JP2004085208A - Voltage monitor - Google Patents

Voltage monitor Download PDF

Info

Publication number
JP2004085208A
JP2004085208A JP2002242312A JP2002242312A JP2004085208A JP 2004085208 A JP2004085208 A JP 2004085208A JP 2002242312 A JP2002242312 A JP 2002242312A JP 2002242312 A JP2002242312 A JP 2002242312A JP 2004085208 A JP2004085208 A JP 2004085208A
Authority
JP
Japan
Prior art keywords
voltage
cells
circuit
switch circuit
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002242312A
Other languages
Japanese (ja)
Other versions
JP4083504B2 (en
Inventor
Seiji Kamata
鎌田 誠二
Nobuaki Kobayashi
小林 信昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Original Assignee
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corp filed Critical Keihin Corp
Priority to JP2002242312A priority Critical patent/JP4083504B2/en
Publication of JP2004085208A publication Critical patent/JP2004085208A/en
Application granted granted Critical
Publication of JP4083504B2 publication Critical patent/JP4083504B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a voltage monitor capable of minimizing the scale increase of device constitution even with an increase in the number of cells of a battery pack to be monitored. <P>SOLUTION: Switching circuits A-1 to A-22 are connected to a plurality of cells V1-V110 connected in series, and the terminals of the prescribed number of cells are sequentially selected by these switching circuits. The selected terminals of the prescribed number of cells are connected to a voltage holding circuit B. The voltage holding circuit B has capacitors in the same number as the cells selected by the switching circuits A-1 to A-22, and the terminal voltage of each cell is held by the capacitor. A switching circuit C transmits the terminal voltage held to the voltage holding circuit B, to a measuring circuit comprising a differential amplifier D and an A/D converter E by operating in a complementary manner to the selecting operation of the switching circuits A-1 to A-22. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、直列接続された複数個のセル(電池)の端子電圧をモニタするための電圧モニタ装置に関する。
【0002】
【従来の技術】
従来、電気モータを動力源として有する電気自動車の電源として、複数のセル(電池)からなる組電池が使用されている。このセルとしては、例えばリチウムイオン電池が使用されており、約110個程のセルを直列接続することにより、約400V程度の電源電圧を得ている。このように複数のセルを直列に接続した場合、各セルの特性にバラツキが存在すると、一部のセルが過充電状態や過放電状態となる虞がある。このような状態に陥ることを避けるため、各セルの電圧をモニタすることが行われており、そのための電圧モニタ装置がある。
【0003】
ところで、電気自動車の場合、上述のように高電圧の電源を使用するため、安全を確保する必要上、電圧をモニタする場合には組電池と間を電気的に絶縁する等の安全対策が必要になる。このような要請を満足しながら組電池をなすセル電圧をモニタする従来技術として、例えば特開2001−289886号公報に開示された技術が知られている。
【0004】
図4に、上述の公報に開示された技術の構成を示す。この従来技術は、いわゆるフライングキャパシタ方式を用いたものであって、直列接続された複数のセル(電池)を複数の電池ブロック110〜11n(nは自然数)に分割し、これら電池ブロック110〜11nに対し、スイッチ120〜12n、コンデンサブロック130〜13n、スイッチ140〜14nを設け、これらスイッチ140〜14nに対し差分演算回路150とAD変換器160を共通に設けている。
【0005】
この従来技術によれば、例えば電池ブロック110の電圧をモニタする場合、スイッチ120をオン状態(閉成)とし、スイッチ140をオフ状態(開放)とすることにより、コンデンサブロック130に電池ブロック110の電圧を保持させる。そして、スイッチ120をオフ状態とし、スイッチ140をオン状態とすることにより、コンデンサブロック130に保持された電圧が差分演算回路150に与えられて差分増幅され、各セルの電圧が得られる。この電圧はAD変換器160によりアナログ/デジタル変換されて出力される。
【0006】
【発明が解決しようとする課題】
ところで、上述の従来技術によれば、電池ブロック110〜11nに対し、スイッチ120〜12n、コンデンサブロック130〜13n、およびスイッチ140〜14nが設けられているので、電池ブロックの数が増加すると、それに比例して装置構成が大規模化し、装置コストが大幅に上昇するという問題がある。この発明は、上記事情に鑑みてなされたもので、モニタすべき組電池のセル数が増加しても、装置構成の規模の増加を最小限に抑えることができる電圧モニタ装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するため、この発明は以下の構成を有する。
即ち、請求項1に記載された発明に係る電圧モニタ装置は、直列接続された複数個のセルのうち、1または2以上の所定数のセルの端子を選択する第1のスイッチ回路(例えば後述するスイッチ回路A−1〜A−22に相当する構成要素)と、前記第1のスイッチ回路により選択されたセルと同数のコンデンサを有し、前記コンデンサにより前記所定数のセルの端子電圧を保持する電圧保持回路(例えば後述する電圧保持回路Bに相当する構成要素)と、前記第1のスイッチ回路の選択動作に対し相補的に作動して前記電圧保持回路に保持された前記端子電圧を伝達する第2のスイッチ回路(例えば後述するスイッチ回路Cに相当する構成要素)と、前記第2のスイッチ回路を介し前記電圧保持回路から前記端子電圧を入力して該端子電圧を測定する測定回路(例えば後述する差動増幅器DおよびA/D変換器Eからなる構成要素)と、を備えたことを特徴とする。
【0008】
この構成によれば、直列接続された複数のセルのうち、第1のスイッチ回路により選択された所定数のセルが、この第1のスイッチ回路を介して電圧保持回路に接続され、セルの端子電圧が電圧保持回路に保持される。セルの端子電圧が電圧保持回路に保持されると、第1のスイッチ回路がオフ状態とされ、第2のスイッチ回路がオン状態とされる。これにより電圧保持回路に保持されたセルの端子電圧が測定回路に供給され、各セルの端子電圧が測定される。同様に、第1のスイッチ回路により、残りの複数のセルの中から所定数のセルを選択し、電圧保持回路にそのセルの端子電圧を保持して測定が行われる。ここで、測定対象の所定数のセルが変わっても、電圧保持回路と第2のスイッチ回路は共用される。従って、組電池のセル数が増加しても、電圧保持回路と第2のスイッチ回路の構成規模を拡大する必要がなく、よって装置規模の増加を抑えることが可能になる。
【0009】
請求項2に記載された発明は、請求項1に記載された電圧モニタ装置において、前記第1のスイッチ回路が、直列接続された前記複数個のセルのうちの一端側に位置するセルと他端側に位置するセルとの間を往復するように、前記所定数のセルを単位として前記複数個のセルを順次的に選択すること(例えば後述する図2に示すフローに相当する要素)を特徴とする。
この構成によれば、第1のスイッチ回路が選択対象(セル)を移す場合、第1のスイッチ回路から電圧保持回路および第2のスイッチ回路を介して測定回路に至る信号経路上の電圧変化が小さく抑えられる。従ってこの信号経路に浮遊容量が存在していても、電圧変化に伴う電流が小さく抑えられ、この電流に起因する損失も小さく抑えられる。
【0010】
請求項3に記載された発明は、請求項1または2に記載された電圧モニタ装置において、前記測定回路が、前記第2のスイッチ回路を介して入力した端子電圧を差分増幅する差分増幅回路(例えば後述する差動増幅器Dに相当する構成要素)と、前記差分増幅回路により差分増幅された端子電圧をアナログ/デジタル変換する変換回路(例えば後述するA/D変換器Eに相当する構成要素)と、を備えたことを特徴とする。
この構成によれば、差動増幅器により端子間の差分電圧が抽出され、各セルのアナログ量の電圧が得られる。この電圧は、A/D変換器によりデジタル量に変換され、各セルの電圧を表すデータとして出力される。
【0011】
【発明の実施の形態】
以下、本発明の実施形態を図面を参照して説明する。
(実施の形態1)
図1に、本実施の形態1に係るフライングキャパシタ方式による電圧モニタ装置の構成を示す。同図において、直列接続された複数個のセルV1〜V110は組電池を構成し、例えば電気自動車等の動力用モータの電源として使用される。1個のセルの電圧は、例えば約3.6Vであり、組電池として発生する電圧は約400Vにものぼる。
【0012】
セルV1〜V110の端子には、スイッチ回路A−1〜A−22(第1のスイッチ回路)が接続される。スイッチ回路A−1〜A−22は、セルV1〜V110のうち、5個(所定数)のセルの端子を同時に選択するためのものであり、抵抗群とスイッチ群から構成される。具体的には、スイッチ回路A−1の場合、セルV1〜V5の各端子に一端がそれぞれ接続された抵抗R1〜R6と、これら抵抗R1〜R6の他端に一方の電極が接続されたスイッチSW1〜SW6から構成される。スイッチSW1〜SW6としては例えばフォトMOSリレーが用いられる。他のスイッチ回路A−2〜A−22についてもスイッチ回路A−1と同様に構成される。以下では、説明の便宜上、スイッチ回路A−2〜A−22を構成する抵抗群およびスイッチ群についてもスイッチ回路A−1と同様に抵抗R1〜R6およびスイッチSW1〜SW6とする。
【0013】
スイッチ回路A−1〜A−22を構成するスイッチSW1〜SW6の他方の電極側には配線H1〜H6を介して電圧保持回路Bが接続される。この電圧保持回路Bは、スイッチ回路A−1〜A−22により選択されるセルと同数の所定数のコンデンサCP1〜CP5を有し、これらコンデンサCP1〜CP5により所定数のセルの端子電圧を保持するように構成されている。具体的には、コンデンサCP1の電極は1対の配線H1,H2を介してスイッチ回路A−1〜A−22のそれぞれを構成するスイッチSW1,SW2の各電極に共通接続される。同様に、コンデンサCP2〜CP5の各電極は、配線H2〜H6を介してスイッチ回路A−1〜A−22のそれぞれを構成するスイッチSW2〜SW6の各電極に共通接続される。換言すれば、複数のスイッチ回路A−1〜A−22に対して1つ電圧保持回路Bが設けられ、この電圧保持回路Bが複数のスイッチ回路A−1〜A−22に共有された構成となっている。
【0014】
電圧保持回路Bは、スイッチ回路C(第2のスイッチ回路)を介して差動増幅器Dの入力部に接続される。このスイッチ回路Cは、電圧保持回路Bをなすコンデンサの電極端子(即ち配線H1〜H6)と差動増幅器Dの入力部との間に接続されたスイッチ群から構成され、上述のスイッチ回路A−1〜A−22の選択動作に対し相補的に作動して開閉し、電圧保持回路Bに保持された端子電圧を伝達する。差動増幅器Dの出力部にはA/D変換器Eの入力部が接続される。これら差動増幅器DおよびA/D変換器Eは、端子電圧を測定するための測定回路(符号なし)を構成する。なお、特に図示していないが、スイッチ回路A−1〜A−22およびスイッチ回路Cの開閉動作を制御するためのスイッチ制御回路が設けられている。
【0015】
次に、この実施の形態1に係る電圧モニタ装置の動作を、図2に示すフローに沿って説明する。
なお、変数n(n;1〜22の自然数)を用いて、図1に示すスイッチ回路A−1〜A−22をスイッチ回路A−nと表すことにする。
初期状態では、スイッチ回路A−1〜A−22およびスイッチ回路Cの全てがオフ状態(開放状態)に制御され、セルV1〜V110側と差動増幅器D側とが電気的に絶縁されている。この初期状態から、変数nに「1」を設定し、制御対象をスイッチ回路A−1(n=1)に設定する(ステップS01)。
【0016】
続いて、制御対象として設定されたスイッチ回路A−1をオン状態に制御する(ステップS02)。これにより、セルV1〜V5の端子電圧がスイッチ回路A−1内の抵抗R1〜R6およびスイッチSW1〜SW6と配線H1〜H6を介して電圧保持回路Bに供給される。そして、この電圧保持回路Bを構成するコンデンサCP1〜CP5がセルV1〜V5の端子電圧により充電され、この端子電圧がこれらのコンデンサに保持される。この時点では、スイッチ回路Cがオフ状態にあるので、セルV1〜V110側と差動増幅器D側との間は依然として電気的に絶縁された状態にあり、また電圧保持回路Bに保持された端子電圧は差動増幅器D側には供給されない。
【0017】
続いて、スイッチ回路A−1をオフ状態に制御する(ステップS03)。これにより、セルV1〜V110側と電圧保持回路Bとの間が電気的に絶縁される。このとき、スイッチ回路Cもオフ状態にあるから、電圧保持回路Bを構成するコンデンサCP1〜CP5はフローティング状態で端子電圧を保持する。
続いて、スイッチ回路Cをオン状態に制御する(ステップS04)。これにより、電圧保持回路Cを構成するコンデンサCP1〜CP5の各電極がスイッチ回路Cを介して差動増幅器Dの入力部に接続される。このとき、スイッチ回路A−1〜A−22はオフ状態に制御されているから、セルV1〜V110側と差動増幅器D側との間の電気的絶縁が維持される。
【0018】
続いて、差動増幅器Dが、スイッチ回路Cを介して電圧保持回路Bから入力した端子電圧を差動増幅し、この差動増幅された端子電圧をA/D変換器Eがアナログ/デジタル変換する(ステップS05)。この結果、A/D変換器EからセルV1〜V5の電圧を表すデータが出力される。この後、スイッチ回路Cをオフ状態に制御する(ステップS06)。以上でセルV1〜V5の電圧が得られた。続いて、変数nに「1」を加算してインクリメントすることにより変数nに「2」を設定し(ステップS07)、この変数nの値が、最大値である「22」以下であるか否かを判断する(ステップS08)。
【0019】
いま、変数nには「1」が設定されているから、変数nが「22」以下であると判断される(ステップS08;YES)。この場合、処理はステップS02に戻され、スイッチ回路A−2(n=2)が新たに制御対象とされて上述と同様の処理が実行される。これにより、スイッチ回路A−2に接続されたセル6〜V10の端子電圧が電圧保持回路Bに保持され、スイッチ回路Cを介して差動増幅器Dに供給されて、セルV6〜V10の電圧が測定される。以後、変数nが順次インクリメントされ、最後のスイッチ回路A−22(n=22)が制御対象とされ、セルV106〜V110の電圧が測定される。そして、ステップS07において変数nがインクリメントされて変数nの値が「23」となる。従って、変数nの値が「22」以下ではないと判断され(ステップS08;NO)、上述のステップS02〜S08による一連のループ処理から抜け出る。
【0020】
続いて、上述とは逆にスイッチ回路A−22からスイッチ回路A−1に向かって順に制御対象とされ、同様にセル電圧の測定が行われる(ステップS09〜S16)。即ち、変数nに「22」を設定し(ステップS09)、制御対象をスイッチ回路A−22(n=22)に設定した上で、このスイッチ回路A−22をオン状態に制御する(ステップS10)。これにより、セルV106〜V110の端子電圧がスイッチ回路A−22および配線H1〜H6を介して電圧保持回路Bに供給され、この電圧保持回路BにセルV106〜V110の端子電圧が保持される。
【0021】
続いて、スイッチ回路A−22をオフ状態に制御し(ステップS11)、スイッチ回路Cをオン状態に制御する(ステップS12)。これにより、電圧保持回路Bを構成するコンデンサCP1〜CP5の各電極がスイッチ回路Cを介して差動増幅器Dの入力部に接続される。差動増幅器Dは、スイッチ回路Cを介して電圧保持回路Bから端子電圧を入力して差動増幅し、これをA/D変換器Eがアナログ/デジタル変換する(ステップS13)。この結果、A/D変換器EからセルV106〜V110の電圧を表すデータが出力される。この後、スイッチ回路Cをオフ状態に制御する(ステップS06)。
【0022】
続いて、変数nから「1」を減算してデクリメントすることにより変数nに「21」を設定し(ステップS15)、この変数nの値が、最小値である「1」以上であるか否かを判断する(ステップS16)。いま、変数nには「21」が設定されているから、変数nは「1」以上であると判断される(ステップS16;YES)。この場合、処理はステップS10に戻され、スイッチ回路A−21(n=21)があらたに制御対象とされて上述と同様の処理が実行される。以後、変数nが順次デクリメントされ、最後のスイッチ回路A−1(n=1)が制御対象とされて所定の測定がなされると、ステップS16において変数nがインクリメントされる。この結果、変数nの値が「0」となり、「1」よりも小さくなる(ステップS16;NO)。この場合、処理は最初のステップS01に戻され、以降、同様の処理が繰り返し実行される。
【0023】
上述の一連の動作において、スイッチ回路A−1〜A−22は、直列接続された複数個のセルV1〜V110のうち、一端側に位置するセルV1と他端側に位置するセルV110との間を往復するようにして、5個(所定数)のセルを単位としてセルを順次的に選択する。このため、スイッチ回路A−nが切り替わる際に、測定対象として選択されるセル間の電位差は、この例の場合、常に約18V(3.6V×5個)程度に小さく維持される。従って、スイッチ回路の切り替え時に配線H1〜H6の浮遊容量に高電圧が印加されることがなく、この浮遊容量の充放電電流として抵抗R1〜R6を流れるリーク電流が小さく抑えられ、抵抗R1〜R6での電圧降下が抑えられる。よって、スイッチ回路A−1〜A−22の制御周期を短くし、その動作周波数を上げたとしても、セルV1〜V110の端子電圧をそのまま電圧保持回路Bに伝達することができ、精度よくセル電圧を測定することが可能になる。
【0024】
ここで、仮に、上述の図2に示すステップS08の後、ステップS01に処理を戻すものとした場合、配線H1〜H6の電圧は、グランド電位に近いセルV106〜V110の端子電圧から400V近傍のセルV1〜V5の端子電圧に急激に変化する。このため、この配線H1〜H6の浮遊容量に対して大振幅の電圧が印加され、過大な充放電電流が抵抗R1〜R6を流れることになる。しかしながら、この実施の形態1によれば、セルV1とセルV110との間を往復するようにしてセルが順次選択されるので、配線に大振幅の電圧が印加されることがなく、その充放電電流に起因した弊害を防止することが可能になる。
【0025】
(実施の形態2)
以下、この発明の実施の形態2を説明する。
上述の実施の形態1では、5個のセルを単位としてセル電圧を測定するように構成したが、この実施の形態では1個のセルを単位として測定する。図3に、この実施の形態2に係る電圧モニタ装置の構成を示す。同図に示すように、セルV1〜V110には、1対1でスイッチ回路a−1〜a−110が設けられる。また、各スイッチ回路は保護用の抵抗RA,RBとスイッチSWA,SWBから構成される。これら抵抗RA,RBおよびスイッチSWA,SWBは、前述の図1に示す抵抗R1〜R6およびスイッチSW1〜SW6に対応するものである。
【0026】
スイッチSWA,SWBは、配線HA,HBを介して電圧保持回路bに接続される。この電圧保持回路bは1個のコンデンサから構成され、このコンデンサは配線HAと配線HBとの間に接続される。このコンデンサの電極は、スイッチ回路cを介して差動増幅器dの入力部に接続され、差動増幅器dの出力部はA/D変換器eの入力部に接続される。これら電圧保持回路b、スイッチ回路c、差動増幅器d、およびA/D変換器eは、前述の図1に示す電圧保持回路B、スイッチ回路C、およびA/D変換器Eに対応する。
【0027】
この実施の形態2によれば、スイッチ回路a−1〜a−110により、セルV1〜V110の中から1個のセルが選択され、その端子電圧が電圧保持回路bに保持される。そして、この端子電圧が差動増幅器dにより差動増幅されてA/D変換器eに供給され、このセルの電圧を表すデータが得られる。スイッチ回路a−1〜a−110の制御については基本的には前述の実施の形態1に係るスイッチ回路A−1〜A−22と同様である。
この実施の形態2によれば、上述の実施の形態1に比較して、スイッチ回路a−nを切り替える際に配線HA,HBに加えられる電圧振幅を1個のセルの電圧にまで小さく抑えることが可能になる。従って配線HA,HBの浮遊容量の充放電電流による弊害を一層有効に防止することが可能になる。
【0028】
以上、この発明の実施の形態を説明したが、この発明は、上述の実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。例えば、上述の実施の形態では5個または1個の所定数のセルを単位としてスイッチ回路により選択するものとしたが、これに限定されることなく、どのような個数を選択の単位として設定してもよい。
また、図2に示すステップS08において、変数nの値が最大値「22」以下(n≦22)であるか否かを判断するものとしたが、変数nの値が、最大値「22」より小さい(n<22)か否かを判断するものとしてもよく、変数nと最大値との大小関係を判断するものであればよい。同様に、ステップS16において、変数nの値が最小値「1」以上であるか否かを判断するものとしたが、変数nの値が最小値「1」より大きい(n>1)か否かを判断するものとしてもよく、変数nと最小値との大小関係を判断するものであればよい。
【0029】
【発明の効果】
以上説明したように、この発明によれば、直列接続された複数個のセルのうち、所定数のセルの端子を選択し、このセルと同数のコンデンサによりセルの端子電圧を保持して測定するようにしたので、モニタすべき組電池のセル数が増加しても、装置構成の規模の増加を最小限に抑えることができる。
【図面の簡単な説明】
【図1】この発明の実施の形態に1係る電圧モニタ装置の構成を示す図である。
【図2】この発明の実施の形態1に係る電圧モニタ装置の動作の流れを示すフローチャートである。
【図3】この発明の実施の形態に2係る電圧モニタ装置の構成を示す図である。
【図4】従来技術に係る電圧モニタ装置の構成を示す図である。
【符号の説明】
A−1〜A−22,a−1〜a−110,C,c;スイッチ回路(第1のスイッチ回路)、B,b;電圧保持回路、CP1〜CP5;コンデンサ、D、d;差動増幅器D、E,e;A/D変換器、R1〜R6,RA,RB;抵抗、SW1〜SW6,SWA,SWB;スイッチ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a voltage monitoring device for monitoring terminal voltages of a plurality of cells (batteries) connected in series.
[0002]
[Prior art]
Conventionally, an assembled battery including a plurality of cells (batteries) has been used as a power source of an electric vehicle having an electric motor as a power source. As this cell, for example, a lithium ion battery is used, and a power supply voltage of about 400 V is obtained by connecting about 110 cells in series. When a plurality of cells are connected in series as described above, if there is variation in the characteristics of each cell, some cells may be in an overcharged state or an overdischarged state. In order to avoid such a situation, the voltage of each cell is monitored, and there is a voltage monitoring device for that purpose.
[0003]
By the way, in the case of an electric vehicle, a high-voltage power supply is used as described above, so it is necessary to ensure safety.When monitoring the voltage, safety measures such as electrically insulating the assembled battery from the battery are necessary. become. As a conventional technique for monitoring a cell voltage of an assembled battery while satisfying such demands, for example, a technique disclosed in Japanese Patent Application Laid-Open No. 2001-289886 is known.
[0004]
FIG. 4 shows a configuration of the technology disclosed in the above-mentioned publication. This prior art uses a so-called flying capacitor method, in which a plurality of cells (batteries) connected in series are divided into a plurality of battery blocks 110 to 11n (n is a natural number), and these battery blocks 110 to 11n In addition, switches 120 to 12n, capacitor blocks 130 to 13n, and switches 140 to 14n are provided, and a difference calculation circuit 150 and an AD converter 160 are provided in common for these switches 140 to 14n.
[0005]
According to this conventional technique, for example, when monitoring the voltage of the battery block 110, the switch 120 is turned on (closed) and the switch 140 is turned off (open), so that the capacitor block 130 Keep voltage. Then, when the switch 120 is turned off and the switch 140 is turned on, the voltage held in the capacitor block 130 is supplied to the difference calculation circuit 150 and the difference is amplified and the voltage of each cell is obtained. This voltage is converted from analog to digital by the AD converter 160 and output.
[0006]
[Problems to be solved by the invention]
By the way, according to the above-described conventional technology, the switches 120 to 12n, the capacitor blocks 130 to 13n, and the switches 140 to 14n are provided for the battery blocks 110 to 11n. There is a problem in that the device configuration increases in proportion to the scale and the device cost increases significantly. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a voltage monitoring device capable of minimizing an increase in the scale of the device configuration even when the number of cells of a battery pack to be monitored increases. Aim.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention has the following configurations.
That is, the voltage monitoring apparatus according to the first aspect of the present invention provides a first switch circuit (for example, to be described later) that selects one or more terminals of a predetermined number of cells among a plurality of cells connected in series. And the same number of capacitors as the cells selected by the first switch circuit. The capacitors hold the terminal voltages of the predetermined number of cells. A voltage holding circuit (e.g., a component corresponding to a voltage holding circuit B described later) that operates to complement the selection operation of the first switch circuit to transmit the terminal voltage held by the voltage holding circuit. A second switch circuit (for example, a component corresponding to a switch circuit C to be described later), and the terminal voltage is input from the voltage holding circuit via the second switch circuit to change the terminal voltage. A constant measuring circuit (e.g., components made of later-described differential amplifiers D and A / D converter E), characterized by comprising a.
[0008]
According to this configuration, of the plurality of cells connected in series, a predetermined number of cells selected by the first switch circuit are connected to the voltage holding circuit via the first switch circuit, and the terminal of the cell The voltage is held in the voltage holding circuit. When the terminal voltage of the cell is held in the voltage holding circuit, the first switch circuit is turned off and the second switch circuit is turned on. As a result, the terminal voltage of the cell held in the voltage holding circuit is supplied to the measuring circuit, and the terminal voltage of each cell is measured. Similarly, the first switch circuit selects a predetermined number of cells from the remaining cells, and the voltage holding circuit holds the terminal voltage of the cell to perform measurement. Here, even if the predetermined number of cells to be measured changes, the voltage holding circuit and the second switch circuit are shared. Therefore, even if the number of cells of the assembled battery increases, it is not necessary to increase the configuration scale of the voltage holding circuit and the second switch circuit, and it is possible to suppress an increase in the scale of the device.
[0009]
According to a second aspect of the present invention, in the voltage monitoring device according to the first aspect, the first switch circuit is different from a cell located at one end of the plurality of cells connected in series. Sequentially selecting the plurality of cells in units of the predetermined number of cells so as to reciprocate between cells located on the end side (for example, an element corresponding to the flow shown in FIG. 2 described later) Features.
According to this configuration, when the first switch circuit shifts a selection target (cell), a voltage change on a signal path from the first switch circuit to the measurement circuit via the voltage holding circuit and the second switch circuit. Can be kept small. Therefore, even if a stray capacitance exists in this signal path, the current caused by the voltage change is suppressed small, and the loss due to this current is also suppressed small.
[0010]
According to a third aspect of the present invention, in the voltage monitoring device according to the first or second aspect, the measurement circuit differentially amplifies a terminal voltage input through the second switch circuit. For example, a component corresponding to a differential amplifier D described later) and a conversion circuit that performs analog / digital conversion of a terminal voltage differentially amplified by the differential amplifier circuit (eg, a component corresponding to an A / D converter E described later) And characterized in that:
According to this configuration, a differential voltage between terminals is extracted by the differential amplifier, and a voltage of an analog amount of each cell is obtained. This voltage is converted into a digital quantity by the A / D converter and output as data representing the voltage of each cell.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1 shows a configuration of a voltage monitoring device based on the flying capacitor method according to the first embodiment. In the figure, a plurality of cells V1 to V110 connected in series constitute an assembled battery and are used as a power source for a power motor of an electric vehicle or the like. The voltage of one cell is, for example, about 3.6 V, and the voltage generated as a battery pack is about 400 V.
[0012]
Switch circuits A-1 to A-22 (first switch circuits) are connected to terminals of the cells V1 to V110. The switch circuits A-1 to A-22 are for simultaneously selecting terminals of five (predetermined number) cells among the cells V1 to V110, and are composed of a resistor group and a switch group. Specifically, in the case of the switch circuit A-1, resistors R1 to R6 each having one end connected to each terminal of the cells V1 to V5, and a switch having one electrode connected to the other end of each of the resistors R1 to R6. SW1 to SW6. As the switches SW1 to SW6, for example, photo MOS relays are used. The other switch circuits A-2 to A-22 are configured similarly to the switch circuit A-1. Hereinafter, for convenience of description, the resistance groups and the switch groups that constitute the switch circuits A-2 to A-22 are also referred to as the resistors R1 to R6 and the switches SW1 to SW6, similarly to the switch circuit A-1.
[0013]
A voltage holding circuit B is connected to the other electrodes of the switches SW1 to SW6 constituting the switch circuits A-1 to A-22 via wirings H1 to H6. The voltage holding circuit B has the same number of capacitors CP1 to CP5 as the number of cells selected by the switch circuits A-1 to A-22, and holds the terminal voltages of the predetermined number of cells by the capacitors CP1 to CP5. It is configured to Specifically, the electrodes of the capacitor CP1 are commonly connected to the electrodes of the switches SW1 and SW2 configuring the switch circuits A-1 to A-22 via a pair of wires H1 and H2. Similarly, the respective electrodes of the capacitors CP2 to CP5 are commonly connected to the respective electrodes of the switches SW2 to SW6 constituting the respective switch circuits A-1 to A-22 via the wirings H2 to H6. In other words, one voltage holding circuit B is provided for the plurality of switch circuits A-1 to A-22, and the voltage holding circuit B is shared by the plurality of switch circuits A-1 to A-22. It has become.
[0014]
The voltage holding circuit B is connected to the input of the differential amplifier D via a switch circuit C (second switch circuit). The switch circuit C is composed of a group of switches connected between the electrode terminals (that is, the wirings H1 to H6) of the capacitor forming the voltage holding circuit B and the input section of the differential amplifier D. Open / close by operating complementarily to the selection operation of 1 to A-22, and transmit the terminal voltage held in the voltage holding circuit B. The input of the A / D converter E is connected to the output of the differential amplifier D. The differential amplifier D and the A / D converter E constitute a measurement circuit (unsigned) for measuring the terminal voltage. Although not shown, a switch control circuit for controlling the opening and closing operations of the switch circuits A-1 to A-22 and the switch circuit C is provided.
[0015]
Next, the operation of the voltage monitoring device according to the first embodiment will be described with reference to the flow shown in FIG.
Note that the switch circuits A-1 to A-22 shown in FIG. 1 are represented as switch circuits An using a variable n (n; a natural number of 1 to 22).
In the initial state, all of the switch circuits A-1 to A-22 and the switch circuit C are controlled to an off state (open state), and the cells V1 to V110 and the differential amplifier D are electrically insulated. . From this initial state, the variable n is set to "1", and the control target is set to the switch circuit A-1 (n = 1) (step S01).
[0016]
Subsequently, the switch circuit A-1 set as a control target is controlled to be turned on (step S02). As a result, the terminal voltages of the cells V1 to V5 are supplied to the voltage holding circuit B via the resistors R1 to R6 and the switches SW1 to SW6 in the switch circuit A-1 and the wirings H1 to H6. Then, the capacitors CP1 to CP5 constituting the voltage holding circuit B are charged by the terminal voltages of the cells V1 to V5, and the terminal voltages are held by these capacitors. At this time, since the switch circuit C is in the off state, the cells V1 to V110 and the differential amplifier D are still electrically insulated from each other, and the terminal held by the voltage holding circuit B No voltage is supplied to the differential amplifier D side.
[0017]
Subsequently, the switch circuit A-1 is turned off (step S03). Thereby, the cells V1 to V110 and the voltage holding circuit B are electrically insulated. At this time, since the switch circuit C is also in the off state, the capacitors CP1 to CP5 constituting the voltage holding circuit B hold the terminal voltage in a floating state.
Subsequently, the switch circuit C is turned on (step S04). Thereby, each electrode of the capacitors CP1 to CP5 constituting the voltage holding circuit C is connected to the input section of the differential amplifier D via the switch circuit C. At this time, since the switch circuits A-1 to A-22 are controlled to be in the OFF state, electrical insulation between the cells V1 to V110 and the differential amplifier D is maintained.
[0018]
Subsequently, the differential amplifier D differentially amplifies the terminal voltage input from the voltage holding circuit B via the switch circuit C, and the A / D converter E converts the differentially amplified terminal voltage into analog / digital conversion. (Step S05). As a result, data representing the voltages of the cells V1 to V5 is output from the A / D converter E. Thereafter, the switch circuit C is controlled to be turned off (step S06). Thus, the voltages of the cells V1 to V5 were obtained. Subsequently, “2” is set to the variable n by adding “1” to the variable n and incrementing it (step S07), and whether or not the value of the variable n is equal to or less than the maximum value “22”. Is determined (step S08).
[0019]
Since “1” is set for the variable n, it is determined that the variable n is equal to or less than “22” (Step S08; YES). In this case, the process returns to step S02, and the switch circuit A-2 (n = 2) is newly set as a control target, and the same process as described above is executed. As a result, the terminal voltages of the cells 6 to V10 connected to the switch circuit A-2 are held in the voltage holding circuit B, supplied to the differential amplifier D via the switch circuit C, and the voltages of the cells V6 to V10 are changed. Measured. Thereafter, the variable n is sequentially incremented, the last switch circuit A-22 (n = 22) is set as a control target, and the voltages of the cells V106 to V110 are measured. Then, in step S07, the variable n is incremented, and the value of the variable n becomes "23". Therefore, it is determined that the value of the variable n is not equal to or less than "22" (step S08; NO), and the process exits from the series of loop processes in steps S02 to S08 described above.
[0020]
Subsequently, contrary to the above, the control target is sequentially set from the switch circuit A-22 to the switch circuit A-1, and the cell voltage is measured similarly (steps S09 to S16). That is, the variable n is set to "22" (step S09), the control object is set to the switch circuit A-22 (n = 22), and the switch circuit A-22 is controlled to be turned on (step S10). ). Thus, the terminal voltages of the cells V106 to V110 are supplied to the voltage holding circuit B via the switch circuit A-22 and the wirings H1 to H6, and the voltage holding circuit B holds the terminal voltages of the cells V106 to V110.
[0021]
Subsequently, the switch circuit A-22 is turned off (step S11), and the switch circuit C is turned on (step S12). As a result, each electrode of the capacitors CP1 to CP5 constituting the voltage holding circuit B is connected to the input section of the differential amplifier D via the switch circuit C. The differential amplifier D receives the terminal voltage from the voltage holding circuit B via the switch circuit C and differentially amplifies the voltage, and the A / D converter E performs analog / digital conversion (step S13). As a result, the A / D converter E outputs data representing the voltages of the cells V106 to V110. Thereafter, the switch circuit C is controlled to be turned off (step S06).
[0022]
Subsequently, “21” is set to the variable n by subtracting “1” from the variable n and decrementing it (step S15), and whether or not the value of the variable n is equal to or more than the minimum value “1” Is determined (step S16). Now, since “21” is set as the variable n, it is determined that the variable n is “1” or more (step S16; YES). In this case, the process returns to step S10, and the switch circuit A-21 (n = 21) is newly set as a control target, and the same process as described above is executed. Thereafter, the variable n is sequentially decremented, and when the last switch circuit A-1 (n = 1) is set as a control target and a predetermined measurement is performed, the variable n is incremented in step S16. As a result, the value of the variable n becomes “0”, which is smaller than “1” (Step S16; NO). In this case, the process returns to the first step S01, and thereafter, the same process is repeatedly executed.
[0023]
In the above-described series of operations, the switch circuits A-1 to A-22 connect the cell V1 located at one end to the cell V110 located at the other end of the plurality of cells V1 to V110 connected in series. The cells are sequentially selected in units of five (predetermined number) cells in such a way as to reciprocate between them. For this reason, when the switch circuits An are switched, the potential difference between the cells selected as the measurement target is always kept to a small value of about 18 V (3.6 V × 5) in this example. Therefore, a high voltage is not applied to the stray capacitances of the wirings H1 to H6 when the switch circuit is switched, and the leakage current flowing through the resistors R1 to R6 as charge / discharge current of the stray capacitances is suppressed to a small value. The voltage drop in is suppressed. Therefore, even if the control cycle of the switch circuits A-1 to A-22 is shortened and the operation frequency is increased, the terminal voltages of the cells V1 to V110 can be transmitted to the voltage holding circuit B as they are, and the The voltage can be measured.
[0024]
Here, if it is assumed that the process returns to step S01 after step S08 shown in FIG. 2 described above, the voltages of the wirings H1 to H6 are close to the terminal potential of the cells V106 to V110 near the ground potential by about 400 V. The voltage rapidly changes to the terminal voltages of the cells V1 to V5. Therefore, a voltage having a large amplitude is applied to the stray capacitance of the wirings H1 to H6, and an excessive charge / discharge current flows through the resistors R1 to R6. However, according to the first embodiment, the cells are sequentially selected so as to reciprocate between the cell V1 and the cell V110, so that a large-amplitude voltage is not applied to the wiring, and the charge / discharge operation is not performed. It is possible to prevent the adverse effects caused by the current.
[0025]
(Embodiment 2)
Hereinafter, a second embodiment of the present invention will be described.
In the first embodiment, the cell voltage is measured in units of five cells, but in this embodiment, the measurement is performed in units of one cell. FIG. 3 shows the configuration of the voltage monitoring device according to the second embodiment. As shown in the figure, cells V1 to V110 are provided with switch circuits a-1 to a-110 on a one-to-one basis. Each switch circuit includes protection resistors RA and RB and switches SWA and SWB. The resistors RA and RB and the switches SWA and SWB correspond to the resistors R1 to R6 and the switches SW1 to SW6 shown in FIG.
[0026]
Switches SWA and SWB are connected to voltage holding circuit b via wirings HA and HB. This voltage holding circuit b is composed of one capacitor, and this capacitor is connected between the wiring HA and the wiring HB. The electrode of this capacitor is connected to the input of the differential amplifier d via the switch circuit c, and the output of the differential amplifier d is connected to the input of the A / D converter e. The voltage holding circuit b, the switching circuit c, the differential amplifier d, and the A / D converter e correspond to the voltage holding circuit B, the switching circuit C, and the A / D converter E shown in FIG.
[0027]
According to the second embodiment, one cell is selected from cells V1 to V110 by switch circuits a-1 to a-110, and the terminal voltage is held in voltage holding circuit b. Then, the terminal voltage is differentially amplified by the differential amplifier d and supplied to the A / D converter e to obtain data representing the voltage of this cell. The control of the switch circuits a-1 to a-110 is basically the same as that of the switch circuits A-1 to A-22 according to the first embodiment.
According to the second embodiment, the voltage amplitude applied to the wirings HA and HB when switching the switch circuits an is suppressed to a voltage of one cell as compared with the first embodiment. Becomes possible. Therefore, it is possible to more effectively prevent the adverse effects due to the charge / discharge current of the floating capacitance of the wirings HA and HB.
[0028]
The embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and is included in the present invention even if there is a design change or the like without departing from the gist of the present invention. . For example, in the above-described embodiment, the selection is performed by the switch circuit in units of a predetermined number of 5 or 1 cells. However, the present invention is not limited to this. You may.
Further, in step S08 shown in FIG. 2, it is determined whether or not the value of the variable n is equal to or less than the maximum value “22” (n ≦ 22). It may be determined whether it is smaller (n <22) or not, as long as it determines the magnitude relationship between the variable n and the maximum value. Similarly, in step S16, it is determined whether or not the value of the variable n is equal to or greater than the minimum value “1”. However, whether or not the value of the variable n is greater than the minimum value “1” (n> 1) May be determined as long as it determines the magnitude relationship between the variable n and the minimum value.
[0029]
【The invention's effect】
As described above, according to the present invention, a terminal of a predetermined number of cells is selected from a plurality of cells connected in series, and the terminal voltage of the cells is held and measured by the same number of capacitors as the cells. Thus, even if the number of cells of the assembled battery to be monitored increases, the increase in the scale of the device configuration can be minimized.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a voltage monitoring device according to an embodiment of the present invention.
FIG. 2 is a flowchart showing an operation flow of the voltage monitoring device according to the first embodiment of the present invention.
FIG. 3 is a diagram showing a configuration of a voltage monitoring device according to Embodiment 2 of the present invention;
FIG. 4 is a diagram illustrating a configuration of a voltage monitoring device according to the related art.
[Explanation of symbols]
A-1 to A-22, a-1 to a-110, C, c; switch circuits (first switch circuits), B, b; voltage holding circuits, CP1 to CP5; capacitors, D, d; Amplifiers D, E, e; A / D converters, R1 to R6, RA, RB; resistors, SW1 to SW6, SWA, SWB; switches.

Claims (3)

直列接続された複数個のセルのうち、1または2以上の所定数のセルの端子を選択する第1のスイッチ回路と、
前記第1のスイッチ回路により選択されたセルと同数のコンデンサを有し、前記コンデンサにより前記所定数のセルの端子電圧を保持する電圧保持回路と、
前記第1のスイッチ回路の選択動作に対し相補的に差動して前記電圧保持回路に保持された前記端子電圧を伝達する第2のスイッチ回路と、
前記第2のスイッチ回路を介し前記電圧保持回路から前記端子電圧を入力して該端子電圧を測定する測定回路と、
を備えたことを特徴とする電圧モニタ装置。
A first switch circuit that selects one or more terminals of a predetermined number of cells among a plurality of cells connected in series;
A voltage holding circuit having the same number of capacitors as the cells selected by the first switch circuit, and holding a terminal voltage of the predetermined number of cells by the capacitors;
A second switch circuit that differentially complements the selection operation of the first switch circuit and transmits the terminal voltage held in the voltage holding circuit;
A measurement circuit that inputs the terminal voltage from the voltage holding circuit through the second switch circuit and measures the terminal voltage;
A voltage monitoring device comprising:
前記第1のスイッチ回路が、
直列接続された前記複数個のセルのうちの一端側に位置するセルと他端側に位置するセルとの間を往復するように、前記所定数のセルを単位として前記複数個のセルを順次的に選択することを特徴とする請求項1に記載された電圧モニタ装置。
The first switch circuit includes:
In order to reciprocate between the cell located at one end and the cell located at the other end of the plurality of cells connected in series, the plurality of cells are sequentially arranged in units of the predetermined number of cells. The voltage monitoring device according to claim 1, wherein the voltage monitoring device is selected in a selective manner.
前記測定回路が、
前記第2のスイッチ回路を介して入力した端子電圧を差分増幅する差分増幅回路と、
前記差分増幅回路により差分増幅された端子電圧をアナログ/デジタル変換する変換回路と、
を備えたことを特徴とする請求項1または2に記載された電圧モニタ装置。
The measurement circuit is
A differential amplifier circuit for differentially amplifying a terminal voltage input via the second switch circuit;
A conversion circuit for performing analog-to-digital conversion of the terminal voltage differentially amplified by the differential amplification circuit;
The voltage monitoring device according to claim 1, further comprising:
JP2002242312A 2002-08-22 2002-08-22 Voltage monitoring device Expired - Fee Related JP4083504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002242312A JP4083504B2 (en) 2002-08-22 2002-08-22 Voltage monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002242312A JP4083504B2 (en) 2002-08-22 2002-08-22 Voltage monitoring device

Publications (2)

Publication Number Publication Date
JP2004085208A true JP2004085208A (en) 2004-03-18
JP4083504B2 JP4083504B2 (en) 2008-04-30

Family

ID=32051430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002242312A Expired - Fee Related JP4083504B2 (en) 2002-08-22 2002-08-22 Voltage monitoring device

Country Status (1)

Country Link
JP (1) JP4083504B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153780A (en) * 2004-11-30 2006-06-15 Keihin Corp Cell voltage-measuring circuit
JP2006153744A (en) * 2004-11-30 2006-06-15 Honda Motor Co Ltd Voltage-measuring device
JP2008082731A (en) * 2006-09-26 2008-04-10 Toyota Industries Corp Laminated voltage detection device
US7550945B2 (en) 2004-10-06 2009-06-23 Sanken Electric Co., Ltd. Voltage measurement device
US7719284B2 (en) 2004-11-30 2010-05-18 Keihin Corporation Apparatus for measuring voltage
CN102735915A (en) * 2011-03-30 2012-10-17 株式会社京滨 Battery voltage detector and battery voltage detecting method
CN109017382A (en) * 2018-08-01 2018-12-18 奇瑞汽车股份有限公司 Battery management method, device and the storage medium of electric car

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101000872B1 (en) 2008-08-20 2010-12-14 넥스콘 테크놀러지 주식회사 a battery voltage sensing circuit
JP2012208067A (en) * 2011-03-30 2012-10-25 Keihin Corp Battery voltage detection device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7550945B2 (en) 2004-10-06 2009-06-23 Sanken Electric Co., Ltd. Voltage measurement device
JP2006153780A (en) * 2004-11-30 2006-06-15 Keihin Corp Cell voltage-measuring circuit
JP2006153744A (en) * 2004-11-30 2006-06-15 Honda Motor Co Ltd Voltage-measuring device
US7719284B2 (en) 2004-11-30 2010-05-18 Keihin Corporation Apparatus for measuring voltage
JP2008082731A (en) * 2006-09-26 2008-04-10 Toyota Industries Corp Laminated voltage detection device
CN102735915A (en) * 2011-03-30 2012-10-17 株式会社京滨 Battery voltage detector and battery voltage detecting method
CN109017382A (en) * 2018-08-01 2018-12-18 奇瑞汽车股份有限公司 Battery management method, device and the storage medium of electric car

Also Published As

Publication number Publication date
JP4083504B2 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
KR102446380B1 (en) Method and battery management sytem for cell balancing
JP4861396B2 (en) Conversion system with balanced cell current
US7821229B2 (en) System and method for balancing cells in a battery pack with selected external and internal bypass paths
US8489347B2 (en) Battery pack monitoring apparatus
US5914606A (en) Battery cell voltage monitor and method
JP4400536B2 (en) Capacity adjustment device and capacity adjustment method for battery pack
EP1798839B1 (en) Battery management system and method
JP5353914B2 (en) Battery voltage monitoring device
CN108333522B (en) Differential voltage measuring device
US20110121837A1 (en) Battery pack and method of sensing voltage of battery pack
JP2001289886A (en) Apparatus for measuring battery voltage
JP2007318950A (en) Cell voltage balancing device for secondary battery
US6147499A (en) Instrument for measuring voltages of cells
JP4083504B2 (en) Voltage monitoring device
US8680867B2 (en) Battery monitoring circuit and battery monitoring system
JP6404113B2 (en) Battery voltage measurement circuit
US10627453B2 (en) Integrated circuit with built-in status monitoring unit and power supply device provided with said integrated circuit
JP2014121139A (en) Shunt circuit, charging system and integrated circuit
KR102005397B1 (en) Apparatus for diagnosing high voltage secondary battery fuse
JP2013544485A (en) Independent cell balancing
JP6194841B2 (en) Equalizing discharge device
JP6532831B2 (en) Voltage monitoring circuit and voltage monitoring method
JP7467337B2 (en) Integrated circuit, battery monitoring device, and battery monitoring system
JP2004236474A (en) Charger and discharger of secondary battery
JP4186410B2 (en) Battery voltage detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees