JP2004084963A - Ice heat accumulator - Google Patents

Ice heat accumulator Download PDF

Info

Publication number
JP2004084963A
JP2004084963A JP2002242397A JP2002242397A JP2004084963A JP 2004084963 A JP2004084963 A JP 2004084963A JP 2002242397 A JP2002242397 A JP 2002242397A JP 2002242397 A JP2002242397 A JP 2002242397A JP 2004084963 A JP2004084963 A JP 2004084963A
Authority
JP
Japan
Prior art keywords
ice
water
storage tank
water level
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002242397A
Other languages
Japanese (ja)
Other versions
JP4021281B2 (en
Inventor
Yuji Oshita
大下 勇二
Masahiro Nakamura
中村 正浩
Takeshi Takeda
竹田 猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seisakusho KK
Original Assignee
Toyo Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seisakusho KK filed Critical Toyo Seisakusho KK
Priority to JP2002242397A priority Critical patent/JP4021281B2/en
Publication of JP2004084963A publication Critical patent/JP2004084963A/en
Application granted granted Critical
Publication of JP4021281B2 publication Critical patent/JP4021281B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2700/00Sensing or detecting of parameters; Sensors therefor
    • F25C2700/04Level of water

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To quickly and accurately replenish water in response to a change in a holding water quantity: and to perform stable ice making operation without having influence by a change in a water level in a water tank. <P>SOLUTION: The inside of an ice heat accumulating tank 1 stores ice generated by an ice maker 2 together with ice making water, and has a water level sensor 12 for detecting the water level in the tank and a full ice sensor 15 for detecting whether or not the storage height of the ice stored in the tank reaches the height of a preset full ice state, and has a control circuit 4 for controlling replenishment of the water so as to maintain the water level in the tank in a prescribed range on the basis of a signal from the water level sensor and stopping ice making operation by receiving a signal for indicating that the ice reaches the height of the full ice state from the full ice sensor when performing the ice making operation, and individually controls the water level in the tank and an ice storage quantity. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は氷蓄熱装置に関し、より詳しくは蓄熱槽内の保有水量を適正に保つことができるようにした氷蓄熱装置に関する。
【0002】
【従来の技術とその問題点】
氷蓄熱槽には、蓄熱槽内に配設した冷却管まわりに槽内の水を凍結させるスタティック式のものと、槽内の水を槽外の製氷機に導出して製氷を行ない、生成した小片状あるいは小塊状の氷を槽内に蓄積するダイナミック式のものがあり、このダイナミック式のものは槽内にスタティック式の場合のような冷却管が不要で槽の容積の殆どを氷の貯留に利用でき、したがって蓄熱容量が同じであればスタティック式のものよりも小型のものとすることができ、また、氷が小片状や小粒状なので、水との接触面積が大であり、冷却管まわりに氷塊が形成されるスタティック式のものに比して伝熱効率が良好であり、さらには製氷機に過冷却式や氷掻き取り式等各種の方法によるものを使用でき、蓄熱装置の規模に応じて自由に選択することができるというようなスタティック式のものにはない種々のメリットがある。
【0003】
ところでダイナミック式のものでは、槽内に供給される氷が単に水面に浮かんで貯留されるだけではなく、氷が槽内壁に付着したり、氷の下部が槽の内底に達したりして、水から氷への相変化にともなう体積膨張量以上の氷が水面よりも高い位置に貯留され、氷の充填率が大になると水位は低下する。
【0004】
したがって、ダイナミック式のものでは槽内の水位を直接検知するか、あるいは槽内の水を製氷機に供給するための製氷用ポンプの吸入側圧力の変化から水位の変化を間接的に検知して氷の充填率を求めることができる。
【0005】
また、製氷機の製氷能力とその駆動時間から氷の充填率を求めたり、あるいは製氷機の製氷用水入口側および氷出口側の温度を測定し、これらの温度変化から氷の充填率を求めたりする方法もある。
【0006】
しかし、上述のような方法によって得た氷の充填率に基づいて製氷機の運転制御を行なう場合、装置全体の保有水量に変化がないことが前提条件となり、保有水量が変化すると製氷機の運転制御に誤作動を起こすおそれがあるので、この誤作動を防止することを目的として定期的に氷蓄熱槽内の水位を測定し、必要に応じて水を補給しなければならない。
【0007】
したがって従来の装置においては、氷の充填率が最も小となる解氷運転の終期、例えば夜間電力による製氷運転によって蓄熱を行なうものでは夜間の製氷運転直前に水位を測定し、所定水位まで水を補給している。
【0008】
ところが、保有水量の変化が例えば水の蒸発による減少程度の微量であれば上述のような定期的な水の補給で事が足りるのであるが、負荷側熱交換器への冷水の供給経路から水が排出される場合、例えば食品工場等の厳密な衛生管理が要求されるような施設において負荷側熱交換器の分解清掃が頻繁に行なわれ、この分解清掃の度に氷蓄熱装置からの水が排出されて保有水量が大きく変化するような場合には、上述のような定期的な水の補給では氷蓄熱槽の水位が安定せず、製氷運転の制御に支障が生じる。排出された水と同量の水を氷蓄熱槽内に補給すれば所定の水量を確保することはできるのであるが、正確な排水量を管理して同量の水を補給することは煩雑かつ困難であり、仮に排水量の管理を十分に行なったとしても排水と補給の回数が多くなればその誤差も大となり、保有水量を一定の範囲に保つことは困難である。
【0009】
【目的】
本発明の目的とするところは、装置の保有水量の変化に対応して水の補給を速やかかつ正確に行なうことができ、しかも製氷運転の制御が水位の変化による影響で誤作動を起こすようなことがなく安定して行なわれる氷蓄熱装置を提供することにある。
【0010】
【発明の構成】
上記目的を達成するために、本発明に係る氷蓄熱装置は、水と氷を貯留する氷蓄熱槽と、この氷蓄熱槽から送られる水を凍結せしめて氷を生成し、この氷を氷蓄熱槽に供給する製氷機と、氷蓄熱槽内にて同槽内に貯留されている氷により冷却された水を負荷側に送り、負荷側にて熱交換した水を再び氷蓄熱槽に戻す冷水供給経路を備え、また前記氷蓄熱槽内に、同槽内の水位を検知する水位センサと、同槽内に貯留されている氷の貯留高さが予め設定された満氷状態の高さに達しているか否かを検知する満氷センサを備え、上記水位センサからの信号に基づいて氷蓄熱槽内の水位が所定の範囲内に維持されるよう同槽内への水の補給を制御し、かつ前記製氷機の製氷運転が行なわれている際に満氷センサから氷が満氷状態の高さに達したことを示す信号を受けることにより製氷機の運転を停止せしめる制御回路を備え、氷蓄熱槽内の水位と貯氷量が個別に制御されるように構成したものとしてある。
【0011】
【実施例】
以下、本発明に係る氷蓄熱装置の実施例を添付図面に示す具体例に基づいて説明する。
図において、符号1は氷蓄熱槽、2は製氷機、3は負荷側熱交換器、4は制御回路を示し、氷蓄熱槽1の下部に一端が接続された製氷用水管5の他端が製氷ポンプP1を介して製氷機2の水入口に接続され、この製氷機の氷出口に一端が接続された氷供給管6の他端供給口6aが氷蓄熱槽内に臨んでいる。
【0012】
上記製氷機2は例えば氷蓄熱槽からの水を−2℃程度に過冷却し、過冷却水が通過する管に外部から適宜の振動を与えることにより過冷却状態を解除して、小片状や小粒状の氷と水とが混在するいわゆるシャーベット状の氷を生成するものとしてある。
【0013】
また、前記氷蓄熱槽1の下部に一端が接続された冷水往管7の他端が冷水ポンプP2を介して負荷側熱交換器3の冷水入口3aに接続され、同出口3bに一端が接続された冷水復管8の他端が、氷蓄熱槽1内の上部に配設された散水管9に接続されており、氷蓄熱槽から負荷側に冷水を送り、負荷側において熱交換した水を氷蓄熱槽に戻す冷水循環経路が構成されている。
【0014】
さらに、氷蓄熱槽1の上部側面には外部から槽内へ水を供給する補給水管10を設けてあり、この補給水管は途中に開閉弁11を備え、同開閉弁は後述する前記制御回路4からの開閉制御信号により開閉される。
【0015】
前記氷蓄熱槽1内には、同槽の天板1aに取り付けられた基部から長さの異なる4本の支持杆が下方に延び、各支持杆の先端に、水との接触によって閉ざされる例えば電磁式の接液スイッチS1、S2、S3、S4を備える水位センサ12を設けてあり、最も下位に設けられている第1の接液スイッチS1は槽内水位の異常低下を検知し、次に下位の第2の接液スイッチS2は装置の通常運転時における下限水位を検知し、その上方の第3の接液スイッチS3は装置の通常運転時における上限水位を検知し、最も上位に設けられている第4の接液スイッチS4は槽内水位の異常上昇を検知する構成となっている。
【0016】
なお、接液スイッチは氷との接触によって閉とならないように全体あるいは各スイッチのまわりを下部が開口する円筒状のカバーで覆い、カバー内には水だけが入り、氷が入らないようにするのが望ましい。
【0017】
上記水位センサ12は水位信号線13によって前記制御回路4に接続されていて、また同制御回路は開閉信号線14によって前記補給水管10の開閉弁11に接続されており、制御回路は水位センサからの水位信号に基づいて開閉弁11を開閉制御し、この開閉制御によって槽内の水量が適正に維持されるようになっており、その具体例については後述する。
【0018】
また氷蓄熱槽1内には、前記水位センサ12とは別に、槽内に貯留されている氷が予め設定された満氷状態の高さに達したか否かを検知する満氷センサ15を設けてあり、この満氷センサは氷蓄熱槽の天板1aに基部が取り付けられ、下方に延びる棒状の温度センサの感温部15aまわりに、この感温部を例えば10℃程度に保温するテープ状の電気ヒータ15bを取り付けたものとしてある。
【0019】
上記満氷センサは、感温部15aに氷22が接触しているか否かによる温度の違いに基づいて氷が感温部の高さすなわち所定の高さに達したか否かを検知し、具体的には感温部が氷に接触していない状態では槽内の空気温度が氷の温度とほぼ同じであっても電気ヒータからの熱によって10℃程度の温度を検知しているが、貯氷量が増加して氷が感温部に接触すると、電気ヒータからの熱が氷に奪われて感温部は氷の温度すなわち0℃以下となる。
【0020】
なお、満氷センサはその感温部15aが氷の最も高い位置を検知できるよう、前記氷水供給管6の他端供給口6a近傍で、かつ同供給口よりも低い位置に設ける。
【0021】
上述した満氷センサ15からの温度信号は温度信号線16により前記制御回路4に送られるようになっており、また制御回路と製氷機2との間に製氷制御信号線17が、制御回路と製氷ポンプP1との間に駆動制御信号線23がそれぞれ設けられていて、制御回路は満氷センサの検知温度に基づいて製氷機2と製氷ポンプP1の運転、停止を制御する。なお、具体的な制御については後述する。
【0022】
また、負荷側熱交換器3に冷水を送る冷水往管7と冷水復管8の途中にはそれぞれ通常は開かれている開閉弁18、19を設けてあり、これらの開閉弁と熱交換器3との間にはそれぞれ通常は閉ざされている排水バルブ20aを備える排水用枝管20と、同じく通常は閉ざされているエア抜きバルブ21aを備えるエア抜き用枝管21を設けてあって、負荷側熱交換器3の洗浄や点検の際には上記開閉弁18、19を手動で閉じて排水バルブ20aとエア抜きバルブ21aを開き、排水用枝管20から負荷側熱交換器内の水を排出して同熱交換器の取り外しを行なうことができるようにしてある。
【0023】
次ぎに、上述のように構成した本発明の氷蓄熱装置の作用について説明する。氷蓄熱槽1内の水は製氷ポンプP1の駆動により製氷機2に送られ、同製氷機内で−2℃程度に過冷却された後、過冷却状態が解除されて氷と水が混在するいわゆるシャーベット状の氷となって氷供給管6により氷蓄熱槽1内に送られ、同蓄熱槽内に貯留される。
【0024】
氷蓄熱槽1内の氷によって冷却された水は冷水ポンプP2の駆動により冷水往管7を経て負荷側熱交換器3に送られ、同熱交換器で適宜の負荷と熱交換した後、冷水復管8によって氷蓄熱槽1内の散水管9に送られ、同散水管にあけられた多数の散水口から氷22に散布されて槽内に戻される。
【0025】
しかして、氷蓄熱槽1内の水位は前記水位センサ12によって所定の範囲内に維持されるようになっており、基準となる水位は第2の接液スイッチS2と第3の接液スイッチS3との間に設定され、この状態では第1および第2の接液スイッチが閉、第3および第4の接液スイッチが開となっている。
【0026】
上記水位センサ12における各接液スイッチの開閉状態は前記水位信号線13によって制御回路4に送られ、まず第1の接液スイッチS1が閉であり、かつ第4の接液スイッチS4が開である通常運転状態であることをチェックし、第1の接液スイッチS1が開である場合には水位の異常低下と判断し、また、第4の接液スイッチS4が閉である場合には水位の異常上昇と判断して、それぞれ適宜の警報を発し、必要に応じて装置を緊急停止させる。
【0027】
しかして、第1の接液スイッチS1が閉であり、かつ第4の接液スイッチS4が開である通常運転状態の場合、制御回路4は第2と第3の接液スイッチの開閉状態に応じて水の補給制御を行なう。
【0028】
具体的には、水面が通常の状態である第2の接液スイッチよりも下がって同スイッチが開になると、制御回路4は前記開閉制御信号線14を介して前記補給水管10の開閉弁11を開き、氷蓄熱槽1内に水を補給して水位を上昇せしめ、この水位上昇により第2の接液スイッチS2が閉ざされ、さらに第3の接液スイッチS3が閉ざされると上記開閉弁11を閉ざして水の補給を停止する。
【0029】
また、前記製氷機2の運転制御は前記満氷センサ15からの温度信号に基づく制御回路4からの運転制御信号により行なわれ、通常は予め設定された時刻あるいは冷水往管7内の冷水温度の上昇を検知して製氷機の製氷運転が開始され、制御回路4が満氷センサからの信号に基づいて氷の高さが予め設定された満氷状態の高さに達したことを検知すると、制御回路からの信号により製氷機2における製氷運転が停止されるようになっている。
【0030】
なお、製氷ポンプP1の駆動も製氷機2の運転制御に応じて制御される。
具体的には、満氷センサ15から制御回路4に送られる検知温度が、0℃より高い予め設定された温度例えば2℃以上であれば、氷22が満氷センサ15に接触していない状態すなわち氷の充填量がまだ所定の値に達していない状態であると制御回路4が判断し、製氷機2の製氷運転を継続させる。
【0031】
製氷運転の進行に伴って氷の充填量が増加し、氷22の上面が満氷センサ15の感温部15aに接触すると、感温部を10℃程度に保温している電気ヒータ15bからの熱が氷に奪われて感温部15aが氷の温度すなわち0℃以下の温度となり、この0℃以下の検知温度が温度信号線16によって制御回路4に送られ、氷22が満氷センサ15に接触した状態すなわち氷の充填量が所定の値に達した満氷の状態であると制御回路4が判断し、運転制御信号線17を介して製氷機2に運転停止の信号を送り、また駆動制御信号線23を介して製氷ポンプP1に駆動停止の信号を送って製氷運転を停止させる。
【0032】
製氷運転が停止されると、タイマ制御によって所定時間例えば1時間経過後に製氷運転が再開され、再び氷が満氷センサに接触するまで製氷運転が行なわれるのが繰り返される。
【0033】
なお、上述した製氷運転の再開までの時間は、満氷時に氷蓄熱槽に貯留されている氷の熱量と負荷側にて要求される消費熱量との関係から氷の解氷に掛かる時間を予め求めておき、この解氷に掛かる時間の経過後にタイマ制御によって製氷運転を再開する場合もある。
【0034】
また、夜間電力を利用して製氷運転を行なう場合のように製氷を行なう時刻に制限がある場合には貯留されている氷の熱量と時刻との関係を考慮して予め運転再開の時刻を決定し、その時刻に製氷運転を再開する場合もある。
【0035】
さらには、満氷センサと同様の構成よりなり、予め設定された氷の貯留高さの下限を検知する下限センサを氷蓄熱槽内に設け、この下限センサによって氷の貯留高さがその下限位置よりも低下すると製氷運転を再開するように構成する場合もある。
【0036】
上述したように、本発明の装置においては氷蓄熱槽1内の水位と氷の充填量の制御すなわち補給水の供給制御と製氷運転の制御とは独立して行なわれ、したがって氷の充填量の増減による水位の変動や水位の変動に伴う氷の貯留高さの変動は考慮されない。
【0037】
したがって、負荷側において冷水供給経路から水が外部に排出されて装置全体の保有水量が減少しても製氷機の運転制御には全く影響を与えず、安定した製氷運転が行なわれる。
【0038】
上述した実施例においては、製氷機2において過冷却した水の過冷却状態を解除することにより氷片と水の混在する氷水を生成し、氷供給管6によってこの氷水を氷蓄熱槽1に供給する構成としてあるが、過冷却水をそのまま氷蓄熱槽に送り、同槽内に設けた分散板に過冷却水を衝突させ、分散板にぶつかる際の衝撃により過冷却水の過冷却状態が解除されて氷水が生成されるように構成する場合もある。
【0039】
また、キューブ状の氷や小片状の氷を生成する製氷機を氷蓄熱槽1の上部に設け、製氷機で生成した氷を直接槽内に落下せしめて供給する構成とする場合もある。
【0040】
さらに、上述した実施例においては氷蓄熱槽1内の氷が所定の高さまで貯留されたことを検知する満氷センサ15に温度センサを用い、同センサの感温部に氷が接触することによる温度変化に基づいて氷が所定の高さに達したことを検知する構成としてあるが、この満氷センサを、通常は開いているが氷との接触により閉ざされるタッチセンサを使用する場合もあるし、また氷22の表面に向って上方から光線を発射し、氷表面からの反射光の強弱によって氷の高さを検知し、反射光が所定の強度を超えると満氷であることが検知される光反射式センサや、氷蓄熱槽内の所定の高さすなわち予め設定した満氷の高さに発光素子とこの発光素子からの光を受ける受光素子を設け、氷の充填量が満氷の状態に達していない状態では発光素子からの光が受光素子に届くが、氷が所定の満氷高さに達すると発光素子からの光が氷22に遮られて受光素子に届かなくなり、これにより満氷であることが検知される遮光センサ等の近接センサを使用する場合もある。
【0041】
【発明の作用、効果】
本発明に係る氷蓄熱装置によれば、氷蓄熱槽内に貯留されている水の量と氷の量をそれぞれ水位センサと満氷センサとによって個別に監視し、水位センサからの信号に基づいて制御回路により補給水の供給制御が行なわれ、また、満氷センサからの信号に基づいて制御回路により製氷機における製氷運転の制御が行なわれる。
【0042】
したがって、負荷側の冷水循環経路において冷水が排出された場合のように装置の保有水量が減少する場合であっても、氷蓄熱槽内の水位は常に一定の範囲に保たれ、また製氷運転は水位の変動の影響を受けずに安定した運転が行なわれる。
【図面の簡単な説明】
【図1】本発明に係る装置の実施例を示す構成図。
【図2】満氷センサの具体例を示す拡大正面図。
【符号の説明】
1 氷蓄熱槽       2 製氷機
3 負荷側熱交換器    4 制御回路
5 製氷用水管      6 氷水供給管
7 冷水往管       8 冷水復管
9 散水管       10 補給水管
11 開閉弁       12 水位センサ
13 水位信号線     14 開閉制御信号線
15 満氷センサ     16 温度信号線
17 運転制御信号線   18、19 開閉弁
20 排水用枝管     21 エア抜き用枝管
22 氷         23 駆動制御信号線
P1 製氷ポンプ     P2 冷水ポンプ
S1、S2、S3、S4 接液センサ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ice heat storage device, and more particularly, to an ice heat storage device capable of appropriately maintaining the amount of water held in a heat storage tank.
[0002]
[Conventional technology and its problems]
The ice heat storage tank was produced by a static type that freezes the water in the tank around the cooling pipes arranged in the heat storage tank, and an ice making machine that led out the water in the tank to an ice machine outside the tank. There is a dynamic type that accumulates small or small pieces of ice in the tank, and this dynamic type does not require a cooling pipe in the tank as in the case of the static type, and almost all the volume of the ice is stored in the tank. It can be used for storage, so it can be smaller than the static type if the heat storage capacity is the same, and since the ice is small or small, the contact area with water is large, The heat transfer efficiency is better than that of the static type, in which ice blocks are formed around the cooling pipes.Furthermore, the ice making machine can be of various types, such as supercooling type or ice scraping type. Can be freely selected according to the scale There are various advantages not to those of the static type as referred to.
[0003]
By the way, in the dynamic type, the ice supplied to the tank is not only floating and stored on the surface of the water, but also the ice adheres to the inner wall of the tank or the lower part of the ice reaches the inner bottom of the tank, Ice larger than the volume expansion accompanying the phase change from water to ice is stored at a position higher than the water surface, and the water level decreases as the ice filling rate increases.
[0004]
Therefore, in the dynamic type, the water level in the tank is directly detected, or the change in the water level is indirectly detected from the change in the suction side pressure of the ice making pump for supplying the water in the tank to the ice making machine. The filling rate of ice can be determined.
[0005]
It is also possible to determine the ice filling rate from the ice making capacity of the ice making machine and its driving time, or to measure the temperatures at the ice making water inlet and the ice outlet sides of the ice making machine and determine the ice filling rate from these temperature changes. There is also a way to do it.
[0006]
However, when the operation control of the ice maker is performed based on the ice filling rate obtained by the above-described method, it is a precondition that there is no change in the water holding amount of the entire apparatus. In order to prevent the malfunction, it is necessary to periodically measure the water level in the ice heat storage tank and replenish the water as needed, in order to prevent the malfunction.
[0007]
Therefore, in the conventional apparatus, in the end of the defrosting operation in which the filling rate of ice becomes the minimum, for example, in the case of storing heat by the ice making operation using night power, the water level is measured immediately before the ice making operation at night and the water is measured to a predetermined water level. Replenishing.
[0008]
However, if the change in the amount of retained water is small, such as a decrease due to evaporation of water, regular water replenishment as described above will suffice.However, the water supply path from the cold water supply path to the load-side heat exchanger Is discharged, for example, disassembly and cleaning of the load side heat exchanger is frequently performed in a facility such as a food factory where strict sanitary management is required, and water from the ice heat storage device is removed every time this disassembly and cleaning is performed. In the case where the amount of water retained is greatly changed by being discharged, the water level of the ice heat storage tank is not stabilized by the above-mentioned regular replenishment of water, and the control of the ice making operation is hindered. Replenishing the same amount of water as the discharged water into the ice thermal storage tank can secure the specified amount of water, but it is complicated and difficult to manage the exact amount of drainage and replenish the same amount of water. However, even if the amount of drainage is sufficiently controlled, if the number of times of drainage and replenishment increases, the error increases, and it is difficult to keep the amount of water retained in a certain range.
[0009]
【Purpose】
It is an object of the present invention to supply water quickly and accurately in response to a change in the amount of water held in the apparatus, and to control the ice making operation to malfunction due to a change in water level. An object of the present invention is to provide an ice heat storage device that can be performed stably without any problem.
[0010]
Configuration of the Invention
In order to achieve the above object, an ice heat storage device according to the present invention includes an ice heat storage tank that stores water and ice, freezes water sent from the ice heat storage tank to generate ice, and stores the ice in ice heat storage. Cold water that supplies ice to the tank and water cooled by the ice stored in the tank in the ice heat storage tank to the load side, and returns the water that has exchanged heat on the load side to the ice heat storage tank again A supply path, and a water level sensor for detecting a water level in the ice heat storage tank, and a storage height of ice stored in the tank is set to a predetermined full ice height. A full ice sensor for detecting whether or not the water level has been reached is provided.Based on a signal from the water level sensor, water supply to the ice heat storage tank is controlled so that the water level in the ice heat storage tank is maintained within a predetermined range. And that the ice has reached the full ice level from the full ice sensor during the ice making operation of the ice making machine. A control circuit that allowed to stop the operation of the ice making machine by receiving a signal indicating the water level and ice of the ice thermal storage tank is as being configured to be individually controlled.
[0011]
【Example】
Hereinafter, an embodiment of an ice heat storage device according to the present invention will be described based on a specific example shown in the accompanying drawings.
In the drawing, reference numeral 1 denotes an ice heat storage tank, 2 denotes an ice making machine, 3 denotes a load side heat exchanger, 4 denotes a control circuit, and the other end of an ice making water pipe 5 having one end connected to the lower part of the ice heat storage tank 1 is connected to the other end. The other end supply port 6a of the ice supply pipe 6 connected to the water inlet of the ice maker 2 via the ice maker pump P1 and having one end connected to the ice outlet of the ice maker faces the inside of the ice heat storage tank.
[0012]
The ice maker 2 sub-cools water from an ice heat storage tank to about -2 ° C., and releases the super-cooled state by applying appropriate vibrations from outside to a pipe through which the super-cooled water passes. Or so-called sherbet-like ice in which small-grained ice and water are mixed.
[0013]
The other end of the cold water outgoing pipe 7 having one end connected to the lower part of the ice heat storage tank 1 is connected to the cold water inlet 3a of the load side heat exchanger 3 via the cold water pump P2, and one end is connected to the same outlet 3b. The other end of the cooled cold water return pipe 8 is connected to a water sprinkling pipe 9 arranged at the upper part in the ice heat storage tank 1, sends cold water from the ice heat storage tank to the load side, and exchanges heat with the load side. A chilled water circulation path for returning the water to the ice heat storage tank is configured.
[0014]
Further, a replenishing water pipe 10 for supplying water from outside to the inside of the tank is provided on the upper side surface of the ice heat storage tank 1. The replenishing water pipe is provided with an opening / closing valve 11 on the way. It is opened and closed by an opening and closing control signal from the controller.
[0015]
In the ice heat storage tank 1, four support rods having different lengths extend downward from a base attached to a top plate 1a of the tank, and the tip of each support rod is closed by contact with water. A water level sensor 12 including electromagnetic type liquid contact switches S1, S2, S3, and S4 is provided. The first liquid contact switch S1 provided at the lowest position detects an abnormal decrease in the water level in the tank, and The lower second liquid contact switch S2 detects the lower limit water level during normal operation of the device, and the third upper liquid contact switch S3 above it detects the upper limit water level during normal operation of the device. The fourth liquid contact switch S4 is configured to detect an abnormal rise in the water level in the tank.
[0016]
In addition, the liquid contact switch is covered with a cylindrical cover with a lower part opening around the whole switch or around each switch so that it does not close due to contact with ice, so that only water enters the cover and ice does not enter. It is desirable.
[0017]
The water level sensor 12 is connected to the control circuit 4 by a water level signal line 13, and the control circuit is connected to the open / close valve 11 of the makeup water pipe 10 by an open / close signal line 14. The open / close valve 11 is controlled to open and close based on the water level signal of the above, and the amount of water in the tank is properly maintained by the open / close control. A specific example thereof will be described later.
[0018]
In addition, in the ice heat storage tank 1, apart from the water level sensor 12, a full ice sensor 15 for detecting whether or not the ice stored in the tank has reached a predetermined full ice height. This full ice sensor is provided with a base attached to the top plate 1a of the ice heat storage tank, and a tape for keeping the temperature sensing part at, for example, about 10 ° C. around a temperature sensing part 15a of a rod-shaped temperature sensor extending downward. It is assumed that an electric heater 15b is attached.
[0019]
The full ice sensor detects whether or not the ice has reached the height of the temperature sensing part, that is, a predetermined height, based on a difference in temperature depending on whether or not the ice 22 is in contact with the temperature sensing part 15a, Specifically, when the temperature sensing part is not in contact with the ice, the temperature of about 10 ° C. is detected by the heat from the electric heater even if the air temperature in the tank is almost the same as the temperature of the ice, When the ice storage amount increases and ice comes into contact with the temperature-sensitive portion, heat from the electric heater is taken by the ice, and the temperature of the temperature-sensitive portion becomes lower than the temperature of ice, that is, 0 ° C.
[0020]
The full ice sensor is provided near the other end supply port 6a of the ice water supply pipe 6 and at a position lower than the supply port so that the temperature sensing portion 15a can detect the highest position of ice.
[0021]
The temperature signal from the above-mentioned full ice sensor 15 is sent to the control circuit 4 by a temperature signal line 16, and an ice making control signal line 17 is provided between the control circuit and the ice making machine 2. A drive control signal line 23 is provided between the ice making pump P1 and the control circuit for controlling the operation and stop of the ice making machine 2 and the ice making pump P1 based on the temperature detected by the full ice sensor. The specific control will be described later.
[0022]
On the way of the cold water outgoing pipe 7 and the cold water return pipe 8 for sending cold water to the load side heat exchanger 3, normally open on-off valves 18 and 19 are respectively provided. 3, a drainage branch pipe 20 having a normally closed drainage valve 20a and an air release branch pipe 21 also having a normally closed air release valve 21a are provided. When the load side heat exchanger 3 is washed or inspected, the on-off valves 18 and 19 are manually closed, the drain valve 20a and the air release valve 21a are opened, and the water in the load side heat exchanger is discharged from the drain branch pipe 20. To remove the heat exchanger.
[0023]
Next, the operation of the ice heat storage device of the present invention configured as described above will be described. The water in the ice heat storage tank 1 is sent to the ice maker 2 by driving the ice maker pump P1, and after being supercooled to about -2 ° C in the ice maker, the supercooled state is released and ice and water are mixed. It becomes sherbet-like ice and is sent into the ice thermal storage tank 1 by the ice supply pipe 6 and stored in the thermal storage tank.
[0024]
The water cooled by the ice in the ice heat storage tank 1 is sent to the load-side heat exchanger 3 via the cold water outgoing pipe 7 by driving the cold water pump P2, and heat-exchanges with an appropriate load in the heat exchanger. The water is sent to the water sprinkling pipe 9 in the ice heat storage tank 1 by the return pipe 8, and is sprayed on the ice 22 from a number of water sprinkling ports opened in the water sprinkling pipe and returned to the tank.
[0025]
The water level in the ice heat storage tank 1 is maintained within a predetermined range by the water level sensor 12, and the reference water level is determined by the second liquid contact switch S2 and the third liquid contact switch S3. In this state, the first and second liquid contact switches are closed, and the third and fourth liquid contact switches are open.
[0026]
The open / closed state of each liquid contact switch in the water level sensor 12 is sent to the control circuit 4 by the water level signal line 13. First, the first liquid contact switch S1 is closed, and the fourth liquid contact switch S4 is opened. It is checked that it is in a certain normal operation state. If the first liquid contact switch S1 is open, it is determined that the water level is abnormally low. If the fourth liquid contact switch S4 is closed, the water level is low. Is determined to be abnormally high, an appropriate alarm is issued, and the device is emergency-stopped as necessary.
[0027]
Thus, in the normal operation state where the first liquid contact switch S1 is closed and the fourth liquid contact switch S4 is open, the control circuit 4 switches the second and third liquid contact switches to the open / close state. Water supply control is performed accordingly.
[0028]
Specifically, when the water level is lower than the second liquid contact switch in a normal state and the switch is opened, the control circuit 4 sends the open / close valve 11 of the makeup water pipe 10 via the open / close control signal line 14. Is opened, water is replenished into the ice heat storage tank 1 to raise the water level. When the water level rises, the second liquid contact switch S2 is closed, and when the third liquid contact switch S3 is further closed, the open / close valve 11 is closed. Close to stop water supply.
[0029]
The operation control of the ice making machine 2 is performed by an operation control signal from the control circuit 4 based on a temperature signal from the full ice sensor 15 and is usually set at a preset time or the temperature of the cold water in the cold water outgoing pipe 7. When the rise is detected and the ice making operation of the ice making machine is started, and the control circuit 4 detects that the height of the ice has reached a preset full ice state height based on a signal from the full ice sensor, The ice making operation in the ice making machine 2 is stopped by a signal from the control circuit.
[0030]
The driving of the ice making pump P1 is also controlled according to the operation control of the ice making machine 2.
Specifically, if the detected temperature sent from the full ice sensor 15 to the control circuit 4 is equal to or higher than a predetermined temperature higher than 0 ° C., for example, 2 ° C., the ice 22 is not in contact with the full ice sensor 15. That is, the control circuit 4 determines that the ice filling amount has not yet reached the predetermined value, and continues the ice making operation of the ice making machine 2.
[0031]
When the ice filling amount increases with the progress of the ice making operation and the upper surface of the ice 22 comes into contact with the temperature sensing portion 15a of the full ice sensor 15, an electric heater 15b that keeps the temperature sensing portion at about 10 ° C. The heat is deprived of the ice, and the temperature sensing portion 15a becomes the temperature of the ice, that is, the temperature of 0 ° C. or less. The detected temperature of 0 ° C. or less is sent to the control circuit 4 by the temperature signal line 16 and the ice 22 is The control circuit 4 determines that the ice is in a state of contact with the ice, that is, a full ice state in which the ice filling amount has reached a predetermined value, and sends an operation stop signal to the ice making machine 2 via the operation control signal line 17; A drive stop signal is sent to the ice making pump P1 via the drive control signal line 23 to stop the ice making operation.
[0032]
When the ice making operation is stopped, the ice making operation is restarted after a lapse of a predetermined time, for example, one hour by the timer control, and the ice making operation is repeated until the ice comes into contact with the full ice sensor again.
[0033]
In addition, the time until the resumption of the ice making operation described above is determined in advance from the relationship between the amount of heat of the ice stored in the ice heat storage tank and the amount of heat consumed on the load side when the ice is full, and the time required for the ice thawing is set in advance. In some cases, the ice making operation may be restarted by timer control after elapse of the time required for the ice melting.
[0034]
In addition, when there is a limit to the time at which ice making is performed, such as when performing ice making operation using nighttime electric power, the operation restart time is determined in advance in consideration of the relationship between the amount of heat of the stored ice and the time. However, the ice making operation may be restarted at that time.
[0035]
Furthermore, a lower limit sensor for detecting the lower limit of a preset ice storage height is provided in the ice heat storage tank, and has the same configuration as the full ice sensor. In some cases, the ice making operation is restarted when the temperature falls below the threshold.
[0036]
As described above, in the apparatus of the present invention, the control of the water level in the ice heat storage tank 1 and the filling amount of ice, that is, the control of the supply of make-up water and the control of the ice making operation are performed independently. Fluctuations in water level due to fluctuations and fluctuations in ice storage height due to fluctuations in water level are not considered.
[0037]
Therefore, even if water is discharged to the outside from the cold water supply path on the load side and the amount of water retained in the entire apparatus decreases, the operation control of the ice making machine is not affected at all, and a stable ice making operation is performed.
[0038]
In the above-described embodiment, ice water in which ice chips and water are mixed is generated by releasing the supercooled state of the water that has been supercooled in the ice making machine 2, and the ice water is supplied to the ice heat storage tank 1 by the ice supply pipe 6. The supercooled water is sent to the ice heat storage tank as it is, the supercooled water collides with the dispersion plate provided in the tank, and the supercooled state of the supercooled water is released by the impact when it hits the dispersion plate In some cases, ice water is generated.
[0039]
In some cases, an ice maker that produces cube-shaped ice or small-piece ice is provided above the ice storage tank 1, and the ice generated by the ice maker is dropped directly into the tank and supplied.
[0040]
Further, in the above-described embodiment, a temperature sensor is used as the full ice sensor 15 for detecting that the ice in the ice heat storage tank 1 has been stored to a predetermined height, and the ice comes into contact with the temperature sensing part of the sensor. Although it is configured to detect that the ice has reached a predetermined height based on a temperature change, this full ice sensor may be a touch sensor that is normally open but is closed by contact with ice. In addition, it emits a light beam from above toward the surface of the ice 22, detects the height of the ice by the intensity of the reflected light from the ice surface, and detects that the ice is full when the reflected light exceeds a predetermined intensity. A light-emitting element and a light-receiving element for receiving light from the light-emitting element are provided at a predetermined height in the ice storage tank, that is, at a predetermined full ice height, so that the ice is filled with ice. In the state where it has not reached the state of Reaches the light-receiving element, but when the ice reaches a predetermined full ice height, the light from the light-emitting element is blocked by the ice 22 and does not reach the light-receiving element. Proximity sensors may be used.
[0041]
Actions and effects of the present invention
According to the ice heat storage device according to the present invention, the amount of water and the amount of ice stored in the ice heat storage tank are individually monitored by a water level sensor and a full ice sensor, respectively, and based on a signal from the water level sensor. The control circuit controls the supply of make-up water, and the control circuit controls the ice making operation of the ice making machine based on the signal from the full ice sensor.
[0042]
Therefore, even when the amount of water held in the device decreases, such as when cold water is discharged in the cold water circulation path on the load side, the water level in the ice heat storage tank is always kept within a certain range, and the ice making operation is not performed. Stable operation is performed without being affected by fluctuations in water level.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of an apparatus according to the present invention.
FIG. 2 is an enlarged front view showing a specific example of a full ice sensor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ice heat storage tank 2 Ice machine 3 Load side heat exchanger 4 Control circuit 5 Ice making water pipe 6 Ice water supply pipe 7 Cold water outgoing pipe 8 Cold water return pipe 9 Water sprinkling pipe 10 Refill water pipe 11 Open / close valve 12 Water level sensor 13 Water level signal line 14 Open / close Control signal line 15 Full ice sensor 16 Temperature signal line 17 Operation control signal line 18, 19 Open / close valve 20 Drain branch pipe 21 Air release branch pipe 22 Ice 23 Drive control signal line P1 Ice making pump P2 Cold water pump S1, S2, S3 , S4 Liquid contact sensor

Claims (1)

水と氷を貯留する氷蓄熱槽と、この氷蓄熱槽から送られる水を凍結せしめて氷を生成し、この氷を氷蓄熱槽に供給する製氷機と、氷蓄熱槽内にて同槽内に貯留されている氷により冷却された水を負荷側に送り、負荷側にて熱交換した水を再び氷蓄熱槽に戻す冷水供給経路を備え、また前記氷蓄熱槽内に、同槽内の水位を検知する水位センサと、同槽内に貯留されている氷の貯留高さが予め設定された満氷状態の高さに達しているか否かを検知する満氷センサを備え、上記水位センサからの信号に基づいて氷蓄熱槽内の水位が所定の範囲内に維持されるよう同槽内への水の補給を制御し、かつ前記製氷機の製氷運転が行なわれている際に満氷センサから氷が満氷状態の高さに達したことを示す信号を受けることにより製氷機の運転を停止せしめる制御回路を備え、氷蓄熱槽内の水位と貯氷量が個別に制御されるように構成してなる氷蓄熱装置。An ice storage tank that stores water and ice, an ice machine that freezes water sent from the ice storage tank to generate ice, and supplies the ice to the ice storage tank. A cold water supply path for sending the water cooled by the ice stored in the ice storage side to the load side, and returning the water heat-exchanged on the load side to the ice heat storage tank again, and in the ice heat storage tank, A water level sensor for detecting a water level, and a full ice sensor for detecting whether or not the storage height of the ice stored in the tank has reached a preset full ice state height; Control the supply of water into the ice heat storage tank based on the signal from the ice storage tank so that the water level is maintained within a predetermined range, and when the ice making machine is performing the ice making operation, Shut down the ice maker by receiving a signal from the sensor indicating that the ice has reached the full ice level. A control circuit, the ice heat storage device the water level and ice of the ice thermal storage tank is configured to be individually controlled.
JP2002242397A 2002-08-22 2002-08-22 Ice heat storage device Expired - Fee Related JP4021281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002242397A JP4021281B2 (en) 2002-08-22 2002-08-22 Ice heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002242397A JP4021281B2 (en) 2002-08-22 2002-08-22 Ice heat storage device

Publications (2)

Publication Number Publication Date
JP2004084963A true JP2004084963A (en) 2004-03-18
JP4021281B2 JP4021281B2 (en) 2007-12-12

Family

ID=32051488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002242397A Expired - Fee Related JP4021281B2 (en) 2002-08-22 2002-08-22 Ice heat storage device

Country Status (1)

Country Link
JP (1) JP4021281B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121766A (en) * 2007-11-15 2009-06-04 Mayekawa Mfg Co Ltd Ice slurry packing method and apparatus
JP2009168369A (en) * 2008-01-17 2009-07-30 Takasago Thermal Eng Co Ltd Ice bank system and operation control method for ice bank system
JP2009287787A (en) * 2008-05-27 2009-12-10 Takasago Thermal Eng Co Ltd Ice-water slurry supplying method and ice heat storage device
JP2014016155A (en) * 2013-10-28 2014-01-30 Takasago Thermal Eng Co Ltd Ice-water slurry supply method and ice thermal storage device
CN108413602A (en) * 2018-03-30 2018-08-17 葛洲坝集团项目管理有限公司 A kind of Intelligent pool ice-out system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121766A (en) * 2007-11-15 2009-06-04 Mayekawa Mfg Co Ltd Ice slurry packing method and apparatus
JP2009168369A (en) * 2008-01-17 2009-07-30 Takasago Thermal Eng Co Ltd Ice bank system and operation control method for ice bank system
JP2009287787A (en) * 2008-05-27 2009-12-10 Takasago Thermal Eng Co Ltd Ice-water slurry supplying method and ice heat storage device
JP2014016155A (en) * 2013-10-28 2014-01-30 Takasago Thermal Eng Co Ltd Ice-water slurry supply method and ice thermal storage device
CN108413602A (en) * 2018-03-30 2018-08-17 葛洲坝集团项目管理有限公司 A kind of Intelligent pool ice-out system
CN108413602B (en) * 2018-03-30 2024-01-09 葛洲坝集团项目管理有限公司 Intelligent pool ice melting system

Also Published As

Publication number Publication date
JP4021281B2 (en) 2007-12-12

Similar Documents

Publication Publication Date Title
US10890368B2 (en) Methods and apparatuses for controlling the harvest cycle of an ice maker using a harvest sensor and a temperature sensor
KR20170039177A (en) Draining the sump of an ice maker to prevent growth of harmful biological material
JPWO2008053975A1 (en) Automatic ice maker and its operating method
KR101718019B1 (en) Power saving apparatus for ice maker and power saving method of ice maker
JP2004084963A (en) Ice heat accumulator
JP4994087B2 (en) How to operate an automatic ice machine
JP5052173B2 (en) How to operate an automatic ice machine
JP2008064322A (en) Automatic ice making machine
US5894734A (en) Water-circulating type ice maker
JP2007033010A (en) Control method of automatic ice making machine
JP6894626B2 (en) Rehydration control method and water server
JP2000258009A (en) Automatic ice maker
JPH0638292Y2 (en) Automatic ice machine
KR100636553B1 (en) Water supplying control apparutus for a ice maker and control method thereof
JP7489831B2 (en) Ice dispenser
JP5052213B2 (en) How to operate an automatic ice machine
JP7496130B2 (en) Water server, operation processing method, operation processing system, operation processing program, and recording medium
KR20140123283A (en) Ice manufacturing apparatus and the method thereof
JP2001124370A (en) Method for controlling level of thermal storage medium of ice storage apparatus
JP2004011961A (en) Ice making machine
EP3760953B1 (en) Apparatus and method for detecting a formation of ice in a household appliance
JP2024027244A (en) Control device for ice making machine
JPS5926209Y2 (en) automatic ice maker
KR20180069251A (en) Method of inspecting water purifier with ice maker
KR100661831B1 (en) The water supply perception method of an ice-maker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040928

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees