【0001】
【発明の属する技術分野】
この発明は、洋上に建設する風力発電装置の建設において、タワー(塔)を支える基礎の構築方法、及びこうして建設される洋上風力発電装置の地下構造に関するものである。
【0002】
【発明が解決しようとする課題】
近年、風車の回転で発電機を駆動し、風力エネルギーを電気エネルギーに変換する風力発電は、化石燃料に依存しない省エネ性から、地球温暖化問題を解決するためのエネルギー手段として積極的な開発利用が推進されている。構造物としての風力発電装置は、発電機を収納したナセルと、このナセル先端に回転自在に取り付けられる風車とを、基礎に立設したタワーで所定の地上高に支持して建設される。
【0003】
かかる風力発電装置において、安定した電力の供給を得るために、ブレードの長尺化、タワーの高度化、発電機の高出力化等の装置の大型化が図られ、装置の複数設置による大規模な開発が行われている。また、動力源の風力エネルギーは風速の3乗に比例するので、風力発電装置の建設には風況に優れた立地が条件とされ、沿岸・港湾などの海岸域がこれに適し、騒音被害が及ばない洋上での建設が検討されている。
【0004】
こうした洋上風力発電装置の建設には、風車、発電機、タワーを支えるに十分な強度の基礎の構築と、そのコストの削減が求められ、塩害への対策、機材の運搬や点検・取替等のメンテナンスなど、陸上設置とは異なる洋上特有の課題がある。従来、海上施設の基礎は、ケーソン工法によって高気圧下での人力により一般に構築されているが、これは、加圧された環境の中での極めて過酷な作業である。
【0005】
この発明は、これらの課題を解決することを目的とするもので、人力に依らない安全な洋上風力発電装置の基礎の構築方法を提案し、脆弱地盤な立地においても、大型の洋上風力発電装置の荷重に耐える十分な強度の基礎の構築を目的とするものである。また、洋上風力発電装置のメンテナンスを容易とするとともに、塩害を防止し、様々な利用法方法が可能な洋上風力発電装置の地下構造を提案するものである。
【0006】
【課題を解決するための手段】
こうした目的を達成するため、この発明の洋上風力発電装置の基礎の構築方法は、海上にセップ(self−elevating platform:SEP、自己昇降式プラットホーム)を設置し、立坑掘削機を用いて所定口径の立坑を掘削し、この立坑に井筒を順次継ぎ足して所定深度に自重沈下させる。そして、井筒内から岩盤に対してロックボルト、ロックアンカー等の支保を施して堅固に固定し、井筒の上端を海面から突出して洋上風力発電装置の基礎を構築するものである。立坑掘削機としてはシャフトボーリング機を用いることができ、いわゆる「吊り掘り」により直下方向へ削孔すると同時に、井筒を自重沈下させる。
【0007】
また、この発明の洋上風力発電装置の地下構造は、陸上から坑道(斜坑、水平坑道)を掘削し、これを上記の立坑と連通させるもので、陸上から坑道を通って各洋上風力発電装置へのアクセスを可能とするとともに、坑道の様々な利用方法を図るものである。予め坑道が掘削されている場合は、立坑掘削機としてレイズボーリング機を用いることができ、上記と同様に海上にセップを設置して立坑を掘削する方法が効率的である。
【0008】
さらに、この発明の洋上風力発電装置の基礎の構築方法は、井筒の壁内に軸方向に挿通する送気パイプを周に沿って複数配管し、所定の高さ間隔で外壁面に噴出口を開口し、この送気パイプに空気又は泡沫を上端から供給して外壁面に噴出し、滑性を増して井筒の降下を促進させるものである。
【0009】
【発明の実施の形態】
以下にこの発明の実施の形態を、図面を参照して具体的に説明する。
洋上風力発電装置の建設に当たっては、我が国には遠浅の海は少なく、沿岸・離島から海深10mから30mの洋上にかけて、複数を建設することになると思われる。そこで、各洋上風力発電装置のタワー45を支える基礎の構築方法として、海上から4から5m程度の口径の立坑を掘削し、同時に井筒30を自重沈下させる井筒沈下工法を採用する。
【0010】
図1は、大口径立坑掘削機としてシャフトボーリング機20を用いた掘削方法の概略を示す。海上にセップ10を接地し、四隅の脚11を海底面に降ろし、波の影響を受けない高さに作業足場12を支持する。
【0011】
作業足場12には掘削櫓15が組まれ、いわゆる「吊り掘り」によりシャフトボーリング機20で所定口径の立坑を掘削する。作業台12に設置した掘削装置21でドリルパイプ22を回転させ、ビットボディ24の底面に設けた拡底型ローラーカッター25が接地面を掘削し、シャフトボーリング機20は直下方向へと削孔する。
【0012】
井筒30は、内外壁を鋼板31でライニング補強した鉄筋コンクリート製で、外壁の鋼板31には不錆塗装を施すか、滑性の強い樹脂で被覆する。井筒30の底面(下端面)には周に沿って鋼製のシュー32が装着され、シュー32は削孔の下端に位置し、井筒30は自重で沈下する。
【0013】
井筒30の壁内に送気パイプ33が軸方向に挿通され、井筒30の外壁面に所定の高さ間隔で噴出口34を開口している。この送気パイプ33は、周に沿って等分の間隔で複数配管されている(図3参照)。この送気パイプ33に空気又は泡沫(空気と非公害の潤滑用液の泡)を上端から供給して外壁面に噴出し、滑性を増して井筒30の降下を促進する。岩層との摩擦の大きさで降下が妨げられる場合は、井筒30上端から負荷を加えたり、噴出口34からの空気又は泡沫の噴出壁面の高さを上げ、井筒30の降下を助ける。井筒30は、現場での沈下進行に合わせて順次継ぎ足す。
【0014】
図2、3に、このようにして所定の支持層まで沈下した井筒30を示す。井筒30内から岩盤に対してロックボルト35、ロックアンカー37の支保を施し、井筒30は岩盤に固定される。ロックボルト35は、井筒30の下端から岩層の略全域に亘って多数が施され、ボルト用削孔36に挿通し、削孔36内の全部又は部分的に樹脂又はセメンモルタル等で固定し、その頭部をワッシャ、ナットで固定する(図4参照)。このロックボルト35は、鉄筋コンクリート用鉄筋材等を必要な寸法に切断したものを用いてもよい。ロックアンカー37は、井筒30の下端部に複数が施され、その素材はPC鋼撚線(ケーブル)で、アンカー用削孔38に挿通し、削孔38内先端のアンカー定着部39に先端を固定し、その頭部をくさび及び支圧板等の定着具40で所定の緊張力(引張力)を加えて固定する(図5参照)。
【0015】
井筒30内には鉄塔43が組まれ、削孔底部のフーティング42は、必要に応じて鉄筋コンクリートを上部へ打設され、フーティング42の底部には、ロックボルト35、ロックアンカー37が下方の岩盤に向かって施されている。このようにして堅固に固定した井筒30で洋上風力発電装置の基礎が構築され、この基礎上にタワー45を建設する。
【0016】
図6に、井筒30を基礎とした洋上風力発電装置46を、所定の間隔で複数建設した風力発電施設の概略を示す。こうした洋上風力発電施設としては、風況に優れた沿岸・離島等が選定され、各洋上風力発電装置46を風車の直径×10以上の間隔を目安として建設する。条件が適すれば、陸上にも風力発電装置46aを建設するものとする。この陸上風力発電装置46aは、陸上に直に櫓を組み、洋上での建設と同様に、大口径立坑掘削機を用いて立坑を掘削し、井筒30を自重沈下させ、ロックボルト35、ロックアンカー37等の支保を施して堅固に固定し、これを基礎として建設することができる。
【0017】
洋上風力発電装置46の基礎を構築する立坑は、海面から200m程度の深度に設定するものとし、一方、陸上から斜坑47、水平坑道48の坑道を掘削し、この坑道を、各洋上風力発電装置46の立坑と連通させる。これらの坑道は、発破を用いたドリルジャンボ機によりアーチ型断面形状に掘削され、図6に示すように、坑道(斜坑47)の両端で陸上に開口する他、各洋上風力発電装置46の立坑を連絡して周回するように配置することもできる。
【0018】
坑道が既に掘削されていて、これに海上から立坑を掘削して洋上風力発電装置46の基礎を構築する場合は、立坑掘削機としてレイズボーリング機を用いたレイズボーリング工法が適している。この場合は、海上にセップ10を設置し、坑道に対して小口径のパイロット孔を導孔し、坑道において拡口ビットに取り替え、これを上方へ引き上げながら所定口径の立坑を掘削する。この立坑に井筒30を自重沈下させ、ロックボルト35、ロックアンカー37等の支保を施して堅固に固定し、基礎を構築する。
【0019】
図7に、このようにして水平坑道48を立坑の下端に連通した洋上風力発電装置46の地下構造を示す。坑道の支保工は、全面吹付けコンクリート49と、ロックボルト35、ロックアンカー37を使用したナトム工法(New Austrian Tunneling Method:NATM)を適用している。
【0020】
なお、この発明の洋上風力発電装置の基礎の構築方法及び洋上風力発電装置の地下構造においては、立坑の深度、口径、井筒の壁厚、立坑掘削機の機種(シャフトボーリング機、レイズボーリング機、グラブバケット等)は、条件に応じて最適なものを選定するものとし、ロックボルト35、ロックアンカー37等の支保の種類、寸法、間隔、本数、緊張度合い等も、条件に応じて任意に設定可能である。
【0021】
【発明の効果】
以上のように、この発明の洋上風力発電装置の基礎の構築方法は、海上にセップ10を設置し、シャフトボーリング機やレイズボーリング機等の立坑掘削機を用いて所定口径の立坑を掘削し、この立坑に井筒30を自重沈下させて基礎を構築するもので、人力に依らずに安全な工事で基礎を構築することができる。また、ロックボルト35、ロックアンカー37等の支保を施して井筒30を堅固に固定し、脆弱地盤な立地においても、大型の洋上風力発電装置の荷重に耐える十分な強度の基礎が構築され、工事の機械化、自動化で工期の短縮とコストの削減を図ることができる。
【0022】
また、洋上風力発電装置46を複数建設した風力発電施設において、この発明の洋上風力発電装置の地下構造を適用すれば、陸上から坑道を通って各洋上風力発電装置46へ簡単にアクセスすることができ、機材の運搬や点検・取替等のメンテナンスが極めて容易となる。また、坑道は、制御装置の設置、送電・通信の配線、水道の配管等に用いられ、これらを地下に設けることで、塩害による被害を防止することができる。さらに、地下の坑道と洋上風力発電装置46との高度差に伴う温度差で、自然通気による冷暖房が図られ、坑道を農作物、海産物等の格納に使用するなど、様々な利用方法が可能である。
【図面の簡単な説明】
【図1】この発明の洋上風力発電装置の基礎の構築方法の実施例で、シャフトボーリング機を用いた立坑の掘削方法の説明図。
【図2】基礎の断面図。
【図3】基礎の平面図。
【図4】ロックボルトの説明図。
【図5】ロックアンカーの説明図。
【図6】この発明の洋上風力発電装置の地下構造の実施例で、全体概略図。
【図7】地下構造の断面図。
【符号の説明】
10 セップ
20 シャフトボーリング機
30 井筒
35 ロックボルト
37 ロックアンカー
45 タワー
47 斜坑
48 水平坑道
33 送気パイプ
34 噴出口[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of constructing a foundation for supporting a tower in the construction of a wind turbine generator constructed offshore, and to an underground structure of the offshore wind turbine constructed in this way.
[0002]
[Problems to be solved by the invention]
In recent years, wind power generation, which drives a generator with the rotation of a wind turbine and converts wind energy into electric energy, has been actively developed and used as an energy tool to solve the global warming problem because of its energy saving performance independent of fossil fuels. Is being promoted. A wind power generator as a structure is constructed by supporting a nacelle accommodating a generator and a windmill rotatably mounted at the end of the nacelle at a predetermined height above the ground by a tower erected on a foundation.
[0003]
In such a wind power generator, in order to obtain a stable power supply, the length of the blades, the height of the tower, and the output of the generator are increased. Development is underway. In addition, since the wind energy of the power source is proportional to the cube of the wind speed, construction of a wind power generator requires a location with excellent wind conditions, and coastal areas such as coasts and harbors are suitable for this. Offshore construction beyond that is being considered.
[0004]
The construction of such offshore wind turbines requires the construction of foundations strong enough to support wind turbines, generators, and towers, as well as cost reductions. Measures against salt damage, transportation, inspection, and replacement of equipment, etc. There are unique issues at sea, such as maintenance of the sea, which are different from onshore installation. Conventionally, the foundations of offshore facilities are generally constructed by manpower under high pressure by the caisson method, which is an extremely demanding operation in a pressurized environment.
[0005]
The present invention aims to solve these problems, and proposes a method of constructing a foundation for a safe offshore wind power generator that does not depend on human power, and even in a fragile ground, a large offshore wind power generator The purpose is to construct a foundation with sufficient strength to withstand the load of the above. Another object of the present invention is to provide an underwater structure of an offshore wind turbine that facilitates maintenance of the offshore wind turbine, prevents salt damage, and can be used in various ways.
[0006]
[Means for Solving the Problems]
In order to achieve such an object, a method for constructing a foundation of an offshore wind power generation device according to the present invention includes installing a self-elevating platform (SEP, self-elevating platform) on the sea, and using a shaft excavator to set a predetermined diameter. A shaft is excavated, and a well is sequentially added to the shaft to settle down to a predetermined depth by its own weight. Then, a rock bolt, a lock anchor, or the like is provided to the bedrock from inside the well cylinder and firmly fixed thereto, and the upper end of the well pipe projects from the sea surface to construct the foundation of the offshore wind turbine. As a shaft excavator, a shaft boring machine can be used, and a hole is drilled directly below by so-called “hanging digging”, and at the same time, the well is settled by its own weight.
[0007]
Further, the underground structure of the offshore wind turbine of the present invention excavates a tunnel (oblique shaft, horizontal tunnel) from the land and communicates it with the above-mentioned shaft, and from the land to each offshore wind turbine through the tunnel. And various ways of using the tunnel. When a tunnel is excavated in advance, a raise boring machine can be used as a shaft excavator, and a method of excavating a shaft by installing a CEP on the sea as described above is efficient.
[0008]
Furthermore, the method for constructing the foundation of the offshore wind power generation device of the present invention is characterized in that a plurality of air supply pipes that are inserted in the axial direction into the wall of the well pipe are arranged along the circumference, and the outlets are formed on the outer wall surface at predetermined intervals. It is open and supplies air or foam to the air supply pipe from the upper end and blows it out to the outer wall surface to increase the smoothness and promote the descent of the well.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be specifically described below with reference to the drawings.
In the construction of offshore wind turbines, there are few shallow seas in Japan, and it is likely that multiple units will be constructed from the coasts and remote islands to the ocean at a depth of 10 to 30 m. Therefore, as a method of constructing a foundation that supports the tower 45 of each offshore wind turbine, a wellbore subsidence method of excavating a shaft having a diameter of about 4 to 5 m from the sea and simultaneously submerging the wellbore 30 by its own weight is adopted.
[0010]
FIG. 1 schematically shows an excavation method using a shaft boring machine 20 as a large-diameter shaft excavator. The CEP 10 is grounded on the sea, the legs 11 at the four corners are lowered to the sea floor, and the work scaffold 12 is supported at a height not affected by the waves.
[0011]
An excavation tower 15 is assembled on the work scaffold 12, and a shaft having a predetermined diameter is excavated by a shaft boring machine 20 by so-called “hanging digging”. The drill pipe 22 is rotated by the drilling device 21 installed on the work table 12, and the expanded bottom roller cutter 25 provided on the bottom surface of the bit body 24 excavates the ground contact surface, and the shaft boring machine 20 drills holes directly below.
[0012]
The well tube 30 is made of reinforced concrete in which the inner and outer walls are lined and reinforced with a steel plate 31. The steel plate 31 of the outer wall is coated with a non-rust coating or coated with a highly slippery resin. A steel shoe 32 is attached to the bottom surface (lower end surface) of the well cylinder 30 along the circumference. The shoe 32 is located at the lower end of the hole, and the well cylinder 30 sinks by its own weight.
[0013]
An air supply pipe 33 is inserted through the wall of the well 30 in the axial direction, and an outlet 34 is opened at a predetermined height interval on the outer wall surface of the well 30. A plurality of the air supply pipes 33 are provided at equal intervals along the circumference (see FIG. 3). Air or foam (bubbles of air and a non-polluting lubricating liquid) is supplied to the air supply pipe 33 from the upper end and is jetted to the outer wall surface to increase lubricity and promote the descent of the well tube 30. When the descent is hindered by the magnitude of the friction with the rock formation, a load is applied from the upper end of the well 30 or the height of the air or foam ejection wall surface from the outlet 34 is increased to assist the descent of the well 30. The wells 30 are sequentially added according to the subsidence progress at the site.
[0014]
FIGS. 2 and 3 show the wells 30 that have thus settled down to a predetermined support layer. The rock bolt 35 and the lock anchor 37 are supported from the inside of the well tube 30 to the bedrock, and the well tube 30 is fixed to the bedrock. A large number of lock bolts 35 are provided from the lower end of the well tube 30 over substantially the entire area of the rock layer, inserted into the drill holes 36 for bolts, and fixed entirely or partially in the drill holes 36 with resin or cement mortar, The head is fixed with a washer and a nut (see FIG. 4). The lock bolt 35 may be obtained by cutting a reinforcing steel material for reinforced concrete or the like into necessary dimensions. A plurality of lock anchors 37 are provided at the lower end of the well tube 30. The material is a PC steel stranded wire (cable), which is inserted into a hole 38 for anchor, and a tip is inserted into an anchor fixing portion 39 at the tip of the hole 38. After fixing, the head is fixed by applying a predetermined tension (tensile force) with a fixing tool 40 such as a wedge and a support plate (see FIG. 5).
[0015]
A steel tower 43 is assembled in the well tube 30, and a footing 42 at the bottom of the drilled hole is reinforced with reinforced concrete as necessary. A rock bolt 35 and a lock anchor 37 are provided at the bottom of the footing 42. It is directed toward the bedrock. The foundation of the offshore wind turbine is constructed by the well cylinder 30 thus firmly fixed, and the tower 45 is constructed on this foundation.
[0016]
FIG. 6 schematically shows a wind power generation facility in which a plurality of offshore wind power generation devices 46 based on the wells 30 are constructed at predetermined intervals. As such offshore wind power generation facilities, coasts and remote islands with excellent wind conditions are selected, and each offshore wind power generation device 46 is constructed with an interval of at least 10 times the diameter of a windmill. If the conditions are suitable, the wind power generator 46a is to be constructed on land. The onshore wind power generator 46a is constructed by directly assembling a turret on land, excavating a shaft using a large-diameter shaft excavator as in the case of construction at sea, causing the well tube 30 to sink under its own weight, the lock bolt 35, and the lock anchor. A support such as 37 can be provided and firmly fixed, and can be constructed on this basis.
[0017]
The shaft for constructing the foundation of the offshore wind power generator 46 shall be set at a depth of about 200 m from the sea surface, while the shafts of the inclined shaft 47 and the horizontal shaft 48 will be excavated from land, and this shaft will be used for each offshore wind turbine. It communicates with 46 shafts. These tunnels are excavated into an arched cross-sectional shape by a drill jumbo machine using blasting. As shown in FIG. 6, the tunnels are opened on land at both ends of the tunnel (diagonal shaft 47). It can also be arranged so that it goes around in contact.
[0018]
When a shaft is already excavated and a shaft is excavated from the sea to construct the foundation of the offshore wind turbine generator 46, a raise boring method using a raise boring machine as a shaft excavator is suitable. In this case, the CEP 10 is installed on the sea, a pilot hole having a small diameter is guided to the tunnel, and the pilot bit is excavated in the tunnel, and a vertical shaft having a predetermined diameter is excavated while being lifted upward. The well tube 30 is settled under its own weight in this shaft, and the lock bolt 35, the lock anchor 37 and the like are supported and fixed firmly to construct a foundation.
[0019]
FIG. 7 shows an underground structure of the offshore wind turbine generator 46 in which the horizontal tunnel 48 communicates with the lower end of the shaft in this way. As for the support of the tunnel, the New Australian Tunneling Method (NATM) using the whole shotcrete 49, the lock bolt 35, and the lock anchor 37 is applied.
[0020]
In the method for constructing the foundation of the offshore wind turbine and the underground structure of the offshore wind turbine according to the present invention, the depth of the shaft, the diameter, the wall thickness of the well tube, and the model of the shaft excavator (shaft boring machine, raise boring machine, Grab buckets, etc.) shall be selected optimally according to the conditions, and the type, size, interval, number, tension degree, etc. of the supports such as the lock bolt 35 and the lock anchor 37 are also arbitrarily set according to the conditions. It is possible.
[0021]
【The invention's effect】
As described above, the method for constructing the foundation of the offshore wind power generator of the present invention is to install the CEP 10 on the sea, and excavate a shaft having a predetermined diameter using a shaft excavator such as a shaft boring machine or a raise boring machine. The foundation is constructed by submerging the well 30 under its own weight in the shaft, and the foundation can be constructed by safe construction without human power. In addition, the wells 30 are firmly fixed by supporting the lock bolts 35 and the lock anchors 37 and the like, and a foundation having sufficient strength to withstand the load of the large offshore wind power generator is constructed even in a fragile ground, It is possible to shorten the construction period and reduce costs by mechanization and automation.
[0022]
Further, in a wind power generation facility constructed with a plurality of offshore wind power generation devices 46, if the underground structure of the offshore wind power generation device of the present invention is applied, it is possible to easily access each offshore wind power generation device 46 from the land via a tunnel. The maintenance such as transportation, inspection and replacement of the equipment becomes extremely easy. The tunnel is used for installation of a control device, power transmission / communication wiring, water supply piping, and the like, and by providing these underground, damage due to salt damage can be prevented. Further, the temperature difference caused by the altitude difference between the underground tunnel and the offshore wind turbine generator 46 is used for cooling and heating by natural ventilation, and various utilization methods are possible, such as using the tunnel for storing agricultural products, marine products, and the like. .
[Brief description of the drawings]
FIG. 1 is an explanatory view of a method of digging a shaft using a shaft boring machine in an embodiment of a method of constructing a foundation of an offshore wind power generator according to the present invention.
FIG. 2 is a sectional view of a foundation.
FIG. 3 is a plan view of a foundation.
FIG. 4 is an explanatory view of a lock bolt.
FIG. 5 is an explanatory view of a lock anchor.
FIG. 6 is an overall schematic view of an embodiment of the underground structure of the offshore wind turbine according to the present invention.
FIG. 7 is a sectional view of an underground structure.
[Explanation of symbols]
Reference Signs List 10 Sep 20 Shaft boring machine 30 Well cylinder 35 Lock bolt 37 Lock anchor 45 Tower 47 Incline 48 Horizontal tunnel 33 Air supply pipe 34 Spout