JP2004085035A - Air conditioner and operation method of air conditioner - Google Patents

Air conditioner and operation method of air conditioner Download PDF

Info

Publication number
JP2004085035A
JP2004085035A JP2002244980A JP2002244980A JP2004085035A JP 2004085035 A JP2004085035 A JP 2004085035A JP 2002244980 A JP2002244980 A JP 2002244980A JP 2002244980 A JP2002244980 A JP 2002244980A JP 2004085035 A JP2004085035 A JP 2004085035A
Authority
JP
Japan
Prior art keywords
oil
refrigerant
pipe
compressor
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002244980A
Other languages
Japanese (ja)
Other versions
JP3863827B2 (en
Inventor
Ikuo Mizuno
水野 郁男
Makoto Misawa
三澤 誠
Hirohiko Nobuhara
延原 寛彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2002244980A priority Critical patent/JP3863827B2/en
Publication of JP2004085035A publication Critical patent/JP2004085035A/en
Application granted granted Critical
Publication of JP3863827B2 publication Critical patent/JP3863827B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/18Refrigerant conversion

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Compressor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner enhancing a peeling off property of an article to be washed from a pipe wall by dissolving a refrigerator oil (article to be washed) comprising a mineral oil by a refrigerator oil comprising a synthesized oil and carrying out washing of this existing pipe by a newly provided air conditioner itself not by an exclusive washing device. <P>SOLUTION: The air conditioner is provided with a compressor 2; and an oil separator 10 for separating the refrigeration oil in a coolant delivered from the compressor 2. The air conditioner is provided with a by-pass circuit (oil separator by-pass pipe 88, oil separator by-pass valve 51 and oil separator flowing-in control valve 52) in which the coolant by-passes the oil separator 10. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、空調機の施工時において行なわれる既設配管の洗浄方法と、該洗浄方法の実施に直接利用する空調機の構成に関するものである。
【0002】
【従来の技術】
従来の空調機では、CFC(クロロフルオロカ−ボン)やHCFC(ハイドロクロロフルオロカ−ボン)といった塩素系冷媒(以下、「従来冷媒」とする)が使用されていたが、近年では、分子中に含まれる塩素が成層圏でオゾン層を破壊するため、代替として非塩素系冷媒であるHFC(ハイドロフルオロカ−ボン)(以下、「新冷媒」とする)が使用されるようなった。
この新冷媒への代替に伴い、建物の既設配管を利用したままに空調機(室外機・室内機)を新設する際には、圧縮機に使用される冷凍機油が異なるため、既設配管内の従来冷媒用の冷凍機油の残留物を除去する洗浄作業が行なわれている。この洗浄作業は、空調機を設置する前段階において、専用の配管洗浄装置を用いて行なわれている。
【0003】
そして、この洗浄作業における被洗浄物、即ち、従来冷媒用の冷凍機油等の残留物は、新冷媒に対して溶解しないため(図7に示す新冷媒と被洗浄物の非相溶性)、従来は、「冷媒の流れの乱れにより配管壁面に付着した被洗浄物を剥ぎ取る」という理論の元、冷媒を気液二相流で流すことで液単相又はガス単相で流す場合よりも冷媒の流れの乱れを大きくし、既設配管の洗浄を行なっていた。
このように、従来は、既設配管を流れる冷媒の状態に着目した洗浄を行なっており、前述の配管洗浄装置では、冷媒を気液二相状態で既設配管内を流すべく、予め冷媒を配管洗浄装置内で気液二相状態とするための冷媒回路設計としていた。
【0004】
【発明が解決しようとする課題】
ところが、上述の既設配管は、建物内外に複雑に張り巡らされており、また、分岐点や角部も多く、冷媒の圧力変動が生じ易いものである。
このように、洗浄装置内で気液二相状態とされた冷媒を、その気液二相状態を維持したままに既設配管の全区間を流すことは実際上極めて困難であるといえるとともに、既設配管内を流れる冷媒の状態を厳密に把握することも実際上極めて困難である。このようなことから、完全な気液二相状態で洗浄が行なわれる情況を作るのは困難であるといえる。
【0005】
そこで、既設配管内を流れる冷媒の液体・気体といった相の状態に依存することなく、上記被洗浄物を確実に剥ぎ取ることで、既設配管内を効果的に行なう手段の検討を行い、発明者らは、新冷媒を使用する冷媒回路にて使用される圧縮機の冷凍機油と、上述の被洗浄物である従来冷媒用の冷凍機油の相溶性に着目した(図7に示す冷凍機油(合成油)と被洗浄物の相溶性)。
図8に示すグラフは、新冷媒(HFC系冷媒)の冷媒回路の圧縮機に用いられる合成油からなる冷凍機油と、従来冷媒(CFC系冷媒)の冷媒回路の圧縮機に用いられる鉱油からなる冷凍機油の相溶性の大小と、合成油からなる冷凍機油の温度の関係を示したグラフである。
このグラフから解るように、鉱油からなる冷凍機油は、全温度範囲において合成油からなる冷凍機油に溶解するものであり、また、合成油からなる冷凍機油の温度が高くなるほど、両者の相溶性は大きくなることがいえる。
本発明は、この両冷凍機油の相溶性に着目し、冷凍機油(合成油)にて鉱油からなる冷凍機油(被洗浄物)を溶解させることで、被洗浄物の管壁からの剥離性の向上、即ち、既設配管の洗浄性の向上を図るとともに、この既設配管の洗浄を専用の洗浄装置によらずに新設の空調機自体で行なおうとするものであり、この目的を実現すべく、既設配管内に流れる冷媒中に、敢えて、冷凍機油(合成油)を含有させる構成とした空調機を提案するものである。
【0006】
【課題を解決するための手段】
本発明の解決しようとする課題は以上のごとくであり、次に該課題を解決する為の手段を説明する。
即ち、請求項1に記載のごとく、圧縮機と、該圧縮機を吐出した冷媒中の冷凍機油を分離するオイルセパレータを備える空調機であって、冷媒が前記オイルセパレータをバイパスするためのバイパス回路を備えることである。
【0007】
また、請求項2に記載のごとく、圧縮機と、該圧縮機を吐出した冷媒中の冷凍機油を分離する一又は複数台のオイルセパレータを備える空調機であって、前記圧縮機吐出側とオイルセパレータを結ぶ吸入側配管に開閉弁を設けたことである。
【0008】
また、請求項3に記載のごとく、室外機配管を流れる圧縮機吐出後の冷媒に、圧縮機潤滑用の冷凍機油を添加する添加装置を設けたことである。
【0009】
また、請求項4に記載のごとく、空調機の施工時において、既設配管の洗浄を行う際の空調機の運転方法であって、既設配管内に新冷媒を通過させるとともに、前記新冷媒に、新冷媒用の冷凍機油を含有させることである。
【0010】
【発明の実施の形態】
次に、本発明の実施の形態を、図面に基づいて説明する。
図1は本発明を適用したエンジンヒートポンプの冷媒回路図、図2は制御装置及び作動装置類の構成を示すブロック図、図3はオイルセパレータでの制御の第一の実施形態の構成を示す図、図4は同じく第二の実施形態の構成を示す図、図5は同じく第三の実施形態の構成を示す図、図6は冷凍機油の添加装置による回路構成を示す図、図7は冷凍機油(合成油)と被洗浄物の相溶性を示す図、図8は冷凍機油の相溶性の大小と、温度の関係を示したグラフである。
【0011】
図1に示す冷媒回路図は、エンジン3で圧縮機2を駆動するエンジンヒートポンプの室外機1に備えた構成の実施例を示すものである。
尚、以下の説明では、エンジンヒートポンプの室外機1の実施例とするが、本発明は、「エンジンヒートポンプ」に限らず、「電気エアコン」等、空調機全般に適用可能である。
【0012】
図1において、空調機の室外機1は、空調を必要とする建物等の外に設置されるものであり、圧縮機2、エンジン廃熱回収器4、室外熱交換器5、アキュムレータ6、リキッドレシーバ7等の装置と、四方弁8、室外機配管81・82、オイルセパレータ10等の弁・配管・フィルタ類より冷媒回路を形成している。
前記圧縮機2は、クラッチ33によるエンジン3の駆動の断接により内部の回転体を駆動する構成としており、このクラッチ33は電磁クラッチより構成され、その断接は、室外機1を運転制御するコントローラ25により制御されるようにしている。
また、前記エンジン廃熱回収器4は、圧縮機2の吸入側、即ち、圧縮機2に吸入される冷媒の流れにおいて、圧縮機2の上流側に設けられている。
尚、このエンジン廃熱回収器4は、エンジンヒートポンプにて本発明を実施する場合において適用されるものであり、電気エアコンにおいて実施する際は、電熱ヒータ等によりエンジン廃熱回収器4と同等の機能を代替させる構成とするものである。
【0013】
また、室外機1には、ラジエータ11と、冷却水三方弁12、サーモスタット13、冷却水ポンプ14、排ガス熱交換器15、冷却水管16が備えられ、前記エンジン3とともに、エンジン冷却水回路を構成している。
【0014】
また、図1に示すごとく、前記アキュムレータ6の底部には、回収弁28を設けた排出管19が接続され、該排出管19の排出口側には、回収器27が設けられている。
また、アキュムレータ6内にはU字管83を設け、該U字管83の下部壁面には、通常運転時において、オイルセパレータ10では分離されなかった圧縮機2の冷凍機油を、圧縮機2へ吸入させるための油吸入孔24が設けられている。
【0015】
また、前記室外熱交換器5とリキッドレシーバ7を接続する室外機配管81には、暖房用膨張弁21が設けられ、暖房時において室外熱交換器5に流入する直前にて冷媒の圧力制御を行なうようにしている。
【0016】
また、アキュムレータ6のU字管83の一端は上方を開口してアキュムレータ6の容器40内の上部空間内に開放し、U字管83の他端は圧縮機2の吸入側に主吐出管84を介して通じており、該主吐出管84には吐出管電磁開閉弁29が設けられている。
また、前記主吐出管84おいて、吐出管電磁開閉弁29の設置箇所よりも圧縮機2側(下流側)には、副吐出管85の一端が接続されており、該副吐出管85の他端はアキュムレータ6の容器40内に挿入されて、該容器40の上部内空間に通じている。
また、これら主吐出管84と、副吐出管85には、それぞれ、オイルセパレータ10の底部と連通する配管10a・10bが接続されており、オイルセパレータ10にて分離された冷凍機油は、主吐出管84・副吐出管85に流れ、再び圧縮機2へと供給されるようになっている。
また、副吐出管85には、前記回収器27の上部内空間に通じるガス冷媒戻り管86が接続され、該ガス戻り管86には、戻り管電磁開閉弁94が設けられている。
【0017】
また、前記オイルセパレータ10と四方弁8とを結ぶ室外機配管77には、第一冷媒バイパス弁61を設けた第一冷媒バイパス管71が接続され、圧縮機2から吐出してオイルセパレータ10を通過した高温高圧ガス冷媒の一部を圧縮機2の吸入側の配管となる主吐出管84に導くようにしている。
【0018】
以上の室外機1の構成に対し、室内機30は、空調を必要とする建物内等に設置されるものであり、室内熱交換器31、室内機ファン30f、室内熱交換器用膨張弁32等を備え、既設配管20に接続される。尚、図においては、一機の室内機30を設置した構成としているが、台数については、特に限定されるものではなく、二以上の室内機を配設する構成であってもよい。
【0019】
図2は、エンジンヒートポンプの運転を制御する制御装置と、作動装置類の構成を示すものであり、制御装置であるコントローラ25は、電磁弁からなる暖房用膨張弁21、回収弁28、吐出管電磁開閉弁29、戻り管電磁開閉弁94、室内熱交換器用膨張弁32、冷却水三方弁12と接続され、これらの弁の開閉制御を行い、更には、冷却水ポンプ14のON・OFF、エンジン3の回転数の制御、前記四方弁8の流路切換や、前記クラッチ33の断接の制御を行なう構成としている。
また、これらに加え、後述する冷媒回路の実施形態に応じオイルセパレータバイパス三方弁50、オイルセパレータバイパス弁51、オイルセパレータ流入制御弁52・53、冷凍機油添加制御弁54の開度調整を行なう構成としている。
【0020】
そして、図1に示すごとく、以上の室外機1と室内機30とを、第一開閉弁17・第二開閉弁18にて既設配管20を介して連通し、該既設配管20に新冷媒を循環させるとともに、コントローラ25による四方弁8の制御により、循環冷媒の流路を変更することで、暖房運転及び冷房運転を行なう構成としている。
【0021】
以上のように構成したエンジンヒートポンプにおいて行なう暖房運転について説明すると、図1に示すごとく、圧縮機2により圧縮された冷媒は、高温高圧過熱蒸気の状態として、暖房方向に切換えられた四方弁8を経由して、室外機配管82を通り、第一開閉弁17から既設配管20内を通って室内熱交換器31へ送出される。室内熱交換器31においては、高温高圧過熱蒸気状態の冷媒から室内空気に熱が放出されて、冷媒は高圧液体状態となる。この熱放出により室内の暖房が行われる。
【0022】
高圧液体状態の冷媒は、第二開閉弁18を通過して室外機配管81へ戻り、リキッドレシーバ7、室外機配管72’・79を経由した後に、暖房用膨張弁21にて急激に膨張して、低温低圧蒸気状態の冷媒となり、室外熱交換器5を通過する間に、外気より熱を得て過熱状態の蒸気となる。
そして、過熱状態の蒸気は、四方弁8を経由し、エンジン廃熱回収器4にて蒸発してガス冷媒となってアキュムレータ6に流入し、圧縮機2に吸入され、上述の運転を繰り返す。
【0023】
次に、冷房運転について説明すると、図1に示すごとく、圧縮機2により圧縮された冷媒は、高温高圧過飽和蒸気の冷媒(高温高圧ガス冷媒)となり、オイルセパレータ10、四方弁8を経由して室外熱交換器5に圧送される。冷媒は、室外熱交換器5の冷却フィンを通過する間に室外ファン5fにより冷却されて、高温高圧過熱状態から高圧液相状態に液化する。
【0024】
室外熱交換器5にて高圧液相状態になった冷媒は、リキッドレシーバ7にて気液分離され、室外機配管81を通り、第二開閉弁18に接続された既設配管20内を通って、室内機30へ送られる。
この室内機30においては、室内熱交換器用膨張弁32にて減圧された後、室内熱交換器31にて室内空気から熱を吸収して蒸発することにより室内空気を冷却し、室内機ファン30fにより室内に送風して冷房効果をもたらすようにしている。
その後、室内熱交換器31にて蒸発した冷媒が、既設配管20内を通って、第一開閉弁17を通過し、四方弁8を経由して、アキュムレータ6に戻り、ガス冷媒となって圧縮機2に吸入され、上述の運転を繰り返す。
【0025】
そして、上記構成とすることにより、エンジンヒートポンプ自体で既設配管20の洗浄を行なえる構成となっているものであり、具体的には、エンジンヒートポンプの施工の際において、冷房運転又は暖房運転を行い、既設配管20内に冷媒を通過させ、冷媒及び冷媒中に含有させる冷凍機油(合成油)にて既設配管20に付着した被洗浄物を剥ぎ取り、剥ぎ取られた被洗浄物を冷媒とともにエンジン廃熱回収器4へ流し、該エンジン廃熱回収器4にて冷媒を蒸発させてガス冷媒とする一方、被洗浄物を液体又は固体(不溶解物)のままにしてアキュムレータ6へ流入させ、アキュムレータ6へ流入した被洗浄物を、排出管19より回収器27へ排出するものである。
以上のように、アキュムレータ6にて被洗浄物を分離し、該被洗浄物を回収器27にて回収する構成として、専用の配管洗浄装置によらず、エンジンヒートポンプ自体にて既設配管20の洗浄を行なう構成としている。
【0026】
以上が本発明を適用したエンジンヒートポンプの概要であって、以下では、本発明の課題とするところ、即ち、既設配管20に新冷媒用の冷凍機油(合成油)を含有させることにより、空調機の施工時において行なう既設配管20の洗浄をより確実にするための構成について説明する。
既設配管20内に新冷媒用の冷凍機油(合成油)を含有させる手段としては、「オイルセパレータのバイパス制御」と、「冷凍機油の添加装置による添加量制御」の二形態があり、以下これらについて説明する。
【0027】
(1)「オイルセパレータのバイパス制御」
本制御では、オイルセパレータ10での冷凍機油の分離に着目し、冷媒がオイルセパレータ10をバイパスするためのバイパス回路を形成するとともに、冷媒のオイルセパレータへの吸入量を制御することで、オイルセパレータ10よりも下流側となる既設配管20内を流れる冷媒中の冷凍機油の含有量を制御する、つまりは、冷媒中に冷凍機油(合成油)を敢えて含有させ、冷凍機油(合成油)の鉱油の冷凍機油に対する溶解性の向上を図り、既設配管20の洗浄性の向上を図ろうとするものである。
【0028】
このバイパス制御を行なう実施形態には、以下に述べる三つの実施の形態があり、第一の実施形態として、図3に示す「オイルセパレータバイパス三方弁50の制御によるオイルセパレータ10のバイパス制御」、第二の実施形態として、図4に示す「オイルセパレータバイパス弁51及びオイルセパレータ流入制御弁52の制御によるオイルセパレータ10のバイパス制御」、第三の実施形態として、図5に示す「一又は複数台のオイルセパレータ10のバイパス制御」である。
【0029】
(1−1)第一の実施形態
まず、第一の実施形態について説明すると、図3に示すごとく、圧縮機2吐出側と、四方弁8との間の室外機配管77にオイルセパレータ10を設け、オイルセパレータ10の吸入側配管87aと、吐出側配管87bとをオイルセパレータバイパス管88にて通じさせるとともに、該オイルセパレータバイパス管88と前記吸入側配管87aの接続部に、オイルセパレータバイパス三方弁50を設ける構成とするものである。
この第一の実施形態では、上述の洗浄運転時において、オイルセパレータバイパス三方弁50による冷媒の流れ方向の制御により、オイルセパレータバイパス管88から室外機配管77に流れる回路、即ち、オイルセパレータ10に流入せずにバイパスして四方弁8へ流れる回路を形成するものである。
このように、冷媒をバイパスさせることにより、冷媒は、冷凍機油(合成油)を含有した上で、即ち、高い洗浄力を持った上で既設配管20へ流入することになり、冷凍機油(合成油)の多い状態で既設配管20内の被洗浄物を溶かすように剥ぎ取ることで、管壁の洗浄を確実に行なうことができる。
尚、オイルセパレータバイパス三方弁50については、分流式として、完全にオイルセパレータ10をバイパスする構成、又は、混合式として、一部の冷媒をバイパスさせる構成のいずれの構成であってもよく、特に限定されるものでない。
【0030】
(1−2)第二の実施形態
次に、第二の実施形態について説明すると、図4に示すごとく、圧縮機2吐出側と、四方弁8との間の室外機配管77にオイルセパレータ10を備え、オイルセパレータ10の吸入側配管87cと、吐出側配管87dとをオイルセパレータバイパス管88にて通じさせるとともに、該オイルセパレータバイパス管88にオイルセパレータバイパス弁51を、前記吸入側配管87cにオイルセパレータ流入制御弁52を設ける構成とするものである。
この第二の実施形態では、上述の洗浄運転時において、オイルセパレータバイパス弁51及びオイルセパレータ流入制御弁52の開閉制御により、オイルセパレータバイパス管88から室外機配管77に流れる回路、即ち、オイルセパレータ10に流入せずにバイパスし、四方弁8へ流れる回路を形成し、上記第一の実施形態と同様、冷凍機油を含有することで洗浄力の高められた冷媒を既設配管20へ流すものである。
【0031】
(1−3)第三の実施形態
次に、第三の実施形態について説明すると、図5に示すごとく、圧縮機2吐出側と、四方弁8との間の室外機配管77に対して、一又は複数台のオイルセパレータ10A・10B・・・の吸入側配管87e・87e・・・、及び吐出側配管87f・87f・・・を並列に接続するとともに、各オイルセパレータ10A・10B・・・における吸入側配管87e・87e・・・、又は吐出側配管87f・87f・・・にオイルセパレータ流入制御弁53a・53b・・・を、また、室外機配管77において、各吸入側配管87eとの接続点と、吐出側配管87fとの接続点との間に、オイルセパレータバイパス弁51aを設ける構成とするものである。
この第三の実施形態では、冷凍機油を含んだ冷媒を通過させるオイルセパレータ10A・10B・・・の台数を制御するで、これらオイルセパレータ10A・10B・・・通過後の冷媒における冷凍機油の含有量を制御し、上記第一の実施形態と同様、冷凍機油を含有することで洗浄力の高められた冷媒を既設配管20へ流すものである。
具体的には、上述の洗浄運転時においては、コントローラ25が、オイルセパレータ10A・10B・・・を通過させる台数を減らすようにオイルセパレータ流入制御弁53a・53b・・・を閉じるとともに、オイルセパレータバイパス弁51a・51a・・・を開く制御を行い、既設配管20へ冷凍機油(合成油)の含有量の多い冷媒を送る一方、通常運転時においては、コントローラ25が、閉じていたオイルセパレータ流入制御弁53a・53b・・・を開くとともに、オイルセパレータバイパス弁51a・51a・・・を閉じることにより、冷媒がより多くの台数のオイルセパレータ10A・10B・・・を通過するようにすることで、確実に冷凍機油の分離を行なうものである。
尚、オイルセパレータ10を一台とする場合には、オイルセパレータ10を完全にバイパスさせる形態と同様の形態となる。
【0032】
(2)「冷凍機油の添加装置による添加量制御」
本制御では、新冷媒用の冷凍機油(合成油)の被洗浄物との相溶性に着目し、室外機配管を流れる圧縮機吐出後の冷媒に、圧縮機潤滑用の冷凍機油の添加する添加手段を設け、圧縮機2吐出後であって、オイルセパレータ10通過後の冷媒(新冷媒)に、敢えて、新冷媒用の冷凍機油を添加して、冷媒中に冷凍機油を含有させることで、添加された冷凍機油による被洗浄物の溶解性能、即ち、洗浄力を元に、既設配管20の配管洗浄を行なうことを目的とするものである。
この制御を行なうべく、図6に示すごとく、圧縮機2吐出側と、既設配管20への冷媒の流入側となる開閉弁、即ち、第一開閉弁17又は第二開閉弁18との間の回路に、冷凍機油添加制御弁54を介して、新冷媒用の冷凍機油を充填した容器である添加装置55を接続した構成とするものである。
以上の構成で、上述の洗浄運転時においては、コントローラ25が、冷凍機油添加制御弁54の開度調整を行い、既設配管20へ向かう冷媒に、敢えて、添加装置55より冷凍機油を添加することで、冷媒中に冷凍機油を含有させ、この冷凍機油(合成油)を含有した冷媒にて、既設配管20内を洗浄する。そして、コントローラ25は、所定時間経過後、又は、添加装置55内の冷凍機油の残量がなくなったのを確認後、洗浄運転の終了を決定し、上記冷凍機油添加制御弁54を閉じる。
尚、添加装置55に所謂「点滴機構」を設けることで、冷凍機油添加制御弁54を用いない構成とすることも可能である。
【0033】
以上のようにして、冷凍機油(合成油)を冷媒に含有させ、冷媒の洗浄力を高めた上で、既設配管20を洗浄することが可能となるものであるが、本構成においては、圧縮機2の潤滑油である冷凍機油と全く同一の組成の冷凍機油を添加して洗浄力を高めるものであり、本発明を適用する空調機にて必須の流体(潤滑油)を添加している点で、従来とは一線を画するものである。即ち、他の組成の添加物を加えた場合に生じ得る既設配管20内での予期せぬ化学変化や、冷凍サイクルの損傷といった不具合が生じる余地がないといった点で、特に有効な洗浄方法となるものである。
【0034】
【発明の効果】
本発明は以上のごとく構成したので、次のような効果を奏するのである。
即ち、請求項1に記載のごとく、圧縮機と、該圧縮機を吐出した冷媒中の冷凍機油を分離するオイルセパレータを備える空調機であって、冷媒が前記オイルセパレータをバイパスするためのバイパス回路を備えるので、冷媒はオイルセパレータをバイパスし、冷凍機油(合成油)を含有した上で、即ち、高い洗浄力を持った上で既設配管へ流入し、冷凍機油(合成油)の多い状態で既設配管内の被洗浄物を溶かすように剥ぎ取ることから、管壁の洗浄が確実に行なわれる。
【0035】
また、請求項2に記載のごとく、圧縮機と、該圧縮機を吐出した冷媒中の冷凍機油を分離する一又は複数台のオイルセパレータを備える空調機であって、前記圧縮機吐出側とオイルセパレータを結ぶ吸入側配管に開閉弁を設けたので、冷媒のオイルセパレータへの吸入量の制御が可能となり、冷媒を冷凍機油(合成油)を含有した上で、即ち、高い洗浄力を持った上で既設配管へ流入させ、冷凍機油(合成油)の多い状態で既設配管内の被洗浄物を溶かすように剥ぎ取り、管壁の洗浄を確実に行なうことができる。
【0036】
また、請求項3に記載のごとく、室外機配管を流れる圧縮機吐出後の冷媒に、圧縮機潤滑用の冷凍機油を添加する添加装置を設けたので、冷凍機油(合成油)を冷媒に含有させ、冷媒の洗浄力を高めた上で、既設配管内を洗浄することが可能となる。
【0037】
また、請求項4に記載のごとく、空調機の施工時において、既設配管の洗浄を行う際の空調機の運転方法であって、既設配管内に新冷媒を通過させるとともに、前記新冷媒に、新冷媒用の冷凍機油を含有させるので、合成油からなる冷凍機油にて鉱油からなる従来冷媒用の冷凍機油(被洗浄物)を溶解させることができ、既設配管の洗浄性の向上が図られる。
【図面の簡単な説明】
【図1】本発明を適用したエンジンヒートポンプの冷媒回路図である。
【図2】制御装置及び作動装置類の構成を示すブロック図である。
【図3】オイルセパレータでの制御の第一の実施形態の構成を示す図である。
【図4】同じく第二の実施形態の構成を示す図である。
【図5】同じく第三の実施形態の構成を示す図である。
【図6】冷凍機油の添加装置による回路構成を示す図である。
【図7】冷凍機油(合成油)と被洗浄物の相溶性を示す図である。
【図8】冷凍機油の相溶性の大小と、温度の関係を示したグラフである。
【符号の説明】
2  圧縮機
10 オイルセパレータ
51 オイルセパレータバイパス弁
52 オイルセパレータ流入制御弁
88 オイルセパレータバイパス管
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for cleaning existing pipes performed at the time of construction of an air conditioner, and a configuration of an air conditioner directly used for implementing the cleaning method.
[0002]
[Prior art]
In conventional air conditioners, chlorine-based refrigerants (hereinafter referred to as “conventional refrigerants”) such as CFC (chlorofluorocarbon) and HCFC (hydrochlorofluorocarbon) have been used. HFC (hydrofluorocarbon) (hereinafter referred to as "new refrigerant"), which is a non-chlorinated refrigerant, has been used as an alternative because chlorine contained in water causes destruction of the ozone layer in the stratosphere.
When installing an air conditioner (outdoor unit / indoor unit) while using the existing piping of the building with the replacement of this new refrigerant, the refrigerating machine oil used for the compressor is different. 2. Description of the Related Art Conventionally, a cleaning operation for removing a refrigerating machine oil residue for a refrigerant has been performed. This cleaning operation is performed using a dedicated pipe cleaning device before the air conditioner is installed.
[0003]
The object to be washed in this washing operation, that is, the residue such as the refrigerating machine oil for the conventional refrigerant does not dissolve in the new refrigerant (incompatibility between the new refrigerant and the object to be cleaned shown in FIG. 7). Is based on the theory that "the object to be cleaned adhered to the pipe wall surface is peeled off due to the turbulence of the refrigerant flow", and the refrigerant flows in a gas-liquid two-phase flow rather than in a liquid single phase or gas single phase. The turbulence of the flow was increased, and the existing piping was cleaned.
As described above, conventionally, cleaning is performed by focusing on the state of the refrigerant flowing through the existing pipe. In the above-described pipe cleaning apparatus, the refrigerant is previously cleaned by pipe cleaning so that the refrigerant flows in the existing pipe in a gas-liquid two-phase state. The refrigerant circuit was designed to be in a gas-liquid two-phase state in the device.
[0004]
[Problems to be solved by the invention]
However, the above-mentioned existing piping is extended in and out of the building in a complicated manner, and has many branch points and corners, so that the refrigerant pressure tends to fluctuate.
In this way, it can be said that it is practically extremely difficult to flow the refrigerant in the gas-liquid two-phase state in the cleaning device through the entire section of the existing pipe while maintaining the gas-liquid two-phase state, and It is actually extremely difficult to accurately grasp the state of the refrigerant flowing in the pipe. Thus, it can be said that it is difficult to create a situation in which cleaning is performed in a complete gas-liquid two-phase state.
[0005]
In view of the above, the present inventor has studied means for effectively removing the object to be cleaned without depending on the state of the liquid or gas phase of the refrigerant flowing in the existing pipe, thereby effectively performing the inside of the existing pipe. Focused on the compatibility between the refrigerating machine oil of the compressor used in the refrigerant circuit using the new refrigerant and the refrigerating machine oil for the conventional refrigerant, which is the above-described cleaning target (see the refrigerating machine oil shown in FIG. Oil) and the compatibility of the object to be cleaned).
The graph shown in FIG. 8 is composed of a refrigerating machine oil composed of a synthetic oil used in a compressor of a refrigerant circuit of a new refrigerant (HFC-based refrigerant) and a mineral oil used in a compressor of a refrigerant circuit of a conventional refrigerant (CFC-based refrigerant). 4 is a graph showing the relationship between the degree of compatibility of a refrigerating machine oil and the temperature of a refrigerating machine oil composed of a synthetic oil.
As can be seen from this graph, the refrigerating machine oil composed of mineral oil is dissolved in the refrigerating machine oil composed of synthetic oil over the entire temperature range, and as the temperature of the refrigerating machine oil composed of synthetic oil increases, the compatibility between the two increases. It can be said that it grows.
The present invention focuses on the compatibility of the two refrigerating machine oils, and dissolves the refrigerating machine oil (substance to be cleaned) composed of mineral oil in the refrigerating machine oil (synthetic oil), thereby removing the releasable substance from the pipe wall. In other words, while improving the cleanability of the existing pipes, the existing pipes are to be cleaned by the newly installed air conditioner itself without using a dedicated cleaning device. The present invention proposes an air conditioner having a configuration in which refrigerant oil (synthetic oil) is intentionally contained in a refrigerant flowing in an existing pipe.
[0006]
[Means for Solving the Problems]
The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.
That is, as in claim 1, an air conditioner including a compressor and an oil separator that separates refrigerating machine oil in the refrigerant discharged from the compressor, wherein a bypass circuit for the refrigerant to bypass the oil separator. It is to have.
[0007]
Further, as described in claim 2, an air conditioner including a compressor, and one or more oil separators for separating refrigerating machine oil in the refrigerant discharged from the compressor, wherein the compressor discharge side and the oil That is, an on-off valve is provided on the suction side pipe connecting the separator.
[0008]
According to a third aspect of the present invention, there is provided an addition device for adding a refrigerating machine oil for lubricating the compressor to the refrigerant discharged from the compressor flowing through the outdoor unit piping.
[0009]
Further, as described in claim 4, during the construction of the air conditioner, the operation method of the air conditioner when cleaning the existing pipe, and while passing a new refrigerant in the existing pipe, the new refrigerant, It is to contain refrigerating machine oil for new refrigerant.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a refrigerant circuit diagram of an engine heat pump to which the present invention is applied, FIG. 2 is a block diagram showing a configuration of a control device and operating devices, and FIG. 3 is a diagram showing a configuration of a first embodiment of control by an oil separator. , FIG. 4 is a diagram showing the configuration of the second embodiment, FIG. 5 is a diagram showing the configuration of the third embodiment, FIG. 6 is a diagram showing the circuit configuration of the refrigerating machine oil adding device, and FIG. FIG. 8 is a graph showing the compatibility between a machine oil (synthetic oil) and an object to be cleaned, and FIG. 8 is a graph showing the relationship between the degree of the compatibility of a refrigerating machine oil and the temperature.
[0011]
The refrigerant circuit diagram shown in FIG. 1 shows an embodiment of a configuration provided in an outdoor unit 1 of an engine heat pump that drives a compressor 2 by an engine 3.
In the following description, an embodiment of the outdoor unit 1 of the engine heat pump will be described. However, the present invention is not limited to the “engine heat pump”, but can be applied to all air conditioners such as an “electric air conditioner”.
[0012]
In FIG. 1, an outdoor unit 1 of an air conditioner is installed outside a building or the like that requires air conditioning, and includes a compressor 2, an engine waste heat recovery unit 4, an outdoor heat exchanger 5, an accumulator 6, a liquid A refrigerant circuit is formed by devices such as the receiver 7 and valves, piping and filters such as the four-way valve 8, the outdoor unit piping 81 and 82, and the oil separator 10.
The compressor 2 is configured to drive an internal rotating body by connecting and disconnecting driving of the engine 3 by a clutch 33. The clutch 33 is configured by an electromagnetic clutch, and the connection and disconnection controls the operation of the outdoor unit 1. It is controlled by the controller 25.
Further, the engine waste heat recovery device 4 is provided on the suction side of the compressor 2, that is, on the upstream side of the compressor 2 in the flow of the refrigerant sucked into the compressor 2.
The engine waste heat recovery unit 4 is applied when the present invention is implemented by an engine heat pump. When the engine waste heat recovery unit 4 is implemented in an electric air conditioner, it is equivalent to the engine waste heat recovery unit 4 by an electric heater or the like. The configuration is such that the function is substituted.
[0013]
Further, the outdoor unit 1 is provided with a radiator 11, a cooling water three-way valve 12, a thermostat 13, a cooling water pump 14, an exhaust gas heat exchanger 15, and a cooling water pipe 16, and together with the engine 3, constitutes an engine cooling water circuit. are doing.
[0014]
As shown in FIG. 1, a discharge pipe 19 provided with a recovery valve 28 is connected to the bottom of the accumulator 6, and a recovery device 27 is provided on the discharge port side of the discharge pipe 19.
Further, a U-shaped pipe 83 is provided in the accumulator 6, and the refrigerating machine oil of the compressor 2 which is not separated by the oil separator 10 during the normal operation is supplied to the compressor 2 on a lower wall surface of the U-shaped pipe 83. An oil suction hole 24 for sucking is provided.
[0015]
The outdoor unit pipe 81 connecting the outdoor heat exchanger 5 and the liquid receiver 7 is provided with a heating expansion valve 21 to control the pressure of the refrigerant immediately before flowing into the outdoor heat exchanger 5 during heating. I do it.
[0016]
One end of the U-shaped pipe 83 of the accumulator 6 opens upward and opens into the upper space in the container 40 of the accumulator 6, and the other end of the U-shaped pipe 83 is connected to the main discharge pipe 84 on the suction side of the compressor 2. The main discharge pipe 84 is provided with a discharge pipe solenoid valve 29.
In the main discharge pipe 84, one end of a sub-discharge pipe 85 is connected to the compressor 2 side (downstream side) of the installation location of the discharge pipe electromagnetic on-off valve 29. The other end is inserted into the container 40 of the accumulator 6 and communicates with the upper internal space of the container 40.
The main discharge pipe 84 and the sub discharge pipe 85 are connected to pipes 10a and 10b communicating with the bottom of the oil separator 10, respectively. It flows through the pipe 84 and the sub-discharge pipe 85 and is supplied to the compressor 2 again.
Further, a gas refrigerant return pipe 86 communicating with the internal space above the recovery unit 27 is connected to the sub-discharge pipe 85, and the gas return pipe 86 is provided with a return pipe electromagnetic on-off valve 94.
[0017]
In addition, a first refrigerant bypass pipe 71 provided with a first refrigerant bypass valve 61 is connected to an outdoor unit pipe 77 connecting the oil separator 10 and the four-way valve 8, and is discharged from the compressor 2 to remove the oil separator 10. A part of the high-temperature and high-pressure gas refrigerant that has passed is guided to a main discharge pipe 84 which is a pipe on the suction side of the compressor 2.
[0018]
In contrast to the above configuration of the outdoor unit 1, the indoor unit 30 is installed in a building or the like that requires air conditioning, and includes the indoor heat exchanger 31, the indoor unit fan 30f, the expansion valve 32 for the indoor heat exchanger, and the like. And is connected to the existing pipe 20. Although one indoor unit 30 is installed in the figure, the number of indoor units is not particularly limited, and a configuration in which two or more indoor units are provided may be used.
[0019]
FIG. 2 shows the configuration of a control device for controlling the operation of the engine heat pump and the operating devices. The controller 25, which is a control device, includes a heating expansion valve 21, an electromagnetic valve, a recovery valve 28, and a discharge pipe. It is connected to the solenoid on-off valve 29, the return pipe solenoid on-off valve 94, the indoor heat exchanger expansion valve 32, and the cooling water three-way valve 12, and controls the opening and closing of these valves. Control of the rotation speed of the engine 3, switching of the flow path of the four-way valve 8, and control of connection and disconnection of the clutch 33 are performed.
In addition, in addition to the above, the opening degree of the oil separator bypass three-way valve 50, the oil separator bypass valve 51, the oil separator inflow control valves 52 and 53, and the refrigerating machine oil addition control valve 54 is adjusted according to the embodiment of the refrigerant circuit described later. And
[0020]
Then, as shown in FIG. 1, the outdoor unit 1 and the indoor unit 30 are communicated via the existing pipe 20 by the first on-off valve 17 and the second on-off valve 18, and the new refrigerant is supplied to the existing pipe 20. In addition to the circulation, the controller 25 controls the four-way valve 8 to change the flow path of the circulating refrigerant, thereby performing the heating operation and the cooling operation.
[0021]
The heating operation performed in the engine heat pump configured as described above will be described. As shown in FIG. 1, the refrigerant compressed by the compressor 2 sets the four-way valve 8 switched to the heating direction as a state of high-temperature and high-pressure superheated steam. Via the outdoor unit pipe 82, the air is sent from the first on-off valve 17 to the indoor heat exchanger 31 through the existing pipe 20. In the indoor heat exchanger 31, heat is released from the refrigerant in the high-temperature and high-pressure superheated vapor state to the indoor air, and the refrigerant becomes a high-pressure liquid state. This heat release heats the room.
[0022]
The refrigerant in the high-pressure liquid state passes through the second on-off valve 18, returns to the outdoor unit piping 81, passes through the liquid receiver 7, and the outdoor unit piping 72 ′ / 79, and then rapidly expands at the heating expansion valve 21. As a result, the refrigerant becomes a low-temperature low-pressure vapor state refrigerant and, while passing through the outdoor heat exchanger 5, obtains heat from the outside air to become a superheated vapor state.
Then, the superheated steam passes through the four-way valve 8 and evaporates in the engine waste heat recovery device 4 to become a gas refrigerant, flows into the accumulator 6, is sucked into the compressor 2, and repeats the above-described operation.
[0023]
Next, the cooling operation will be described. As shown in FIG. 1, the refrigerant compressed by the compressor 2 becomes a high-temperature high-pressure supersaturated vapor refrigerant (high-temperature high-pressure gas refrigerant), and passes through the oil separator 10 and the four-way valve 8. The pressure is sent to the outdoor heat exchanger 5. The refrigerant is cooled by the outdoor fan 5f while passing through the cooling fins of the outdoor heat exchanger 5, and liquefies from a high-temperature high-pressure superheated state to a high-pressure liquid phase state.
[0024]
The refrigerant in the high-pressure liquid phase state in the outdoor heat exchanger 5 is separated into gas and liquid by the liquid receiver 7, passes through the outdoor unit pipe 81, passes through the existing pipe 20 connected to the second on-off valve 18, and then passes through. , To the indoor unit 30.
In the indoor unit 30, after the pressure is reduced by the indoor heat exchanger expansion valve 32, the indoor heat exchanger 31 absorbs heat from the indoor air and evaporates to cool the indoor air. The air is blown indoors to provide a cooling effect.
Thereafter, the refrigerant evaporated in the indoor heat exchanger 31 passes through the existing pipe 20, passes through the first on-off valve 17, returns to the accumulator 6 via the four-way valve 8, and is compressed as a gas refrigerant. It is sucked into the machine 2 and the above operation is repeated.
[0025]
And, by adopting the above configuration, the existing pipe 20 can be cleaned by the engine heat pump itself. Specifically, when the engine heat pump is installed, the cooling operation or the heating operation is performed. The refrigerant is passed through the existing pipe 20, and the object to be cleaned attached to the existing pipe 20 is peeled off with the refrigerant and refrigeration oil (synthetic oil) contained in the refrigerant. It flows into the waste heat recovery unit 4 and evaporates the refrigerant in the engine waste heat recovery unit 4 to make it a gas refrigerant, while flowing the object to be cleaned into the accumulator 6 while keeping it as a liquid or a solid (insoluble). The object to be cleaned that has flowed into the accumulator 6 is discharged from the discharge pipe 19 to the collection device 27.
As described above, the object to be cleaned is separated by the accumulator 6 and the object to be cleaned is collected by the collection device 27. The existing heat pipe 20 is cleaned by the engine heat pump itself without using a dedicated pipe cleaning device. Is performed.
[0026]
The above is the outline of the engine heat pump to which the present invention is applied. In the following, the subject of the present invention, that is, by making the existing pipe 20 contain refrigerating machine oil (synthetic oil) for a new refrigerant, A configuration for more reliably cleaning the existing pipe 20 at the time of construction will be described.
As means for incorporating the refrigerating machine oil (synthetic oil) for the new refrigerant into the existing pipe 20, there are two forms, "bypass control of the oil separator" and "control of the amount of addition by the refrigerating machine oil adding device". Will be described.
[0027]
(1) "Bypass control of oil separator"
This control focuses on the separation of the refrigerating machine oil in the oil separator 10, forms a bypass circuit for the refrigerant to bypass the oil separator 10, and controls the amount of the refrigerant sucked into the oil separator 10. Controls the content of refrigerating machine oil in the refrigerant flowing in the existing pipe 20 downstream of the pipe 10, that is, the refrigerating machine oil (synthetic oil) is intentionally included in the refrigerant, and the mineral oil of the refrigerating machine oil (synthetic oil) is controlled. Of the present invention is intended to improve the solubility in the refrigerating machine oil and to improve the cleanability of the existing pipe 20.
[0028]
There are three embodiments described below in the embodiment for performing this bypass control. As the first embodiment, “bypass control of the oil separator 10 by controlling the oil separator bypass three-way valve 50” shown in FIG. As a second embodiment, “bypass control of the oil separator 10 by controlling the oil separator bypass valve 51 and the oil separator inflow control valve 52” shown in FIG. 4, and as a third embodiment, “one or more Control of the oil separator 10 of the table. "
[0029]
(1-1) First Embodiment First, a first embodiment will be described. As shown in FIG. 3, an oil separator 10 is provided in an outdoor unit pipe 77 between a compressor 2 discharge side and a four-way valve 8. An oil separator bypass pipe 88a connects the suction side pipe 87a and the discharge side pipe 87b of the oil separator 10 with an oil separator bypass pipe 88a. In this configuration, a valve 50 is provided.
In the first embodiment, during the above-described cleaning operation, the circuit flowing from the oil separator bypass pipe 88 to the outdoor unit pipe 77, that is, the oil separator 10, is controlled by controlling the flow direction of the refrigerant by the oil separator bypass three-way valve 50. This forms a circuit that flows to the four-way valve 8 by bypassing without flowing.
In this way, by bypassing the refrigerant, the refrigerant flows into the existing pipe 20 after containing the refrigerating machine oil (synthetic oil), that is, having a high detergency, and the refrigerating machine oil (synthetic oil) By peeling off the object to be cleaned in the existing pipe 20 in a state of a large amount of oil, the pipe wall can be reliably cleaned.
The oil separator bypass three-way valve 50 may be of a split flow type, a configuration of completely bypassing the oil separator 10, or a mixed type, of a configuration of partially bypassing the refrigerant. It is not limited.
[0030]
(1-2) Second Embodiment Next, a second embodiment will be described. As shown in FIG. 4, an oil separator 10 is connected to an outdoor unit pipe 77 between the compressor 2 discharge side and the four-way valve 8. And an oil separator bypass pipe 88 connects the suction side pipe 87c and the discharge side pipe 87d of the oil separator 10 with the oil separator bypass valve 51, and connects the oil separator bypass valve 51 to the suction side pipe 87c. The oil separator inflow control valve 52 is provided.
In the second embodiment, the circuit flowing from the oil separator bypass pipe 88 to the outdoor unit pipe 77 by the opening and closing control of the oil separator bypass valve 51 and the oil separator inflow control valve 52 during the above-described cleaning operation, that is, the oil separator A circuit is formed that bypasses without flowing into the flow path 10 and flows to the four-way valve 8, and flows refrigerant having an increased detergency to the existing pipe 20 by containing refrigeration oil, as in the first embodiment. is there.
[0031]
(1-3) Third Embodiment Next, a third embodiment will be described. As shown in FIG. 5, an outdoor unit pipe 77 between the compressor 2 discharge side and the four-way valve 8 is provided. .. Of the one or more oil separators 10A, 10B,... And the discharge-side pipes 87f, 87f. , Or the discharge side pipes 87f, 87f... Are connected with the oil separator inflow control valves 53a, 53b. An oil separator bypass valve 51a is provided between a connection point and a connection point with the discharge side pipe 87f.
In the third embodiment, the number of the oil separators 10A, 10B,... Through which the refrigerant containing the refrigerating machine oil passes is controlled, so that the refrigerant after the oil separators 10A, 10B. The amount of the refrigerant is controlled, and the refrigerant having a high detergency by containing the refrigerating machine oil flows into the existing pipe 20 as in the first embodiment.
Specifically, during the above-described cleaning operation, the controller 25 closes the oil separator inflow control valves 53a, 53b... So as to reduce the number of oil separators 10A, 10B. .. Are controlled to open the bypass valves 51a, 51a,..., And the refrigerant having a high content of refrigerating machine oil (synthetic oil) is sent to the existing pipe 20. By opening the control valves 53a, 53b ... and closing the oil separator bypass valves 51a, 51a ..., the refrigerant is allowed to pass through a larger number of oil separators 10A, 10B ... Thus, the refrigerating machine oil is surely separated.
When the number of the oil separators 10 is one, the form is the same as the form in which the oil separator 10 is completely bypassed.
[0032]
(2) "Control of the amount of addition by the refrigerating machine oil addition device"
This control focuses on the compatibility of the refrigerating machine oil (synthetic oil) for the new refrigerant with the object to be cleaned, and adds the refrigerating machine oil for compressor lubrication to the refrigerant discharged from the compressor flowing through the outdoor unit piping. Means are provided, and after the compressor 2 is discharged, the refrigeration oil for the new refrigerant is added to the refrigerant (new refrigerant) after passing through the oil separator 10 so that the refrigeration oil is contained in the refrigerant. The object of the present invention is to clean the existing pipe 20 based on the dissolving performance of the object to be cleaned by the added refrigerating machine oil, that is, the cleaning power.
In order to perform this control, as shown in FIG. 6, between the discharge side of the compressor 2 and the on-off valve serving as the refrigerant inflow side to the existing pipe 20, that is, the first on-off valve 17 or the second on-off valve 18. An addition device 55 which is a container filled with refrigerating machine oil for a new refrigerant is connected to the circuit via a refrigerating machine oil addition control valve 54.
With the above configuration, at the time of the above-described cleaning operation, the controller 25 adjusts the opening degree of the refrigerating machine oil addition control valve 54, and intentionally adds the refrigerating machine oil from the adding device 55 to the refrigerant flowing to the existing pipe 20. Then, the refrigerant oil is contained in the refrigerant, and the interior of the existing pipe 20 is washed with the refrigerant containing the refrigerant oil (synthetic oil). Then, after a lapse of a predetermined time or after confirming that the remaining amount of the refrigerating machine oil in the adding device 55 has run out, the controller 25 determines the end of the cleaning operation, and closes the refrigerating machine oil addition control valve 54.
By providing a so-called “drip mechanism” in the addition device 55, a configuration without using the refrigerating machine oil addition control valve 54 is also possible.
[0033]
As described above, the refrigerating machine oil (synthetic oil) is contained in the refrigerant to increase the detergency of the refrigerant, and the existing pipe 20 can be cleaned. A refrigerating machine oil having exactly the same composition as the refrigerating machine oil which is the lubricating oil of the machine 2 is added to increase the detergency, and a fluid (lubricating oil) essential for an air conditioner to which the present invention is applied is added. In this respect, it is different from the conventional one. That is, it is a particularly effective cleaning method in that there is no room for an unexpected chemical change in the existing pipe 20 which may occur when an additive having another composition is added or a problem such as damage to the refrigeration cycle. Things.
[0034]
【The invention's effect】
Since the present invention is configured as described above, the following effects can be obtained.
That is, as in claim 1, an air conditioner including a compressor and an oil separator that separates refrigerating machine oil in the refrigerant discharged from the compressor, wherein a bypass circuit for the refrigerant to bypass the oil separator. Since the refrigerant bypasses the oil separator and contains refrigerating machine oil (synthetic oil), that is, it flows into the existing piping with high detergency, and when the refrigerating machine oil (synthetic oil) is abundant, Since the object to be cleaned in the existing pipe is peeled off so as to be dissolved, the pipe wall is reliably cleaned.
[0035]
Further, as described in claim 2, an air conditioner including a compressor, and one or more oil separators for separating refrigerating machine oil in the refrigerant discharged from the compressor, wherein the compressor discharge side and the oil Since an on-off valve is provided on the suction side pipe connecting the separator, the amount of refrigerant sucked into the oil separator can be controlled, and the refrigerant contains refrigerating machine oil (synthetic oil). Above, it is made to flow into the existing pipe, and in a state of a large amount of refrigerating machine oil (synthetic oil), the object to be cleaned in the existing pipe is peeled off so as to be dissolved, so that the pipe wall can be reliably washed.
[0036]
Further, as described in claim 3, an addition device for adding a refrigerating machine oil for compressor lubrication to the refrigerant discharged from the compressor flowing through the outdoor unit piping is provided, so that the refrigerating machine oil (synthetic oil) is contained in the refrigerant. This makes it possible to clean the inside of the existing pipe after increasing the cleaning power of the refrigerant.
[0037]
Further, as described in claim 4, during the construction of the air conditioner, the operation method of the air conditioner when cleaning the existing pipe, and while passing a new refrigerant in the existing pipe, the new refrigerant, Since the refrigerating machine oil for the new refrigerant is contained, the refrigerating machine oil for the conventional refrigerant (substance to be cleaned) made of mineral oil can be dissolved in the refrigerating machine oil made of synthetic oil, and the cleanability of the existing piping is improved. .
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram of an engine heat pump to which the present invention is applied.
FIG. 2 is a block diagram showing a configuration of a control device and operating devices.
FIG. 3 is a diagram illustrating a configuration of a first embodiment of control by an oil separator.
FIG. 4 is a diagram showing the configuration of the second embodiment.
FIG. 5 is a diagram showing the configuration of the third embodiment.
FIG. 6 is a diagram showing a circuit configuration of a refrigerating machine oil adding device.
FIG. 7 is a diagram showing the compatibility between refrigerating machine oil (synthetic oil) and an object to be cleaned.
FIG. 8 is a graph showing the relationship between the degree of compatibility of refrigerating machine oil and temperature.
[Explanation of symbols]
2 Compressor 10 Oil separator 51 Oil separator bypass valve 52 Oil separator inflow control valve 88 Oil separator bypass pipe

Claims (4)

圧縮機と、該圧縮機を吐出した冷媒中の冷凍機油を分離するオイルセパレータを備える空調機であって、冷媒が前記オイルセパレータをバイパスするためのバイパス回路を備える空調機。An air conditioner comprising: a compressor; and an oil separator for separating refrigerating machine oil in a refrigerant discharged from the compressor, wherein the air conditioner includes a bypass circuit for allowing the refrigerant to bypass the oil separator. 圧縮機と、該圧縮機を吐出した冷媒中の冷凍機油を分離する一又は複数台のオイルセパレータを備える空調機であって、前記圧縮機吐出側とオイルセパレータを結ぶ吸入側配管に開閉弁を設けた空調機。A compressor and an air conditioner including one or more oil separators for separating refrigerating machine oil in a refrigerant discharged from the compressor, wherein an on-off valve is provided on a suction side pipe connecting the compressor discharge side and the oil separator. Air conditioner provided. 室外機配管を流れる圧縮機吐出後の冷媒に、圧縮機潤滑用の冷凍機油を添加する添加装置を設けた空調機。An air conditioner provided with an addition device for adding a refrigerating machine oil for compressor lubrication to a refrigerant discharged from a compressor flowing through an outdoor unit pipe. 空調機の施工時において、既設配管の洗浄を行う際の空調機の運転方法であって、既設配管内に新冷媒を通過させるとともに、前記新冷媒に、新冷媒用の冷凍機油を含有させる空調機の運転方法。An air conditioner operating method for cleaning an existing pipe during construction of an air conditioner, the method including passing a new refrigerant through the existing pipe and including the refrigerating machine oil for the new refrigerant in the new refrigerant. How to operate the machine.
JP2002244980A 2002-08-26 2002-08-26 Air conditioner and operation method of air conditioner Expired - Fee Related JP3863827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002244980A JP3863827B2 (en) 2002-08-26 2002-08-26 Air conditioner and operation method of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002244980A JP3863827B2 (en) 2002-08-26 2002-08-26 Air conditioner and operation method of air conditioner

Publications (2)

Publication Number Publication Date
JP2004085035A true JP2004085035A (en) 2004-03-18
JP3863827B2 JP3863827B2 (en) 2006-12-27

Family

ID=32053305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002244980A Expired - Fee Related JP3863827B2 (en) 2002-08-26 2002-08-26 Air conditioner and operation method of air conditioner

Country Status (1)

Country Link
JP (1) JP3863827B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014020661A (en) * 2012-07-18 2014-02-03 Panasonic Corp Air conditioner
JP2014196833A (en) * 2013-03-29 2014-10-16 三菱電機株式会社 Refrigerator
JP2016138677A (en) * 2015-01-26 2016-08-04 株式会社デンソー Refrigeration cycle apparatus
JPWO2016157282A1 (en) * 2015-03-27 2017-11-02 三菱電機株式会社 Refrigeration cycle equipment
EP3961128A1 (en) * 2020-08-31 2022-03-02 Schneider Electric IT Corporation Refrigerant bypass solution

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014020661A (en) * 2012-07-18 2014-02-03 Panasonic Corp Air conditioner
JP2014196833A (en) * 2013-03-29 2014-10-16 三菱電機株式会社 Refrigerator
JP2016138677A (en) * 2015-01-26 2016-08-04 株式会社デンソー Refrigeration cycle apparatus
JPWO2016157282A1 (en) * 2015-03-27 2017-11-02 三菱電機株式会社 Refrigeration cycle equipment
US10156389B2 (en) 2015-03-27 2018-12-18 Mitsubishi Electric Corporation Refrigeration cycle apparatus with oil separator switching valve
EP3961128A1 (en) * 2020-08-31 2022-03-02 Schneider Electric IT Corporation Refrigerant bypass solution
CN114198952A (en) * 2020-08-31 2022-03-18 施耐德电气It 公司 System, method, and non-transitory computer readable medium for filter oil separator
US11859884B2 (en) 2020-08-31 2024-01-02 Schneider Electric It Corporation Refrigerant bypass solution

Also Published As

Publication number Publication date
JP3863827B2 (en) 2006-12-27

Similar Documents

Publication Publication Date Title
JP6529601B2 (en) Refrigeration cycle device and control method of refrigeration cycle device
EP2543941A1 (en) Chiller
JPH10185337A (en) Refrigerating cycle of air conditioner
JP2006308207A (en) Refrigerating device
JP4120221B2 (en) Refrigerant and oil recovery operation method, and refrigerant and oil recovery control device
WO2005017423A1 (en) Freezer device
JP2009287800A (en) Refrigerating device
JP3863827B2 (en) Air conditioner and operation method of air conditioner
JP5458717B2 (en) Refrigeration equipment
JP4605784B2 (en) Engine-driven heat pump having an operation mode for cleaning the connecting pipe between the outdoor unit and the indoor unit, and its operation method
JP2004263885A (en) Cleaning method of refrigerant pipe, renewing method of air conditioner and air conditioner
JP3887587B2 (en) air conditioner
JP2005315534A (en) Air conditioner system, separating and recovering unit using the system and method of washing air conditioner system
JP2005049057A (en) Refrigerating cycle device
JP2004251570A (en) Oil recovery method for air conditioning system and air conditioning system
JP2004069101A (en) Accumulator, air conditioning equipment with accumulator, and its operating method
JP2003021436A (en) Pipeline cleaning method, air conditioner and renewal method thereof
JP2004003696A (en) Engine driven heat pump
JP2007315638A (en) Refrigeration cycle device
JP2002107011A (en) Cleaning operation method of refrigerating cycle equipment
JP2004218931A (en) Piping flushing method for air conditioner and air conditioner
JP2004069095A (en) Engine driving type heat pump
JP6354209B2 (en) Refrigeration equipment
JP2004333121A (en) Method for updating air conditioner, and air conditioner
JP2004085038A (en) Air conditioner and operation method for air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060929

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees