差障りのない偏肉が生じているか、或は上記心線2に、継続使用に関して差障りのある欠陥が生じているかの、何れかであると判定する。この様な判定をした場合には、その後、次述する第2段階の作業を行なって、上記絶縁層3の偏肉を上記電線1の欠陥と判定する事を防止する。尚、上記最大最小の偏差に関する閾値の大きさは、対象となる電線1の種類に基づいて決定する。
【0025】
次に、第2段階の作業に就いて説明する。この第2段階の作業では、上記電線1のうち、上述した第1段階の作業で上記最大最小の偏差が所定の閾値を越えた部分に就いて、当該部分に生じているのが上記偏肉と上記欠陥とのうちの、どちらであるかを調べる。前述した様に、上記電線1のうち、上記絶縁層3に偏肉が生じている部分、並びに、上記心線2に錆びや素線断線等の欠陥が生じている部分では、それぞれ電流中心O′が上記電線1の中心Oからずれる。ところが、この場合、上記偏肉が生じている部分では上記電流中心O′が1点に集中するのに対し、上記欠陥が生じている部分では上記電流中心O′が1点に集中しなくなる。この為、図6に示す様に、円周方向に関する磁界の接線方向成分H (i=1〜6)の分布は、上記偏肉の場合には同図実線aで示す様に、磁界のピーク(曲線の山の部分)が1個になるのに対し、上記欠陥の場合には同図に破線bで示す様に、磁界のピークが2個以上になる。言い換えれば、ピークの数が異なる事により、上記偏肉が生じた場合と上記欠陥が生じた場合とで、上記磁界の接線方向成分H (i=1〜6)の分布に差が生じる。
【0026】
従って、測定した磁界の接線方向成分H (i=1〜6)の分布を観察し、当該分布と上記偏肉が生じている場合の分布(上記欠陥が生じていない場合の分布)とのずれが所定の大きさ以下である場合、即ち、当該分布に現れるピークの数が1個である場合には、上記偏肉が生じていると判定する事ができる。これに対し、上記ずれが所定の大きさを越える場合、即ち、当該分布に現れるピークの数が2個以上である場合には、上記欠陥が生じていると判定する事ができる。
【0027】
又、上述した第2段階の判定作業は、欠陥検知装置を構成する計算機に自動的に行なわせる事もできる。この為に、本例の場合には、上述の様に測定した磁界の接線方向成分H (i=1〜6)から、1個の電流中心O′(r 、θ )を推定する。そして、この1個の電流中心O′(r 、θ )から、上記欠陥が生じていないとした場合の磁界分布を計算により求め、この磁界分布と上記実測による磁界分布とのずれを計算する。そして、このずれが所定の大きさ以下となる場合に上記偏肉が生じていると判定し、同じく所定の大きさを越える場合に上記欠陥が生じていると判定する。
【0028】
具体的には、次の様な計算を行なう。先ず、上記H (i=1〜6)と前記平均値HAVとの比H /HAVは、次の(4)式で表す事ができる。
【数4】
Figure 2004085402
更に、この比H /HAVの最大値(H )MAX /HAV及び最小値(H )MIN /HAVは、それぞれ次の(5)、(6)式で表す事ができる。
【数5】
Figure 2004085402
【数6】
Figure 2004085402
従って、これら(5)、(6)式に実測値を代入する事により、上記1個の電流中心O′の座標要素r を求める事ができる。
【0029】
又、上記H (i=1〜6)の値が最大となる付近の2点のデータをH 、Hi+1 とし、これら2点のデータH 、Hi+1 を上記(4)式に代入して得られる2つの式の比を取ると、次の(7)式の関係が得られる。
【数7】
Figure 2004085402
従って、この(7)式に実測値を代入する事により、上記1個の電流中心O′の座標要素θ を求める事ができる。
【0030】
上述の様にして1個の電流中心O′(r 、θ )を推定したならば、次いで、これら各座標要素r 、θ に基づき、上記(4)式の比H /HAVを計算する。そして、この様に計算した比を(H /HAVCAL と表記し、上記(4)式に実測値を代入して得た比を(H /HAVMEA と表記する。そして、次の(8)式で表されるδを評価する事により、欠陥が生じているか否かを判定する。
【数8】
Figure 2004085402
即ち、本例の場合には、この(8)式のδが所定の閾値以下となる場合に偏肉が生じている(欠陥が生じていない)と判定し、同じく所定の閾値を越える場合に欠陥が生じていると判定する。このδに関する閾値の大きさは、対象となる電線1の種類に基づいて決定する。
【0031】
上述した様な本例の電線の欠陥検知方法によれば、磁界を測定する為のサーチコイル6、6と電線1を構成する心線2との距離を測定する事なく、この電線1の欠陥検知を行なえる。この為、当該距離を測定する為の変位センサが不要となり、欠陥検知装置のコスト低減を図れる。尚、本例の場合、欠陥検知方法を2段階に分けて行なったが、この理由は、第1段階の計算が第2段階の計算よりも容易に(短時間で)行なえる為であり、第1段階の計算で欠陥が生じていないと判定した場合には、時間を要する第2段階の計算を行なう必要がなくなる為である。又、第2段階の作業が、磁界分布の観察によっても行なえる為である。
【0032】
次に、図7は、請求項2に対応する、本発明の実施の形態の第2例を示している。本例の場合も、電線1(図1参照)の欠陥検知作業は、2段階に分けて行なう。このうちの第1段階の作業は、上述した第1例の場合と同様にして行なう。そして、第2段階の作業で、上述した第1例の場合とは別の方法により、上記電線1のうち前記最大最小の偏差が所定の閾値を越えた部分に就いて、当該部分に生じているのが、継続使用に関して差障りのない偏肉であるのか、或は差障りのある欠陥であるのかを調べる。本例の場合、この様な第2段階の作業は、欠陥検知装置を構成する計算機による計算に基づいて行なう。
【0033】
この第2段階の計算では、上記電線1のうち上記最大最小の偏差が所定の閾値を越えた部分に就いての、磁界の接線方向成分H (i=1〜6)の測定値を使用する。具体的には、先ず、それぞれがこれら各測定値から2個の測定値を選択する事により構成した、複数種類の組み合わせ毎に、これら各組み合わせを構成する2個の測定値に基づいて、電流中心O′の座標(r 、θ )を求める。尚、上記2個の測定値の組み合わせは、最大で15(=  )種類作る事ができるので、使用する組み合わせの種類及び個数は、欠陥検知精度を十分に確保できる様に決定する。又、上述の様な電流中心O′の座標(r 、θ )の計算は、上記各組み合わせを構成する2個の測定値の他、磁界を測定するセンサユニット4の中心と各サーチコイル6、6(図2参照)との位置関係等を考慮する事により、適切な幾何学的手法を用いて行なう。
【0034】
ここで、図7を参照しつつ、上述の様に2個の測定値に基づいて電流中心O′の座標(r 、θ )を求める計算例に就いて、簡単に説明する。上記電線1を流れる電流をI(振動数ω=2πf)とする。又、上記各サーチコイル6、6の巻数をn、半径をaとする。この場合、上記各組み合わせを構成する2個の測定値である、測定点の磁界H ′(i=1〜2)により上記各サーチコイル6、6に発生した誘導電圧E (i=1〜2)は、次の(9)式で表す事ができる。
【数9】
Figure 2004085402
この(9)式より、測定点の磁界H ′(i=1〜2)は、次の(10)式で表す事ができる。
【数10】
Figure 2004085402
従って、求めるべき電流中心O′から各測定点までの距離r (i=1〜2)は、次の(11)式で表す事ができる。
【数11】
Figure 2004085402
又、図7中の角度α、βは、それぞれ次の(12)、(13)式で表す事ができる。
【数12】
Figure 2004085402
【数13】
Figure 2004085402
これより、求めるべき電流中心O′の座標要素r 、θ は、次の(14)、(15)式で表す事ができる。尚、図7中の角度γは、既知である。
【数14】
Figure 2004085402
【数15】
Figure 2004085402
【0035】
そして、前述した複数種類の組み合わせ毎に、それぞれ上述の(9)〜(15)式により電流中心O′の座標(r 、θ )を求めたならば、これら各組み合わせ毎に求めた座標(r 、θ )のばらつきを調べる。前述した様に、上記電線1のうち、絶縁層3に偏肉が生じている部分では、上記電流中心O′が1点に集中する。これに対し、心線2に欠陥が生じている部分では、上記電流中心O′が1点に集中しなくなる。従って、本例の場合には、上記各組み合わせ毎に求めた座標(r 、θ )のばらつきが所定の大きさ以下である場合に、当該部分で上記欠陥が生じていない(生じているのは上記偏肉である)と判定し、同じく所定の大きさを越える場合に、当該部分で上記欠陥が生じていると判定する。尚、上記ばらつきに関する所定の大きさは、対象となる電線1の種類に基づいて決定する。
【0036】
上述した様な本例の電線の欠陥検知方法の場合も、磁界を測定する為のサーチコイル6、6と電線1を構成する心線2との距離を測定する事なく、この電線1の欠陥検知を行なえる。この為、当該距離を測定する為の変位センサが不要となり、欠陥検知装置のコスト低減を図れる。又、本例の場合も、欠陥検知方法を2段階に分けて行なった理由は、第1段階の計算が第2段階の計算よりも容易に(短時間で)行なえる為であり、第1段階の計算で欠陥が生じていないと判定した場合には、時間を要する第2段階の計算を行なう必要がなくなる為である。
【0037】
次に、図8〜9は、請求項3に対応する、本発明の実施の形態の第3例を示している。本例の場合には、上述した第1〜2例の欠陥検知作業を、電線1を構成する心線2(図1参照)に負過電流が流れていない状態で行なう。尚、上述の第1〜2例で説明した様に、これら第1〜2例の欠陥検知作業では、上記心線2を流れる電流により上記電線1の周囲に発生した磁界を測定する事に基づき、欠陥の検知を行なう。この為、欠陥検知作業時には、上記心線2に電流を流す必要がある。そこで、本例の場合、欠陥検知作業時には、図示の様に、環状のCT(変流器)9により、上記心線2にパルス電流を注入する。
【0038】
即ち、この様にCT9により心線2にパルス電流を注入する際には、図9に示す様に、上記CT9を構成する環状のコア10を、上記電線1の一部を囲む状態で配置する。そして、この状態で、この環状のコア10に巻回した一次側コイル11にパルス電圧を印加する。この結果、電磁誘導により上記心線2にパルス電圧が印加され、この心線2にパルス電流が注入される。尚、上述の様に環状のコア10を電線1の一部を囲む状態で配置できる様にすべく、このコア10は、例えば、円周方向の1個所部分を開放自在な構造とするか、或は二分割可能な構造とする。尚、上記心線2を流れるパルス電流は、上記電線1の長さやこの電線1を含む線路の構造には依存せず、この電線1のサージインピーダンスZ のみに依存する。例えば、上記心線2に波高値E のパルス電圧を印加すると、この心線2を流れるパルス電流の波高値I は、E /Z となる。又、上記CT9により上記心線2に印加するパルス電圧の周波数は、数百 kHz程度と、商用周波数(50Hz又は60Hz)よりも十分に大きくして、上記心線2に明瞭なパルス電流を注入できる様にしている。
【0039】
上述の様な本例の欠陥検知方法によれば、電線1に負過電流が流れていない場合でも、欠陥検知作業を行なえる。又、本例の場合、上記パルス電流によって上記電線1の周囲に発生する磁界の周波数は、周囲の電線等から発生する外部磁界の周波数(商用周波数)に比べて十分高くなる。この為、上記外部磁界の影響を受ける事なく、上記パルス電流によって発生する磁界を測定できる様になる。この結果、欠陥検知の信頼性を高める事ができる。
【0040】
尚、本発明を実施する場合、電線の周囲で磁界を測定する個所は、周方向等間隔の6個所に限らず、例えば、周方向等間隔の8個所とする事もできる。磁界を測定する個所を多くする程、欠陥検知の精度を良好にできるが、その反面、磁界を検出する為の磁気センサの数を増やす必要があり、欠陥検知装置のコストを上昇させる原因にもなる。この為、電線の周囲で磁界を測定する個所は、必要とする欠陥検知精度と、希望とする欠陥検知装置のコストとを比較考慮して決定する。
【0041】
【発明の効果】
本発明の電線の欠陥検知方法は、以上に述べた様に作用する為、電線を構成する心線と磁気センサとの距離を測定する為の変位センサが不要となる分、欠陥検知装置のコストを低減できる。又、必要に応じて、対象となる電線に負荷電流が流れていない場合でも、欠陥検知作業を行なえる。
【図面の簡単な説明】
【図1】本発明の実施の形態の第1例の対象となる、電線の部分斜視図。
【図2】センサユニットの構成を大略的に示す側面図。
【図3】センサユニットの回路図。
【図4】センサユニットにより測定される磁界を説明する為の模式図。
【図5】センサユニットにより測定される磁界分布の1例を示すグラフ。
【図6】電線に欠陥が生じている場合と生じていない場合との磁界分布を比較して示す線図。
【図7】本発明の実施の形態の第2例を実施する場合に、2個所の磁界の測定値から電流中心を求める方法を説明する為の模式図。
【図8】本発明の実施の形態の第3例を示す、欠陥検知作業時の状態を示す略側面図。
【図9】CTにより電線にパルス電流を注入する際の状態を示す略斜視図。
【符号の説明】
1  電線
2  心線
3  絶縁層
4  センサユニット
5  支持部材
6  サーチコイル
7  ロータリスイッチ
8  電圧計
9  CT(変流器)
10  コア
11  一次側コイル[0001]
TECHNICAL FIELD OF THE INVENTION
The method for detecting a defect of an electric wire according to the present invention includes, for example, rusting or breaking of a wire constituting a wire laid as an overhead distribution wire or the like (a large number of wires constituting the It is used to detect whether or not a defect such as at least a part thereof has been cut.
[0002]
[Prior art]
Conventionally, electric wires such as outdoor vinyl electric wires (OW wires) have been used as overhead distribution lines and drop lines. Such an electric wire is formed by covering the periphery of a core made of a conductive material with an insulating layer. Further, the core wire is formed by twisting a number of strands with each other. When such an electric wire is used for a long time as an overhead distribution line or the like, a part of the above-mentioned core wire may have defects such as rust or broken wire due to aging. In such a case, it is necessary to replace the old wires with new wires. In addition, in order to confirm the timing of such replacement, it is necessary to investigate whether or not a defect such as rust or broken wire has occurred in a part of the core wire constituting the laid wire.
[0003]
Conventionally, for example, the inventions described in Patent Literatures 1 and 2 are known as techniques for performing such a search. Among the electric wires in a live state (a state in which a load current is flowing), a uniform magnetic field is generated around a portion where the core wire has no defect such as rust or broken wire. On the other hand, in a portion where a defect such as rust or broken wire is generated in the core wire, a current path is cut off at the defective portion, so that a magnetic field generated around the portion is disturbed. In the inventions described in Patent Documents 1 and 2, the magnetic field generated around each of the electric wires is detected by a magnetic sensor at a plurality of positions on a circumference surrounding the electric wire in a live state. At the same time, the distance from each of these magnetic sensors to the above-mentioned core wire is detected by a displacement sensor. Then, based on the detection values of the magnetic sensor and the displacement sensor, by confirming whether or not the magnetic field around the electric wire is disturbed, defects such as rust or broken wire of the core wire occur at the corresponding portion. Detect whether or not there is. Further, as a conventional technique for detecting rust generated on a core wire, a technique described in Non-Patent Document is known.
[0004]
(Patent Document 1)
JP-A-11-352106
(Patent Document 2)
JP-A-11-352107
(Non-patent literature)
The Institute of Electrical Engineers of Japan. 323
[0005]
[Problems to be solved by the invention]
In the case of the inventions described in Patent Documents 1 and 2, a displacement sensor for measuring the distance between the core wire and the magnetic sensor is required, so that the cost of the apparatus increases. Therefore, in order to reduce the cost of the apparatus, it is desired to realize a defect detection method that does not require a displacement sensor. Further, in the case of the prior arts described in Patent Documents 1 and 2 and Non-Patent Document, it is assumed that the work of detecting a defect is performed in a state where a load current is flowing through the electric wire. No method is described for detecting a defect when no current is flowing. On the other hand, there is a demand that the work of detecting a defect can be performed at any time regardless of whether or not a load current is flowing through the electric wire.
The electric wire defect detection method of the present invention has been made in view of the above-described circumstances.
[0006]
[Means for Solving the Problems]
An electric wire to be subjected to the electric wire defect detection method of the present invention is formed by covering the periphery of a core with an insulating layer.
The defect detection method for an electric wire according to the present invention includes a method of detecting the defect of the core wire at a plurality of locations on the circumference of the wire and concentric with the electrical wire (for example, at a plurality of locations at equal circumferential intervals on the circumference). The tangential component of the magnetic field generated by the current flowing through the tangent with respect to the circumference is measured. At the same time, a ratio represented by “(maximum value−minimum value) / average value” is calculated based on the maximum value, the minimum value, and the average value of these measured values. When the ratio is equal to or less than a predetermined threshold value over the entire length of the electric wire, it is determined that the core wire constituting the electric wire has no defect such as rust or broken wire. On the other hand, if the ratio becomes larger than the threshold value in at least a part of the length direction of the electric wire, the following operation is further performed. The following operation is performed to prevent the thickness deviation of the insulating layer, which does not hinder the continuous use of the electric wire, from being mistaken for a defect of the electric wire.
[0007]
First, in the case of the invention described in claim 1, the distribution of the respective measurement values for the part and the respective measurement values when it is determined that the core wire has no defect in the part. Are compared with each other. When the deviation between these two distributions is equal to or smaller than a predetermined size, it is determined that the core wire has no defect in the part. On the other hand, when the deviation exceeds a predetermined size, it is determined that a defect has occurred in the core wire in the part.
[0008]
Next, in the case of the invention described in claim 2, for each of a plurality of types of combinations, each of which is configured by selecting at least two measured values from the respective measured values for the part, The coordinates of the center of the current flowing through the part are calculated based on the measured values constituting each combination. Then, when the variation of the coordinates of the center calculated for each of these combinations is equal to or smaller than a predetermined size, it is determined that a defect does not occur in the core wire in a part thereof. On the other hand, if the variation exceeds a predetermined size, it is determined that a defect has occurred in the core wire in the part.
[0009]
In the case of the invention described in claim 3, when the invention described in any one of the above-described claims 1 and 2 is carried out, the magnetic field to be measured is converted into a core wire that forms an electric wire by a current transformer. It is generated by the pulse current injected into.
[0010]
When the present invention is implemented, the operation of measuring the tangential component of the magnetic field at a plurality of locations on the circumference concentric with the electric wire, surrounding the electric wire, is performed by supporting a plurality of magnetic sensors with a support member. This can be easily achieved by using the sensor unit having the above configuration. That is, in the case of configuring such a sensor unit, as the support member, an externally fittable (for example, an annular or annular shape) without rattling (in a state where the positioning in the radial direction is achieved) is applied to the electric wire. Use At the same time, the plurality of magnetic sensors are supported at a plurality of positions in the circumferential direction of the support member, with the respective magnetic field detection directions coinciding with the circumferential direction. If such a sensor unit is used, the detection direction of the magnetic field by each of the magnetic sensors is changed in a circumferential direction concentric with the electric wire in a state where the supporting member constituting the sensor unit is fitted to the electric wire without rattling. Can be turned on. Therefore, the tangential component of the magnetic field can be easily measured at a plurality of locations on the concentric circle. Further, if the supporting member is configured to be movable in the length direction of the electric wire in a state of being fitted to the electric wire, it is easy to measure the tangential component of the magnetic field over the entire length of the electric wire. I can do it.
[0011]
[Action]
According to the wire defect detection method of the present invention as described above, the wire defect can be detected without measuring the distance between the magnetic sensor for measuring the magnetic field and the core wire constituting the wire. For this reason, a displacement sensor for measuring the distance is not required, and the cost of the defect detection device can be reduced. Further, according to the method for detecting a defect of an electric wire according to the third aspect, even when no load current is flowing through the electric wire, the defect detection operation can be performed.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
FIGS. 1 to 6 show a first example of an embodiment of the present invention corresponding to claim 1. As shown in FIG. 1, an electric wire 1 to be used in the present embodiment is formed by covering a core 2 made of a conductive material with an insulating layer 3. The core 2 is formed by twisting a number of strands (not shown). The outer peripheral surfaces of the core wire 2 and the insulating layer 3 are cylindrical surfaces.
[0013]
In the case of this example, the work of detecting the defect of the electric wire 1, that is, the work of detecting whether or not a part of the core wire 2 constituting the electric wire 1 has a defect such as rust or broken wire is performed by the electric wire. 1 is performed in a live state (a state in which a negative overcurrent is flowing through the core wire 2). Further, in the case of the present example, such a defect detection work of the electric wire 1 is performed in two stages. First, the principle of the first-stage operation for determining whether there is a possibility that a defect has occurred will be described. In the electric wire 1, the thickness of the insulating layer 3 in the radial direction is uniform over the entire circumference (that is, the thickness of the insulating layer 3 is not uneven). In a portion where no defect such as rust or broken wire occurs, the center of the current flowing through the core wire 2 (the current center) coincides with the center of the electric wire 1. On the other hand, in a portion where the thickness of the insulating layer 3 in the radial direction is not uniform over the entire circumference (that is, the thickness of the insulating layer 3 is uneven), the thickness of the insulating layer 3 corresponds to the thickness. Since the central axis of the core wire 2 is displaced in the radial direction, and in the portion where the defect occurs in the core wire 2, the current path is interrupted at the defective portion. Deviate from the center.
[0014]
Therefore, by measuring the magnetic field generated around the electric wire 1 by the current flowing through the electric wire 1 and examining how much the current center is shifted from the center of the electric wire 1 based on the measured value, It can be determined whether there is a possibility that the above-mentioned defect has occurred in the core wire 2 constituting the electric wire 1. That is, as a result of the measurement, if the deviation of the current center from the center of the electric wire 1 is less than or equal to a predetermined value over the entire electric wire 1, unevenness (almost) occurs in the insulating layer 3. In addition, it can be determined that the core wire 2 does not have a defect (of a problematic degree). On the other hand, when the deviation of the current center from the center of the electric wire 1 exceeds a predetermined size in at least a part of the length direction of the electric wire 1, the insulation layer 3 becomes uneven in thickness at that portion. Or the defect has occurred in the core 2 (that is, there is a possibility that the defect has occurred in the core 2).
[0015]
In the case of the present example, the magnetic field around the wire 1 is measured to check the degree of deviation of the current center from the center of the wire 1 as described above. The magnetic fields to be measured and measured at six circumferentially equally spaced locations on the circumference are tangential components of the magnetic fields at these six locations with respect to the circumference.
[0016]
Therefore, in the case of this example, a sensor unit 4 as shown in FIGS. The sensor unit 4 includes an annular or annular support member 5, six search coils 6, 6, each of which is a magnetic sensor, a rotary switch 7, and a voltmeter 8. The support member 5 has a through hole at the center slightly larger than the outer diameter of the electric wire 1. As shown schematically in FIG. 2, each of the search coils 6, 6 is located at a position on a single circumference concentric with the through hole at six equally-spaced portions of the support member 5 in the circumferential direction. I support it. Therefore, in a state where the electric wire 1 is inserted through the through hole, the distance between the electric wire 1 and each of the search coils 6 becomes equal to each other. The search coils 6, 6 are supported by the support member 5 in a state where the center axes (the magnetic field detection directions) of the search coils 6, 6 are aligned with the circumferential direction of the support member 5. ing. Each of the search coils 6, 6, the rotary switch 7, and the voltmeter 8 are connected as shown in FIG. By switching the contacts of the rotary switch 7, the magnetic fields detected by the search coils 6 (voltages induced in the search coils 6, 6 by the magnetic field) are measured by the voltmeter 8. I try to do it.
[0017]
Since the number of signal lines drawn from the six search coils 6 is two each, unless the rotary switch 7 is used, the number of signal lines connected to the voltmeter 8 is , (6 × 2 =) 12. On the other hand, in the case of the sensor unit 4 described above, the number of signal lines connected to the voltmeter 8 can be reduced to two by using the rotary switch 7. Therefore, the circuit can be simplified. Incidentally, two control lines (not shown) for remotely controlling the rotary switch 7 are connected to the rotary switch 7. As the magnetic sensor, for example, a Hall element can be used in place of the search coil 6, but in this case, since the number of terminals provided on the Hall element is four, wiring of the circuit constituting the circuit is required. The number increases.
[0018]
In any case, when the sensor unit 4 configured as described above measures the tangential components of the magnetic field at six locations at equal circumferential intervals on a circle concentric with the electric wire 1, the sensor unit 4 is used. The unit 4 is fitted to a part of the electric wire 1 without rattling (the electric wire 1 is inserted into the through hole). The sensor unit 4 is arranged in a direction perpendicular to the electric wire 1 so that the central axes of the six search coils 6 coincide with the circumferential direction of the concentric circle. As a result, the tangential components of the magnetic field at the six locations can be measured by the search coils 6. In order to allow the sensor unit 4 to be fitted over a part of the electric wire 1 as described above, the annular or annular support member 5 constituting the sensor unit 4 is provided at, for example, one position in the circumferential direction. The part may have a structure that can be freely opened or a structure that can be divided into two parts. In the case of this example, the magnetic field to be measured by the sensor unit 4 is only the magnetic field generated by the current flowing through the electric wire 1. For this reason, in order that the magnetic field measured by the sensor unit 4 does not include an external magnetic field generated from a peripheral electric wire or the like, at least at the time of measuring the magnetic field, a cylindrical shield is provided around the sensor unit 4. Is preferred.
[0019]
Here, consider the magnetic field detected by each of the search coils 6,6. As shown in FIG. 4, when the current center O ′ of the electric wire 1 is shifted from the geometric center O of the electric wire 1, circumferentially equal intervals on a circumference C having a radius R from the geometric center O of the electric wire 1. Tangential components H of the magnetic field at six locations (i = 1 to 6) with respect to the circumference C i (I = 1 to 6) is represented by the following equation (1).
(Equation 1)
Figure 2004085402
In the equation (1), r i (I = 1 to 6) is the distance from the current center O 'to each of the six locations, and α is the magnetic field H at each of the six locations. i ′ (I = 1 to 6) and the tangential direction of the circumference C. These distances r i And the angle α (cos α) are represented by the following equations (2) to (3), respectively.
(Equation 2)
Figure 2004085402
[Equation 3]
Figure 2004085402
In these formulas (2) and (3), r 0 Is the distance from the geometric center O of the electric wire 1 to the current center O ′, θ 0 Represents the angle between the straight line connecting the centers O and O 'and the reference coordinate axis x.
[0020]
The tangential component H of the magnetic field represented by the above equation (1) i The distribution of (i = 1 to 6) is, for example, as shown in FIG. The tangential component H of each of these magnetic fields i Average value H of (i = 1 to 6) AV Is always I / 2πR regardless of the degree of deviation of the current center O ′ from the geometric center O of the electric wire 1.
On the other hand, when the geometric center O of the electric wire 1 and the current center O 'coincide with each other, the tangential component H of the magnetic field at the six locations is obtained. i (I = 1 to 6) are all I / 2πR.
[0021]
As described above, the tangential component H of the magnetic field at six locations on the circumference concentric with the electric wire 1 is described. i (I = 1 to 6), then the tangential components H of these magnetic fields i Based on the measured value (i = 1 to 6) (the induced voltage of each of the search coils 6 and 6 measured by the voltmeter 8), the degree of deviation of the current center O 'from the center O of the electric wire 1 is obtained. . In the case of the present example, the degree of this deviation is determined by the tangential component H of each magnetic field. i The evaluation is made based on the maximum and minimum deviations of the measured values (i = 1 to 6). This maximum / minimum deviation is determined by the tangential component H of each magnetic field. i The maximum value, the minimum value, and the average value of the measured values (i = 1 to 6) can be obtained by the calculation formula “{(maximum value−minimum value) / average value} × 100”.
[0022]
Here, regarding the relationship between the maximum and minimum deviations and the degree of displacement of the current center O ′ with respect to the geometric center O of the electric wire 1, the electric wire 1 has an OW wire of 100 mm. 2 (Electrical wire in which 19 strands having an outer diameter of 2.6 mm are twisted to form a core wire 2 having an outer diameter of 13.0 mm and an outer diameter of the insulating layer 3 is 16.0 mm) is taken as an example. View. The deviation (r) of the current center O ′ from the center O of the electric wire 1 0 , Θ 0 ) As parameters, the tangential component H of the magnetic field at the above six locations i The distribution of (i = 1 to 6) is as shown in Table 1 below. However, I = 10A and R = 25 mm.
[Table 1]
Figure 2004085402
[0023]
As described above, as is clear from Table 1 above, the tangential component H of the magnetic field i Average value H of (i = 1 to 6) AV Is the deviation (r 0 , Θ 0 ) Is constant irrespective of the value of {) Average value H AV = I / 2πR = 10 / (2π × 0.025) = 63.7 (AT / m)}. In addition, the maximum and minimum deviations are determined by the deviation r 0 Is 10% of the radius of the core wire 2 (r 0 = 0.65 mm), it becomes 4.4 to 5.2%, and 90% (r 0 = 5.85 mm), it becomes 40.5-49.5%. From this, the deviation r 0 It can be understood that the value of the maximum / minimum deviation greatly changes if the distance varies even by 1 mm. Therefore, the maximum and minimum changes are caused by the deviation (r 0 , Θ 0 ) Can be preferably used as the evaluation amount.
[0024]
Therefore, in the case of this example, the tangential components H of the magnetic field at six locations on the circumference concentric with the electric wire 1 are described. i (I = 1 to 6) are continuously measured over the entire length of the electric wire 1 or at predetermined intervals (preferably as short as possible), and based on these measured values, the maximum and minimum values are determined. The deviation is determined at predetermined intervals over the entire length of the electric wire 1. At this time, the tangential components H of the magnetic field at the six locations are continuously or over the entire length of the electric wire 1 or at predetermined intervals. i The operation of measuring (i = 1 to 6) is performed based on moving the sensor unit 4 in the length direction of the electric wire 1 while keeping the sensor unit 4 fitted on the electric wire 1. When the maximum / minimum deviation is equal to or less than a predetermined threshold value over the entire length of the electric wire 1, the insulation layer 3 has no (nearly) uneven thickness and the core 2 It is determined that no defect (of a problematic degree) has occurred. When such a determination is made, the defect detection work is thereafter terminated without performing the work of the second stage described below. On the other hand, when the maximum and minimum deviations exceed a predetermined threshold value in at least a part of the length direction of the electric wire 1, there is no obstacle to the insulating layer 3 in the relevant portion with respect to the continuous use of the electric wire 1. It is determined that there is either uneven wall thickness without any irregularities, or that the core wire 2 has a defect that causes an obstacle to continuous use. When such a determination is made, a second-stage operation described below is performed thereafter to prevent the uneven thickness of the insulating layer 3 from being determined as a defect of the electric wire 1. The magnitude of the threshold value regarding the maximum and minimum deviations is determined based on the type of the target electric wire 1.
[0025]
Next, the work of the second stage will be described. In the work of the second stage, the deviation of the maximum and the minimum in the electric wire 1 exceeds the predetermined threshold in the work of the first stage. And which of the above defects is determined. As described above, in the portion of the electric wire 1 where the insulation layer 3 has uneven thickness and the portion where the core wire 2 has a defect such as rust or broken wire, the current center O ′ Is shifted from the center O of the electric wire 1. However, in this case, the current center O 'is concentrated at one point in the portion where the uneven thickness occurs, whereas the current center O' is not concentrated at one point in the portion where the defect occurs. Therefore, as shown in FIG. 6, the tangential component H of the magnetic field in the circumferential direction i In the distribution of (i = 1 to 6), as shown by the solid line a in the case of the above-mentioned uneven thickness, there is only one magnetic field peak (the peak of the curve), whereas In this case, as shown by a broken line b in FIG. In other words, the difference in the number of peaks causes the tangential component H of the magnetic field to vary depending on whether the uneven thickness occurs or the defect occurs. i A difference occurs in the distribution of (i = 1 to 6).
[0026]
Therefore, the tangential component H of the measured magnetic field i (I = 1 to 6) is observed, and when the deviation between the distribution and the distribution when the uneven thickness is generated (the distribution when the defect is not generated) is equal to or smaller than a predetermined size, That is, when the number of peaks appearing in the distribution is one, it can be determined that the uneven thickness has occurred. On the other hand, when the deviation exceeds a predetermined size, that is, when the number of peaks appearing in the distribution is two or more, it can be determined that the defect has occurred.
[0027]
Further, the above-described second-stage determination operation can be automatically performed by a computer constituting the defect detection device. For this reason, in the case of this example, the tangential component H of the magnetic field measured as described above i (I = 1 to 6), one current center O ′ (r 0 , Θ 0 ). Then, this one current center O ′ (r 0 , Θ 0 ), The magnetic field distribution when it is determined that the above-mentioned defect does not occur is obtained by calculation, and the deviation between this magnetic field distribution and the above-described actually measured magnetic field distribution is calculated. Then, when the deviation is equal to or smaller than a predetermined size, it is determined that the uneven thickness has occurred, and when the deviation exceeds the predetermined size, it is determined that the defect has occurred.
[0028]
Specifically, the following calculation is performed. First, the above H i (I = 1 to 6) and the average value H AV And the ratio H i / H AV Can be expressed by the following equation (4).
(Equation 4)
Figure 2004085402
Furthermore, this ratio H i / H AV (H i ) MAX / H AV And the minimum value (H i ) MIN / H AV Can be expressed by the following equations (5) and (6), respectively.
(Equation 5)
Figure 2004085402
(Equation 6)
Figure 2004085402
Therefore, by substituting the actually measured values into these equations (5) and (6), the coordinate element r of the one current center O ′ is obtained. 0 Can be requested.
[0029]
The above H i The data of two points near the point where the value of (i = 1 to 6) becomes the maximum is H i , H i + 1 And the data H of these two points i , H i + 1 Is substituted into the above equation (4), and the ratio of the two equations is obtained, the following equation (7) is obtained.
(Equation 7)
Figure 2004085402
Therefore, by substituting the actually measured value into the equation (7), the coordinate element θ of the one current center O ′ is obtained. 0 Can be requested.
[0030]
As described above, one current center O '(r 0 , Θ 0 ), Then each of these coordinate elements r 0 , Θ 0 Based on the ratio H in the above equation (4) i / H AV Is calculated. Then, the ratio calculated in this way is (H i / H AV ) CAL And the ratio obtained by substituting the actually measured value into the above equation (4) is (H i / H AV ) MEA Notation. Then, by evaluating δ expressed by the following equation (8), it is determined whether or not a defect has occurred.
(Equation 8)
Figure 2004085402
That is, in the case of the present example, when δ in the equation (8) is equal to or less than a predetermined threshold value, it is determined that uneven thickness has occurred (no defect has occurred), and when it exceeds the predetermined threshold value. It is determined that a defect has occurred. The magnitude of the threshold value for δ is determined based on the type of the target electric wire 1.
[0031]
According to the defect detection method of the electric wire of the present embodiment as described above, the defect of the electric wire 1 can be measured without measuring the distance between the search coils 6, 6 for measuring the magnetic field and the core wire 2 constituting the electric wire 1. Detection can be performed. For this reason, a displacement sensor for measuring the distance is not required, and the cost of the defect detection device can be reduced. In the case of this example, the defect detection method was performed in two steps, because the calculation in the first step can be performed more easily (in a shorter time) than the calculation in the second step. This is because, if it is determined in the calculation of the first stage that no defect has occurred, it is not necessary to perform the time-consuming calculation of the second stage. Also, the second stage operation can be performed by observing the magnetic field distribution.
[0032]
Next, FIG. 7 shows a second example of the embodiment of the present invention corresponding to claim 2. Also in the case of this example, the defect detection work of the electric wire 1 (see FIG. 1) is performed in two stages. The first stage operation is performed in the same manner as in the first example. Then, in the work of the second stage, by a method different from the case of the above-described first example, the maximum and minimum deviations of the electric wire 1 are applied to a portion exceeding a predetermined threshold, and the electric current is generated in the portion. To determine if it is an uneven thickness that does not interfere with continued use or a defect that does not interfere. In the case of this example, such a second-stage operation is performed based on a calculation by a computer constituting the defect detection device.
[0033]
In the calculation in the second stage, the tangential component H of the magnetic field for the portion of the electric wire 1 where the maximum and minimum deviations exceed a predetermined threshold value i The measured values (i = 1 to 6) are used. Specifically, first, for each of a plurality of types of combinations, each of which is configured by selecting two measured values from each of the measured values, the current is determined based on the two measured values that constitute each of the combinations. The coordinates of the center O '(r 0 , Θ 0 ). The combination of the two measured values is 15 (= 6 C 2 Since the types can be made, the types and the number of the combinations to be used are determined so that the defect detection accuracy can be sufficiently secured. Also, the coordinates (r 0 , Θ 0 ) Is calculated by taking into account the positional relationship between the center of the sensor unit 4 for measuring the magnetic field and each of the search coils 6 and 6 (see FIG. 2), in addition to the two measured values constituting each combination. , Using appropriate geometric techniques.
[0034]
Here, referring to FIG. 7, the coordinates (r) of the current center O 'are determined based on the two measured values as described above. 0 , Θ 0 ) Will be briefly described. The current flowing through the electric wire 1 is defined as I (frequency ω = 2πf). In addition, the number of turns of each of the search coils 6 is 6, and the radius is a. In this case, the magnetic field H at the measurement point, which is the two measured values that make up each of the above combinations, i ′ (I = 1 to 2), the induced voltage E generated in each of the search coils 6 i (I = 1 to 2) can be expressed by the following equation (9).
(Equation 9)
Figure 2004085402
From this equation (9), the magnetic field H at the measurement point i '(I = 1 to 2) can be expressed by the following equation (10).
(Equation 10)
Figure 2004085402
Therefore, the distance r from the current center O ′ to be determined to each measurement point i (I = 1 to 2) can be expressed by the following equation (11).
[Equation 11]
Figure 2004085402
The angles α and β in FIG. 7 can be expressed by the following equations (12) and (13), respectively.
(Equation 12)
Figure 2004085402
(Equation 13)
Figure 2004085402
From this, the coordinate element r of the current center O ′ to be obtained 0 , Θ 0 Can be expressed by the following equations (14) and (15). Note that the angle γ in FIG. 7 is known.
[Equation 14]
Figure 2004085402
[Equation 15]
Figure 2004085402
[0035]
Then, the coordinates (r) of the current center O ′ are calculated by the above-described equations (9) to (15) for each of the above-described plurality of combinations. 0 , Θ 0 ), The coordinates (r 0 , Θ 0 Check for variations. As described above, in the portion of the electric wire 1 where the thickness of the insulating layer 3 is uneven, the current center O 'is concentrated at one point. On the other hand, in a portion where the core wire 2 has a defect, the current center O 'is not concentrated at one point. Therefore, in the case of this example, the coordinates (r 0 , Θ 0 ) Is smaller than or equal to a predetermined size, it is determined that the defect does not occur in the relevant portion (it is caused by the uneven thickness). It is determined that the above-mentioned defect has occurred in the portion. The predetermined size of the variation is determined based on the type of the target electric wire 1.
[0036]
In the case of the wire defect detection method of the present embodiment as described above, the defect of the wire 1 can be obtained without measuring the distance between the search coils 6 for measuring the magnetic field and the core wire 2 constituting the wire 1. Detection can be performed. For this reason, a displacement sensor for measuring the distance is not required, and the cost of the defect detection device can be reduced. Also in the case of this example, the reason why the defect detection method is performed in two stages is that the calculation in the first stage can be performed more easily (in a shorter time) than the calculation in the second stage. This is because if it is determined in the calculation of the stage that no defect has occurred, it is not necessary to perform the calculation of the second stage which requires time.
[0037]
Next, FIGS. 8 and 9 show a third example of the embodiment of the present invention corresponding to claim 3. FIG. In the case of this example, the above-described defect detection work of the first and second examples is performed in a state in which a negative overcurrent does not flow through the core wire 2 (see FIG. 1) constituting the electric wire 1. As described in the first and second examples, the defect detection work of the first and second examples is based on measuring a magnetic field generated around the electric wire 1 by a current flowing through the core wire 2. Detect defects. For this reason, it is necessary to supply a current to the core wire 2 during the defect detection work. Therefore, in the case of this example, at the time of the defect detection work, a pulse current is injected into the above-mentioned core wire 2 by an annular CT (current transformer) 9 as shown in the figure.
[0038]
That is, when the pulse current is injected into the core wire 2 by the CT 9 in this manner, as shown in FIG. 9, the annular core 10 constituting the CT 9 is arranged so as to surround a part of the electric wire 1. . Then, in this state, a pulse voltage is applied to the primary coil 11 wound around the annular core 10. As a result, a pulse voltage is applied to the core 2 by electromagnetic induction, and a pulse current is injected into the core 2. In order to arrange the annular core 10 so as to surround a part of the electric wire 1 as described above, the core 10 has, for example, a structure in which one portion in the circumferential direction is freely openable. Alternatively, the structure can be divided into two. The pulse current flowing through the core wire 2 does not depend on the length of the wire 1 or the structure of the line including the wire 1, and the surge impedance Z of the wire 1 c Only depends on. For example, the peak value E m Is applied, the peak value I of the pulse current flowing through the core wire 2 is m Is E m / Z c It becomes. The frequency of the pulse voltage applied to the core 2 by the CT 9 is about several hundred kHz, which is sufficiently higher than the commercial frequency (50 Hz or 60 Hz), and a clear pulse current is injected into the core 2. I try to do it.
[0039]
According to the defect detection method of the present embodiment as described above, a defect detection operation can be performed even when a negative overcurrent does not flow through the electric wire 1. In the case of this example, the frequency of the magnetic field generated around the electric wire 1 by the pulse current is sufficiently higher than the frequency (commercial frequency) of the external magnetic field generated from the surrounding electric wires and the like. Therefore, the magnetic field generated by the pulse current can be measured without being affected by the external magnetic field. As a result, the reliability of defect detection can be improved.
[0040]
When the present invention is carried out, the number of places where the magnetic field is measured around the electric wire is not limited to six places at equal intervals in the circumferential direction, but may be eight places at equal intervals in the circumferential direction. The more locations where the magnetic field is measured, the better the accuracy of defect detection, but on the other hand, it is necessary to increase the number of magnetic sensors for detecting the magnetic field, which also increases the cost of the defect detection device. Become. For this reason, the location where the magnetic field is measured around the electric wire is determined in consideration of the required defect detection accuracy and the desired cost of the defect detection device.
[0041]
【The invention's effect】
Since the wire defect detection method of the present invention operates as described above, the displacement sensor for measuring the distance between the core wire constituting the wire and the magnetic sensor becomes unnecessary, and the cost of the defect detection device is reduced. Can be reduced. Further, if necessary, the defect detection operation can be performed even when no load current is flowing through the target electric wire.
[Brief description of the drawings]
FIG. 1 is a partial perspective view of an electric wire that is a subject of a first example of an embodiment of the present invention.
FIG. 2 is a side view schematically showing a configuration of a sensor unit.
FIG. 3 is a circuit diagram of a sensor unit.
FIG. 4 is a schematic diagram for explaining a magnetic field measured by a sensor unit.
FIG. 5 is a graph showing an example of a magnetic field distribution measured by a sensor unit.
FIG. 6 is a diagram showing a comparison of magnetic field distributions when a defect occurs in an electric wire and when it does not.
FIG. 7 is a schematic diagram for explaining a method of obtaining a current center from two measured values of a magnetic field when implementing a second example of an embodiment of the present invention.
FIG. 8 is a schematic side view showing a third example of the embodiment of the present invention and showing a state during a defect detection operation.
FIG. 9 is a schematic perspective view showing a state when a pulse current is injected into an electric wire by CT.
[Explanation of symbols]
1 Electric wire
2 core wire
3 insulating layer
4 Sensor unit
5 Supporting members
6 Search coil
7 Rotary switch
8 Voltmeter
9 CT (current transformer)
10 core
11 Primary coil

Claims (3)

心線の周囲を絶縁層により被覆して成る電線を囲む、この電線と同心の円周上の複数個所で、それぞれ上記心線を流れる電流により発生した磁界の、当該円周に関する接線方向成分を測定すると共に、これら各測定値の最大値、最小値、及び平均値に基づいて「(最大値−最小値)/平均値」で表される比を計算し、この比が上記電線の全長に亙り所定の閾値以下となる場合にこの電線を構成する心線に欠陥が生じていないと判定し、上記比がこの電線の長さ方向の少なくとも一部で上記閾値よりも大きくなる場合には更に、当該一部に就いての上記各測定値の分布と、当該一部で上記心線に欠陥が生じていないとした場合のこれら各測定値の理論値の分布とを互いに比較し、これら両分布同士のずれが所定の大きさ以下である場合に当該一部で上記心線に欠陥が生じていないと判定し、同じく所定の大きさを越える場合に当該一部で上記心線に欠陥が生じていると判定する電線の欠陥検知方法。At a plurality of locations on a circumference concentric with the electric wire, the tangential component with respect to the circumference of the magnetic field generated by the current flowing through the above-mentioned core wire is surrounded at a plurality of points on a circumference concentric with the electric wire. In addition to the measurement, a ratio represented by “(maximum value−minimum value) / average value” is calculated based on the maximum value, the minimum value, and the average value of these measured values. It is determined that there is no defect in the core wire constituting the electric wire when the ratio is equal to or less than the predetermined threshold value over the predetermined threshold value, and when the ratio becomes larger than the threshold value in at least a part of the length direction of the electric wire, The distribution of each of the measured values for the part and the theoretical value distribution of each of the measured values when the core is assumed to have no defect in the part are compared with each other. If the deviation between distributions is equal to or less than a predetermined size, In the core is determined that a defect has not occurred, the same defect detection method of the electric wire is determined that a defect in the cord in the part occurs when exceeding a predetermined magnitude. 心線の周囲を絶縁層により被覆して成る電線を囲む、この電線と同心の円周上の複数個所で、それぞれ上記心線を流れる電流により発生した磁界の、当該円周に関する接線方向成分を測定すると共に、これら各測定値の最大値、最小値、及び平均値に基づいて「(最大値−最小値)/平均値」で表される比を計算し、この比が上記電線の全長に亙り所定の閾値以下となる場合にこの電線を構成する心線に欠陥が生じていないと判定し、上記比がこの電線の長さ方向の少なくとも一部で上記閾値よりも大きくなる場合には更に、それぞれが当該一部に就いての上記各測定値から少なくとも2個の測定値を選択する事により構成した、複数種類の組み合わせ毎に、これら各組み合わせを構成する測定値に基づいて当該一部を流れる電流の中心の座標を計算し、これら各組み合わせ毎に計算した中心の座標のばらつきが所定の大きさ以下である場合に当該一部で上記心線に欠陥が生じていないと判定し、同じく所定の大きさを越える場合に当該一部で上記心線に欠陥が生じていると判定する電線の欠陥検知方法。At a plurality of locations on a circumference concentric with the electric wire, the tangential component with respect to the circumference of the magnetic field generated by the current flowing through the above-mentioned core wire is surrounded at a plurality of points on a circumference concentric with the electric wire. In addition to the measurement, a ratio represented by “(maximum value−minimum value) / average value” is calculated based on the maximum value, the minimum value, and the average value of these measured values. It is determined that there is no defect in the core wire constituting the electric wire when the ratio is equal to or less than the predetermined threshold value over the predetermined threshold value, and when the ratio becomes larger than the threshold value in at least a part of the length direction of the electric wire, , For each of a plurality of types of combinations constituted by selecting at least two measurement values from the above-described respective measurement values for the part, the part based on the measurement values constituting each combination Center of current flowing through If the variation in the coordinates of the center calculated for each combination is equal to or smaller than a predetermined size, it is determined that a defect does not occur in the core wire in the part, and the size exceeds the predetermined size. In this case, a method for detecting a defect of the electric wire in which it is determined that a defect occurs in the core wire in the part. 測定すべき磁界を、変流器により電線を構成する心線に注入したパルス電流によって発生させる、請求項1〜2の何れかに記載した電線の欠陥検知方法。The method for detecting a defect in an electric wire according to claim 1, wherein the magnetic field to be measured is generated by a pulse current injected into a core wire constituting the electric wire by a current transformer.
JP2002247956A 2002-08-28 2002-08-28 Method for detecting defect in electrical line Withdrawn JP2004085402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002247956A JP2004085402A (en) 2002-08-28 2002-08-28 Method for detecting defect in electrical line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002247956A JP2004085402A (en) 2002-08-28 2002-08-28 Method for detecting defect in electrical line

Publications (1)

Publication Number Publication Date
JP2004085402A true JP2004085402A (en) 2004-03-18

Family

ID=32055452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002247956A Withdrawn JP2004085402A (en) 2002-08-28 2002-08-28 Method for detecting defect in electrical line

Country Status (1)

Country Link
JP (1) JP2004085402A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271607A (en) * 2006-03-07 2007-10-18 Tokyo Electric Power Co Inc:The Abnormality detection device
US7601031B2 (en) 2005-05-12 2009-10-13 Matsushita Electric Works, Ltd. Memory card adapter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7601031B2 (en) 2005-05-12 2009-10-13 Matsushita Electric Works, Ltd. Memory card adapter
JP2007271607A (en) * 2006-03-07 2007-10-18 Tokyo Electric Power Co Inc:The Abnormality detection device

Similar Documents

Publication Publication Date Title
US6469504B1 (en) Method and system for detecting core faults
US7741853B2 (en) Differential-mode-current-sensing method and apparatus
KR101532555B1 (en) Fault detection for laminated core
CN109581145B (en) Stator winding fault detection method and detection device
CN1818667A (en) Manual probe carriage system and method of using the same
JP2020034432A (en) Conductor degradation detecting device
WO2013136098A1 (en) Method for rotor winding damage detection in rotating alternating machines by differential measurement of magnetic field by using two measuring coils
KR20180123324A (en) Current sensing device for welding monitering device
Florkowski et al. Transformer winding defects identification based on a high frequency method
JP2004085402A (en) Method for detecting defect in electrical line
JP2020530565A (en) Guidance sensor
JP5855070B2 (en) Measuring apparatus and current transformer installation state determination method
JP3681483B2 (en) Insulated wire defect detection method
JP7201118B1 (en) Elevator hoist
JP2010223907A (en) Method and device for detecting abnormality of shielding member
JP5281941B2 (en) Shield member abnormality detection method and shield member abnormality detection device
JPH1073631A (en) Method and apparatus for detecting defect of insulated wire
JP2008026234A (en) Method and detector for detecting defective insulation
JP2014102148A (en) Insulation inspection device
JP7374348B2 (en) Coating defect detection device, coating defect detection method, and manufacturing method of rotating electrical machine
JP2010223906A (en) Method and device for detecting abnormality of shielding member
JP2008275558A (en) Current measuring instrument
RU2276374C1 (en) Method of making belt
CN113985117A (en) Current detection device and method
JP2006343235A (en) Armature inspection method of dynamo-electric machine, and its inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060630

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061016